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Introduction

In this work we will study the existence of bounded positive solutions for some elliptic
system. In general, this type of system has the form

—Au + Vi(x)u = f(xz,u,v) in Q
—Av + Va(x)v = g(xz,u,v) in (1)

where © is some domain in RY, f, g : Q x R? — R are caraethedory functions and where V; is a
potential satisfying some properties. Let us just mention two classes of variational systems that
have been object of much research in these last decades, a gradient system and a Hamiltonian
system (see [19]). More precisely,

a) the System (1) is said to be gradient, if there exists a differentiable function

G : Q x R? = R such that
oG oG

%:f and %:9,

b) and the System (1) is said to be Hamiltonian, if there exists a differentiable function

F: 0 x R? - R such that
oF oF

— =g and — = f.

u 7 ov /
The variational terminology comes from the fact that in both case, System (1) has a naturally
associated functional with the system. However, if the System (1) is not variational, we may

use another methods such as:

The moving planes method. In this method is essentially restricted to the case f =
f(v) and g = g(u), with f, g nondecreasing. Furthermore, either f, g have to satisfy some
technical assumption or 2 be convex, see [16]. This method was first introduced in [21]
for the scalar case.

Blow-up method. This method proceeds by contradiction, by assuming that (1) do
not have a priori bounds for the positive solutions. This method was introduced by Gidas
and Spruk in [23] for scalar problems. Later, it was successfully extended to many types
of systems, for instance see [22,44].

Hardy-Sobolev inequalities. This method is based on using the first eigenfunction
of the Laplacian as a multiplier to derive an estimate on the nonlinear terms. Under
proper growth assumptions on f, g, this estimate is then improved on an H' bound by
using Hardy-Sobolev inequalities, and then into a uniform bound using some bootstrap
arguments. This method was introduced by Brezis and Turner in [10] for scalar problems
and then extended to certain classes of systems in [13,15,16].

Lower and upper solution method. This method, can be applied, for instance, when
the nonlinearities have a sublinear growth near zero. For instance, see [35].
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The main objective of this work is to establish the existence of two bounded solutions
for a certain, not necessarily variational, system defined in RY. The first solution will be
obtained by the lower an upper method and the second solution will be obtained considering
an auxiliary problem, which is variational. More precisely, we will study the following elliptic
system involving Schrodinger operators

—Au+ Vi(z)u = Api(z)(u+1)"(v +1)? in RN
—Av + Vo(z)v = ppa(x)(u + 1) (v +1)° in RV, (Sau)
u(xz),v(x) > 0 as |x| — oo.

where A\, u > 0, p,q,r,s > 0, N > 3 and V; is a nonnegative vanish potential satisfying

A
Vi(z) < &
@S T

a;
<
1+ |z|®

for all z € RN (HE)
for some constants a, 4; > 0 and a; > 0, i = 1,2. The weight p; € L=°(RY) satisfies

k.
0<pi(z) < —=— in RV, H
with a4+ >4and k; >0,i=1,2.
Notice that this type of system such as (S, ,) appears when we are looking for stationary waves
solutions of the following coupled nonlinear Schrodinger equations

idr + Ad — (Vi(z) + w1)d + Api(z)(u + 1)"(v +1)P =0
ithy + Ap 4 (Va(z) + w2)b 4 ppz(x) (u + 1)%(v + 1)* = 0, (2)
¢(t, ), ¢(t, ) : [0,00) X RN — C

where the solution is given by
(6,9) = (e""u(x), e*"v(2)), wi,wp € RT. (3)

This kind of Schrodinger system can be used to describe many physical phenomena, such as the
propagation of pulses in optical fiber [33] and a binary mixture of Bose-Einstein condensates
[18]. The mathematical studies of stationary wave solutions for Schrédinger equations has
attracted much attention since 1970s, see e.g. [6,40]. Using (3), it is easy to see that getting a
stationary wave solution of (2) is equivalent to solving the elliptic system (S, ,,) for (u(z), v(x)).

Before dealing with the main results of System (S, ,), we will give some know facts about

the scalar equation
— Au = p(z) in RY. (4)

We will say that p has the so called property (H), introduced by Brezis and Kamin [9], if the
equation (4) has a bounded solution. In Chapter 2 we prove that the sublinear problem

—Au=p(z)u? in RY, N >3 (5)

where 0 < ¢ < 1, has a bounded positive solution if and only if p has the property (H). This
result is due to the celebrated paper [9] by Brezis and Kamin. An important result, which we
present in the same section, is that Problem (5) has a bounded solution if and only if

Ur) = —— * p € L°(RY). (6)

’JI|N_2
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Moreover, in Proposition 2.1.13, we will show that when p is a radially symmetric function,
then for all z € RY with |z| =r,

U(x) =U(r) = /;roo (slN /Os tNlp(t)dt> ds,

which allows us to show that (6) is satisfied if we consider potentials like

p(z) !

gEari
In this same way, we will study the existence of bounded solution for the linear Schrodinger
equation

for any 5 > 2.

— Au+V(z)u = p(x) in RY. (LS)

giving a condition of “compatibility” between p and V. As we will see in Section 2.2 the
compatibility condition tells us that p and the product VU has the property (H) where U is
a bounded solution of (4). For instance, we will show that V' and p are compatible when the
potential V' satisfies (H{}) and p satisfies (H,) with o € (0,2]. So, using an argument like the
one exposed in [9], we guarantee the existence of bounded solutions for (LS) that vanishes into
infinity. This result is due to recent work by Cardoso, Cerda, Pereira and Ubilla [11].

Among other classes of Schrodinger equations, they also considered the following scalar equation

{ —Au+ V(z)u = Ap(z)(u +1)P in RY

P
u(x) - 0 as |x| = oo (Par)

where 1 < p < (N + 2)/(N — 2). Under the conditions (H{}) and (H,), they showed the
existence of a bounded positive solution of Problem (P,,) and also a second solution, via
variational methods, for sufficiently small A > 0.

In Chapter 3, we will give our main results related to elliptic system (S, ,). In Section
3.1 assuming the conditions (H{}), (H,) with a € (0,2] and using upper and lower solution
technique, we first prove the existence of a bounded positive solution of System (S, ,). We
observe that in [9], as well as in [11], the existence and uniqueness of solution in bounded
domains was crucial to get an increasing sequence of solutions in balls that converge, as the
radius goes to infinity, to the solution of the original problem in whole RY. As far as we know,
the first work for elliptic systems using the ideas of [9], was done by Montenegro [35], where
uniqueness of solution in balls also plays an important role. Since System (S, ,) in bounded
domains does not have this property, we will have to use an alternative argument which involves
minimal solutions.

Let us state our first result.

Theorem 1. Assume that p,q,r,s > 0 and in addition suppose hypotheses (H,) and (H{})
hold with o € (0,2] and o + B > 4. Then, there exists A > 0 such that System (S,,) has at
least one bounded positive solution for every 0 < A\, u < A.

We can also establish a converse for the previous theorem:

Theorem 2. Suppose that V € L®(RY) is a nonnegative potential and the weights p; belong to
L®(RN) with p; > 0, fori = 1,2. Suppose also that \,u > 0, the powers satisfy 0 < r,s < 1,
pq < (r—1)(s—1) and there exist positive constants by, by such that bypy(x) < pa(x) < bapy(x) for
every x € RN. If System (S,,.) admits a bounded positive solution, then, the linear Schrédinger
equation (LS) has a bounded positive solution when p = py as well as when p = ps.
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Note that when 7, s > 1 we can construct a function that is the border between the region
of existence and nonexistence.

Theorem 3. Suppose hypotheses (H,) and (H}) hold with o € (0,2] and o+ > 4. Assume
also that r,s > 1 and p,q > 0. Then, there is a positive constant \* and a continuous function
I':(0,A*) = [0,00) such that if X\ € (0, \*) then System (Sy,):

i) has at least one bounded positive solution

if0<p<T(N) ;

it) has no bounded positive solution if
p>T(N). b’

It is worth noting that to obtain existence results of positive bounded solutions of System
(S»,) it is essential to impose the decay hypotheses on the weight p(x). In fact, note that
when p;(xz) = 1 and Vj(x) = 0, System (S, ,) is given by

—Au=Au+1D"(v+1)? in RN
{ (u+1)"(v+1) )

—Av =p(u+1)9(v+1)* in RN,
thus the (H,) property is not satisfied, hence we cannot apply our results. Moreover, there are
no solution of (7) in the following cases (see [36, Theorem 3|):
b,q,7,S > Oap—l-T’ < q—+s and
p+r<ps if r>lorgq+s=p+r
s < ps if r<1,g=0andg+s>p+r

2
b > if r<1,¢>0, ¢g+s>p+randpg>(r—1)(s—1),
Ps —
where 5 . N
b= (g+1-7) and ps = ——
pg—(1—r)(1—y9) N -2

is the so called Serrin’s exponent.

On the other hand, the second solution will be obtained employing variational methods.
Here we will consider two types of systems. The first one is the following gradient system

—Au+ V(z)u = Api(z)(u+1)"(v +1)*T1 in RV
“Av+ V(@)o = Apa(@) (u + 1) (0 + 1) in RV, (@S))
u(x),v(x) >0 as |x| = oo
withr,s > 1, r+s <2*—2, py(x) = (r+1)p(z) and pa(x) = (s+1)p(z). To obtain this second

solution we will use the Mountain Pass Theorem [43, Theorem 1.17]. The main result in this
context is the following:
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Theorem 4. Suppose hypotheses (H,) and (H{}) hold with o € (0,2] and o+ 3 > 4,

i) If r;s > 0, then there exists A\* > 0 such that the gradient System (GS\) possesses at

least one bounded positive solution (uyy,vi ) for all 0 < A < X* while for r,s > 1 and
A > \* there are no bounded positive solutions.

it) If r;s > 1 and v + s < 2* — 2, then there exists 0 < \** < \* such that the gradient

System (GS») possesses a second positive solution of the form (uy + u, vy \ +v) for all
0 <A<\, where u,v € H'(RY).

The second situation involves the following Hamiltonian system

—Au + V(z)u = Ap(z)(v +1)? in RN
—Av+ V(z)v =Ap(x)(u+1)7 in RV, (HS,)
u(x),v(x) —> 0 as |x| = oo

for some conditions in the powers p,q > 0. In this case, in order to obtain the existence of a

second solution we will use a linking theorem proved in [31, Theorem 2.1]. The main result
involving the Hamiltonian system is the following:

Theorem 5. Suppose hypotheses (H,) and (H{}) hold with o € (0,2]. Also, suppose also that
a+ >4 andp,q >0, then

i) There exists \* > 0 such that Hamiltonian System (HS) ) possesses at least one bounded

positive solution (uy x,v1) for all 0 < X < \* while for p,q > 1 and X\ > \* there are no
bounded positive solutions.

it) If pg < 1, then Hamiltonian System (HS) ) possesses at least one bounded positive solution
(urx,v10) for all X > 0.

iii) If 1 < pq and p,q < 2* — 1, then there exists 0 < X\* < X\* such that Hamiltonian

System (HS)) possesses a second positive solution of the form (uy x + u,v1 x4+ v) for all
0 < X\ < \**, where u,v € HY(RY).

| This graph illustrates the results obtained

| for System (HS) ), which may be compared
to works about Hamiltonian systems
|

involving the critical hyperbola.
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We would like to point out that in both Theorem 4 and Theorem 5, to show existence of
a second solution we will use an auxiliary problem which allow us to avoid imposing additional
hypotheses of integrabilities on the weights p;. Here, the potential V; also plays an important
role in defining adequate spaces in which we will consider the associated energy functional.

In Section 3.4, we give an application of Theorem 1. For this purpose, let us introduce
the following System, which, in part, has motivated our study:

—Az = pi(x)z"wP in RN
—Aw = py(x)z%w* in RV, (8)
z(x) > c,w(x) > c2 as |x| > o
where p; satisfies (H,) with 8 > 2 and ¢;,c; > 0. Note that the solutions of this System do
not belong to any Sobolev space, so it is difficult to solve directly. However, as we will see in

the last section, a strategy involving Theorem 1 allows us to find a solution of System (8),
which apparently is the only way to solve it.

To conclude this work, in Chapter 4 we will study the Poisson’s equation in the half space:
— Au = p(z) in RY, 9)

where
RY = {(zy,...,2y) € RN 1 2y > 0},

and p € L2 (RY), p(z) > 0 and p not identically zero. For this purpose notice that if y =

loc

(y1,-..,yn) € RY, its reflection in the plane ORY, is the point

g = (ylv“'v_yN)a
then Green’s function in RY is given by
G]M(x,y) =l(z—y)—T(z—7g) forall z#y in RY,

where I is the fundamental solution of the Laplace equation.
Recently, in [1] using some characterization of the Green’s function Gy, show that

v(x) = /RN Gay(z,y)p(y)dy for z € RY,
+

is a solution of

{ —Au=p(z) in RY 10)

— N\ RN
u=20 on RY\RY

for every p € C3T°(RY), where § ¢ N and 6 > 0. In addition v € C***(RY) and is the unique
solution of (10) satisfying

|U(x)| SCW forz eR s

and for some C' > (0. This result is even more general since it is still true for the operator
(=A)* s > 0, when 25 + 6 ¢ N and instead of Ggx is considered the Green’s function for

(=A)* in RY.
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We also refer to the work made by Bachar and Habib [8], in which using some inequalities
for the Green’s function Gy, the class of potentials K (RY), and the subclass K> (RY) which

properly contains the classical Kato class K°(RY), they have showed that Problem (9) has a
unique solution v € C*™(RY) N Cy(RY) when

1
< for z € RY,
) S T, e
with N +2 < p+ v and v < 2, in addition
1 zy TN N
- < < (C———F fi eR
Cl+|x|N—u($)— L+ x|V ot ’

if v < 1, for some C' > 0 (see [8, Theorem 4] and [8, Example 3]).
In our work, it should be noted that the technique used in the article by Brezis and Kamin
cannot be used directly. However, we can use the following fact:

RY = | Bu(an),
n=1
where, for each n € N, we have denoted by
B,(a,) :== {z € RY : |z — a,| < n}, No

and a, = (0,...,0,n) € ]Rf . This fact allows us give sufficient and necessary conditions
to obtain existence of a bounded solution of Problem (7) by using a monotonicity argument
involving Green’s functions in the balls B, (a,) and the Green’s function in the half space. So,
we begin by giving the following definition.

Definition. Let p € L;° (Rf), p(x) > 0 and p not identically zero. We say that p has the

loc

property (Hy) if there exist a bounded solution of:
— Au = p(x) in RY. (Py)
In this way, here our main result is the next:

Theorem 6. Let p € Lj3, (Rf), p(x) >0 and p not identically zero. Then p satisfies property
(Hy) iff
/ Gy (z,y)p(y)dy € L=(RY).
Y

To finish, we will give some applications of above theorem, which shows that Problem (P.)
has bounded positive solution for some p and also the nonexistence of bounded solution. For
instance, if we consider

1 N
p(I) S m fOI'.ZUER+,

with 0 < 7 < 1 and 2 < 4 «. Then we will show that Problem (9) has a solution u €
HY(RY) N L(RY). Furthermore, if we impose 3+~ < N + 1, we also show that the solution
vanishes at infinity, that is to say

lim w(z) =0 and lim wu(z)=0.
|z|—o0 zN—0
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Chapter 1

Basic results

1.1 Function spaces

We begin by giving some function spaces that will be presented throughout this work.

Definition 1.1.1. Let Q C RY open subset of RY.

Ck(Q), k=1,2,... is the space of functions u :  — R that are k times differentiable in
(2 and whose k-th derivates are continuous in €.

C™>(Q), is the space of functions u : 2 — R that are infinitely many times differentiable
in Q.

C5e(€2), is the subspace of C*(Q2) consisting of functions with compact support in €2,
where the support of a (continuous) function u : Q — R is the closure (in RY) of the set
{x € Q : u(x) # 0}. Likewise, C¥(Q) is the subset of C*(2) containing only functions
with compact support.

LP(Q), for p € [1,00) is the Lebesgue space of measurable functions (Lebesgue measure)

u : © — R such that / lu(x)|P < oo, while L>°(2) is the space of measurable functions

Q
such that ess sup |u(x)| < co, where
€N

esssup |u(x)| = inf{C > 0: |u(x)| < C a.e. in Q}.
e

The norms that make LP(Q2) Banach spaces are, respectively,

|lull o) = (/Q |u(:r)|dx) and ||ul|o = esssup |u(x)|.

LY (), for p € [1,00) is the space of measurable functions u : Q2 — R such that for every

compact set & C Q [Jul|zr(x) < 00.

H'(Q) is the Sobolev space defined by

HY(Q) = {u € L*(Q): Ou

: L*(Q),i=1,...,N
Tt e L= 1. N,

9
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where the derivate

Diu:uxi:%, fori=1,...,N
8IZ’

is in the sense of distributions. It is a Hilbert space, when endowed with the scalar
product given by

(U, v) g1y = / (VuVv + wv)da.
Q

Therefore, the corresponding norm is

ey = ([ (Vo +i2)ac)
Q

e H}(Q) is the closure of C5°(Q) in H'(Q).
o DVA(RY) for N > 3, is the space defined as follows:

DY (RY) = {u e L3 (RY) % e LXQ),i=1,... ,N} .

This space has a Hilbert structure when endowed with the scalar product
(u,v) pregyy = VuVudzx.
RN

So that the corresponding norm is

1

2

Hu\|D1,2(RN):(/ |Vu|2dx> |
]RN

Remark 1.1.1. The space C§°(RY) is dense in DV2(RY). Moreover H'(RY) c DV(RY), but
there are functions, such as
1

(1+z])%
that are in DY?(RY) but not in L?(R"), and hence, not in H*(R").

u(z) =

Definition 1.1.2. Let V : RN — R a nonnegative function.

i) The Hilbert space H{,(RY) is defined by

Hy (RY) = {u c H'RY): / V(z)u’dr < —l—oo}
RN
with scalar product and norm given by

1
2

U, V) gL (RN) = VuVo+V (z)uv)dzr and ||ul|grmyy = Vul* + V(z)u?)dx
v (RN) N v (RN) N
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ii) We will denote by £ = HL(RY) x H,(RY) the Hilbert space with the inner product given
by

(u,0), (¢, 6)) = /RN (ww + VuVe + V(a)up + V(x)v¢) dx

and corresponding norm

(NI

1w, v)|| = (/ (IVal? + o(@)u? + Vol + V(gs)vz>dx)
RN
Definition 1.1.3. Let Q C RY open set, a € (0,1) and u : Q — R. We said that u is Holder
continous with exponent « in ? if there exist C' > 0 such that
lu(z) —u(y)| < Clz —y[*, z,y €.

Definition 1.1.4. Likewise, we said that u is locally Holder continuous with exponent
a in Q if v is Holder continuous with exponent « on campact subset of 2.

Definition 1.1.5. Let Q C RY open set and « € (0,1).

i) If u: Q — R is bounded and continuous, we write

|lull @y = sup u(z)].
e

ii) The a!"-Hoélder seminorm of u : Q@ — R is

ey o= sup { D801

z,y€) ‘iL‘ - y‘a
T#y
iii) The a'"-Holder norm is
HUHcoya(ﬁ) = ||UHc(ﬁ) + [U]coya(ﬁ)-

Definition 1.1.6. Let {2 C RY open set, a € (0, 1_) and k£ a nonnegative integer. The Holder
Space C*%(Q) consisting of all functions u € C*(Q)) for which the norm

ullcre@ = D [1Dulle@ + D, [Dulgoam)

ol <k lor|=k
is finite.
Remark 1.1.2.

i) The space C*(Q) consists of those functions u that are k-times continuously differentiable
and whose k'"-partial derivates are Holder continuous with exponent a in €.

ii) The Holder Space C*(Q) are defined as the subspaces of C*(Q) consists of functions
whose k- order partial derivates are locally Holder continuous with exponent o in €.
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iii) For Simplicity we write
P (Q) = C*(Q), C*(Q) = C(Q).
vi) If a = 1, C%(Q) is often called the space of uniformly Lipschitz continuous functions.
If a =0, C*(Q) (respectively C¥0(Q)) are the usual C*(2) (respectively C*(2)) spaces.

Moreover, for a € [0, 1], C'(]f *(Q2) denotes the space of functions in C**(Q) having compact
support in €.

Theorem 1.1.7. Let Q C RY open set, a € (0,1) and k a nonnegative integer. The space of
functions C**(Q) is a Banach space.

1.2 Embeddings

We recall that a Banach space X is embedded continuously in a Banach space Y, which we
denote by X — Y if

1. XCY.

2. The canonical injection i : X — Y is a continuous (linear) operator. This means that
there exists a constant C' > 0 such that ||i(u)||x < C||u/|x.

A Banach space X is embedded compactly in a Banach space Y if X is embedded continuously
in Y and the canonical injection 7 is a compact operator.

The followings results are the cases of the Sobolev and Rellich Embeddings theorems that we
need is this work. First, we deal with functions defined on bounded sets.

Theorem 1.2.1. Let Q C RY be an open and bounded subset of RN, with N > 3. Then

2N
Hy(Q) = LYQ) for every q € [1, m] :

2N
The embedding is compact if and only if q € [1, m)

The number is denoted by 2* and is called the critical Sobolev exponent for the

embedding of H} into L7 The term critical refers to the fact that the embedding of the
preceding theorem fails for ¢ > 2*.

For functions defined on general, unbounded domains, in view of our applications we limit
ourselves to the case Q = RV,

Theorem 1.2.2. Letn > 3. Then
o HY(RY) — LIYRYN) for every q € [2,2"].
o DVA(RYN) — L2 (RYN).

These embeddings are never compact.
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Remark 1.2.1. We point out that the continuity of above embeddings is expressed explicitly
by inequalities if the form
[ull Laeny < Cllull @y

where C' does not depend on wu.

Below, we will give conditions presented in [3] to get a embedding result (see [3, Theorem
5])

Proposition 1.2.3. Let N > 3. Assume the following hypothesis on V and p

o V:RY — R is smooth, there exists a, A >0, a € (0,2] such that

N +a|x’a <V(x) <A, forallazecR"Y;

o p:RY = R is smooth and there exist k > 0, B > «, such that

0 < p(z) for all x € RY.

L
— 14 |zf

Then, the embedding
i (R") < L(RY)

15 continuous for 2 < q < 2* and compact if 2 < q < 2*, where we denote by Lg(RN), q>1,
the weighted Lebesgue space

q

LZ(RN) =u:RY - R: w is measurable and ||l g @y = (/RN p(:c)\u|qu> < 400

1.3 Frequently used results
Now, we will give some classic results that we will use throughout this work.
Theorem 1.3.1. (Green’s identity) Let Q@ C RY be open, bounded and smooth.

i) (Gauss-Green theorem). Let v € C1(R), then

/umid:z::/ v'dS fori=1,...,N.
Q o0

ii) (Integration by parts formula). Let u,v € C1(2), then

/uxifud:c:—/uvxidx—i—/ wov'dS fori=1,... N.
Q Q 09

Green’s formulas:

iii) Let u € C*(Q), then

/Audx:/ %dS.
Q o OV
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i) Let u € C*(Q) and v € CY(Q). Then

/vAudx :/ @vdS— / Vu - Vv dx.
0 aq OV Q

v) Let u,v € C*(Q), then

ov ou
/Q(UAU —vAu)dr = /m (ua — U%) s,

where along 0S) is defined the outward pointing unit normal vector field (v',... v")

v = v(a)

is the outward normal to 0 at x, a—Z(:B) = Vu(z) - v(z) and where S is the surface measure
on 0S.

Theorem 1.3.2. (Monotone convergence) Let Q C RY be a measurable set Lebesque, and let
(un) be a sequence increase of measurable nonnegative functions such that for each x € Q) there

exists lim w,(x). Then
n—oo

lim u,dx = lim U, dx.
Q n—oo n—oo Q

Lemma 1.3.3. (Fatou’s lemma) Let Q@ C RY a measurable set Lebesgue, and let (u,) be a
sequence of measurable nonnegative functions such that for each x € Q) there exists liminf u, (x).

n—oo
Then

/ lim inf u,,dx < lim inf / Updr.
Q Q

n—oo n—oo

Theorem 1.3.4. (Lebesgue’s dominated convergence) Let Q C RN be open and let (u,) C
LY(Q) be a sequence such that

1. uy(z) = u(x) a.e. in Q asn — co.
2. There exists v € L'(Q) such that for all n, |u,(z)| < v(z) a.e. in Q.

Then u € L*(Q2) and
/ udr = lim [ u,dx.
Q

n—oo 0

Theorem 1.3.5. Let Q@ C RY be open and let (u,) C LP(2), p € [1, 00], be a sequence such that
Up, — u in LP(2) as n — oo. Then there exists a subsequence (u,,) and a function v € LP(Q)
such that

1. up, () = u(x) a.e. inQ asn — oo.
2. For all k, |up, (x)] <v(x) a.e. in Q.

Theorem 1.3.6. (Fubini) Let Q; and Qy be o-finite measure spaces and suppose u(x,y) is
Q1 x Qo measurable. If either

/ ( |u(a:,y)]dy> dr < oo or / ( ]u(x,y)\d:c) dy < 0o
(951 Qo Qo Q1
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then
[ ety < o
Ql XQZ

/Ql ( o |u<x,y)\dy) dz = /M u(z, y)|dzdy = /Q ( 5 \u(m,y)W) dy.

Theorem 1.3.7. (Poincaré inequality) Let Q C RY be open and bounded. Then there exists a
constant C' > 0, depending only on €2, such that

and

/UZdJZ < C/ \Vul*dz  for all u € Hy(Q).
Q Q

Therefore, the quantity ( / ]Vu]Qdac) is a norm on H{ (), equivalent to the standard
Q

one.

Theorem 1.3.8. (Banach-Alaoglu) Let X be a reflexive Banach space. If B C X is bounded,
then B 1is relatively compact in the weak topology of X.

In a Banach space X with topological dual X’, we write u,, — u when the sequence (u,)
converges strongly to u, that is, in the strong topology of X, which means that ||u, —u||x — 0
as n — 0o; we write u,, — u if u,, converges weakly to u, i.e. in the weak topology of X, which
means that

f(u,) — f(u) as n— oo forall fe X'

Example 1.3.9. The following chain of arguments is used very frequently, often automatically.
Let  C RY be open and bounded. Suppose that a sequence (u,) C H}(£2) satisfies

/ |Vu,|*’dz < C for all n€N
0

and for some C' > 0 independedt of k. By Theorem 1.3.7, the sequence (u,,) is bounded in
H}(2). The space Hj (), being a Hilbert space, is reflexive. Therefore, by Banach-Alaoglu
the Theorem sequence is relatively compact in H} () endowed with the weak topology. This
means that there exists u € H(f2) and a subsequence that, again, call u,, such that

u, —u in Hy(Q).

2N
By Theorem 1.2.1, the embedding of HJ () into L(£2) is compact for every ¢ € {1, m) :
Then we can say that
2N
U, = u in LY(Q) for every ¢ € [1, m) )

By Theorem 1.3.5 there exists another subsequence, still denoted u,,, and there exists v €
L9(€2), such that

1. uy(z) = u(x) a.e. in Q

2. |up(x)|] < wv(z) a.e. in Q for all n € N.
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Remark 1.3.1. This same argument can be used in the whole space R since the spaces in
which we will work later will be given, and for them, there is an embedding result equivalent
to Theorem 1.2.1.

Next, we give a result which converts N - dimensional integrals into integrals over spheres.
Theorem 1.3.10. (Polar coordinates)

i) Let u:RY — R be continuous and summable. Then

for each point o € RY

dii ( /B . u(m)dm) _ /8 o ul)as(@)

Remark 1.3.2. Let R > 0. If there exists a function g : (0, R) — R such that u(x) = g(|z|),

from i) follows that
R
/ u(z)dr = / (/ u(x)dS(:U)) dr
B(0,R) 0 9B(0,r)

_ /0 " o) ( /8 o dS(:c)> dr

R
:NwN/ g(r)yrNtar,
0

it) In particular

for each r > 0.

where

Wy = / dS(z).
8B(0,1)

Thus, we have

R
/ u(z)dr = NwN/ g(r)r¥"dr.
B(O,R) 0

1.4 Differential calculus in Banach spaces

We present a short review of the main definitions and results concerning the differential calculus
for real functionals defined in Banach space. A complete discussion of this topic and more
generalities of differential calculus in normed spaces can be found in [2], and you can also
see [41].

Definition 1.4.1. Let X be a Banach space, U C X an open set and let / : U — R be a
functional
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e We say that [ is Gateaux differentiable at u € U if there exists A € X’ such that, for all
veX,

lim I(u+tv) — I(u)

lim . = Av. (1.4.1)

e We also say that I is Fréchet differentiable at u € U if there exists A € X’ such that

lim Iu+wv)—1I(u) — Av

= 0. 1.4.2
lof]—0 vl ( )

Remark 1.4.1.

1. If I is Gateaux differentiable at wu, there is only one linear functional A € X' satisfying
(1.4.1). It is called the Gateaux differential of I at v and is denoted by I/ (u).

2. If the functional is Gateaux differentiable at every u € U, we say that I is Gateaux
differentiable on U.

3. The map I, : U — X’ that sends u € U to I};,(u) € X’ is called the Gateaux derivate of
1.

4. If I is Fréchet differentiable at u, the unique element of X’such that (1.4.2) holds is
called the (Fréchet) differential of I at u and is denoted by I'(u).

5. If the functional I is differentiable at every u € U, we say that I is differentiable on U.
6. The map I’ : U — X' that sends v € U to I'(u) € X' is called the (Fréchet) derivate of I.

7. If the derivate I’ is continuous from U to X’ we say that [ is of class C' on U and we
write I € C(U).

Definition 1.4.2. Let (H, (,)) be a Hilbert space, U C H an open set, and let R: H — H be
the Riesz isomorphism. Assume that the functional I :— R is differentiable at u. The element
RI'(u) € H is called the gradient of I at w and is denoted by VI(u); therefore

I'(u)v = (VI(u),v) for every v e H.
We have the following classic result (see [2]).

Lemma 1.4.3. Assume that U C X is an open set, that I is Gateaux differentiable on U and
I}, is continuous at uw € U. Then I is also differentiable at u, and If,(u) = I'(u).

We conclude by giving the definitions of critical points and critical levels that will be one
of the main themes in studied in this work.

Definition 1.4.4. Let X a Banach space, U C X is an open set and assume that [ : U — R
is differentiable.

e A critical point of [ is a point w € U such that I'(u) = 0.

o If I'(u) =0 at I(u) = ¢, we say that u is a critical point for I at level ¢ and c¢ is a critical
value of /.



18 CHAPTER 1. BASIC RESULTS
e If for some ¢ € R the set I7!(c) C X contains at least a critical point, we sat that c is a
critical level for I.
Remark 1.4.2.

1. As I'(u) is an element of the dual space X', u is a critical point of I if I'(u)v = 0 for all
veX.

2. The equation I'(u) = 0 is called the Euler-Lagrange equation associated to the functional
I.

Next, we will give an example which will be used automatically in this work. For this
purpose, we will give the definition of the Carathéodory condition and a Nemytskii operator.

Definition 1.4.5. Let Q C RY. We say that f : O x R — R is a Carathéodory function if
satisfies

e For all ¢ € R the function z — f(x,t) is measurable.
e For almost all z € Q) the function ¢ — f(z,t) is continuous.

Remark 1.4.3. It is clear that if f : QxR — Ris a Carathéodory function, then x — g(x, u(x))
is measurable for every measurable u : 2 — R.

Proposition 1.4.6. Let Q C RY be open. Let f : 2 x R — R a Carathéodory function such
that for some p,q > 1, ¢ >0 and a € LI(Q)

[f(@, )] < alx) +cft] 7.
Then, the Nemytskii operator g : LP(2) — L4(2) defined by
fwz = f(z,u(z))
18 continuous.

Proof. Since

|f (2, u(@))]? < |a(z) + clu(@)|s

! < 2q_1<|a(a:)|q + c|u(x)p|> e L'(9),

we have f(x,u(x)) € LUQ). Let uy — w in LP(2). Now, we will show that g(ux) — g(u)
in L9(2). In fact, let (u,) a subsequence of (uy). Then, from Theorem 1.3.5 there exists a
subsequence, still denoted u,, and there exists v € L(2), such that

1. up(z) = u(x) a.e. in 2
2. |u,(x)|] < wv(z) a.e. in Q for all n € N.

Thus f(z,un(x)) = f(x,u(z)) a.e. in Q. Since
(@ un(@)]” < 27! (Ja(@) |7 + clo(2)”]) € LY(9),

we see that |f(z,un(x)) — f(z,u(z))| € LI(Q). Therefore, by dominated convergence we have
g(un) = g(u) in L4(2) and thus g(ug) — g(u) in LI(82). O
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Example 1.4.7. Let Q C RY be open. Suppose p and ¢ are conjugate exponents, 1 < p < 0o.
Assume f: Q) x R — R is a Carathéodory function, there exist ¢ > 0 and a € L(Q2) such that

[F(@.t)] < alw) +clle.
Define F': 2 x R — R by
t
F(x,t):/ f(z, t)dt.
0

Then, the functional ¢ : LP(€2) — R defined as

is of class C'(LP(Q2),R) and

I’(u)v:/ﬂf(m,u(x))v(x)dx.

Proof. Let u,v € LP(Q), x € Q and t € [0, 1]. By the mean value theorem there is £ € (0,1)
such that

F(o,u(@) + () — Flz,u(@)) = f(z, u(z) + Eo(2)v(a)
Since
(@, u(@) + Eo@)* < (af@) + clux) + o(@)]7)’
< i1 <a(x)q 4 u(z)?| + c|v(:v)p|) e LY(Q),

by Holder inequality, we have f(z,u(z) + &v(z))v(z) € L'(Q). Therefore from dominated
convergence we see that

lim F(z,u(z) +tv(z)) — F
t—=0 Jqo t

(x’u(x))dx:/Qf(%U(x))U(x)dx'

This shows that ¢ is Gateaux differentiable. Moreover, Proposition 1.4.6 say that the map
u > f(z,u(x)) is continuous from LP(Q2) to L%(£2), then by Lemma 1.4.3 we conclude that
1 is differentiable. O]

1.5 Lower and upper solutions

In this section the classic result of existence of solution of the problem will be given:

u=0 on Of (1.5.1)

{ —Au = f(z,u) in Q
between an upper and a lower solution, where €2 is a smooth bounded domain in RN, N > 3,
uw:Q—Rand f:QxR?— R are given functions.
We begin by introducing the definition of an upper solution and a lower solution of Problem
(1.5.1).
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Definition 1.5.1. Let  a smooth bounded domain in RY, N > 3.

i) A function u € C%(Q) N C(Q) is called classic solution (upper solution, lower solution)
of Problem (1.5.1), if:

“Au= (>, <) fl@wu) @ 0
{ u=(>,<)0 on Of.

ii) A function u € H'() is called weak solution (weak upper solution, weak lower solution)
of Problem (1.5.1), if:

/Vchpd:n: (>, <) /f(w,u)cpd:c in Q
Q Q

u=(>,<)0 on 01,
for all p € C§°(92).

Remark 1.5.1. If u € C?(Q) N (Q) is a weak upper solution (respectively, weak lower solution)
of (1.5.1), then
—Au > f(x,u) (resp. — Au < f(z,u)) in €,

that is, u is a usual upper solution (resp. lower solution) of (1.5.1).

The following result gives (see [30]) us the existence of solution of Problem (1.5.1), proving
that there is an upper and a lower solution. More precisely:

Theorem 1.5.2. Suppose that f € C(Q x R) and there ezist u,u € H'(Q) N C(Q) weak lower
and weak upper solutions (resp.) of Problem (1.5.1) such that u(x) < u(x) for all z € Q.
Then, the Problem (1.5.1) has at least a weak solution v € Hg(S) such that

u(x) <wu(r) <u(r)in Q.

Since here we are working with weak solutions, it is necessary to give the following result,
which is a weak maximum principle.

Lemma 1.5.3. Let @ C RY be a bounded domain and let m > 0 be a constant. If u is a
continuous function in € which is nonnegative on 0S) and satisfies

/(uAcp — mugp)dr <0, (1.5.2)
)

for all ¢ € C°(Q) with > 0. Then u > 0 in Q.

Proof. Suppose by contradiction that minu(z) < 0. There exists an xy € 2 such that
e
u(zg) = min u(x).
€

As u is continuous, there is B(xzg,r) C €2 such that u(z) < 0 in B(xzg,r). Let B = B(xq,r/2).
Choose a nonnegative ¢ € C°(RY) such that

1
/ pdr =1 and put ¢.(z) = —¢ <£> for e > 0.
RN £ £
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Define
us(x) = / w(y)pe(x —y)dy, =€ B fore> 0.
Q

Then uw. — w uniformly on B as € — 0, and so, for any n > 0 there is an ¢y > 0 such that
u. —u > —non 0B for 0 < € < gy. Take a harmonic function h in B satisfying h = v on 0B,
and using (1.5.2) we have

Alue(z) — h(z)) = Aug(z) = / u(y)Ap(z — y)dy < m / u(y)p-(z —y)dy < 0 in B.

And for € > 0 enough small u.(z) —h(x) = 0 on 9B. Then, by the weak maximum principle we
have u. — h > —n in B and letting ¢ — 0, n — 0, we obtain v > h in B. From this inequality
it follows that

> > 1 o o |
u(zg) > h(xg) > min h(zx) min u(z) > I;le%l u(zo)

Therefore, mé% h(x) = h(zp). Then by the harmonicity of h and strong maximum principle we
S
have
u = u(zg) on JB.

Since 7 > 0 can be chosen arbitrarily small, we conclude that v = u(zg) near z, and this
implies that the set M = {z € Q : u(x) = u(xo)} is open in 2. Obviously, M is closed, so that
we must have M = Q) that is, u = u(xg) in Q. This, however, contradicts the fact that u > 0
on 02, and the proof is complete. O

1.6 Elliptic systems

In this section we present the type of systems of equations that we will work on in the following
sections. Next we will give its properties and basic definitions. Consider the following system

—Au + Vi(z)u = f(z,u,v) in Q
—Av 4+ Vo(x)v = g(z,u,v) in (1.6.1)
u=v=0 on Of2

where Q is a smooth bounded domain in RN, N >3, u,v,V;, Vo : Q = Rand f,g: QxR - R
are given functions.

Definition 1.6.1. By a solution (upper solution, lower solution) of System (1.6.1) we
mean a couple (u,v) in (H(2))? satisfying
—Au+Vi(z)u= (>, <) f(z,u,v) in Q
_AU_FV;(CC)UZ(E’ S)g(w,u,v) in
u=(>,<)0 on 00N

almost everywhere in x.
We say that (u,v) is nonnegative (positive) in € if each coordinate is.

The following general result due to Montenegro [35] establishes the existence of a solution
for a systems like (1.6.1), provided an upper solution and a lower solution exist.
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Lemma 1.6.2. /35, Lemma 2.1] Let pg > N and X := {(u,v) € C(Q)? : u = v = 0 on 9N} en-
dowed with the norm [|(u, v)||x = [lullc@) +lullc@)- Assume that there are a nonnegative lower
solution (u,v) and a nonnegative upper solution (u,v) of the System (1.6.1) satisfying u < u
and v < v in Q. Set M = max{||(u,v)| x, ||(w,0)||x}. Let f and g be nonnegative Carathéodory
functions such that f(x,t1,s1) < f(x,te,82) and g(x,t1,s1) < g(x,ta,s9) for every z € €,
0<t; <ty <M,0<s <8< M andsup{f(-,t,s): t,s €[0,M]|}, sup{g(-,t,s): t,s €
[0,M]} arein LPo(S2). Then, System (1.6.1) admits a solution (u,v) verifying u < u < u
and v < v <7 in .

Next, we will give the definition of the types of variational systems that we will work on
throughout this work.

Definition 1.6.3. The system

{ —Au+V(z)u = f(z,u,v) in RV (1.6.2)

—Av+V(z)v = g(z,u,v) in RN
is variational if either one of the following conditions hold:
a) There exists a differentiable function G : R¥*? — R such that

oG oG
%—f and %—g.

In this case, the system is said to be gradient.

b) There exists a differentiable function £ : R¥*2 — R such that

In this case, the system is said to be Hamiltonian.

The variational terminology comes from the fact that in both case, System (1.6.2) has a
functional naturally associated with the system. In fact, if we work with functions (u,v) € H,
the functional associated with the gradient system is

I(u,v) = 1/}RN (]VUIQ + V(2)u? + |Vo]* + V(x)v2> dx — / G(z,u,v)dz,

2 N

while the one associated to a Hamiltonian system is

J(u,v) = /R ) (ww + V(x)uv) dr — 4  Fla,u,v)da.

These two types of variational systems can be treated using the critical point theory, since
the critical points of their functionals are solutions of the System (1.6.2). There are several
methods to tackle this question. The most successful one in our framework seems to be the
Mountain Pass Theorem of Ambrosetti and Rabinowitz (see [27] or [43, Theorem 1.17]) and
the linking theorem ; here we follow [24, Theorem 2.1].
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Definition 1.6.4. Let (E,|| - ||) be a real Hilbert space, I € C*(E,R) and ¢ € R. We call T
satisfies a Palais-Smale condition level ¢ if every sequence (u,) C E such that

I(uy) —>c and I'(u,)—0

n—o0 n—o0

has a strongly convergent subsequence in F.

Theorem 1.6.5. (Mountain Pass Theorem)

Let (E,||-||) be a real Hilbert space, and I : E — R a functional C' satisfying the Palais-Smale
condition. Asume

M1) I(0) =0.
M2) There ezists a constants r,a > 0 such that

1) = a if flull = 7.
M3) There ezists v € E with

I(v) <0 if |Jv]| >
Define

[:={g € C(0,1): E) : g(0) = 0,g(1) = v}.

Then ¢ = inf max I(g(t)) is a critical value of I, greater than or equal to a.
ger0<t<l

Now, we give the linking result. For this purpose we begin by defining what is a cerami
sequence.

Definition 1.6.6. Let (E,|| - ||) be a real Hilbert space, J € C*(E,R) and ¢ € R. We call a
sequence (u,) C E a Cerami sequence at level ¢ and denote (C). for short, if

J(up) —>c and (14 ||uy|))J (u,) —0

and we say that J satisfies the Cerami condition if every (C'). sequence has a strongly convergent
subsequence in F.

Before proceeding, we recall some terminology introduced in [24,29]. Let E~ be a closed
subspace of a separable Hilbert space E with norm || - ||z and let E := (E~)*1. For u € E we
shall write u = u™ 4+ u~, where u* € E*. On H we define a new norm

[e'e] 1 -
Jull; = max {Hu*HEZ gelte ’€k>|} >

k=1

where {e;} is a total orthonormal sequence in £~. The topology induced by || - ||, is called the
T-topology. We recall from [29] that a homotopy h = I —g : Ax[0,1] — E is called admissible,
with A C B, if

i) h is 7-continuous, which means, h(u,,s,) — h(s,u) in 7-topology as n — oo whenever
u, — u in 7-topology and s, — s as n — o0;
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ii) g is 7-locally finite-dimensional, i.e., for each (u,s) € A x [0, 1] there is a neighborhood
U of (u,s) in the product topology of (F,7) and [0, 1] such that g(U N (A x [0,1])) is
contained in a finite dimensional subspace of E.

Notice that admissible homotopies are continuous in the strong topology. Also, if {u,,} is
a bounded sequence in F, then u,, — u in the 7-topology if, and only if, u,, — u in £~ and
Uy — w in BT,

The next proposition was proved in [24] and it is a generalization for (C'). sequences of |29,
Theorem 3.4], in which a similar result was proved for Palais-Smale sequences.

Theorem 1.6.7. (Linking Theorem)
Let E = ET®E~ be a separable real Hilbert space with E~ orthogonal to ET and I € C*(E,R).
Suppose

1
i) J(z) = §(H2+H2 — [z7|I*) = I(2), where I € CYE,R) is bounded from below, weakly

sequentially lower semicontinuous and 1" is weakly sequentially continuous.
ii) There exist zo € E*\ {0}, a >0 and R > r > 0 such that J|y, > « and J|<9MR,ZO <0.

Then, there exists a Cerami sequence for J at level ¢ ;== inf sup J(h(u, 1)) where
hel UGMR,ZO

r:= {h € C(M) ; his admissible, h(u,0) = uw and J(h(u,s)) < max{®(u), -1}, Vs € |0, 1]}
with
Mp.,={2=2 +tz: |z <R, t>0}, N,={ze€eE": |z]|=r}, M= Mg, x[0,1]

Moreover ¢ > a.



Chapter 2

A scalar problem

2.1 The classic problem of Brezis-Kamin

This section will develop the main results obtained in the celebrated paper of Brezis and
Kamin [9].

The objective is to give the necessary and sufficient conditions which guarantee the existence
of a bounded positive solution of the problem

— Au=p(x)u® nRY, N >3 (2.1.1)
where 0 < a < 1, p € L (RY), p(x) > 0 and p not identically zero.

loc
It is important noting that to obtain existence results of positive bounded solutions of
Problem (2.1.1) is essential to impose the decay hypotheses on the weight p(z). In fact, note

that when p(x) = 1, Problem (2.1.1) is given by
—Au =u” in RY

and through the classic Liouville theorems, for 0 < o < 2* — 1, Problem (2.1.1) has only a
nonnegative C? solution given by u = 0. This result was proved by Gidas-Spruck [24] in the
case 1 < a < 2" — 1. Moreover a proof using the method of moving parallel planes was given
by Chen-Li [12], and it is valid in the whole range of a.

Therefore, the goal of this section is given the class of functions p so that Problem (2.1.1) has
a bounded positive solution. For this purpose, we begin to talk about the problem

—Au = p(x) in Q

where € is a domain in RY. From classical theory, if p € C%(Q), we know that the Newtonian
potential of p, w defined on RV by

w(z) = / Iz — y)p(y)dy,

where I' is the fundamental solution of the Laplace equation, given by

1
—2—ln|w| if N=2
T

N(N — 2)wy |x|N—2

if N >3,

25
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defined for x € RN, x # 0, belongs to C?(2) and satisfies —Aw = p in Q (see [30]). However,
if f is merely continuous, then w is not necessarily twice differentiable. In fact, take 0 < R < 1
and 2 = Bpg, where we have denoted by B = {x € RY : |z| < R}. For x = (x1,...,2x) € Br
we define the functions

2 2
r+ - it |z|#0
fle)=q 2z ((—ln|x|)2 2(—1In |z])2 = #
0 if |z]=0

and 1
g(x) = (= R)2 (25 — a7).

Then

u(z) =

(@3 —a})(=Infz)z if 2| #0
0 if Jz|=0

belongs to C'(Br) N C*°(Br\{0}) and satisfies

(-2uzge o B a1

but u is not in C?(Bg), since

N 212 N r3— a2 1 ( m 2;1:%) x?
z2(~Inz))z 2 | (~In|z])2 22| |2|2(—In|z)?

implies that wu,, ., (x) — oo as |x| — 0. However, it is possible that there is another solution
of the equation that was of class C?; to show that this does not happen, we will prove the
following result, which is of interest in itself, since it gives a criterion to remove the singularity
of harmonic functions.

=

Uz 2 (il?) = _2(_ In "TD

Lemma 2.1.1. Let R > 0 and u be a harmonic function in Bp\{0} that satisfies

u(x)

0= lim In |z|
z|—=0

o u(z)|z|N"2 if N > 3.

if N=2

Then u can be defined at 0 so that it is smooth and harmonic in Bg.

Proof. For simplicity, let us only consider the case N > 3. Since u is continuous on dBp, there
exists v € C%(Bg) unique solution of Dirichlet problem

—Av =0 in BR
v=1u on OBgpg.

Using the continuity of v at 0 and the hypothesis, we have

lim w(x)|z|Y "% =0,
|z|—=0
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where w(z) := u(z) — v(x). Moreover w is harmonic in Bg\{0} and w(z) = 0 on 0Bg. For

each € > 0, set

+

w +w(z) and w” = _c w(z),

- [V -2 - [V -2

and choosing ¢ > 0 small enough we have w*(z) > 0 and w™(x) > 0 on |z| = 0. Applying the
principle of the maximum to the region § < |z| < R, follows that

wh(z) >0 and w (z) >0 in § <|z|<R.

In conclusion:

w(r)| < —— in 0 < |z| <R,

we)] < g i 6 < el <

for each € > 0, from where, w(z) = 0 if x # 0, since we can make the same argument with p as
close to zero as necessary to encompass each point x # 0. Therefore u is equal to the harmonic

function v in Bg\{0}, from where defining u(0) = v(0) the proof is conclude. O

Getting back to Problem (2.1.2), assume there exists v € C?(Bg) solution of (2.1.2). Then

w(z) = u(x) — v(z) is harmonic in Bg\{0}, continue in Br and satisfies:

lim w(x)|z|V "% = 0.

|z]—0
Then, from Lemma 2.1.1 w could be extended to a harmonic function in Bz. Thus, w €
C?(Bgr) and therefore u must also belong to C?(Bg). Hence, lim;| o Ue, 2, exists and we arrive
at a contradiction.

Fortunately, if we hope obtain a C? solution, we must instead consider the Holder Space
C%7(Q) in place of C(Q2). In fact, from [25, Lemma 4.2] if p is bounded and locally Holder
continuous with exponent 0 < v < 1 in  , then the Newtonian potential of p, w, belongs
to C%(Q) and satisfies —Aw = p in Q. On the other hand, if p € LP(Q), 1 < p < oo, then
from [25, Theorem 9.9] w is a strong solution, that is to say, w € W??(Q) satisfies :

—Au = p(x) a.e. in Q.
Thus, since our approach considers p € L2, (RY), we only expect to get solutions with regularly
C,

Now, since in the case ) is the ball Bg, from [30, Theorem 12| we have an explicit formula
for the solution of the problem:

—Au=p(x) in Bg
u=g on OBRg,

for given continuous functions p, g given by
ue) = [ Galen)pl)dy~ | K(w.pgw)dS) Vo€ B,
Bgr O0BRr

where K is the Poisson’s Kernel (see [25, 2.29]) and G is the Green’s function in Bp given by

|y| R? .
I‘(:z:—y)—I‘(—a:——y if y#0
R |yl?

I'(z) —T(R) it y=0,

GR(wa y) =

for all x # y in By, we will work with this representation based on the following properties of
the Green’s function in Bp.
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Lemma 2.1.2. The Green’s function in Bgr satisfies:

i) If R < R, then Gg(z,y) < Gr(z,y) for all x # y in Bg, that is said that the Green’s
function in Bpg is increasing with R > 0.

i) Gr(z,y) = T(x —y) as R — oo for all x # y in RV,

The following result gives us a representation of the solutions of the Dirichlet problem:

—Au =p(x) in Bg
{ u=20 on OBgpg. (2.1.3)

Lemma 2.1.3. Let p € L2 (RY), p(x) > 0 and p not identically zero. Then for each R > 0

loc

the Dirichlet problem (2.1.3) has only one weak solution ur € H}(Bgr), which is increasing
with R. In addition

un(z) = /B Gz, y)o(y)dy.

Proof. From [8] (see also [30]) Problem (2.1.3) has only one weak solution ug obtained by

1
min {—/ |Vu|2dx—/ p(z)uc&},
U‘GH(%(BR) 2 Br Br

and from [25, Theorem 8.8] follows that ug € C'7(Bg), for some 0 < v < 1. Since p(z) is not
identically zero we also have ug > 0 in Bg and ug # 0, even more, from [25, Theorem 8.19] (
strong maximum principle for weak solutions), we have ug > 0 in Bg.

Now, we claim that ug is increasing with R, that is, if R > R then up > ug in Bg. In
fact, let ¢ € C§°(Bgr) with ¢ > 0. Then, from Green’s identities

—/ up Apdr > —/ up Apdr = VuR/Vgpdx:/ p(x)p(z)dx
Br

By By Bp/

E/BR p(x)go(:c)dm—/ VurVedz

Br
= —/ urApdz,
Br

from where

/ (upr — ur)Apdr < 0.
Br

Therefore, the maximum principle implies that ug > ug in B (see Lemma 1.5.3).
Next, we will show that is ug is given by

ug(z) = . Gr(z,y)p(y)dy.
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First of all, note that ug is well defined, since if £ > 0 is such that Br C B(x, k), then

Gr(w,y)p(y)dy < / [(z,y)p(y)dy

Br Br
[0l Lo (B(,k) / 1
< PLEEE [y
N(N - 2)wy B(z,k) |z — y|N—2

_ lpll= e / Ly
N(N —2)wy B(0,k) |y| V=2

k .N—1
_ el oo
N(N = 2)wy g TN—2
k’2

= WHPHPo (k)
On the other hand, for R > 0 fix y € Bg and for every ¢ > 0 we define V. := Bg\B(y,¢).

Then, from monotone convergence theorem follows that

lim | ['(x —y)Ap(z)dr = / D(x —y)Ap(z)d.

e—0 Ve Bgr

Now we will estimate the previous integral of the left side. For this let ¢ € C§°(Bgr) with ¢ > 0.
Then using Green’s identities

| T psetds= [ (Pl - p)de(e) - AT - pp())da

€

= [ (v 2w) o) ) ) ds(a)
” 5

0y or
= IN'x—y —@x—x—y)de.
[, (Fe=n3ee - e —n ) st
Again from Green’s identities we have

og . o
/chy,s) =905, (45() = Fr e /831/5) gy D5@)

1
— Awd
N(N — 2)wyeN-2 /B(y,s> o

1
< A N
= N(N — 2)wyeh2 max |Aphoye

=—— _max|Ap| =0 as € = 0.

8_F( —y)=VIl(r—y) -v= -1 ZN: —Yi R AN 1
AR vy = Nwy = |z —y[¥ lz —y|) NwyeN-1
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we obtain

or 1
x—x—de:v:—/ x)dS(x
/8 o P i) = g | otwyisto

< max [p(y) — ¢(@)] + ¢(y)

ja—y|=¢
— o(y) as € — 0.

In conclusion:

—p(y) = /B Iz —y)Ap(z)dz.

Then using Green’s identities and Fubini’s theorem we get:

/BR Vug(z)Ve(x)de = —/ ugp(z)Ap(x)ds

Br

[ ( i GR<x,y>p<y>dy) Ap(a)ds

_ /BR o) ( 5 GR(:c,y)Ago(:c)dx> dy

— [ o ([ v s ) iy

= /B p(y)e(y)dy,

where we obtain that ug is weak solution of Problem (2.1.3). O

After having finished referring to the equation in bounded domains and due to our approach,
we will give some facts about of the Poisson’s equation:

— Au = p(z) in RY. (Pe)

In what follows, NV will be an integer greater than or equal to 3.
The following result says that the Newtonian potential of p, in whole space, belongs to C*(RY).

Lemma 2.1.4. Let p € LS(RY), p(x) > 0 and p not identically zero. Assume that the
Newtonian potential of p, given by

wiw) = [ T o))y,
RN
belongs to L*(RY). Then w € C*(RY) and for any x € RN

Dyw(zx) = . D.l'(x —y)p(y)dy for alli=1,...,N.
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Proof. For each i =1,..., N, we define

v(z) = - Dil'(z — y)p(y)dy.

Since

D.0(x - y)p(y)dy' _

/ DTz — y)ply)dy + / Dz - y)p(y)dy'
RN\ B(z,1) B(z,1)

RN

oIl o (B(2,1))

31

1

1 / p(y) /
< — ——dy + ————— ——dy
Nwy Jry\B(z,1) |z —y[Nt Nwy B(z,1) |z —y[N!

IN

[0z B 1
< (N —2w(z) + —/ vy
Nwy B(0,1) y| N1

= (N = 2)w(z) + o]l L= (B.1));

follows that v; is well defined. We now show that v; = D;w; for each i = 1,...,N.

1

1 / P(y) 2]l (B(z,1) /
P gy 4 WPIL=BD) Ly
Nwyn Jem\paay |7 — y|[N 2 Nwy B [T —y[N !

To do so,

for e > 0, let n.(z,y) = n(|]z — y|/e) where n = n(|z|) is some nonnegative radial function in

CHRM) with0<n<1,0<7n <2and
aa) =19 0TSy
TV |2 >2

Define for € > 0

Clearly, w. € C*(R™) and

|w () —we(x)| =

/RN Iz —y)p(y)dy — /RN ne (2, )T (2 — y)p(y)dy.‘

/ RIS y)p(y)dy\

ol Lo (B(21)) / 1
< oo ———dy
N(N - 2)wy B(,2¢) |z — y|N-2

_ lpllz=@e.y) / L
N(N - 2)wy B(0,2¢) ly|N -2

2e?
= WHPHLN(B(M))-
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In the similar way and considering 7' = 0 on R™\ By., we have

v(z) = Diwe(z)| =

" Dil'(z — y)p(y)dy — /R D (1, y)T(x — y))p(y)dy-’

/RN ((1 — ne(a,y)) Dil(x — y) — 1.(x, y)ﬁf‘(m - y)) p(y)dy‘

2
< lolweeny | (1DI@ = )]+ 20 = w)l)dy

B(xz,2¢)

1ol Lo (B(.1)) / ( 1 2 )
< I 2TEEY) + dy
nwy Bz \|T —y[N=1 " e(N = 2)|z — y[N-2

1
—1pll e srenn (26 + ——— 42
L e e

= 20 )
“N_»o Pl L= (B(z,1))-

In either case, we conclude that as ¢ — 0, w.(x) — w(x) and Dyw.(z) — v;(x) for every
x € RY. Therefore, w € CY(RY) and v; = D;w, for each i =1,..., N.
U

Now we give the property (H) introduced by Brezis and Kamin [9], which will be used
throughout all this work.

Definition 2.1.5.
Let p € L2 (RY), p(z) > 0 and p not identically zero. We said that p has the property (H)

loc
if there exist a bounded solution of Poisson’s equation (P,).

Remark 2.1.1. In order not to move away from the work of Breziz and Kamin, we have given
the same definition introduced by them; however, the solutions in the above definition are
actually weak solutions, therefore, when we refer to solutions of Problem (P,), we are actually
assuming that they are weak solutions.

The next result gives a sufficient and necessary condition to have the property (H).

Lemma 2.1.6. Let p € L (RY), p(x) > 0 and p not identically zero. Then p satisfies property
(H) iff )
[eS) N
e F P € LT RY),
where we have denote by ¢ = (N(N — 2)wy) L.

Proof. Suppose the property (H) is satisfied. Then, there exists U a bounded solution of (P,).
By adding a constant we may always assume that U > 0 in RY. On the other hand, for
cach R > 0, from Lemma 2.1.3, Problem (2.1.3) has only one increasing weak solution
ugr € H}(Bg). In addition

ug(z) = . Gr(z,y)p(y)dy.
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Let ¢ € C§°(Bgr) with ¢ > 0. Then, from Green’s identities

VUVgpd:v:/ p(x)p(x)dx

RN RN

—/ UApdx = VUV pdr =
Br Br

2/ p(m)g&(m)dx:/ VurVedr
Br Br
= —/ urApdz,

Br

/ (U —ur)Apdz < 0.
Br

Therefore, the maximum principle implies that ug < U in Bg for all R. Then, using the
monotone convergence theorem, we get

from where

lim ug(z) = /RN I(z —y)ply)dy = m% xp € L(RY).

R—o0

Reciprocally, suppose
C o0

From Lemma 2.1.4, we have uy, € C*(RY). Now, let ¢ € C5°(RY) with ¢ > 0. Since up is
a lower solution of (Pr), for R > 0 large enough, using Green’s identities, we have

/ pgpdx:/ VurVedr = —/ urApdx
Bgr Bgr Br
= —/ uR<(AsO)+ - (Aw)f)dx,
Br

from where, using monotone convergence theorem, follows that

/ ppdr = —/ Uso Apdr = Vs Vodz.
RN RN RN

Therefore the function us € H'(RY) N L>®(RY) provides a bounded weak solution of (Ps),
and as a consequence the lemma is proved.
]

The next result is a consequence of the previous theorem.

Corollary 2.1.7. Suppose that p satisfies property (H). Then u, is the minimal positive solu-
tion of (Pe).

Proof. From Theorem 2.1.6, since p satisfies property (H), follows that w, is a bounded
positive solution of (P.). Let U be a bounded positive solution of (Pe). The maximum
principle implies implies ug < U in Bpg for all R > 0. Then

u(zr) == 1%1_{20 ug(x) exist for every r € RY,
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and v < U in RY. Since

lim ug(z) = /RN I'(z —y)p(y)dy = m% kP = Uoo (),

R—o0
follows that u., < U in RY. Therefore us, is the minimal positive solution of (Py). O

The following result will allow us to show that u., tends to zero at infinity in a sense that
will be specified later.

Lemma 2.1.8. Suppose that p satisfies property (H). Then

lim Uoo (y)dS(y) = 0.

Proof. By Fubini’s theorem we have

v [, 5 = g [ o) ( /. S )
— # (/|w<R p(z)I(x)dx + /x|>R p(x)l(x)ah?) ;

_ dS(y)
I(z) _/I y|N-2

y|=R |‘T -

where we have denoted by

Let y € 0Bg. Since the function

1 1
N(N = 2wy |y — z|N—2

is harmonic for all x # y in RY, we distinguish two cases:

x— O(x) =

i) |z| < R: By Mean-value formulas, for Laplace’s equation (see [25], [30]), we have

1 1 1 1 1
S dS(y) = ®(0) =
TR T ooy MO =Ty 7250 = 20 = =

From where i5(s) Nt
Yy R™™
— 2 =N = NwyR.
/y|R ly — z|N-2 wRRN—Z WwN

ii) |z| > R: We have
ly — 2 = |2 =22y + [y*

_|y|2 2 2 R2
= ﬁlxl —2r-y+

2 |?/|2 x R?
- Wl oy, 2 4 2
o (R? VP TP

2 2
= |z? (‘y_||x|2 oy L4 R2ﬂ)
T

R? |? |z|*
2
R | |2
2
T |2 x
=|=| |y - R*—
‘R‘ YT P
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Lo () L
ly|=R ly — x|N-2 Ed 9Br |y — R22; N2

|z

Then

2
R~

||

< R. Then, from i) we have

dS(y) < R )M
— . = — NwnyR.
/y|R ly — z|N-2 || o

Therefore from 1), ii) we see that

However

__c e+ e o)
i;RmdymS@)—}w»{AkRMﬁﬂ o A (2.1.4)

|z|>R |z

Using that us, € L®(RY) and dominated convergence theorem, as R — 0o, the second integral
of (2.1.4) tends to zero. We estimate the first one by

c c
N2 / p(x)dx = RN </ p(z)dx —i—/ p(gc)dw) :
|z|<R |z|<Ro Ro<|z|<R

for some Ry > 0. To determine Ry note that

1 / p(z)
— p(x)dx §/ —dx
RN—2 Ro<|z|<R Ro<|z|<R |z N2

<[ A
Ro<|z| |z]

for each Ry > 0. Thus, for € > 0 we choose Ry > 0 large enough satisfying

/ pg\ﬁzdw <e.
Ro<|z| |$|

Then, for this Ry we choose R > 0 big enough so that:

1 CRY!
—_— dx < 0
RN=2 [\ <Ry pla)de < RN-2

pllzoo(Bry) < &
Therefore, from (2.1.14), we get

lim Uso (y)dS(y) = 0.

R—o0 aBR

Corollary 2.1.9. Suppose that p satisfies property (H). Then

liminf uy (x) = 0.
|z|—o0
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Proof. Since uq(z) > 0 for all z € RY,

lim inf . ()
|z|—o0

exists and is greater than or equal to 0. Now, suppose by contradiction that

lim inf u. (x) > 0.

|z|—o00
Then, constants C, M > 0 would exists such that
Uso(y) > C >0, Y|yl > M.

Thus, for R > M we have
/ oo (y)dS(y) > C|0Bg| = CRN 1,
OBg

and consequently

]é . Uso(y)dS(y) > C,

which contradicts the Lemma 2.1.8 . Therefore

liminf uy (x) = 0.
|z|—o0

O

Lemma 2.1.10. Suppose that p satisfies property (H). Then any bounded positive solution U

of (Pe) such that
liminf U(z) =0

|z|—o00
cotncides with Us.
Proof. Since 1, is the minimal positive solution of (P.) we have uy, < U in RY and

~A(U —uy) =0 in RY

holds in the weak sense, that is to say then for every :
/ (U — uoo)Apdz = 0 for all ¢ € C°(R™Y).
RN

Then from [28, Corollary 1.2.1] ( Weyl’s lemma), follows that (U — us,) is harmonic in RV,
Furthermore (U — uy,) is bounded, then Liouville theorem yields

U—t=0C foralleRN,
for some constant C' > 0. Using that

liminf (U — us) (z) = 0,

|x|—o00

we get C' = 0. Consequently U = uy, in RV, O
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Corollary 2.1.11. Any bounded positive solution U of (Pe) such that

lim U(y)dS(y) = 0.

coincides with .
Proof. From Corollary 2.1.9 proof, U satisfies

liminf U(z) = 0.

|z| =00
Then, by Corollary 2.1.10, U = u., in R". O

Lemma 2.1.12. Assume U € L®(RY), with AU € L2 (RY), satisfies

loc
—AU < p(x) in RY,

lim U(y)ds(y) = 0.

Then U < us in RV,
Proof. Set g = —A(us — U). Then g € L2 (RY) and uy, — U is a bounded solution of

—Au = g(z) in RY.

Thus, for every ¢ € Cg°(RY) with ¢ > 0, we have

/ g(x)pdr = [V (us —U) Vdz > 0.
RN RN

Therefore g(x) > 0. Then using equality:

lim (uoe — U) (y)dS(y) = 0,

R—o0 8Bgr

from Corollary 2.1.11, we obtain

Uoo — U =

Thus U < us in RY.
O

Corollary 2.1.13. Suppose that p, and py they are satisfies property (H) and p1 < py in
RY. Let Uy, Uy be bounded positive solutions of (P.), when p = p1 and p = pa, respectively,
satisfying

lim Ui(y)ds(y) =0 fori=1,2.
R—o00 OBg

Then Uy < Uy in RV,
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Proof. Since U; € L*®(RY) satisfies:
—AUl S pz(il}') in RN

lim ][ Uy (y)ds(y) = 0,
R— o0 8BR

from Lemma 2.1.12, we have
c

U1SW*P2.

Then, using that
lim Us(y)ds(y) =0,

R—o00 OBp

from Corollary 2.1.11, we see that Uy = H% * pa. Therefore, we find that
ZIN-

U1 S U2 in RN.

That is to say, any bounded positive solution of (P.) that vanishing in infinity depends mono-
tonically on p. O

The following proposition shows us a class of p that satisfies property (H), which will be
used in later sections of this work.

Proposition 2.1.14. Assume
1

) = T

i) If B> 2. Then p satisfies the property (H).

for all z € RV,

i1) If B < 2. Then p does not satisfy the property (H).
Proof. Let r > 0 and put |z| = r, then

Let

So, through simple calculations, we have

Ulr)= —rl_N/ tN1p(t)dt,
0

1-N

U7(r) === Ny [0 = plr) = S0 ) = plo)

Therefore N1
—AU(r) = =U"(r) = ——=U"(r) = p(r).
r
Next, we show that U is bounded when 3 > 2. Here we distinguish the cases in which2 < § < N
and 8 > N.
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a) Let 2 < < N. If r > 1, it follows that

+oo s thl +oo s
Ur) = / SI_N/ dt |ds < / SI_N/ tNT17Bqt | ds
r 0 1 +t r 0

1 /+oo 1—Bd
= —— S S
N — 5 r

= ! im (p>F — 28
C(N=pB)(2-5) bL+oo(b )

r2=8

(N=8)(B-2)

1
SIN_HG-2

Similarly, if 0 < r < 1, U is shown and is bounded.

b) Let § > N. Here, using the next fact:
For every a € (0, N — 2) there are ¢y > 0 and r; > 1 large enough such that In(s) < ¢ys®
for all s > rq, follow that

In(1+sY) <in(2s") =in(2) + Nin(s) < In(2) + coNs* for every s > ry.
Thus, if » > rq, it follows that

+o00 s ZfN_l 400 1 2fN—l +o0 s 7fN—l
/ stV / dt |ds = / =N / dt |ds + / stV / dt |ds
r 0 1 + tﬁ r 0 ]- _I— tﬁ r 1 1 _I— tﬁ
e 1-N ! N-1 l 1I-N .
g/r s /0 YTt ds+/r S /1 1+tth ds

1—1n(2 Foo 1 +oo
— 71“()/ s'™Nds + N/ sl_Nln(1+sN)ds

N
1 —+o00 —+o00
< = / s'Nds + ¢ / s'Te N
N T T
2N cor2ta—N

T N(N-2)  N-2-a

(1 + co)r2teN
- N-2-a
1+ ¢
“N—-2—-a

Similarly, if 0 < r < rq, U is shown is bounded.

Therefore, from a) and b), we conclude that p satisfies property (H). Now, with regard to the
case [ < 2, using inequality

opN-1 {tN—l if f>0and 0<t<lorfB<O0andt>1

>
L+t8 = | tNF1 ifg>0andt>1lorf<0and0<t<1,
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for 0 < 8 < 2, we see that
“+oo N 1 tN_l +o0 N S tN_l
U(r) = B dt |d - dt |d
(r) /T S /0 T s+ /r S /1 7 S
1 +oo 1 1 “+o00 s
> —/ slN/ tNLdt |ds + —/ slN/ NPt | ds
2 r 0 2 r 1

L[ 1 TN (N
:ﬁ/ S dS—i-m/ S (S —1)d8

e 1 oo 1 oo
(o o) [ ey [ e

2N
- ( 1 1 ) " ! lim (b*F —r?77)

IN 2N-5)) N—2 " 2(N—B)(2— 1) ioix
= +o0.
In the same way, it is shown that p does not satisfy property (H) when 5 < 0. O

Remark 2.1.2. The previous proposition tells us that Problem (P,) has a classic solution, if

and only if g > 2, when
1

o N
_71+|x|5 for all z € R".

p(z)

Below we will give the main results presented in [9] regarding equation (2.1.1), that is to
say, of:

—Au=p(x)u*in RY, 0<a <1 and N > 3.

Theorem 2.1.15. Problem (2.1.1) has a bounded positive solution if and only if p satisfies

Proof.

A. Sufficient condition.
First suppose p satisfies property (H). Let R > 0. We claim that for each R, the problem

{ —Au = p(x)u® in Bpg

P
u=20 on OBpgr (Pr)

possesses a unique positive weak solution ug € H}(Bg) N L*>°(Bg). B
Indeed, let ¢, be a positive eigenfunction associated to the first eigenvalue \; of the
equation

—Ap; = Aip(x)p; in  Bg
p1 =20 on OBg.

Since 0 < a < 1, we can take € > 0 enough small satisfying

Xl S an—l(ptlx—l

Y
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Then, for every ¢ € C3°(Bg) with ¢ > 0, we have

| Veovots = [ Sip@eisds < [ pla)(eon)rods
Bgr Bgr

Br

Therefore, ey is a lower solution of (Pgr).
On the other hand, since p satisfies property (H), there exists U a bounded positive
solution of (P,). Choosing C' > ||U]|%"~* we have

Cp(w) > p(x)(CU)* in RY,

which implies that CU is an upper solution of (Pgr) for all R > 0. Moreover we choose
e > 0 enough small such that ey is a lower solution of (Pr) and ep; < CU. Therefore,
Theorem 1.5.2 give us the existence of a weak solution ur € H}(Bg)NL*®(Bg) of (PRr)
such that

epy <ug < CU in Bg.

Now, we will show that the solution ug of (Pr) is unique. Indeed, suppose that u; and
ug are two positive solutions of (Pr). Define

S={sel0,1]: su; <uy on Bgr}.

We observe that 0 € S. Furthermore, if 0 < sy € S, then for every s € (0,s9) we have
s € S. Hence, nu; < us on Bg where n = sup.S. We claim that n = 1. In fact, assume
by contradiction that n < 1. Since 0 < a < 1, for every ¢ € C§° (BR) with ¢ > 0 follows
that

V(s — fuy) Vipdas — / o) () — ) o

Br Br

2/ p(a)us (n™ —n)pda,
Br

> 0.
Therefore, the following relation holds in the weak sense

—A(uz —nuy) >0 in Bpg
us —nuy =0 on OBR.

Then, using the Maximum principle and [38, Theorem 1] (Hopf’s Lemma for weak solu-
tions) we see that either

0
i) ug —nuy > 0 in By with 8—<U2 —nuy) < 0 on OBg, or
v
i) ug —nu; =0.

In the first case, there would be some £; > 0 such that uy — nu; > ejuq, that is to say
ug > (n 4 €1)uy, which is impossible. Respect ii), this case is also impossible, since if we
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would have us — nuy; = 0, then for each ¢ € C§° (RN ) with ¢ > 0 follows that

0= V(ug — nup)Vpdr = VusVipdr —n Vu,Vpdx
Br Br Bg
= / plx)uyedr +1 / plx)upde
BR BR

=" —n) /B p(z)ufpdr,

from where, using that p is not identically zero, n = n“ is obtained, which is impossible.
Thus, we conclude that n = 1, i.e., up > ;. Similarly, us < u;. Consequently, us = u;.
Therefore, the solution ug of (Pr) is unique.

Next, we will prove that the sequence ug is increasing with R. Indeed, let R’ > R. Then,
up is an upper solution of (Pgr). On the other hand, we can choose € > 0 enough small
for e¢1 to be a solution of (Pr) with e < ug in Bg. This implies that there is a weak
solution v of (Pgr) with

ep1 < v <up in Bg.

Since Problem (Pg) has only one weak solution given by wug, follows that

ur < up in Bp for R’ > R.

Now, we will prove the existence of a solution of problem (2.1.1). In fact, since
ugp < CU in Bg, (2.1.5)
for all R > 0 and up is increasing, we get
u(zr) == 1%1_{1;0 up(x) exist for every x € RY,

and also
u<CU in RY. (2.1.6)
Next, we will prove that u is a positive weak solution of (2.1.1).

From Lemma 2.1.3, follows that
up(z) =/ Gr(z,y)p(y)ug(y)dy, © € Br.
Br

Since G and ug are increasing in R, using monotone convergence, and from (2.1.6), we
get

p(y)uo‘(u) ¢ o oo (mN
u(z) = C/]RN |x—y|N—2dy = P * pu® € L2 (R™).

Thus, from Lemma 2.1.6 the function u is a weak solution of
—Au = p(x)u® in RY.

Finally u is a minimal positive solution of (2.1.1), since each bounded positive solution
v of (2.1.1) is an upper solution of (Pr) and we can take ¢ > 0 small enough such that
ey is a lower solution of (Pgr), then we see that ug < v in Bg. Hence, letting R — o0,
we conclude that v < v in RY.
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B. Necessary Condition.

Suppose u is a bounded positive solution of (2.1.1) and for each R > 0, wg € H,(Bg) is
the only one weak solution of:

—Au =p(x) in Bg
u=20 on OBRg,

which is increasing with R > 0 and given by

wg(z) = [  Gr(r,y)p(y)dy. (2.1.7)

Br

On the other hand, set

-«

1
v = U

C1l-a

For each ¢ € C§° (RN ) with ¢ > 0, the function ¥ = u=*p is well defined and belong to
HY(RY). Then, using ¢ as a test function for the equation (2.1.1), we have

VuV1/1d:v:/ p(x)u*Yde,

RN RN

where we get:
/ p(x)pdr = VuV (u=%p) dx
RN RN
—/ Vu(u’ano — a@u’a’1Vu)d:c
RN
:/ (VoVe — au™ " Vul*p)dx
RN

< VuVpdz.

RN
Thus, from maximum principle, we have wg < v in Bp for all R > 0. Therefore
U(z) = I%im wr(z) exist for every z € RY
—r 00

and
U(z) <vin RY.

Therefore, in (2.1.7), letting R — oo, from monotone convergence theorem, we obtain

U(a:):c/]R PLy) dy = ¢ x p € L(RY).

w o —yNT [N

Then, from Lemma 2.1.6, we conclude that U is a weak solution of (P,). Furthermore,
the next inequality holds:

((1 —oz)U)ﬁ <wu in RY.
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Remark 2.1.3. Since u satisfies (2.1.6) for any positive solution U of (P,); in particular we
can take U = u., and by corollary 2.1.9 we conclude that

lim inf u(z) = 0.
|z|—o00

Next, we will show a uniqueness result.

Theorem 2.1.16. Assuming p has property (H), then there is exactly one bounded positive
solution, u, of (2.1.1) satisfying
1‘1n|r1 inf u(xz) = 0. (2.1.8)
Tr|—0o0

Proof. This proof is divided into 3 steps:

Step 1.
Assuming p; < po and they satisfy property (H). We claim that given any bounded

positive solution u; of
—Au; = pi(z)u in RN

lim u; =0, (2.1.9)
there exists a bounded positive solution uy of
—Auy = po(x)uy in RY
(2.1.10)

lim U2 = 0

such that u; < us.
Indeed, since p, satisfies property (H) there exists, v, bounded positive weak solution of

—Av = py(x) in RN
vanishing into infinity.
Since 0 < o < 1, v and wu; they are bounded, there exists C' > 0 large enough such that
uf(r) < C and C* M*(z) < 1.
This implies that the following relation holds in the weak sense
—Auy < Cpo(z) in RY

and from Lemma 2.1.12, we have u; < Cw.
Put v; = C'v. Since vy is bounded, pov{ also satisfy property (H) and consequently there
exists, v9, unique bounded positive weak solution of

—Avy = pa(x)v¢(z) in RN

lim vy = 0.

Thus, we see that
—Avy < Cpy(z) in RY
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holds in the weak sense. Then, from Lemma 2.1.12 we also have v, < C'v. Moreover,
since u; < vy, we have
—Auy < po(z)vf  in RY

in the weak sense, and again from Lemma 2.1.12, we get u; < vy. In this way there
exists a sequence v,, of bounded positive weak solutions of

—Av, = p2(x)v®_(x) in RN

lim ][ v, =0

satisfying
<<, <o <y < vy in RY.

Therefore, there exists

lim v, (z) := w(z) for every z € RY
n—oo

and w is a bounded positive solution of (2.1.10) satisfying u; < w.

Step 2.
Assume we have proven uniqueness for any p > 0, then we also have uniqueness for a
general p > 0.
For this purpose, let p. = p+¢eh where h € C*(RY) N LY(RY) with h > 0. Also let u. be
the unique bounded positive weak solution of

—Au, = p(x)ud in RN

lim u. = 0,

and u be any bounded positive weak solution of

—Au = p(x)u® in RV

lim u = 0.

By step 1 and by the uniqueness of u. we have

U < Ug.

Now, we prove that « = v, where v is the minimal positive weak solution of (2.1.1),
constructed in Theorem 2.1.15, vanishing in infinity.
Indeed let u. r and ug be the positive weak solutions of

—Au. g = p(xr)udy, in Bg
{ 0 on 8B (2.1.11)
and (@)
—Augr = p(x)uy in  Bgp,
{ ur =0 on OBgpg. (2.1.12)
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Multiply (2.1.11) by ug and (2.1.12) by u. g and by integrating we have
/ p(x)ul gus (ul g — up *)de = / p(x) (ue,pufy — ul gug)da
BR BR
:/ (pe(x)ugRuR — p(x)ugRuR)dx
Br

- /B (pe(a) — pla))u? qunde

= 8/ hu? pupdx
Br

< eCl|h|[ 1 @y,

where C' is independent of R. Passing to the limit as R — oo we obtain

/ p(z)ulv® (uf™* —v'"*)dz < Ce
RN

and considering v < u < u., 0 < a < 1, we have

/ p(x)u*v®(u'=® — v *)dx < Ce.
RN

Doing € — 0 we conclude
/ p(z) (uv® — u*v)dz = 0.
RN

Again, using v < u we get

4 ) ("~ ) d = 0.

Thus p(z)v® = p(z)u®. Hence, A(u —v) = 0 in RY in the sense weak. Finally using
l‘nln inf(u — v) = 0, we conclude that
T|—00
u=v in RY (see Lemma 2.1.10).
Before going to the last stage, we must give a result about bounded domains, which in-

volves the use of parabolic equations. For this, we begin by giving the following definition:

Definition 2.1.17. Let 2 the exterior of an (n—1)-dimensional smooth closed surface 052
in the space RN, N > 3. Let T > 0, m > 1 and wy € L>®(Q2). We said w € L2.(Qx (0,7))
is a weak solution of the Filtration equation

ow '
p(r)— —Aw™ =0 in Qx(0,T)
ot
w(xz,0) = wo(z) in (2.1.13)
w(z,t) =0 on 80 x (0,T),
if

/g (0.7) <wm(fv, tAp(z,t) + plz)w(z, ) e, t))dxdt + /Qp(gj)wo(x%D(J,’ 0)dz = 0,

for all ¢ € C5°(2 x (0,7)).
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Remark 2.1.4.
i) Here, consider the space Cg°(€2 x (0,T)) be a set of functions ¢(x,t) belonging to
C*(Q2 x (0, 7)) NC(2 % (0,T)), such that
o(x,t) =00n 02 x (0,T), @(z,t) =0o0n 0Bg x (0,7T),
and ¢ = 0ift > T —e(p) or |z| > R(p), where e(¢) € (0,T), R(¢) > Ry and Ry > 0
is chosen so that the ball By, contains the surface 0€2. For more details see [17].
ii) Definition of weak solution of Problem (2.1.13), when € is the whole space R, it

is the same as the previous one, taking into account that 99 = ().

Theorem 2.1.18. Let N > 3.

a) If
/ plrwole)

‘I|N_2

then, Problem (2.1.13) has only one weak solution, w, satisfying

T
lim RV / ( / wm(:c,t)dt> dS(x) = 0.
R—o0 OB 0

b) If wg € CY(Bg), then Ow'y /dz; exists and is continuous as a function of x; every-
where in B x (0,T), for eachi=1,...,N.

,t) of (2.1.13) with w(x,t) > 0 on Q x (0,7)

c) If there exists another solution w(x,t
) > w(x,t) in Q x (0,7T).

and w(x,0) > wy(x) then w(z,t

Proof.
a) The proof can be found in [17, Theorem 2.
b) The proof of this regularity result can be found in [4, Theorem |.

c¢) The proof of this comparison result can be found in [17, Theorem 3].

Now, notice that if u(z) is a bounded weak solution of (2.1.1). Then, for each 7 > 0,

Cuw

z(z,t) = m

satisfies:
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where m = é > 1, put C = (m — 1)% From where, using that u is a weak solution of
(2.1.1) and Green’s identities, for each ¢ € C5°(RY x (0,00)) we have

0:_/ M(Cm—i>d1’dt
RN x(0,00) (t + 7)m-T m—1
= —/ C4LVUV¢_ Cur ——p(z)p | dudt
RN x(0,00) \ (£ + 7)m—1 (m —1)(t +7)m-T

o2,
S / (vz;”w + p(x)i<p> drdt
RN % (0,00) ot

:/ (z;”Ag0+p(x)zTg0t)dxdt+/ p(x)z:(x,0)p(z,0)dx,
RN % (0,00) RN

in other words, z, is a weak solution of the problem:

0z,
p(x) 52 Azm =0 in RY x (0,00)
Cum
z-(x,0) = — in RN,
Tm—l

Furthermore, since u € C**(RY), from regularity dw? /Ox is continuous as a function of
x everywhere in RY x (0,7).
Next we will show the general result of uniqueness.

Step 3.

By step 2, we suppose that p € L2 (RY) and p > 0.

Let v be the minimal bounded positive weak solution of (2.1.1), constructed in Theorem
2.1.15, vanishing at infinity and let u be any bounded positive weak solution of (2.1.1)
satisfying (2.1.8). Next we will prove that u = v.

In fact, let wgr be a only one weak solution of

o
p(az)% —Aw? =0 in Bgx (0,T)

wg(z,0) = Cum(x) in Bg
wg(x,t) =0 on OBg x (0,T).
From comparison result, it follows that wg is increasing with R > 0, and since z;(z,0) =

Cuw (), we have
wg(x,t) < z(x,t) in Bg x (0,7T),

for all R > 0. From where, letting R — oo, the sequence wpg increases to some limit
Woo (x, t) which satisfies

Oweo
p(x) ;;Ut —Aw” =0 in RN x(0,T)

Weo(x,0) = Cum(xz) in RN

(2.1.14)

and also
Woo(,1) < z1(w,t) in RY x (0,7).
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Furthemore, we claim that wy(x,t) = 2z;1(z,t). For this purpose, notice that z; and wu,
are weak solutions of (2.1.14), then for each ¢ € C5°(RY x (0,00)) we have

0= /RNX(O,OO) (V(Zin —w )V + p(x)%(zl — woo)¢> dxdt.

Now, let n = R — R a nonnegative function in C*°(R) with 0 <n <1, ' <0,

0 it s>1,
) =31 i s<o

and for € € (0,7), 7 € (0,T — ¢), set

Ner(t) =1 (%) :

Moreover, put

1 1 1 .
¢(r) = NV — Duy <‘x|N_2 — RN_2> , = #0in Bp.

Thus, using the function ¢ € C3°(Bg x (0,7)) given by ¢ = ¢ - 1., as test function, we
find:
m m a
L+ 1= (V(zl — w2 )V + p(x)a—(zl — woo)<p> dxdt = 0, (2.1.15)
Brx(0,T) t

for all R > 0. For € € (0,T) small enough, an integration yields:

0 Tro
2= /BRX(O,T) Ple) gy (71— woo)ipdmdt = /BRX(O,T) p<x)¢(z)/o (a(zl - ww)%@)dt) dx

= /B p(x)o(x) <21 (x,T) — we (x, T))d:v.

On the other hand, using Green’s identities follows that

0
(27" —w)Apdr + /83 (27" — wg)a—de(a:). (2.1.16)

V(" —wi)Vode = —/

Bgr Br

Now, for every § > 0, we have

/ (21" —w)Apdr = / (27" —wl)Apdx + / (27" — wl)Apdx
Br BRr\Bs

Bs

- / (2 — w™) Az
Bs

= / (2" — w;”o)@dS(x) — V(" —wl)Vodr
0Bs

v Bs
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Regarding I3, for every x € 0B(y,d) we have

99\ _Va(z) v . 1
o) = Vo(x) v (NwNZ‘x,Q (W N

Therefore
— m 0¢ 1 . o
13 o /635<Zl woo)ayds(x) - NUJN(SN_I /8B5 (Zl (‘Tut) 'UJOO(x,t))dS(ZE)
= _<Z§n(0>t) - wg(o,t)> as § — 0.

Now, regarding I, from regularity

< SuPs, [V —wg)| 1
|N-1

I4 = dx

V(=" — wl)Vodx ‘

Bs Nwy Bs |2

o0

= dsup [V(z]" — wy)|
Bs

—0as 6 = 0.

Therefore for e € (0,7") small enough, from (2.1.16), we conclude that:

T
)
11:/0 (zr(o,t)—wg(o,t))dt+/83 (OT)(z;n— )af S(x)dt.

Next, we will show that the previous integral on the right side converges to 0, as R — oo,
indeed, in a similar way to I3, from Lemma 2.1.8, we have:

m my 09 2T
/8 BRX(O,T)(zl wie) 5, d5( )dt' NN /6 . w(x)dS (z)

2T
= Nux ]gBR u(z)ds(x)

—0as R— oo.

From where, letting R — oo in (2.1.15) and using monotone convergence theorem, we
find:

/OT (zmo, £) — w™ (0, t))dt + /RN p(2)T(z) (21 (2,T) — wee (, T))dx —0,

from where using that I', p > 0 and since 7" > 0 is arbitrary we obtain we(z,t) = 21 (2, 1)
for all z € RY and for all ¢ > 0.

On the other hand, since u,v € L*®°(RY) and they are positive functions, there exists
tr > 0 such that

1

L vm

um < —— in Bp.

m—1
tR
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Thus, from comparison result, we have

Cum
wr(z,t) < —— in By x (0,T),
(t+ tg)m

and thus

1

C’Um .
wg(x,t) < —— in Bg x (0, 7).
tm—1
Finally passing to the limit, as R — oo, in the above inequality and considering that
T > 0 is arbitrary, we obtain

Cum
Weo (2, 1) < Ul in RY x (0, 00),

tm—1

that is to say:
1 1
Cum Cvm
T S
<t —I— 1)m—1 tm—l

which implies that u < v as t — oo. Therefore, u = v.

Y

O]

Remark 2.1.5. There exist other bounded positive solutions of (2.1.1) which do not satisfy
(2.1.8). In fact, given any positive constant a, there exists a solution of (2.1.10) satisfying

liminf u(z) = a.
|z|—00

Indeed, consider the problem

{ —Au =p(z)u* in Bg (2.1.16)

u=a on OBg.

It is clear that u = a is a lower solution of Problem (2.1.16). Moreover, there exists C' > 0
large enough such that

is an upper solution of (2.1.16) for all R > 0. Therefore using lower and upper solution
technique, as in Theorem (2.1.1), we find u,, € H'(RY) N L>(RY) solution of:

—Au = p(z)u® in RY,
satisfying

a<u(z) < ¢
=) = ps

xp+a inRY,
hence

liminf u(z) = a.
|z|—o0
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2.2 The linear Schrodinger equation

After having investigated the existence and uniqueness of solutions of the equation:
—Au = p(x)u® in RY,

which was obtained assuming the property (H), that is, there is a bounded solution of linear

equation:
—Au = p(x) in RY

a natural generalization of this problem is to study existence of bounded solutions for the
following linear Schrodinger equation

— Au+V(z)u = p(x) in RY (2.2.1)

and later a nonlinear Schrodinger equation of type

— Au+V(z)u= f(z,u) in R, (NS)

Recently J. Cardoso, P. Cerda, D. Pereira and P. Ubilla (see [11]) completely develop of the
problem (2.2.1) in order to obtain the existence of at least two solutions of Problem (INS)
where the models f(z,u) studied were:

i) p(z)ul i) Ap(z)(u+1)? iii) Ap(z)(u? 4 uP),
where 0 < ¢ <1 <p < 2*—1 and p satisfies property (H), in all three cases.

However, this section will give the main results regarding linear Schrodinger (2.2.1), which
will be used in Chapter 3.

As noted in [11] u € C%*(RY) given by

1

= Ty

where > 2 and v > 0 is a classical solution of the linear schrédinger equation (2.2.1) for V'
and p given by

1)32| 2281 N = 2)|z|8—2
Viz) = (v +1)5%z| and p(z) = V(B + 1
(14 [x]7) (14 [a]?)*+!
while the linear Schrodinger equation (2.2.1) with
1
V(r) = ——— and = —
@)= 5w ™ o) =

does not have any bounded solution for any a > 5 and g € (0,2] (see Example 2.2.9). This
tells us that the existence and nonexistence of bounded positive solutions for equation (2.2.1)
is related to the growth of V' and p. For this reason, we will assume:

1. V: RN — R is a nonnegative continuous potential and there exist a, 4, > 0, such that

a A
-  <V()< ——— forall xRV, He
T S VWS e foral 2 (Hp)
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2. p:RY — R is smooth and there exists k; > 0, such that

0 < p(x) < for all € R, (H,)

ky
1+ |x|8
with a + 8 > 4.

Next we present the theorems related to Problem (2.2.1). For this purpose we introduce a
compatibility condition between p and V', given in [11].

Definition 2.2.1. Suppose that p has the property (H) and let U be the bounded solution of
(Pe) i.e.
—~AU = p(x) in RY.

We say that V' and p are compatible if

1
|z |N-2

« (VU) € L®(R").

Remark 2.2.1. Notice that V' and p are compatible says that the product VU also has the
property (H).

Lemma 2.2.2. Assume that p satisfies (H,) and V satisfies (H{}) with o € (0,2). Then V
and p are compatible

Proof. Since p satisfies (H,), by Proposition 2.1.14 there exists C' > 0 such that

c N
U((%)SW for all z € R™.

Thus from (H%) we also have

AC

V(z)U(z) < W

for all = € RY,

which implies
1 oo
whenever a + 3 > 4. O

Theorem 2.2.3. If V' and p are compatible, then the linear Schrédinger equation (2.2.1) has
a bounded positive solution.

Proof. Let U be the only one bounded positive solution of (P), vanishing in infinity, given by
Lemma 2.1.6, and let ur be a nonnegative solution of the problem

{ —Aup + V(x)ugr = p(x) in Bg

2.2.2
up =0 on OBg. ( )

Since V € L>®(Bg) and p(x) > 0 it follows that ug > 0 in Bg and ug # 0. Note that

—Aup < —Aur + V(z)ugr = p(x) = =AU in Bg.
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Using the maximum principle, we see that ug(z) < U(z) in Bg. Moreover, ug is increasing
in R, that is, if " > R then ug > ug in Bg. In fact, ug is an upper solution of (2.2.2) in By
then

—A(up —ug) + V(z)(up —ugr) > 0 in By
with up — up = up > 0 on 0BR. The maximum principle implies that up > ug in Bp.
Now define vg = U — ug. Then, vy is solution of the equation

—A’UR = V(w)’U,R in BR
ugr =U on OBg.

Furthermore vy < U for all R > 0 and vy > vg for R < R’. Using the Green’s representation
formula, we see that

R? — |2?
m) = [ 0w+ [ GVt
dBr Rlz —y| Br
Let Uy := I%im ug. Using monotone convergence, we obtain
—00

V(y)Uv(y) J
ylN 2w

lim Gr(z,y)V(y)ur(y)dy = c/

R0 [ RN |T —
On the other hand, since |z —y| > |y| — |z| = R — |z| for any |y| = R, it follows that

Lo
w—y[V T (R—[2)Y

for large values of R, which implies
R2—|ZL‘2| 1 / (R2_|‘,L.2|>RN72
—=U(y)dy < Ul(y)d
o gV < s [ S U

(R? — |a?) RN 2 ][
< U(y)dy — 0, R — oo.
S TR L, VW

Therefore v := lim wvg is given by
R—o0
V(y)U
v(x) = c/ L‘/];[(_ygdy.
RV |7 — ]

Using that Uy < U and the compatibility between V and p, we get v € L>(RY). Moreover the
function v satisfies
~Av =V (2)Uy(x) in RY

and
UZI%EEOUR:P}EEO(U—UR):U—U\/.

Thus we obtain

p(x) + AUy = —A(U — Uy) = —Av = V(z)Uy in RY
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or equivalently
~AUy +V(2)Uy = p(z) in RY.

Moreover we see that
lim Uy = lim (U —wv)=0.

Ul

As an application of the previous theorem, we can build many examples of linear Schrodinger
equation (2.2.1) which have at least one bounded positive solution.

Example 2.2.4. Let « >~y >0 and g > 2 with a + 8 > 4 + 7, then the problem

|z 1

u = in RY
1+ |z|® 1+ |x|8

—Ay =

has a unique bounded positive solution satisfying

Uv(y)|y
L+ |y|o) |z — y|N-2

Uv(x):U(x)—c/RN( dy

where U is the only bounded positive solution of (Pe).

Next, we will assume two new hypotheses, in order to obtain a lower bound for the solution
of the problem (2.2.1).

Lemma 2.2.5. Assume that p satisfies (H,) and

ko N
(e < p(z) for allz € R (H)

for some constant kg > 0 with 8 > 2 and also assume V : RY — R is a nonnegative continuous
potential verifying

A < V(@) <

I N 2
1 i |x‘2 S ~ T’{E‘z fOT all © eR (HV)

for some 0 < ¢y < 1.
Then the bounded positive solution Uy, for the linear schridinger equation (2.2.1), satisfies

(1 —cop)U(x) < Uy(z) < U(x) for all v € RY.
for some constant co > 0.

Proof. Hypotheses (H,), (H%) imply that V and p are compatible for any p > 0. From the
proof of the Theorem 2.2.3, we see that the solution Uy of (2.2.1) satisfies

V(y)Uy(y)

y|N—2

Uy(z) =U(zx) — c/ dy

RN |$_

or equivalently

Uy(x) . ¢ V(y)Uv(y)
U) U@»@Nu—yw*d'
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The hypothesis (H,) implies that there exists ¢, > 0 such that

U(I) < (&)
L4 |z = 14 |x|8

Then we have

/ V(y)Uv(y)dy</ pU (y) 1 ay

vz —yN2T T Jen Ty |z —yV 2
1
< CQM/
gy (1 |y[8)|z — y[N-2

= c1Up()

where Uy is the unique bounded positive solution, vanishing in infinity, of
AUy = ———

Since (H,) we see that koUy < U, then

c V(y)Uy ()
dy <
U(x) / o=y =
for some constant ¢z > 0. Therefore
Uy ()
> (1 —
O =1~
for some constant ¢4 > 0. ]

Corollary 2.2.6. Assume the hypotheses (H,), (H),) and (Hy,). Let Uy be the bounded positive
solution for the linear Schridinger equation (2.2.1). Then there exists C, > 0 such that

px)
V(x)Uy (x)
Proof. By Lemma 2.2.5, there exist 0 < ¢; < 1 and ¢ > 0 such that

im su _ ) im su p(z)
I\xwoop V(z)Uy(z) : 1|xuoop (1= cop)V (2)U(x)

2
< limsup p(x)(d + |z]%)

w00 CL(1 — cap)U(z)

. k(1 + [2[?)
< lim sup

w00 C1A(1 = copt) (1 + [z]P)U ()

. (1+ |2*)|=["
< C, limsup
g || =00 1+ |x"8

<(C, <0

< (C, forall re RV,

for some constant C, > 0.
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As a final comment on equation (2.2.1), we will give two results, if you are interested,

you can see their proofs in [11], which show nonexistence of bounded solutions to the problem
(2.2.1).

Theorem 2.2.7. Let p € L(RY) be a positive potential such that does not satisfies property
(H) and V' satisfying
V(z)
im
Then, the linear Schrdodinger equation (2.2.1) does not have positive and bounded solutions.

The previous theorem is a consequence of the following theorem that generalizes the Lemma
2.1.6

Lemma 2.2.8. Assume that p € L (RY) is a nonnegative only outside of some ball centered

at the origin, i.e. there exists a constant M > 0 such that
p(x) >0 a.e. in|x| > M,
and that p 1s not identically zero, then the equation
—Au = p(z) in RY
has a bounded solution iff
m% xp € L°(RY).

Example 2.2.9. As an application of Theorem 2.2.7 , if § < a and § > 2, then the linear
Schrodinger equation (2.2.1)

1 1
= u =
1+ |z 1+ |x|8

—Au in RY,

has no bounded positive solution.
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Chapter 3

Elliptic systems involving Schrodinger
operators

In this Chapter, assuming the conditions (H{}), (H,) and using the upper and lower solutions
techniques, we first prove the existence of a bounded positive solution of System:

—Au+ Vi(z)u = Api(z)(u +1)"(v +1)? in RN
—Av + Vo(z)v = ppo(z)(u + 1)9(v +1)* in RN, (Sa)
u(xz),v(x) > 0 as |x| — oo.
where A\, u > 0, p,q,r,s > 0, N > 3. Furthermore, by imposing some restrictions on the powers
p,q,r,s without additional hypotheses on the weights p;, we obtain a second solution using

variational methods. In this context we consider two particular cases: a gradient system and a
Hamiltonian system.

3.1 Existence and nonexistence results. (General case

The proof of existence of a solution of System (S, ,) follows the line of [9], [11] and [35], that is
to say, we will apply some monotonicity methods. Since we are working with systems, we will
use the lower and upper solutions technique developed by Montenegro [35] to obtain a solution

(ur,vg) of
—Au + Vi(x)u = Ap1(x)(u+1)"(v+1)? in Bg
—Av 4+ Va(xz)v = ppa(x)(u+ 1) (v+1)°* in Bg (Sroap)

u=0=nwv on aBR

where Br = {x € RV : |z| < R}. Then, we will prove that (ug,vg) is an increasing sequence
of bounded solutions which converge to a bounded solution of (S, ,), when the radius R tends
to infinity.

39
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The proof of Theorem 1 is based on the following Lemma.
Lemma 3.1.1. Assume that p,q,r,s > 0. Let Uy, be a bounded positive solution of
—Au + Vi(x)u = p;j(x) in RN
(@) (@) (3.1.1)
u(x) — 0 as x| — oo.

Then there is A > 0, which does not depend on R, such that if 0 < A\, u < A, the System
(Swr.x ) has a minimal positive solution (ug,vr), which is increasing with R and satisfies

UR S UV1 and UR S UVQ. (3.1.2)

Proof. Let R > 0. Notice first that (u,v) = (0,0) is a lower solution of (Sg,,) for any
A i€ (0,00). To construct an upper solution, we define (u,v) = (Uy,, Uy,). Then, (u,v) is an
upper solution of (Sg,» ) if and only if

{ —A(Uw,) + Va(z)(Uv,) > Ap1(x) (Uy, +1)" (Uy, +1)°
_A(Uvz) + %(w)(UV2) Z /J’p2(x) (UV1 + 1)q(UV2 + 1)3'

These two inequalities hold if

{ 12> AU lloe + 1) (10 loo + 1)°

1> (10 oo + 1) (1Uvaloo +1)".

Thus, we see that there exists A > 0 such that for 0 < A\, u < A, the pair (@, 7) is an upper
solution of (Sg,x,), for any R > 0. Therefore, from Lemma 1.6.2, there is a solution (tg, Ug)
of (Sr,,.) satisfying

OSERSle and OSERSUVQ‘

Furthermore, we have uig # 0 and U # 0 in Bpg, then by maximum principle
0<ﬂR§[]{/1 and O<ﬁR§UVQ.

Now we will show existence of minimal solution for every R > 0. In fact, let (z,w) be any
bounded positive solution of (Sg,,), which we already know exists, and let (ug,vo) be a
bounded positive solution of

—Au + Vi(x)u = Aps(x) in Bg
—Av + Va(x)v = pup2(x) in  Bg
u=0=v on OBg.
Then there is a sequence (u,, v,) of solutions for
—Au, + Vi(z)u, = Ap1(z)(Un—1 +1)"(vp—1 +1)? in Bg
—Av, + Va(x)v, = pp2(x)(up—1 + 1)%(v,—1 +1)° in Bpg

Uy = 0= Vn on aBR

for every n € N. We see that
—~A(z = o) + Vilw)(z = o) = Api () ((z + 1) (w + 1) — 1)

ZO in BR.
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Therefore, by maximum principle, ug < z in Bg. In the same way we see that vy < w in Bpg.
Now we claim that
u, <z and v, <w in Bp forall n & N. (3.1.3)

Indeed, by principle of induction, let & € N and suppose (3.1.3) holds for n = k. Then
—A(z = ) + VA@) (2 = wen) = Aoa (@) (2 + 1) (w + 17 = (g + 1) (0 + 1))
2 0 in BR.

Thus, by maximum principle we have ug,; < z. Similarly vp,; < w. Then, the principle of
induction is satisfied. Furthermore, and again, using maximum principle, we have

< up <...<u, and vyg<v; <...<w,.
Therefore, there exist the limits

lim w,(z) := ug(x), lim v,(z):=vg(z) forevery = € Bp
n—o0 n—oo

and thus (ug,vg) is a positive solution of (Sg ) satisfying
ur <z and vg <w in Bpg.

Since (z,w) is an arbitrary solution of (Sgr,,) we have that (ug,vg) is a minimal positive
solution of (Sg,»,)-
We claim that (ug,vg) is increasing with R, that is, if R > R > 0, then

ugr <ur and vg < vrp in Bg.

Indeed, if R > R then (up,vg ) is an upper solution of (Sg ,) and (u,v) = (0,0) is a lower
solution of (Sgr,» ), thus, there exists a solution (@, ) of (Sgr,x,), such that

OS@SUR/ and OSESUR/ n BR.
Since (ug,vg) is the minimal solution of (Sg,» ), we have
up <u<up and vp <v<wvp in Bp.

This shows that (ug,vg) is increasing with R. Again, using the minimality of (ug,vg), we
obtain
UR S le and VR S UVQ.

]

Proof of Theorem 1. Let 0 < A\,u < A, R > 0 and (ug,vg) be the increasing sequence of
solution of (Sg,»,), given by Lemma 3.1.1. Thus, there exist the limits

lim ug(r) :=u(z) and lim vg(z):=v(z) for every x € RY.
R—o0 R—o0

We claim that (u, v) is a bounded positive solution of (S, ). Indeed, since p; satisfies property
(H,) and u,v € L=(RY) there exists U; € L=(RY) satisfying

— AU, = Apy(2)(u+ 1) (v + 1) in R, (3.1.4)
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and
lim U;(z) = 0. (3.1.5)

|z|—o00
Let U;g denote the solution of equation
—AU = Ap1(z)(ur +1)"(vr +1)? in Bg
U=0 on OBgpg.

It is clear that U;g is positive in Br. Now, we will show that it is bounded, and increasing
with R. Indeed, since ur and vy are bounded from above by u and v, respectively, we have

~A(Uin = U1) = Apr(@) (g + 1) (o + 1) = (1) (0 + 1))
< 0in Bpg.
Likewise, for R’ > R, since ug, vg are increasing with R, we see that
—A(Uig = Uir) = Ap1() <(“R + 1) (vr + 1) = (up + 1)" (vor + Up)
<0 in Bgp.
Therefore, using the maximum principle, we see that U;g is increasing and
Uir(z) < Uj(x) in Bg (3.1.6)

for all R > 0. Using Green’s identities, we see that
Uir(z) = C/ AGr(z,y)p(y)(ur(y) +1)"(vr(y) + 1)dy, = € Bg,
Br

Since U; = P}im U.r is bounded by U; in RY, thus by monotone convergence we have the
— 00
following representation formula

T (o) = o [ AP@)(uly) +1)"(v(y) +1)7
Ui (z) = /RN P— d

)

and therefore the function U, provides a bounded solution of (3.1.4) (see Lemma 2.1.6).
Moreover by (3.1.5) and (3.1.6), U, satisfies

lim Ul(:v) = 0,

|| 00
and uniqueness of solution of (3.1.4)-(3.1.5) (see Lemma 2.1.10 ) implies that
]%i_:r};o Ur=U,=U.
Also note that
—Aug < —Aug + Vi(z)ur = A\p1(z)(ugr + 1)"(vg + 1)? = —=AUg in Bg.

Using the maximum principle, we see that ug(z) < Ujg(x) in Bg. We define wig = Ujgr —ug.
Then wqg is a solution of the equation

—AwlR = ‘G(ZL‘)UR in BR
WiR = 0 on OBR.
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Also, wyg is increasing with R and wyg < U; for all R > 0. Using Green’s representation
formula, we see that

win(x) = ¢ /B G, y)Vi(y)ur(y)dy, @ € Br,

Using monotone convergence, we obtain

Vi(y)u(y) g

Nz —y N

lim Gr(z,y)Vi(y)ur(y)dy = C/R

R—o00 B

Therefore, wy := lim w; g is given by
R—o0

w; () :C/R Wil)uly)

vz —yN2T

Using that u < Uy, and the compatibility between Vi and p;, we get w; € L>°(RY). Note that
the function w, satisfies

—Aw; = Vi(2)u(z) in RY
and

w; = lim wyg = lim (Ujg —ug) = U; —u ( See Lemma 2.1.6).
R—o00 R—o00

Thus, we obtain
~A(U; —u) = —Aw; = Vi(2)u in RY

or equivalently,
—Au+ Vi(2)u = —AU;, = Apy(z)(u+ 1) (v + 1) in RY,

that is,
—Au+ Vi(z)u = Ap1(2)(u+1)" (v +1)P in RV,

Proceeding in the same way with v, and since (ug,vg) satisfy (3.1.2), we conclude that (u,v)
is a bounded positive solution of the system

—Au + Vi(z)u = Api(z)(u +1)"(v + 1) in RN
—Av + Vo(z)v = pp2(x)(u + 1) (v +1)° in RN,
u(zx),v(x) —> 0 as |x| — oo.
]

Remark 3.1.1. We notice that is not difficult to verify that (u,v) is a minimal solution of
(S/\,u)-

Next, we will give the proof of Theorem 2 which is the converse of Theorem 1.
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Proof of Theorem 2. Let (u,v) be a bounded positive solution of system (S, ,). We will
follow the line developed in [35, Theorem 5.2], however the computations here are more delicate.
In fact, we consider the auxiliary function w = (u+1)*(v + 1), witha=1—randb=1—s.
The following claims hold:

(1) 0<a,b<l.

(2) Vw=alu+ 1) (v+1)"Vu + blu+ 1)*(v + 1)""'Vo.

(3) |Vw|? = a®(u+ 1)2 V(v + 1)?|Vul? + 0*(u + 1) (v 4+ 1)V |V
+ 2ab(u + 1) (v + 1)*H(Vu, Vo).

(4) W = a’(u+1)"2(v+1)"|Vul* + b*(u + 1)*(v + 1) 2| Vo|?
+ 2ab(u + 1) v + 1) H(Vu, Vo).
(5) Aw =a(u+ 1) v+ 1)’ Au+ 2ab(u + 1) (v + 1) HVu, Vo) + b(u+ 1)%(v + 1) Av
+a(a—1)(u+1)"2(v+ 1)°|Vul* + b(b — 1)(u + 1)*(v + 1)"2|Vo]%.

(6) 2ab(u+1)"" v+ 1) (Vu, Vo) < a®(u+ 1) 2(v+ 1)°|Vul?> + b (u + 1)*(v + 1)"2| Vo]
Combining (4) and (6), it follows that

[Vwl®
2w

2ab(u + 1) v + 1)1 (Vu, Vo) <

So, from (1), (5) and since (u, v) is solution of (S, ), we obtain

[Vwl®
2w

+a(u+ 1) v+ 1) Au+b(u+ 1)%(v + 1)1 Av

% +a(u+1)"" v+ 1)b<—/\p1(x)(u +1)"(v+1)P+ V(x)u)
b+ 10+ 1) (—ppa(e)( + 10+ 1) + V(@)

_ IVup?
- 2w

= adpi(2)(v+ 1) = bups(x)(u+ 1) + (a + )V (@) (u+ 1)*(v +1)".

On the other hand, let n € R satisfying

11
)T

Since pg < (r — 1)(s — 1) it follows that 1/2 < n < 1. Using Young’s inequality, we have

((@rpa(e)) 5 (0417 (ppa(e) F (u 1)) < (T"q) axpl<x><v+l>b+p+(b”+—”p) by () k1),
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which implies that

Aw + (adp ()75 (bppa(z)) Hru” < 0

1
Defining the function z = 1—w1”7, we get

—Az = qw " Vw? —w T Aw

1 a
> w7Vl = Sw™ | Val? + (adoy (@) (bupa ()77 = (a+ )V (2)w'

an bn

> (aApy(x)) =t (bupa ()7 — (1 = n)(a + )V (z)z.

Since byp(z) < po(z), 0 < (1 —7n)(a+b) < 1 and V be a nonnegative potential, we obtain
—Az+V(x)z > e1p1(2),

1

a b
where ¢; = (a))a+ (byby)?7. Therefore, we conclude that ¢;'z is a bounded positive upper

solution of
—Au+V(z)u = pi(z) in RY
satisfying
lim z(z) = 0. (3.1.7)
|z|—o00
For every R > 0 denote by ugr the increasing positive solution of the problem
—Aup + V(z)ugr = p1(x) in Bg

ur =0 on OBg.
By maximum principle, we have

up < cl_lz in Bpg.
So Uy (z) = }%im ur(z) there exists for every x in RV and satisfies

—00

Uy <c;'zin RY. (3.1.8)

By (3.1.7) and (3.1.7) we have Uy is a bounded positive solution of
~AUy + V(2)Uy = p1(z) in RY
satisfying
lim Uy (x) = 0.
|z|—o00
In the same way it is shown that the linear schrodinger equation
—Au+V(x)u = py(z) in RY

has a bounded positive solution. O
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Remark 3.1.2. Note that the use of the auxiliary functions w = u®v!~® have already been
used for different purposes; for instance, see [7,34,37,39].

Next, we will prove a nonexistence result.

Lemma 3.1.2. Assume that r,s > 1 and p,q > 0. Then there exists A > 0 such that for all
A p > A, System (Sy,) has no bounded positive solutions.

Proof. Let (z,w) a bounded positive solution of System (S, ,). Let o1, 11 be the positive
eigenfunction associated to the first eigenvalue Ay, ; of the Schrodinger equation

—Ap1 + Vi(z)p1 = Aip1(z)1 in Bg

— Ay + Va(@)th = fipa(@)yys in Br

Y1 = 0= 17/)1 on BBR.
By Hopf’s Lemma
% <0 on Bg.
v
Extending ¢; by 0 in RY \ Bg, and using Green’s formulas we have
VeVoide = / Z%ds —I—/ 2(—Apy)dx
RN OBR v Br
< / z2(—Agpy)dx
Br
= Xl/ p1(x)zprde — / Vi(z)zpide.
Br Br
Therefore
/ (VaVr + Vi(z)zer)da < Xl/ p1(7)zpd. (3.1.9)
RN Br

On the other hand, using that p > 0, » > 1 and that (2, w) is a solution of (S, ,), we have

/]RN (VZV% + Vl(a:)zgon)daz = A/ p1(x) (z + 1)T(w + 1)p¢1dx

RN
> /\/ p1(x)zorde
Br

Thus, by (3.1.9), it follows that
)\/ p1(x)zporde §X1/ p1(x)zprde.
BR BR

Since 2z, p1, ¢1 > 0 it implies that A < ;. Likewise < piy. Taking A= maX{Xl,ﬁl} the proof
is finished. N
Before proving Theorem 3 let us to introduce the parameter A\* given by:

A" =sup{A > 0:3p>0,(S,,) has a bounded positive solution},

which is well defined and finite by Theorem 1 and Lemma 3.1.2.
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Lemma 3.1.3. Assume that r;s > 1 and p,q > 0. Then for all 0 < A < X*, there is p > 0
such that System (S»,) has a bounded positive solution.

Proof. Fixed A € (0,\*), there exists Ao € (A, A*) such that System (S,,,) has a solution
(Urg, V), for some p > 0. It is clear that (uy,,v,) is an upper solution to the System (Sg.,)
for all R > 0 and (0,0) is a lower solution to these systems. Then from Lemma 1.6.2, there
is a bounded positive solution of (Sg,,). This implies that System (Sg.,) has a minimal
positive solution (zgx, wg,,). Thus, by a similar argument to that in the proof of Theorem 1
there exists (2\,w,) a minimal bounded positive solution of System (S, ,) given by

z\(z) = ]%1_{20 zra(z), w,(zr) = I%Eréowgu(x), r € RY.

Proof of Theorem 3. We define the function I' : (0, A*) — [0, 00) by
I'(A) = sup{p > 0: (S,,) has a bounded positive solution}.

We claim that I" it is a nonincreasing function. Indeed, let 0 < A < Ay < A\*. By Lemma 3.1.3
there is p9 > 0 such that System (S, ,,) has a solution (uy,,v,,). Thus I'(Ag) > po. We claim
that T'(\) > T'(A\g). In fact, if T'(X) < T'(\g), then we could find p; € (T'(A),T'(Ag)) and from the
definition of I'(\g) there would be ps € (u1,I'(No)) and (2y,, w,,) solution of (Sy, ,,), which is
an upper solution to the System (Sg, ,,) for all R > 0 and therefore there is a bounded positive
solution of (S ,,). This implies that po < I'(A), which is a contradiction. Also since I'(0, \*) is
an interval we conclude that I" is continuous.

It is clear that System (S, ,) has at least one bounded positive solution if 0 < p < I'(A)
and has no solution if p > I'(X), for every A € (0, \*). O

Remark 3.1.3. In order to obtain the existence of a minimal bounded positive solution of
System (S, ), we only assume that the powers are positive. Now, to define the curve I', it was
necessary to assume r, s > 1 and p,q > 0. Note that when the powers satisfy r,s > 0, p,q > 1,
we may obtain a similar result to that of Theorem 3.
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3.2 The gradient system.

This section is devoted to the proof of Theorem 4. Note that under the conditions (H,) and
(HY) with o € (0,2] and o+ 8 > 4, the potentials p and V are compatible, thus using a
similar argument as in Theorem 1, Lemma 3.1.2 and Lemma 3.1.3, we have that there
exists A* > 0 such that for every 0 < A < A* there is a bounded positive solution of System
(3.2), which we will denote by (uyx,v1,), while for r,s > 1 and A > \* there are no bounded
positive solutions, and so, Theorem 4 part i) is proved.

Before proving the existence of the second solution of System (GS,), let us observe that the
most natural energy functional Jy : E — R, associated to the gradient system (GS,) should
be given by

1
Ba(u.0) = S0P =X [ ol Pl )
2 o
where ' : R? — R is defined by
F(u,v) = (u+ 1) (v+ 1),

where we have assumed that r,s > 1 and r + s < 2* — 2. However, it is not well defined
because the Sobolev embeddings do not work. This is mainly due to the behavior near zero
of the nonlinearities and the fact that the p(x) coefficient does not necessarily satisfy any
integrability hypothesis. For this reason, in order to show the existence of a second solution for
System (GS,), we will consider the following auxiliary system

{ —Au+ V(@)u = Ap(@) f (@, u,v) in RN (GS})

—Av + V(z)v = Ap(x)g(z,u,v) in RN
where the functions f, g are defined by

flz,u,v) = fi (U1,,\ +u" v+ U+) —h (UL,\, Ul,/\)

and
g(x,u,v) = fo (U1,,\ +ut, v+ U+) — f2 (U1,,\7 Ul,A);

where for simplicity we have denoted wu; y, vy 5 instead of u; x(z), vy \(2z), and where

oF

filw o) = 90 and 0 = O

ou
Now we define G : R¥*2 — R by

G(x,u,v) = F(Ul,)\ +u, (Y U+) — F(Ul,x, Ul,A) - (fl (Ul,A, Ul,A)U+ + fo (Ul,/\7 Ul,A)U+>-

Then

oG
% - f(x,u,v) and % - g(:l:,u,v).

This shows that the auxiliary problem (GS?}) is also a gradient system. Clearly, if (u,v) is a
solution for the auxiliary system (GS7), then (u;y + u, v + v) is a solution of System (3.2).



3.2. THE GRADIENT SYSTEM. 69

Note that this type of idea has already been used in [11] (in RY) for the scalar equation.
In what follows, we will prove that the energy functional associated to the auxiliary system
(GS7}) given by

Ta(w,w) = g )2~ A / )G, u, )

unlike the most natural energy functional, is well defined on E. In addition, J, belongs to the
CY(E,R) space and has a critical point at the Mountain Pass level for A > 0 sufficiently small.

Lemma 3.2.1. The functional Jy associated to (GSy ) is well defined in E.
Proof. First notice that for a,c > 0 and b,d > 0, defining A : [0,1] — R by
h(n) = (a +nb)'(c+nd)’
the Mean Value Theorem gives us the existence of £ € (0,1) such that
(a+b)'(c+d) —a'd =h(1) — h(0) = K (&)
=t(a+&b)" e+ Ed)'b+ (a + €b) (e + &d) .
So, it is not difficult to see that the following inequalities hold
tla+b) e+ d)o+1l(a+b)(c+d)itd if t,1>1
ta e+ d)'b+1(a+b)(c+d)~d if 0<t<1,l>1
tla+b) e+ d)b+1(a+b)d1d if t>1,0<1<1
ta" e+ d)'b+ l(a+b)'d1d if 0<t,l<1.

(Iy)  (a+b)(c4d) —ald <

Also, note that the last inequality is valid for 0 <t < 1,0 <l <lor0<t<1,0<1[<1.
From now on, for simplicity, let us denote z) := u; y +u+1 and wy := v; x + v+ 1. Using these
inequalities, we have

2w = (i + 1)T+1 (vix + 1)s+1 < (r+ D25witu+ (s + 1) 25 wio.

Again, using inequality (I,5), we see that

(r+1) <zf\wf\+1 — (wx+1) (v + 1)S+1>u <(r+1) (rzg’lwiﬂu + (s + 1)z§w§v>u.
Similarly we get

(s+1) (zf\ﬂwf\ — (urp+ 1)T+1(vm + 1)S>v <(s+1) (rziwiu + (s + 1)Z§+1wi_lv)v.
Since u; », v1 are bounded, from definition of G we see that there is C; > 0 such that

G(z,u,v) < Cy(v* +v°) for u+v=0.
It is also clear that there is Cy > 0 such that
G(z,u,v) < Co(u+v) ™ for u+v = oo.

Thus, there exists C' > 0 such that

G(z,u,v) < C(u* +v° + (u+v)"™?)  for all 2 € RN and u,v > 0. (3.2.2)
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Then using Proposition 1.2.3 we see that the functional associated to (GS),) given by is well
defined. Moreover Jy € C' 1(E,]R) with

T, 0) (1, 8) = {(u,v), (¥, 9)) — A / o) (f (@, w,0) + glz, u, 0)6) da,

RN
for any (u,v), (v, ¢) € E. O

The nonlinearity G satisfies the following property which is more general than the classical
Ambrosetti-Rabinowitz condition:

Lemma 3.2.2. There exist 0 € (2, 2*) and C > 0 such that
uf(z,u,v) + vg(z, u,v) — 0G(z,u,v) > —C (v’ + v?)
for all x € RN and u,v > 0.
The proof of the lemma above is a direct consequence of the following two lemmas .
Lemma 3.2.3. There exist 2 < 0 < 2* and ro > 0 such that
0 < 0G(z,u,v) < uf(x,u,v)+vg(z,u,v) (3.2.3)
for all z € RN and every u,v > 0 such that uw+ v > 7.

Proof. Let u,v > 0 and define h : [0,00) — R by

7”+1(

h(t) = (uip + tu+ 1) (o) +to+1)"

Then, by mean value theorem, there exist £ € (0, 1) such that h(1) — h(0) = A'(£). Thus
F(UL)\ + u, v\ + v) — F(Ul,)\va)\) = h(1) — h(0) = I'(€)

r s+1 r+1 s
:(r+1)<u17,\+§u+1> <v17,\+§v—|—1> u+(s+1)<uu+§u—l—1> <v17,\+§v+1> v

S

r s+1 r+1
> (r+1) <U1,A + 1) (Ul,A + 1) u+(s+1) <u17,\ + 1) <v17,\ + 1) v.

It follows that G(z,u,v) > 0 for all x € RY and every u,v > 0.
On the other hand, since we are looking for # > 2, and since f; (uL,\, vl,,\)u—i—fg (uL,\, vl,)\)v >
0 to prove (3.2.3), it is sufficient to show

fi(wiy + u, vy +v)u+ foluiy +u, v +0)v
Fuiy 4 u,v10 +v) — F(upp,v1,0)

> 0. (3.2.4)

for all z € RN and every w,v > 0 such that u + v > 7. For this purpose, we need to verify
that there exists 0 € (2, 2*) such that

liminf h(z,u,v) > 6. (3.2.5)

U+v—>—+00

where . .
h(z,u,v) = (r+ u + (s + )U,
ZA Wy
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with 2y = u; » +u+ 1 and wy = v, +v + 1. Indeed, by (3.1.5) there exists a constant ¢ > 0
such that the functions u, y,v; \ are bounded by c. Then we have

h(z,u,v) > min{r + 1,5+ 1} (l + ﬁ)
ZX Wy

Z min{r + 1,5+ 1} (u+z+c+u+z+c)

=min{r +1,s+ 1} (%)

— min{r +1,s+1}, as u+v — oo,
where ¢ = ¢+ 1. Therefore, there is 6 € (2, min{r+1,s+ 1}) verifying (3.2.5). So for u,v >0

and z € RY, we have

fi(upy +u,vi 0 +v)u+ folup s +u, v +v)v (r+ Dz5witu + (s + 1) 25 wsv
; A

F(ul)\ +u, U1,x + U) - F<u1,>\7 UL/\) zf\wa\“ — (um + 1)T+1 (UL)\ + 1)S+1

(r+ 125w u + (s + 1) 25 wsv

r+1_ , s+1
2y Wy

v

(r+1)u N (s+1)v
ZX W

= h(r,u,v) >0 for u+v=oo.
This concludes the proof. O
Lemma 3.2.4. Let 0 € (2,2*). Then, there exists r1 > 0 small enough and C > 0 such that
uf(z,u,v) + vg(z, u,v) — 0G(z,u,v) > —C (v + v?)
for all x € RN and every u,v > 0 such that u+v < ry.

Proof. Let x € RY, u,v > 0 and z,,w, as in the previous lemma. Note that

Flupy+u,vip+v) — Fupy,vy) = 237w — (uy + 1)T+1 (vix+ 1)SJrl
< (r+Dz5wiu+ (s + Dws (uny + 1)T+1v.
This implies that there exist C' > 0 and r; > 0 small enough such that
uf(z,u,v) +vg(x,u,v) — 0G(x,u,v) > —0G(x,u,v)
> —C(u? +0v?),

for all z € RY and u+v < r;. O

The following lemma is a simple consequence of the definition of G.
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Lemma 3.2.5. Let 0 € (2, 2*). Then, there exists ro > 0 such that
G(x,u,u) > u’, for allz € RN and u > 7.
The next lemma says that J, has the Mountain Pass geometry.
Lemma 3.2.6.

i) There exist A > 0 and 9, a > 0 such that
Ja(u,v) > a if ||(u,v)|| =19 for every A € (0,A]).
ii) There exists (u,v) € E with

I, v)[| > 7o and Jx(u,v) <0.

Proof.

i) By Proposition 1.2.3 and (3.2.2), there exists C' > 0 such that

Ja(u,v) = %H(u,v)\!2 _ )\/RN p(2)G(x, u, v)dx
> 2w, w) = AC( e o) + 1 )7+,

Then there exists 0 < A} < A* such that for every 0 < A\ < A} we have that if ||(u, v)|| = A,
then

1
In(u,v) > N2 (5 - 2)\C> =ay > 0.

ii) This is a consequence of Lemma 3.2.5.
Ul

Lemma 3.2.7. There exists A5 > 0 enough small such that the functional Jy satisfies the
Palais-Smale condition for every X € (0, \5).

Proof. Let (u,,v,) C E be a Palais-Smale sequence at level ¢. By Lemma 3.2.2 and Propo-
sition 1.2.3, for n sufficiently large, we have

o(1)

L,
c+ TH(unavn)H = Jk(umvn) - EJA(UmUn)(umvn)

1 1 A
5= 45 [ o) (0,005 900, 00) 0 = 0G0 0,) )

2
11 , AC s
— — — | |[(wn, vn)||” — — p(z)(u, +v,)dr
5~ g el = 5 [ () (w4 02)
1

2

1

1
= 2 ), 0 = = (Il oy + ol o)

1 MO 9
= (5 T 7) ||(umvn)|| .
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Since 6 € (2,2*), there exists 0 < A\j < A} such that for every 0 < A < A\j we have that

which implies that the sequence (u,,v,) is bounded in E. Then, through standard argument
and Proposition 1.2.3, there is a subsequence still denoted by (u,,v,) that converges in
E. O

Finally, By Lemma 3.2.1, Lemma 3.2.6 and Lemma 3.2.7 there exists 0 < \** < \*
such that the functional J, is well defined and satisfies the conditions of the Mountain Pass
Theorem for every A € (0, \**). Therefore, there exists a (u,v) solution of (GS}) for any
A € (0, \**), which allows us to conclude the proof of Theorem 4 part ii).
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3.3 The Hamiltonian system

Theorem 1 gives us the existence of A > 0 such that Hamiltonian System (HS,) has at least
one bounded positive solution for every 0 < A < A.
On the other hand, if (u,v) were a bounded positive solution of (HS,), then we would have

/RN (VuVe + V(z)up)ds > )\/ p(x)vpdr

Br
and

/]RN (VoVe + V(z)vp)de > )\/B p(x)updr,

R

for all ¢ € HL(RYM). Let ¢, the positive eigenfunction associated to the first eigenvalue \; of
the Schrodinger equation

—Ap; + V(z)pr = Mip(x)p1 in Bg
p1 =0 on OBg.

In a similar way as in (3.1.7), we have

/N (VuVr + V(z)upr )dz < Xl/ p(x)uprde
R

Br

and
/ (VoVipr + V(a)vpr)dr < Xy / p(z)vprdz,
RN Br

These four inequalities would imply that

)\/B p(z) (u+ v)prde < Xl/B p(z) (u+ v)pde.

R

Since u,v,p > 0 and ¢; > 0 we have A < \;. Therefore using an argument similar to the
Lemma 3.1.3 the proof of Theorem 5 part i) is complete.

Now, let R > 0 be, by choosing v > ¢ such that py < 1 is possible to find M > 1 large

enough such that
{ M 2 A(M"||Uy, |loo + 1)P

MY > p(M||Uv; ||l + 1),

where Uy, , Uy, is a bounded positive solution of (3.1.1). Thus, the couple (MUy,, M "Uy,) is
an upper solution of (Sg,y,) for every A, u > 0, and since (u,v) = (0,0) is a lower solution of
(Swr,xp), by virtue Lemma 1.6.2 and, following the argument in Lemma 3.1.1 and Theorem
1, we obtain existence of at least one bounded positive solution of Hamiltonian System (HS,)
for all A > 0, which proves Theorem 5 part ii).

Finally, in order to prove Theorem 5 part iii), without loss of generality we will assume
that p > 1 and let (uj,v1,) be a bounded positive solution of (HS,) given by Theorem 5
i). In a similar way as in a gradient system, to show the existence of a second solution for the
System (HS,) we will show the existence of at least one solution for the following auxiliary
system.
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— = in N
{ Au+ V(x)u = Ap(x) f(x,v) | R (HS))
—Av + V(z)v = Ap(x)g(z,u) in RV,
with
f(a,0) =My +07) = hi(va), gz, u) = ho(ury +u’) — ha(u,))
and

OH OH
)=, Rl =3,
where H : R? — R is given by
(u+ 1) (04 1)PH

H(u,v) =
(u,0) q+1 p+1

Define H : R¥*2 4 R by
H(z,u,0) = Hugy +ub o0 +07) = H(ugn, v1p0) = (a(vip)v" + ho(ugx)u®).

Then

oH oH
% - f(l‘,?)) and % - g(:L’,u)

This shows that the auxiliary problem (HS?) is also a Hamiltonian system.

To show the existence of a nontrivial solution of the auxiliary problem (HS?), we will use
the technique developed in [42] (see also [32]), in which the authors show the existence of at
least one positive solution for a Hamiltonian system of the form:

{ —Au+ V(z)u = p1(z)f(v) in RN
A+ V(@) = pa(@)g(u) i RN,

Since the nonlinearities of our system (HS?}) are not of separate variables, we cannot directly
use their argument. However, by taking A small enough, we can adapt their argument for our
case. In this line, we will use the linking result due to Li and Szulkin [31].

Now, we will prove that the energy functional associated to the auxiliary system (HS))
given by

I(u,v) = / (VUVU + V(x)uv) dr — )\/ p(x)H (x,u,v)dx
RN RN
is well defined on E. In fact, the following result holds.
Lemma 3.3.1. The functional I associated to (HSY ) is well defined in E.
Proof. Let u,v > 0. The inequality (1) in the Lemma 3.2.1 proof, with [ = 0 tells us:

(a—i—b)t—atﬁ{

Using this inequality twice, for 0 < ¢ < 1, we see that

Z;]\-i—l . (ul)\ + 1)q+1

q+1

t(a+ b)) forall >0, a>0ift>1
ta'=1b forall 6>0,a>0if0<t<1.

— (uip + D)% < (25 = (wipn + 1)%u

< qoia +Eu+1)7 1,

< u?, for all u > 0.
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Similarly, if ¢ > 1, we have

Z;Z\—H — (U,L)\ + 1)q+1

qg+1

— (w4 1% < (2] = (up + 1)%u
< qz?\_luz.
Thus, using the fact that v; 5 is bounded, we see that there exists C; > 0 such that

u? forall w>0and0<g<1

— (ugy + 1) <
(wa+1) { Ciu?  for u~0and q> 1.

Z§+1 — (UL,\ + 1)Q+1

qg+1

In the similar way, since u; ) is bounded, there exists Cs > 0 such that

wz)\?-{—l . (Ul,)\ + 1)p+1

p+1 — (v1a + 1)Pv < Cy(v? + 0P, for all v > 0,

where 2y = u;, +u+ 1 and wy = v;, +v + 1. Thus, from definition of H we obtain the
existence of C' > 0 such that

C(u? + v? 4 oPh) if 0<g¢<l1
H(z,u,v) < (3.3.2)
Cu? +v* +uf™ + 0Pt if ¢ > 1,

for all z € RY and u,v > 0. Since p > 1 and p,q < 2* — 1, by Proposition 1.2.3, the
functional I, is well defined and I, € C! (E , R) with Fréchet derivate given by

I (1, 0) (0, 8) = {(1,0), (6,1)) — A /

RN

p(@)(f (2, 0)6 + glo, )0 ) do

for any (u,v), (v, ¢) € E. O
The next result says that f and g are superlinear at infinity.

Lemma 3.3.2. If ¢ > 1, then the following limits hold

T, ) T,u
1 f(@,v) =00 = lim 9z, u) for every x € RV,
V—+00 v U—00 u
Proof. 1t is a consequence of the assumption p,q > 1. O]

In what follows we consider H;, Hy : RV*! — R given by

p+1 p+1
— (oA +1
Hy(z,v) = 2 (l()viAl) ) —(vix + 1)p“+

and

g+1
+1
2 —(ugp + 1)

(g+1)

where zy = uy )y +u™ + 1 and wy = vy \ + v + 1.

Hy(z,u) =

— (uL)\ + l)qu+,
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Remark 3.3.1. From definition of H; and H, we have
H(z,u,v) = Huiy +ut,oip +07) = H(urn, v10) — (Ra(vip)v" + ha(ugy)ut)
= Hi(z,v) + Ha(z,u).
Moreover defining [ : [0,00) — R by
1(t) = (v +tot + 1P,
there exist £ € (0,1) such that
(vin + ot + 1P = (v + )PP = 1(1) — 1(0)
=€) = (p+D(vix+ & + )77
> (p+ 1)(via + Do

This implies that Hy(x,v) > 0 for every z € RY and v € R. Similarly Ho(x,u) > 0 for every
z € RY and u € R. Therefore

H(z,u,v) >0 for all z € RY and every u,v € R.
The following lemma holds.
Lemma 3.3.3. If ¢ > 1, then we have

COHee) L Hy(nw)

for every x € RV,
V—00 v2 U—00 u2

The following result is crucial in our approach.

Lemma 3.3.4. If ¢ > 1, then there exist constants ti,ty € (%,N), Co > 0 and Ry > 0 such
that

f(z, v)v
2

Cof(z,v)* <o ( - Hl(x,v)) and  Cog(z,u)? < u” (g(%zu)u — Hg(x,U)) ,

for all z € RN and u,v > Ry.

Proof. Let z € RY and u,v > 0. We have

fl@,v)v Hy(2,0) = wiv + (viy + DPo W — (vg 5 4 1)PH!
2 e 2 p+1
-1
~ p—v”“ for v = oo.
2(p+1)

On the other hand,

fz,0)" = (wi — (v1x + 1)p)t1

~ vP for v & oo.
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Thus, for sufficiently large values of v the following inequality holds

o (10 )

[z, v)t

ZCO>O

if and only if
(p — 1) Up+tl+1

2(p+1) orh

ZC()>0

or equivalently
+1
h<i

i)

Since 1 < p < 2* — 1 we see that

—_

<Pt

=

N
2

iS
—

Therefore we can choose t; € (%, N ) The existence of t5 € (%, N ) follows analogously. This

concludes the proof of the lemma. O
As a consequence of Lemma 3.3.2, and Lemma 3.3.4 we have

Lemma 3.3.5. If ¢ > 1, then we have

ke el UuU— 00

lim <f(a:év)v — Hl(:c,v)> =00 = lim <f(x,2u)u — Hz(x,u)) for every x € RY.

Remark 3.3.2. For the purpose of applying Theorem 1.6.7 we note that we can decompose
E = E* ® E~, where

E* ={(u,u) ; uwe Hy(RY)}, B = {(u,~u) ; u € Hy(R")}

and both spaces are infinite dimensional.
Also, one can easily check that for any z = (u,v) € E, 2 =27 + 2z~ with

= u+v utv = U—v  uU—v
N 2 7 2 ’ N 2 2

(=11 = 11=7117).

and

N~

/N (VuVv + V(z)uv)de =

Then we can write

Li(u,v) = S (1517 = ll=717) — @(u,0)

N —

with ®(u,v) = )\/ p(x)H (z,u,v)dz.

RN
Lemma 3.3.6.

i) There exists A\j > 0 small enough and ro, a > 0, such that I\|n, > a for every A € (0, \}).

ii) For ry given in i) and any zy = (ug,up) € ET \ {0} with ||20|| = 1, there is R > 1o such
that [)\|8MR,ZO S 0.
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Proof.

i) For any z € N,,, there exists u € H{,(R") with z = (u,u) and ||z|| = ry. Then

1) = 2l — A / () H i, u,u)d

Therefore, from (3.3.2) and Proposition 1.2.3, we see that there are 0 < A} < A* and
C} > 0 such that for every 0 < A < A}, if ||z]] = 79 = A, then

L(2) > X (1 —2XCy) == ay > 0.

ii) Let z € OMpg, then z = 2~ +tzo with ||z]| = R, t >0 or ||z|| < R, t = 0.

a)

First suppose t = 0. Then, we have z € £~ that is, z = (u, —u) and

1
I\(z) = I\(u, —u) = —éHz’H2 = A/ p(x)H (z,u,—u)dx <0
RN

since p(z) > 0 and H(z,u, —u) > 0, for any x € RY, u € R.

Now, assume that ¢t > 0. Let us suppose by contradiction, that there is a sequence
(Zn) C 8MRH, with

Zn =tnzo+ 2, t, >0, [20]] =1 and |z,]| = R, — o0

such that I\(z,) > 0, i.e., if z, = (u,, v,) = (tato + Pn, thtto — ép), then

1
L) = In(unyv) = 5 (120017 = 1127 12) = A / P@)H @,y v,)dz > 0.

2
tn _ Zp
Denote 9,, = — and w,, = . Then
[zl [z
I(zn) 1( 5 9 H(z,up, vy)
:—5ﬂ—mhn)—x/ pz) =2 it g0 S g, (3.3.3)
[znll® 2 RN 12012

Since p(x) > 0 and G(x,u,v) > 0 for any z € RY and u,v € R, we have

O > |y, . (3.3.4)
Moreover, notice that
22 (a2
02 + [lw; || = T|LT||2| |||IZZ||||2 =1. (3.3.5)
And then it follows from (3.3.4) and (3.3.5) that
L5 < (3.3.6)

7 <

and w,, is bounded. Going to a subsequence, we may assume that J,, — ¢ for some
0>0and w, = w = (¢,—¢)in E as n — 0.



80 CHAPTER 3. ELLIPTIC SYSTEMS INVOLVING SCHRODINGER OPERATORS

t2
Thus —2— — §? > 0 and since ||2,|| — oo it follows that ¢, — co.

[
Moreover
Up, :tnu0+¢n_\5uO+¢ and (%% :tnuﬂ_gbn_\éuO_gb
[ [EA (B [

in E. Hence, by Proposition 1.2.3 we may assume, up to a subsequence that

un(z)  touo(z) + on(x)

= — dup(x) + ¢(x) ae. in RY
ol B ol@) + ()

and
Un(x)  tauo(z) — dn()

lzall |z

Let us denote A; = {z € RN ; dug(x) + ¢(x) # 0}. We have

n—boo Izl

— dup(z) — ¢p(z) a.e. in RY

= oup(z) + ¢(z) #0, a.e. in A

which means that
un () = thuo(x) + ¢p(z) — 00 a.e. in Aj.

Analogously, if we denote Ay = {z € RY ; dug(x) — ¢p(x) # 0}, then we have
V() = thug(x) — Pp(x) — 00 a.e. in A,.

On the other hand, we notice that

lim
U—r 00 U

D\ _ { X (3.3.7)
2

2 if ¢=1.

From Lemma 3.3.3, (3.3.3), (3.3.5), (3.3.7), using Fatou’s lemma and the fact
that Hy, Hy are positive functions, we obtain

1 H(z,up, vy)

< Z(s2_ -2\ _ ..
0 < 2(5 ||w ||> AllggféNp(x) ENE dx

= (7 IR) v [ R

= (= 1w ) = vt [ o(o) (Hl(fé i I\jﬂ?)dx
< (1w i) x| ot mind (Hl(févn) ot Hj?)“
= 5= ) =2 [ ot (Hl(fzj - ||zvi||2>dx

H. 2
- )\/ p(x) liminf( 2 tn) )dx:—OO,
Ao
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which is a contradiction and the lemma is proved.
O

The following result is a key point in our argument to obtain a second solution to the
Hamiltonian system.

Lemma 3.3.7. Let (z,) C E is a (C).-sequence of Ir. Then (z,) is bounded in E, for suffi-
ciently small values of .

Proof. Here taking sufficiently small A we managed to adapt the proof of [42, Lemma 3.2]. In
fact, let (z,) C E be a (C').-sequence of I. Then

I(z) = ¢ and I(z,)z, — 0. (3.3.8)

We denote z, = (uy,v,). We may assume, by contradiction, that ||z,| — co. We set

Izl

zall” 1120l

Then (w,) is bounded in E with |Jw,|| = 1. Notice that

B e} = 52) = It )0, ) =zl = A [ pla) (£ vn)in + gz 1) )

RN
M R ) S, gl
zn)(2) — 2, / T, Un  G(T, Uy ) U,
=1-A p(z) ( + ) dz. (3.3.9)
[N RN a2 (e
Since ||z,|| = ||z — 2, ||, it follows by Cerami condition and (3.3.9) that
. [z on)un - gz, up)on
lim )\/ p(z) < + de = 1. (3.3.10)
oo Jpn Iz ]1? (A

Let 0 < a < b< 400 and define
An(a,b) = {z € RY ; a <w,(z) < b}
Now we will work with this set.

i) Using the definition of f, there is @ > 0 small enough such that f(x,v) < Cwv for each
0 < v < a, uniformly in x € R¥, then, for any n € N, we have

f(z,v)up Up iy,
p(x)—F—=—dx < C p(x) dx
/An(O,a) |20 ||? An(0,a) |2 ||?

= C/ plr)wlwidr
An(0,a)

1

3 3
<c ( / p<x>\w;|2dx) ( / p<x>|wz|2dx)
An(0,a) An(0,a)

< CHw}LHH‘l/(]RN)||w121HH‘1,(RN)

<C.
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ii) By Lemma 3.3.4, we have

[z, v)v — Hi(z,v) LTt for v oo and every z € RY. (3.3.11)
2 2(p+1)

Thus, and (3.3.8) implies that for n and b sufficiently large

-1

c+o(l) =I(z,) — %]f\(zn)zn > A/A . )p(x) <% — Hl(I,Un)) dx
. f(z,v)v B >
>\ Ill)Illsz ( 5 Hi(x,v) /An(b#oo) p(x)dx.

Again using (3.3.11) it follows that, for n sufficiently large,
/ p(x)dz — 0, as b — +oo.
Anp(b400)

Let t; € (§,N) given by Lemma 3.3.4. Using the fact that [wp |l gy @yy < 1, for

S1 = and n sufficiently large, we obtain

Z|=| = —

_l’_
1|s 2 2L 1|s
p(@)|w, " dr = p = (x)p> (x)|w, [ da

2% —sq s1
* 2*
( / p<x>daz) ( [ dx)
Ay, (b,400) Anp (b,4-00)

2% —s

< C (/ p(x)d:c) — 0, as b — +o0.
An (b,400)

Thus, for n sufficiently large, using generalized Holder’s inequality we have

f T, Un)Un L L L f TyUn) Un Up
/ pla) LT g o (@) p (2)p () L1800 du
Ay (b400) Ap (b, 400)

N[
~
= |’i

IN

e on Teall Tl
-/ o (@)™ (@)p% (o) L0 w2 de
A (b,400) Un,
1
’7’1 :
An(b,‘f'oo) |/Un|
= 3%
([ slara)” ([ s i)
An(b,Jroo) An(b7+oo)
1
<

1

( / p(a:>rw;|81da:) E
Ap (b+00)

1

C (/ p(x)|w}l|51dx) . 0, as b — +o0.
Anp (b,400)

IN
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iii) Note that there is a constant C' > 0 independent of n, but depending on a and b, such
that

|f(z,0,)| < Cluy|, forall z € A,(a,b). (3.3.13)

On the other hand, from the hypotheses on V' and p, we have

V(x) - a(l + |x|5)
plx) ~ k(1 + |z|?)

, a€(0,2], a+p>4.
This implies that there is a Ry > 0 sufficiently large such

f(ZE,U) < V(CU), for v € (a7 b) and \x| > Ry.
v p(x)

Thus, by (3.3.13) we have

S, vn)un _/ flx,on) 5 4
/An(mb)p(x) ol dx = An(avb)p(az) w;w, dx

v
/> Ro lz|>Ro "

nV(z)wiwldr < )\/ nV(z)wiw.dr

<
An(a,b) RN

|m|>R0

< ([ v ([ vewire)

< lwallmy @y lwg gy vy <1 Ve N

Furthermore, we see that

1 b2
212 - - 9
Axam phenfdr =12 /4n(a7b> plo)nds < s /4n<a,b> plr)de =0

|z|<Ro |z|<Ro 2| < Ro

as n — oo. Consequently, we have

[, on)un / [z, v,)w), / vpwy
_— g —_ <
/4n(a,b) p(x) Han2 da An(a,b) p(x) HZnH da o ¢ Ap(a,b) p($) dz

2| <Ro || <Ro x| <Ro Izl
_ 12
=C o(ad) p(x)w, w;dx
|z|<Ro
1/2
< Cllwdllayen | [, o p@leiPde] =0
|z|<Ro

Therefore we obtain

/ p(x)f(z’ivngu”dx <1 for n sufficiently large.
Ay (a,b) Han
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Finally by 1) ii) and iii) we conclude that

/ p(x)%dm <1+ C for n sufficiently large.
RN Zn

If ¢ > 1, we can use a similar argument to prove
9(x, un)vn ,
p(x)de < 1+ C for n sufficiently large.
RN n

Now, suppose 0 < ¢ < 1. Since g(x,u) < u for each u > 0, uniformly in x € RY, proceeding as
in the case i) we have that

/ /)(@de < / p(z) Unlln g < C for all n € N.
RN RN

[EA s [N

Therefore, we get

/ p(x) (f(:v,vn)un + g(:v,un)vn) dr <2(1+C) for n sufficiently large.
RN

Iznl1? Iznl1?

If we consider 2(1+ C)A < 1, this fact contradicts (3.3.10). Therefore, (z,) is bounded in F
and the lemma is proved. O

Lemma 3.3.8. Let (up,v,) C E be a bounded sequence such that (u,,v,) = (u,v) in E. Then

/RN p(x) f(,v)undr — | p(z) f(z, v)udz (3.3.14)

RN

and
/RN p()g(@, un)onde = [ p(z)g(z, u)vdr. (3.3.15)

RN

Proof. As in the Lemma 3.3.1, since p > 1 and p,q < 2* — 1, there exists C' > 0 such that

U if 0<g<1

z,v) < C(v+vP) and g(x,u) <
fe,v) ( ) gla,u) {C(u+uq) it ¢g>1,
for all x € RY and every u,v > 0. So, using Proposition 1.2.3 and standard arguments we
get (3.3.14) and (3.3.15).

O

To finish this section, we show the existence of a solution of System (HS), ). As we mentioned
earlier, for this, we will use Theorem 1.6.7. Indeed, by Remark 3.3.2 for z = (u,v) € E we
have

Lz) = S(I1=* 11 = 12711%) — @(2)

DN

with
O(2) = P(u,v) = A/RN p(x)H (z,u,v)dz.

We notice that ® € C! (E , R) and ®(z) > 0. By Fatou’s lemma ® is weakly lower semicontinu-
ous and @’ is weakly sequentially continuous. Moreover, Lemma 3.3.6, gives us the existence
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of 0 < A* < A* small enough, so that for every A € (0, \**), there are ry > 0 and a > 0, such
that I.|n,, > a. Also, for such rg, there exist R > ro and zp € E™ \ {0} with |[2|| = 1 such
that I>\|8MR,ZO S 0.

Thus, by Theorem 1.6.7 there exists a (C).-sequence (z,) C E for I which is bounded in £
by Lemma 3.3.7. Then, up to a subsequence, we may assume that z, — 2z in E.

We denote z, = (un,v,) and z = (u,v). By Lemma 3.3.8 and since I§(z,)(z,) — 0, as
n — oo, we have

lim ||2,]]* = A lim (/ p(x) f(x, v,)u,dx —|—/ p(:c)g(x,un)vnd:c>
n—00 n—00 RN RN

= A(/RN p(z) f(z,v)udx + /RN p(z)g(z, u)vda:).

Also, using that I} (u,, v,)(v,u) — 0, as n — oo, we have
122 = el vy + 10l vy

= lim ((un, U>H‘1/(RN) + <Un7U>H‘1/(]RN)>

n—oo

~ lim (VunVu +V(2)upu + Vo, Vo + V(x)vnv) dz

n—oo RN

= ATLILIEO(/RN p(x) f(z, v,)udz + /RN p(x)g(x,un)vdx>

Y ( /RN () f (2, v)uds + /RN p(2)g(z, mm) |

Hence
lim |z, ]* = []z]*.
n—oo

Which shows that
Zn — 2z In K.

Therefore, 2 = (u,v) is a nontrivial solution of problem (HS?}) with I,(u,v) = ¢ > a > 0.
Moreover, by maximum principle © > 0 and v > 0.

Therefore (uy \ + u, vy ) + v) is a positive solution of System (HS,). This concludes the proof
of Theorem 5 part iii).
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3.4 Some nonhomogeneous elliptic system

To conclude this chapter, we give an application of Theorem 1. For this purpose, let us
introduce the following System, which, in part, has motivated our study :

—Az=p(x)z"w? in RN
—Aw = py(r)29w®  in RV, (3.4.1)
2(z) = c,w(z) > o as |z — o0
where p; satisfies (H,) with 8 > 2 with ¢;,co > 0 to be fixed later. Note that the solutions of
this System do not belong to any Sobolev space, so it is difficult to solve directly. However, as

we will see in the last section, a strategy involving Theorem 1 allows us to find a solution of
System (3.4.1), which apparently is the only way to solve it.

We claim that system (3.4.1) has a bounded positive solution (Zz,
cases:

) in the following two

i) p,g>0and s> 1.
ii) r=s=0and 0 < pg < 1.

In fact, for A\, g > 0 sufficiently small, Theorem 1 guarantees the existence of a positive
bounded solution (@, ) of the system

—Au=Mp(z)(u+1)"(v+1)? in RN
—Av = ppo(z)(u+1)9(v+1)* in RN, (3.4.2)
u(z),v(z) =0 as |z| — oc.

Now, we will find a condition for ¢;, ¢ > 0 such that the pair (z,w) := (c1(@ + 1), (0 + 1))
be a bounded solution of System (3.4.2). Indeed, with respect to case i) we have

~AZ = —c; Al = ci A1 (2) (T4 1) (D + 1) = 7 "y P Apy () 2" w?

and
— AW = — AT = copupo(x) (U + )10+ 1) = ] Yy * upo(z) 2" 0P
Thus for ¢;, ¢, small enough we have A = ¢/~ ') < A and pu = clci™" < A, and so System
(3.4.2) has a positive bounded solution.
Related to the i), we choose v > ¢ such that py < 1, ¢; = ¢ and ¢3 = ¢?. Then, similar to

case 1) we see that
—AzZ =" \pi(2)w” and — Aw = & ppy(z) 2.

Thus, A = ?~ ! and p = ¢@77 verify 0 < A\, u < A for a sufficiently large c. Hence the pair
(z,w) is a bounded positive solution of System

—Az = py(z)wP in RY
—Aw = py(x)29 in RV, (3.4.3)
z2(x) = cw(z) — ¢ as x| = 0.

Finally, we would like to mention the paper [35], where this type of problems was studied with
¢ =0 (see [35, Theorem 5.1]).



Chapter 4

The linear equation in the half space

In this Chapter, we will develop some results obtained, which are still under development,
in which we will give sufficient and necessary conditions to obtain the existence of bounded
solutions of Poisson’s equation in the half space:

— Au = p(x) in RY, (4.1)

where p € L2 (RY), p(z) > 0 and p not identically zero.

loc
Our focus is on obtaining solutions of (4.1) that vanishing at infinity as follows

liminfu(z) =0 and liminfu(z) = 0. (4.2)

|z|—00 zN—0
For this purpose, we notice that if u € C? (@) solves the problem

—Au=p(x) in RY
u=g on ORJX,

for any continuous boundary values g, then u is given by

ue) = [ Gaylgpptoity - 22 [ I as(y) vo ey,

nwy Jomy lo —y¥

where
GRﬁ(x,y) =l(z—y)—T(x—7¢) forall x#y in RY,

is the Green’s function in Rf . Therefore, we expect that

| Gaxempdy Vo R,
Y

will be a bounded solution of Problem (4.1).

87



88 CHAPTER 4. THE LINEAR EQUATION IN THE HALF SPACE

As we saw in the introduction, to obtain sufficient and necessary
conditions to obtain the existence of solutions of Problem (4.1), we
will use a monotonicity argument involving Green’s function in the
half space and the Green’s function in the balls B, (a,) = {z € R" :
|z — a,| < n}, where a,, = (0,...,0,n) € RY | since the half space is D g
the infinite union of these balls:

RY = | ) Bu(an).
n=1

For this, first we note that, for y € B(a, R), if we define

Sy =4 " (wf_%a'

r—a al (y—a)D if y#a

y—al?

I'(R) it y=a,
where R > 0 and a € RY. Then ¢Y € C?(B(a, R)) satisfies

{ Ag¥(z) =0 in  B(a,R)
() =T(xr—y) on 0B(a,R).

Therefore Green’s function in B(a, R) is given by
Gr(a)(z,y) = Gr(r —a,y —a) forall x #y in B(a, R),

where G is the Green’s function in B = Br(0) given by

(], ' ) ,
Crlr.y) ['(x—y)—T < 7 x |y|2y f y#0
['(x) —T(R) it y=0.

for all z # y in Bp.

Next, we begin by providing a relationship that exists between the Green’s function in
B, (a,) and the Green’s function in RY.

Lemma 4.0.1. For each x € RY, the next limit hold:

lim Gg, (0, (z,y) =T(z —y) — [(z —§) forall y+#x inRY. (4.3)
n—oo

Proof. Fix x € Rf and let y # x in RY. To prove (4.3) it is enough to show that

1- |y - an| n2
1m — Qp — 715

(Y —an)| =z =gl
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y— o " vl

n y—anp " y—an ¥ )

|y - an|2(x - an) _ n2<y - an)
n|y_an|

ly — an|*r — n?y + a, (n? — |y — a,|?)
n’y_an|

ly — an P — n?y + a, (—|y[* + 2nyw)

nly — an|

— |z —y+2ynen|, asn — 00
= |z —gl.

This conclude the proof.

The following result is a consequence of p belongs to L72, (RY).

Lemma 4.0.2. Let p € L, (Rf), p(x) > 0 and p not identically zero. Then, for each n € N
the linear equation

—Au=p(x) in By(a,)
{ u:Op on 0By(ay) (Pn)

has only one weak positive solution u,, € H(By,(ay,)), which increases with n . In addition

un(z) = /B G0y

Proof. The proof of this lemma is similar to that of Lemma 2.1.3. O

Before continuing, we will give some properties of the Green’s function in the half space and
a technical inequality that will help us throughout this section.

Lemma 4.0.3.

i) There exist ¢y, cy > 0 such that for each x # y € Rﬁ :

CITNYN C2TNYN
<d < .
gl g = OO S (@4)
ii) There exists ¢ > 0 such that for each x #y € RY :
CTNYN
W < GRf (z,y). (4.5)
i) There exists ¢ > 0 such that for each © #y € RY :
oy < Gay(e,y). (4.6)

([ + D¥(Jyl + )Y
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w) Let s > 0. Then, there exists ¢ > 0 such that for y € R¥\B(z,s) and each v #y € RY :

1 1
i — Yi — ~ <G Y, ,=1,...,N. 4.7
=l (g ~ ) < G g il

v) If |z — y|? < zyyn , then

Proof.
i) Using the fact
lz —g]> = |z —y|* = 4enyyy and |z —y| < |z —g| forall z,y € Rf,

we get

(S 1__<p»—m>N2
o —y|N2 o —gIN2 o fo—y[N2 |z — ]
N S (|x - y|>2
= e —yN2 |z — ]

_ 4rnyn
|z —y[N 2z — g

forallx;éyERfanszll.

Similarly, if N = 3 we have

11 —gl—le—y
lz—yl |z -7 [z —yllz —7
_ drNyN
[z —yllz —gl(x — g + |z —y])
2rNYN
> — for all x # y € RY.
|z —yllz — 7|
Therefore, there exists ¢; > 0 such that
ATNIN < Gy ().

|z —y|N P — g2~
In the similar way, using that

N—-2 2

_ N 9 _

1—<|gl7 %|> < — 1—('90 g{|) forallx;éyERfandNZZL,
|z — 7] 2 |z — 7|

we obtain the existence of a constant ¢y > 0 such that

CoUNYN
G <
RY (0 0) S N g

for all x # y € RY.
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ii) Since |z —y| < |z — g| for all z,y € RY, (4.5) is a consequence of (4.4).
iii) Notice that

lz =gV =z —ar — (5 — a)|"

IN

c(\x— a |V + ]ﬂ—a1|N)
<c((Jal + DY + (ly[ + 1)

ozl +1)"(|lyl + DY,

IA

for some constant ¢ > 0. Therefore (4.6) is a consequence of (4.5).

iv) Let i =1,..., N. Notice that

1 1 N
’xi _yi’ ('l’ _y’N - ’LC _ZﬂN) - C|xi _yz|§(xay)GRf(xay) for all z 7& Y € R+7

for some constant ¢ > 0 and where we have defined

|z — y|" 2 — g[v < 1 1
e /N e N

E(x,y) = ) for all x # y € RY.

Thus, to prove (4.7), it is enough to show that there exists ¢ > 0 such that for y €
RY\B(z,s) and each x #y € RY :

lzi — yilé(z,y) < c.
In fact,

=g =y e — NP — g

5(33,3/) -

o =GN — =y

(1 =512 = o = y1¥2) (2 =y >+ o = §1%) = Jo = §1¥* +]a =y
o =g — =y

e et T

_ . —2 R
R T e e

<lz—y|?+|z—g|? forallz #y € RY and N > 4.

Similarly, if N = 3, we have

z— g~ = |v —y[™
[z =] — |z -yl
1
|z = gllx -yl
<2(lz—y| P+ |z —g|?) forallz+#yeR).

Eyy)=lo—y|?+ o -7 7 -

=lz—y[+]z -7+
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Therefore
Ey) <2(jz—y| P+ |z —g|?) forallz#yeRY and N > 3.

On the other hand, since y € RY\B(z, s) we also have § € RY\B(z, s) and hence

|z —y/?
=y < |lr—y| < S
’ yi| < | Y| |$_y|2
S )
and thus A
|z — yi|&(w,y) < e

This completes the proof of iv).

v) Since (zy — yn)? < |r — y|, we have (zx — yn)? < znyn. Then 2% — 3znyny + y3 <0,

or equivalently
3—5 3+5
YN — 5 N | | yn — 5 zy | <0,

which implies that
3—b 3 5
( 2\/_> TNy S Yn < ( +2\/_> Ty.

The following result will help us to use the Green’s formulas.

Lemma 4.0.4. Let p € LTS (]Rf), p(x) > 0 and p not identically zero. Assume that

loc

we) = [ (Pl =y) =Tl = 0)plo)ds
RY
belongs to L>*(RY). Then w € CY(RY) and for any x € RY

Diw(z) = /]R

Proof. Let z € RY and § > 0 such that B(z,6) € RY. Fix « € B(z,6) and put 0 < v < 22,
Then it is clear that B := B(x,v) C Rf. Now, for each ¢t = 1,..., N we define

(Dif(a: —y)—D;I'(x — gj))p(y)dy, fori=1,... N.

N
+

vi(z) = / (DI —y) ~ DI~ ) ply)dy.

Thus

—1 T — Yi Qii—ﬂi)
v;(x) = —— — = dy.
(@) NwN/M(u—yw g ) PV
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Let i =1,..., N — 1. Then, from Lemma 4.0.4 iv) there exists C' > 0 such that

—1/ (xi—yi l"i—yz'> (y)d
- = Py)ay
nwy Jry \ |z —y[V |z =gV

1 / (xi—yz‘ xi—yi> / (xz'—yz‘ l’z‘—yz')
- — | p(y)dy + - — | P(y)dy
Rf\B(x,v) |I - y|N |I - y|N B(z,y) |(L’ - y|N |.Z' - y|N

joi(x)] =

nwy

<o o el (e e s e [t
S Ti — Y; - p p\y)ay + ——— T v P\y)ay
Nwy RY\B(z,7) lz—yV | —g¥ Nwy B(zy) |z —y[N-1
2llpll Lo (m) 1
<c [ Gulewpwiy+ 25 dy
RN\ B(z,7) R Nwy B0 YN

= Cw(z) + 2[|pll=(5),

If i = N, similar to the previous case, from Lemma 4.0.4 ii), iv) and since zy and yy are less
than or equal to |z — §|, there exists C' > 0 such that

vt = | = [ : (Pt = 2 sty

nwy |z —y¥  Jz—g|V¥

—1 / (JCN—Z/N ﬂfN—yN> 2 / Yn
=|— — - dx + — y)dy
Nwy Jgy e —y|V |z —g|V Nwy Jgry |x—y|N'0( )

2 I YN
< Cw(z) +2||pll ey + / ———p(y)dy +/ ——p(y)dy
BT Nuwy BN\B(an) [T =GN Bl 17— 91N

2 TNYN 2“PHL°°(B) 1
< Cw(z) + 2||pllL~(B) + 7/ ——~py)dy + ———— Y
BT Nuyay Jav s le— 91" Nwy  Jp@y [ —g["

2C / 2||plLe=(5)
~ Gw(x,y)p(y)dyﬂLi_/ dy
Nwyey Jempay NwnzN ™ Jpn

2 1
<C|(l14+—— 211+ —w—= <(B)-
<0 (14 g ) u@) +2 (14 o ) Iolimin

N

< Cw(z) + 2||pl| Lo (m) +

Therefore, since w € L‘X’(Rf ), it follows that v; is well defined. We now show that v; = Vuw;
for each i =1,..., N. To do so, first notice that for each z € RY, |z —g| # 0, then is clear that

D [ Tla=dolw)dy = | D= Doy, fori=1....,.
RY RY
The proof of
Di | T(@—yply)dy= [ Dil'(x—y)py)dy, fori=1,...,N,
RY RY

forall x € Rf , it follows as the proof of Lemma 2.1.4, in which it is only necessary to eliminate
the singularity = = y using an auxiliary function. Therefore, w € C*(RY) and v; = Vuw; for
eachi=1,...,N .
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O

To facilitate reading we will give the definition again of the property (H,), given in the
introduction.

Definition 4.0.5. Let p € L. (RY), p(z) > 0 and p not identically zero. We say that p has

loc

the property (H. ) if there exists a bounded solution of:
— Au = p(x) in RY. (Py)

Next we will prove the main result of this section which gives a necessary and sufficient
condition to have the property (H.).

Proof of Theorem 6. Suppose the property (H, ) is satisfied. Then, there exists U a bounded
solution of (P.). By adding a constant, we may always assume that U > 0 in RY. On the
other hand, for each n € N, from Lemma 4.0.2, Problem (P,) has only one increasing weak
solution wu,, € Hj(By(ay,)). In addition

nie)= [ oot (4.9)
By (an
Let ¢ € C§°(By(a,)) with ¢ > 0. Then, from Green’s identities

—/ UA(,Ddx:/ VUVpdr = VUVgpdx:/ p(x)p(z)dx
Br(ay) Br(an) RN

RN

2/ p(x)gp(a:)da::/ Vu,Vedx
Bn(an)

Bp(an)
=— / u, Apdz,
By (an)

from where

/ (U — up)Apdzr < 0.
Bn(an)

Therefore, the maximum principle implies that u,, < U in B,, for all n € N. Then
u(r) = lim u,(x) exist for every z € RY,
n—oo

and

u<U in RY. (4.10)
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From representation formula (4.9), using Lemma 4.0.1 and Fatou’s Lemma, we get

/RN Gy (2, y)p(y)dy = /RN (F(x —y)—T(z — g)>p(y)dy

_ / lim Gg, (4, (2, y)p(y)dy
R

N N—0o0
+

- / lim G, (a,) (%, Y)XBo(an) (¥) P (Y)dy
R

N n—0o0
+

S llm lnf /N GBn(an) (x7 y)XBn(an) (y)p(y)dy
R+

n—oo

= lim inf G Bu(an) (@, )p(y)dy
n—oo Bh(an)
= lim inf u, (z)
n—oo
= u(x).
Consequently, from (4.10), we obtain

wnlo)i= [ Guyla)ol)dy € L¥(RY),

Reciprocally, assuming ws, € L*(RY), from Lemma 4.0.4 w,, € C*(RY). Let ¢ € C5°(RY),
then using Green’s identities, Fubini’s theorem and since I'(z — ) is a harmonic function for
all z,y € RY, we have

Vwy (2)Ve(x)dr = —/ Weoo () Ap(z)dx

- _ /RN (/RN (r(:c —y) —T(z — Q))p(y)dy> Agp(x)dx
= - /RN p(y) </RN (F(w —y) =z - @))Aso(x)d:r> dy
= - /RN p(y) (/RN Iz — y)AsD(x)dw> dy

= /RN p(y)e(y)dy,

N
RY

where the last equality is true following a similar argument to that of the proof of Lemma
2.1.3. Thus, the function w., € H*(RY) N L>(RY) provides a bounded positive solution of

(P.).
]
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Corollary 4.0.6. Suppose that p satisfies property (Hy). Then we is minimal positive solution
of (Py).

Proof. From Theorem 6, since p satisfies property (H,), it follows that w., is a bounded
positive solution of (P,). Let U be a bounded positive solution of (P,). The maximum
principle implies implies that u,, < U in B,, for all n € N. Then

u(z) = nh_)rrolo u,(z) exist for every x € RY,

and v < U in RY. Thus, using Fatou’s Lemma and representation formula (4.9) we have
Ux) > nll_{%o Un () > woo(x) for every x € RY,

Therefore, wy, is minimal positive solution of (P..).
Ul

Next, we will give some examples of p for which we will have existence and nonexistence of
a bounded solution of the Problem (P.).

Lemma 4.0.7. Assume that p(z) =1 for all x € RY. Then, Problem (P.) has no bounded
solution.

Proof. Let x € RY with y > 1. From Theorem 6 and Lemma 4.0.3 i), is sufficient to show

that
TNYN
= —>p(y)dy = oo.
/Ry |z —y|V 2 — g[?

In fact, notice that if |z — y|* < zyyy, from Lemma 4.0.3 v) there exists ¢ € (0,1) such that
cxy < yn, which implies that

1 1
ey <anuy |7 =Yl eyl <eat, 1T = Yl

lz —§° — |z — y|* = dxyyy for all 2,y € RY,

Hence, using

and considering RY N (Jz — y|? < cad)) = |z — y| < eay, it follows that

/ TNYN dy > / TINYN dy
eV |2 =y =GP T ey e ye<enun [ YN (7 =y + danyn)
1 1

o
i Rfﬂ(|x7y|2§c:v?v) ‘ZL‘ - y‘N72

1 1
=z [
5 Jlo—yi<vern 12—l

Nuwy /‘/E“”V rN-1
0

rN—-2

bt

dy

dr

Nuwy /\/szv
= — rdr
5 Jo

— 00 as Ty — 0.
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Lemma 4.0.8. Let p: RJI — R be a measurable function not identically zero that satisfies

1
= for’xeRﬂf,

OSP(@SW

with 0 < v < 1 and 2 < B+ . Then, Problem (P.) has a solution u € H*(RY) N L*(RY).
Furthermore if B+~ < N + 1, then:

lim u(x) =0 and lim u(z) =0.
|z|—o0 zny—0

Proof. Assume 0 < v < 1 and 2 < 8 + v. From Theorem 6 it is sufficient to show that
We € L=(RY). For this purpose, first we will prove that

INYN oo (mpN
—p(y)dy € L= (RY), 4.11
/]Rf ]m—y|N—2|x—y|2 ( ) ( +) ( )

since Lemma 4.0.3 i) would implies that w,, € L>®(RY).
We estimate the previous integral by separating the half space as the union of Rﬂ\: NB(z,1)

with RY\B(z, 1), where z € RY.

In fact, using that zy < |z — g| and yy < |z — §| we have

1—y
TNYN YUn
— —p(y)dy S/ - —dy
/]Rj\_’ﬂB(:c,l) |z — y[V 2 — g B |7 —yN 2|z — g

1—y
By |7 —y[N 2 — gt — g
1
< Ty
/B(z,l) |z — y[NHr2
1 .N-1
1
:NwN/ r = dr
0

7NU)N
_2_7‘

Now, to estimate (4.11) in RY\B(z, 1) we will separate in two cases:

i) Assume that |z| < 1. Since for y € RY\B(z,1) we have

yl=le—y—al 2 |lz = ol — lal| = oyl — |2l = o =yl - 1,
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then

TNYN 1
- —p(y)dy < / — dy
/£$V%LD\$—‘MN>ﬂ$'—yP o—yi>1 [T = YN 21+ [y|)P

< / L
N |lz—y|>1 |x_y|N+B+’Y*2 Y

o0
:NwN/ A=y
1

. NU)N
B+ -2
ii) Assume that |z| > 1. To estimate
INYN
— —p(y)dy 4.12
/Rf\B(m) |z — y|V 2 — g? ( )

let us first notice that

1yl

2=l = [Ja] = lyl| = Iyl — ol = -

provided that |y| > 2|x|. This implies:

1=y
INYN z\y
/ N—2 ~ Qp(y)dy S / H—Nwdy
®N\ B )22 [T — YN 2z — 7] wisall 17— YN |yl

1/ ly|*
<= Yy
2 Jiys2p 12 — yIN yl?

1
B A —
2l Y[V

:2N_1NwN/ r1=B=7dr

2|z

2N_ﬁ_’yNU}N

2N_5_W/NU)N
B+ry—2

Now, to estimate (4.12) in RY\B(xz, 1)) N (Jy| < 2|z|), we will do it in 3 regions:

A= @B )0 (<ol <20,
and

A= @B )0 (5 <l < 5) = @B )0 (bl < ).



The first one:

INYN 1
— —p(y)dy < / — 3y
/A1 |z —y|N 2 — g2 RN\ B(z,1)n( 2l <|y|<2]z|) |z — y[N T2yl

2

. _
= 13 T N2y
|x|ﬂ 1<|z—y|<3|z| |I’ - y|N+’y 2

B 3lz|
= 2 N;UN/ ’ ri=dr
|z 1

< 28327 Nwy

2—B—
< Gl
< 2/332*7NwN_
S oo,

To estimate (4.12) in the second region, note that if |y| < %, we have

2]

=9l = [lo] = lol| = lol = Iyl = 55 = Iy,

then
INYN X
- —=p(y)dy < / 4
/Ag |5L‘ — y|N 2|x — y|2 (Rf\B(x,l))ﬂ(%gyK\?ﬂ) |x _ y|N+7 2|y|5
1
: / ey
®Y\B, ) <lyl<lsh [y

< / L
< T NI g5 Y
Lyl ly[NHOH2

2

:NwN/ ri==dr

[SIE

o N’UJN
Bty -2
Finally, to estimate (4.12) in the third region, notice that if |y| < 1, we have
1
2=yl = [lo] = lol| = lo] = Iyl = Jo] - 5,
then
1

TNYN
—p(y)dy <
/,43 |z — ik

——d
y[" 2 — ) Jo =y

/<M\B(x,1>>m(|y|<%

< 1 / d
< — y
(le] = N2 Jyy <

1
2

" 2V (a] -

< wy2772

99
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Therefore, there exists C' > 0 such that

/ INUN )y < C.
R

- —5 P
M\B(z,1) |z —y|N 2 — g

Hence, we get existence of a constant C' > 0 such that

TNYN N
— —p(y)dy < C for all z € RY.
AﬁW—MN2M—M2 +

Now, we assume 0 < v < 1 and 2 < 8+ v < N + 1. Following an argument similar to the
previous one, it is possible to show that

lim we(z) = 0.
IN—)O

For instance if |z| < 1, it follows that

ITNYN 1
— —p(y)dy < :cN/ — dy
Léﬂmmﬂx—wNQW—yP w—y>1 [T = YN+ [y))P

< / L
T
= |lze—y|>1 |$ - y|N+B+’yil Y

NU)N
= —u
Bry—1"

and

INYN 1
— —p(y)dy < zn / Y
/Rme(I,l) |z —y[N 2z — g B [T —y|N Tt

1
:NwaN/ rdr
0

NU)N

Now, to prove

lim we(z) =0,
|z| =00

we see that it is enough to show that

INYN

— —p(y)dy — 0 as |z| — oo, (4.13)
/<R$\B(m,s>>n<y|s%> |z —y|N 2z — g]?

for € > 0 enough small.
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Finally we will prove (4.13). In fact, using that | — y| > % and since N — 8 —~+1 > 0,

it follows that
1—y
TNYN LY
/ﬁ ¥ ~2ﬂ@0dyfé/n Ay
(RN \B(z,e))N(jyl< 12 |z — y|N 2|z — g ly|< 2l |z — y[Nyl

L2 / L
= T Jyetet g1

2NNU)N /_NﬂVdr

|.I'|N 1
_ 25+’Y—1NU}N |J}|2_5_7
N-pB—-—vy+1

This concludes the proof.
O
To finish, we have the following nonexistence result.
Lemma 4.0.9. Let p : RY — R be a measurable function that belongs to LY, (Rf) and satisfies
R < p(z) forzeRY,
with v > 1 and B+~ < 2. Then, Problem (P, ) has no bounded solution.

Proof. To prove that the Problem (P,) has no bounded solution, from Theorem 6 and
Lemma 4.0.3 i), it is sufficient to show that

INYN
/ ﬁp(y)dy =00
RYN(ly[>|=l) 1T~ Y

In fact, let z € RY with zy > 2V Using that |z — g[V < 2N (|z[V +[g]Y) < 2V |y for
ly| > |z|, we have
N 1

— > .
lz—gIv |y

Thus, there exists C' > 0 such that

TNYN 1
———p(y)dy 2/ —
/Mm(|y>x|> |z — g~ BV izl YN (1 + |y)PyX

1
> C / 1
wizle (YN

= O

which implies the desired. [

Remark 4.0.1. From Theorem 6, if p satisfies property (H. ), then w, is a bounded positive
solution of Problem (P ). Furthermore, since for the problem in the whole space R, we have
show that the solution u, vanishing at infinity (see Corollary 2.1.9 ), we will also hope that
liminfwe(z) =0 and liminfw.(z) = 0.
|z|— o0 zny—0

However, this claim still is open problem.
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