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Introduction

Evolution equations in continuous and discrete time have been studied for several decades due to

they arise naturally in the mathematical modeling of phenomena in natural sciences. The major

topics to be investigated in this field are existence, uniqueness and qualitative properties of their

solutions.

Evolution equations in continuous time has great importance in concrete models from mathe-

matical physics, viscoelasticity theory, mechanics [9, 75, 104, 108, 109], among others. A useful

machinery for this study is the general theory of resolvent families [12, 46, 71, 92, 109, 112]. In 1980,

Da Prato and Iannelli [46] introduced for first time the notion of resolvent family as an extension of

the known concept of C0-semigroups, and now plays a central role in the theory of abstract Volterra

integral equations, as studied, for example in Prüss’s book [109].

The qualitative properties of resolvent families such as the regularity, positivity, periodicity,

approximation, uniform continuity and compactness have been studied by a number of authors. See

e.g. [46, 70, 69, 90, 91, 109]. Many authors have applied the notion of resolvent family to abstract

differential equations in Banach spaces to obtain variations of parameters formulae in order to define

appropriate concepts of mild solutions. For instance, in 2010, Lizama and N’Guérékata [95] studied

bounded mild solutions for semilinear integro differential equations in Banach spaces. The same year,

Chen and Li [39] introduced fractional resolvent operator functions to study a fractional abstract

Cauchy problem. For related work, see [40, 71, 86, 92] and references therein.
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As a discrete counterpart of the classical theory of differential equations emerged the theory of

difference equations. The study of difference equations has been subject of increasing interest in the

last years due to sometimes continuous models need to be discretized in time for practical purposes,

see e.g. [4, 14, 29, 33, 51, 85, 87, 89]. In [117] Xia established some sufficient criteria for the existence

and, uniqueness and asymptotic behavior of solutions to Volterra difference equations of convolution

type as well as to nonautonomous semilinear difference equations. Elaydi [53] obtained some of the

fundamental results on the stability and asymptotic behavior of linear Volterra difference equations

using the method of z−transform for equations of convolution type. The study of maximal regularity

for discrete time abstract Cauchy problems in Banach spaces has been addressed in [6, 30, 31, 82,

83, 97]. In 2001, Blunck [31] established sufficient conditions for maximal regularity of an operator

on vector-valued Lebesgue spaces. Kemmochi [82, 83] considered a discrete Cauchy problem in a

Banach space and showed that continuous maximal regularity implies discrete maximal regularity

for general time schemes of approximation in the case of UMD spaces. Lizama and Murillo [97]

presented a method based on operator-valued Fourier multipliers to characterize the existence and

uniqueness of lp-solutions for some discrete time fractional models.

The main purpose of this thesis is to study conditions to guarantee the existence, uniqueness and

qualitative properties of solutions for a distinguished class of models in continuous and discrete time.

The first problem consists of finding conditions that guarantee the existence of integrated solutions

for the following second order problem with memory

u′′(t) +Au(t)− (k ∗Au)(t) =f(t, u(t)), t ∈ [0, b], (0.0.1)

where X is a Banach space, A : D(A) ⊆ X → X generates a resolvent family with integrated kernel,

and f : [0, b]×X → X.

We would like to address the following questions: What kind of conditions on the kernel k, and

the operator A do we need to obtain existence of solutions for the semilinear problem (0.0.1) with

nonlocal initial conditions? Can we consider weaker conditions than Lipschitz type conditions, on

the external forcing term f?

The second problem is finding conditions that guarantee existence and uniqueness of mild solutions



CONTENTS 3

to the following class of abstract semilinear difference equations of Volterra type

u(n+ 1) = A

n∑
k=−∞

a(n− k)u(k + 1) +

n∑
k=−∞

b(n− k)f(k, u(k)), n ∈ Z, (0.0.2)

where A is an unbounded operator on a Banach space X and a(n), b(n) are appropriately chosen

sequences.

Suppose that we know the behavior of the forcing sequence f(k, x). What conditions do we need

on the operator A and the kernels a(n) and b(n) in order to conclude that the solution u of (0.0.2)

exists and has the same behavior as f? In this sense another questions naturally emerge: What

is the appropriate definition of discrete resolvent family generated by the operator A in order to

represent the solution of (0.0.2)? Is it possible to give an explicit representation in terms of bounded

operators of the discrete resolvent family? Are difference equations of fractional type included in the

general framework of nonlinear fractional difference equations of type (0.0.2)?

The third problem that we address in this thesis is to study the connection between monotonicity

and convexity of sequences and the discrete version of the nonlocal extension of time differential

operators, e.g. the Riemann-Liouville fractional differential operator, whose more studied definition

is the following (see Gray and Zhang [68] or Atici and Eloe [2, 13, 15, 16])

(
∆ν
af
)
(t) :=

1

Γ(−ν)

t+ν∑
s=a

(t− s− 1)−ν−1f(s), t ∈ Na+N−ν , (0.0.3)

where N ∈ N is the unique integer satisfying N − 1 < ν < N , and the map t 7→ tν is defined by

tν :=
Γ(t+ 1)

Γ(t+ 1− ν)
.

There are some interesting questions that are of recent interest, such as: Can we use the sign of

discrete fractional difference operators to obtain positivity, monotonicity, and convexity type results

for sequences u : Na → R? Do the properties of positivity, monotonicity, and convexity have a

continuous transition when ν increases from 0 to 3?

The following review summarizes the state of the art of the three problems mentioned previously.

Concerning the first problem, second order partial differential equations with memory arise in

several applied fields, like viscoelasticity or heat conduction with memory [21, 36, 77, 79]. The
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problem (0.0.1) was initially studied by Prüss. In the context of Hilbert spaces, Prüss obtained energy

estimates and the optimal decay rate for the solutions of the linear problem, through frequency

domain methods, see [108]. Afterwards, Cannarsa and Sforza [37] studied global existence and

asymptotic behavior of solutions for (0.0.1) when f(t, u(t)) = ∇F (u(t))+g(t), where ∇F denotes the

gradient of a Gâteaux differentiable functional F : D(A1/2)→ R. Xu [119] studied decay properties

of the numerical solutions for (0.0.1) with f = 0. It is worthwhile to note that in [108], [37] and

[119] the authors considered the equation (0.0.1) in Hilbert spaces, with local initial conditions,

and f a Lipschitz function. Recently, in the framework of Hilbert spaces, Luong [101] found mild

solutions for (0.0.1) with nonlocal conditions u(0) + g(u) = x0, and u′(0) + h(u) = y0 using measure

of noncompactness on the space of solutions, and proved the existence of a compact set containing

decaying mild solutions, i.e. mild solutions such that u(t)→ 0 as t→ +∞, for problem (0.0.1).

Although there exists a wide literature about the second order abstract Cauchy problem, the

existence of solutions with nonlocal initial conditions for the equation (0.0.1) with damping by a

convolution term, in Banach spaces, has not been studied in the literature.

We notice that nonlocal initial conditions are more practical than classical conditions when treat-

ing physical problems. For instance, the sum

u(x, 0) +

n∑
k=1

βk(x)u(x, Tk) (0.0.4)

is more accurate to measurement of a state than u(x, 0) alone. This approach was used by Deng in

[50] to describe the diffusion phenomenon of a small amount of gas in a tube. If there is too little

gas at the initial time, the measurement (0.0.4) of the sum of the amounts of the gas is more reliable

than the measurement u(x, 0) of the amount of the gas at the instant t = 0. For more information

we refer the reader to the articles [7, 35, 114, 113] and references therein.

Regarding the state of art of the second problem, linear and nonlinear difference equations of

Volterra type are often used in several applied fields like modeling of biological populations, see

[41, 42, 43, 52, 54, 85, 103]. The theory of linear Volterra difference equations of both convolution

and nonconvolution types have been studied, for example, by Elaydi, Gronek and Schmeidel in

[54, 72], where the second author named proved the existence of bounded solutions via Darbo’s

fixed-point theorem using a measure of noncompactness in the space of bounded sequences.
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Quite recently considerable attention has been paid to the nonlinear difference equations

∆αu(n) = Au(n+ 1) + f(n), n ∈ Z, (0.0.5)

for 0 < α ≤ 1, where A is the generator of a resolvent sequence contained in the space of all bounded

operators defined in a Banach space. Here ∆α denotes fractional difference in Weyl-like sense and f

satisfies Lipschitz conditions of global and local type. In [1, 10, 118] the authors studied existence,

uniqueness of discrete weighted pseudo S-asymptotically ω-periodic mild solutions and asymptotic

behavior for nonlinear fractional difference equations like (0.0.5).

A key observation is that equations of type (0.0.5) are subsumed under the general framework

of nonlinear fractional difference equations of Volterra type (0.0.2). More precisely, equation (0.0.5)

corresponds to the special case where a(n) = b(n) = kα(n), with

kα(n) =
Γ(n+ α)

Γ(α)Γ(n+ 1)
, n ∈ N0.

We notice that this sequence appears in the definition of the fractional difference which has been the

subject of much study in recent years (see e.g. [94] and the references therein).

We observe that the vast majority of research works related to the class of nonlinear discrete

time evolution equations (0.0.2) are focused either in finite dimensional cases or are restricted to

the case of a bounded operator A, see [43, 45, 52] and references therein. Moreover, the problem

of existence and uniqueness of weighted pseudo asymptotically mild solutions to (0.0.2) appears not

to have been considered in the literature. In this thesis we fill this gap by means of an operator

theoretic approach.

Finally, with regard to the state of art of the third problem, we notice that time-discrete operators

of fractional order appear in several areas of interest. For instance, in numerical analysis, as time-

stepping schemes of approximation for fractional evolution equations [81, 98], and in the study of

existence, uniqueness and qualitative properties of fractional difference equations [3, 14, 28, 38, 58,

74, 115, 120]. They also appear in the analysis of mixed partial difference-differential equations by

means of operator theoretical methods [76, 88, 93, 97, 94].

A well-known geometrical fact in the difference calculus is the following characterization of mono-
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tonicity: (∆f)(t) ≥ 0 if and only if f is increasing on N0. The question of whether such a monotonicity

result holds in the discrete fractional setting. The monotonicity conjecture was posed in 2014 by

Dahal and Goodrich [47, 48]. It turns out that the answer to this conjecture is not obvious and

rather complicated due to the nonlocal character of the fractional difference operator (0.0.3). In fact,

it was proved that if 1 < ν < 2 and
(
∆ν
af
)
(t) ≥ 0 for each t ∈ Na+2−ν one does not need to have

f increasing [56, Example 2.4]. After the intense work of several authors [26, 47, 61, 80], the best

answer to the monotonicity conjecture posed by Dahal and Goodrich was proved in [65, Theorem

6.3]. In such paper, it was also analyzed the case of compositions of discrete fractional operators,

establishing many new results for all types of discrete fractional differences, and improving existing

results in the literature.

Additionally, connections between (0.0.3) and the convexity of the map f was first investigated

by Goodrich [60], proving that under certain hypotheses the positivity of (∆ν
af)(t), for 2 < ν < 3,

implies the convexity of f, thereby associating some geometrical meaning to the fractional difference

operator of order ν > 2.

In 2017, Dahal and Goodrich [49] considered monotonicity-type results for sequences f satisfying

the sequential fractional difference inequality ∆ν
1+a−µ∆µ

af(t) ≥ 0 for t ∈ N2+a−µ−ν , where 0 < µ <

1, 0 < ν < 1, and 1 < µ+ν < 2. Goodrich started the study of discrete sequential fractional boundary

problems [59]. See also Sitthiwirattham [111]. Fractional operators are, in general, non commutative

[78], this renders reduction of the order of fractional difference equations impossible. An interesting

aspect of the sequential case is that the type of result obtained depends on the choice of ν and µ

[63, 65] and therefore exhibits a complexity that appears to be absent in the non-sequential case.

On the other hand, in recent times Lizama [94] proposed an alternative definition to (0.0.3) by

setting (
∆αf

)
(n) := ∆N

[ n∑
j=0

kN−α(n− j)f(j)

]
, (0.0.6)

where N − 1 < α < N , N ∈ N. This definition appears in several recent articles related to lp-

maximal regularity, existence and uniqueness of solutions of difference problems with fractional order

[96, 93, 76]. Nevertheless, this definition was used for the first time to study either the monotonicity

or convexity of a sequence in [65]. In [65][Theorem 4.3] the authors related (0.0.3) to Definition
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(0.0.6) by means of the operator of translation. This property, named principle of transference has

been developed and used in [65] to understand the connections between the sign of
(
∆αf

)
(t) and

either the positivity, monotonicity, or convexity of f . In such reference, many new results were

proved, improving most, if not all, known existing results in the literature.

This thesis is organized in four chapters. In Chapter 1, we begin introducing some of the main

concepts, notations and results that will be necessary in the development of this thesis. Mainly,

we give the basic concepts related to resolvent families, fractional differences, vector-valued spaces,

measure of noncompactness, and any related results of immediate use to us.

The following chapters are devoted to the detailed study of the three problems described above.

We will give a brief description of each of them below.

Chapter 2 is concerned with the study of the first problem. Roughly speaking, we prove the

existence of integrated solutions for the local and nonlocal initial value problem (0.0.1). In the local

case, we use methods described in [57] to show the existence of integrated solutions under conditions

of compactness of the resolvent generated by A. Concerning the nonlocal case, we follow ideas of

Lizama and Pozo [99], using properties of the measure of noncompactness as the main tool. The

concept of measure of noncompactness has been studied widely in [19, 20, 22, 23, 24, 25].

We observe that the approach based on the use of measure of noncompactness for abstract Cauchy

problems allows us to remove stronger assumptions, like Lipschitz type conditions on the external

forcing term f in (0.0.1) employed in the paper [108, Section 6] and so obtain more general results

in comparison with other methods. Although this method has been employed in the last years

by several authors for the study of existence of solutions to ordinary differential equations, their

application to abstract evolution equations remains underdeveloped. Following ideas of [99] (see also

the references therein), we will assume that the term f satisfies the following set of conditions.

(i) There exists a function m ∈ L1([0, b];R+) and a nondecreasing continuous function φ : R+ →

R+ such that

‖f(t, x)‖ ≤ m(t)φ(‖x‖+ 1), for all x ∈ X and almost all t ∈ [0, b].
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(ii) There exists a function H ∈ L1([0, b];R+) such that for any bounded S ⊆ X

ξ(f(t, S)) ≤ H(t)ξ(S), (0.0.7)

for almost all t ∈ [0, b], where ξ denote the Hausdorff measure of noncompactness defined in

X.

Under the above assumptions, we prove our main result on the existence of integrated solutions to

equation (0.0.1). Moreover, we include constructive examples to illustrate the feasibility of the given

hypotheses. In the second example, we included a function f which satisfies the condition (0.0.7),

but it is not Lipschitzian.

Chapter 3 deals with the second problem. We start proposing a new definition of discrete resolvent

family {S(n)}n∈N0 ⊂ B(X) generated by the operator A, in order to represent the solution of (0.0.2).

This new concept improves [1, 118, Definition 3.1] and [10, Definition 2.11] in the special case of

(0.0.5). For the associated nonhomogeneous linear equation (0.0.2), we assume conditions in terms of

generators of C0-semigroups in order to prove the existence and summability of a discrete resolvent

family.

Additionally, we prove that in case a(n) = b(n), n ∈ Z+, then the sequence the operators S(n)

has the following interesting representation

S(n)x = [
n−1∑
j=0

1

a(0)j
φj(n)(T − I)j ]T 2x, n ≥ 2, for all x ∈ X,

where T := (I − a(0)A)−1, and φ0(n) = a(n), φ1(n) =
∑n−1
k=1 a(n− k)a(k), and

φj(n) =

n−1∑
k=j

a(n− k)φj−1(k), j ≥ 2, (0.0.8)

and for all x ∈ X we have that S(0)x = a(0)Tx, S(1) = a(1)T 2x.

As regards to the asymptotic behavior and weighted pseudo S-asymptotic ω-periodic mild so-

lutions to (0.0.2), we suppose that A is the generator of a summable discrete resolvent family

{S(n)}n∈N0 ⊂ B(X), f satisfies a θ−Lipschitz condition, and using the Leray-Schauder Alterna-

tive Theorem, we show that there exist a sequence (h(n))n∈Z and a mild solution u of (0.0.2) such
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that u(n) = o(h(n)), where the positive sequence h : Z → R+ satisfies appropriate convergence

properties. The precise description of this result is in the context of Theorem 3.2.6. Additionally,

we include a constructive example to illustrate the relevance and feasibility of the given hypotheses.

Finally, Chapter 4 is devoted to the third problem. Here, we show important new properties of

the higher order differences ∆l, for l ∈ N and of the α- th fractional difference operator ∆α, for α > 0.

We provide a geometrical interpretation for α-increasing and α-convex sequences. We improve in a

significant way the work done in [65]. For 2 ≤ α < 3, we assume that u ∈ s(N0;R) satisfies a suitable

condition on ∆αu(n), and we conclude that u is positive, increasing and convex on N0. This new

result allow us to deduce that the properties of positivity, monotonicity and convexity for a sequence

u have a continuous transition as α increases from 0 to 3.

Furthermore, we refined the results related to the relationship between convexity and the sign

of the composition of two operators. In the new theorems we include the border cases and new

hypotheses that allow us to see how the hypotheses overlap in each of the regions. More precisely, our

main result concerning the composition of two operators is Theorem 4.3.7. Using the transference

principle obtained by Goodrich and Lizama in [65], we are able to transfer all our results to the

operator (0.0.3) and thus fully understand the properties of positivity, monotonicity and convexity.

Moreover, we present examples that demonstrate the sharpness of the hypothesis.

The results described in Chapters 2 and 3 have been published in mainstream international

journals (ISI):

1. C. Lizama, S. Rueda. Nonlocal integrated solutions for a class of abstract evolution equations.

Acta Applicandae Mathematicae, 164 (1) (2019), 165-183.

2. V. Keyantuo, C. Lizama, S. Rueda and M. Warma. Asymptotic behavior of mild solutions for

a class of abstract nonlinear difference equations of convolution type. Advances in Difference

Equations, 251 (1) (2019), 1-29.

The results of Chapter 3 can be found in the article submitted for publication: J. Bravo, C. Lizama,

S. Rueda. Analytical properties of nonlocal discrete operators: Convexity.



Chapter 1

Preliminaries

The purpose of this chapter is to introduce certain notations, notions and theorems used throughout

the present thesis.

Let (X, ‖ · ‖) be a Banach space. We denote the space of all bounded linear operators from X

into X by B(X). If A is a closed linear operator on X, we denote by D(A) the domain of A equipped

with the graph norm | · |A of A, i.e. |x|A = |x| + |Ax|, ρ(A) denotes the resolvent set of A and

R(λ,A) = (λ−A)−1 the resolvent operator of A defined for all λ ∈ ρ(A).

Throughout this thesis, C([0, b];X), and Lp(R+, X) for 1 ≤ p <∞, denote the vector space of all

continuous functions f : [0, b]→ X, and the vector valued space of all Bochner measurable functions

f : R+ → X such that ‖f‖p :=
(∫∞

0
‖f(t)‖pdt

)1/p
< ∞, respectively. Ck(0,∞), denotes the space

of k−times continuously differentiable functions on (0,∞). For Ω ⊂ Rn, Wm,p(Ω;X) is the space

of all functions f : Ω→ X having distributional derivatives Dαf ∈ Lp(Ω;X) of order |α| ≤ m. The

subscript ‘loc’ assigned to any of the above function spaces means membership to the corresponding

space when restricted to compact subsets of its domain.

10
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1.1 Resolvent families

The concept of resolvent family that we will define in this section was introduced by Prüss in [109], it

corresponds to a class of families of operators that arise from the theory of linear Volterra equations.

In what follows we consider the integral equation

u(t) = f(t) +

∫ t

0

a(t− s)Au(s)ds, t ∈ [0, b], (1.1.1)

where f ∈ C([0, b];X). We recall the following definition.

Definition 1.1.1. [109, Definition 1.1] Let A be a closed linear operator with domain D(A) defined

in a Banach space X, a ∈ L1
loc(R+) be a scalar kernel and f ∈ C([0, b];X). A function u ∈ C([0, b], X)

is called

(i) strong solution of (1.1.1) on [0, b] if u ∈ C([0, b], D(A)) and (1.1.1) holds on [0, b],

(ii) mild solution of (1.1.1) on [0, b] if a ∗ u ∈ C([0, b], D(A)) and u(t) = f(t) +A(a ∗ u)(t) on [0, b],

where the star indicates the finite convolution, i.e.

(k ∗ u)(t) =

∫ t

0

k(t− s)u(s)ds, t ≥ 0.

The following concept of resolvent family will be fundamental in our considerations.

Definition 1.1.2. [109, Definition 1.3] Let A be a closed linear operator with domain D(A) defined

in a Banach space X, and a ∈ L1
loc(R+). A family {S(t)}t≥0 ⊆ B(X) of bounded linear operators in

X is called a resolvent family generated by A if the following conditions are satisfied.

(i) S(t) is strongly continuous on R+, (i.e. S(·)x are continuous from R+ into X for every x ∈ X)

and S(0) = I;
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(ii) S(t)D(A) ⊆ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;

(iii) the resolvent equation holds

S(t)x = x+

∫ t

0

a(t− s)AS(s)xds for all x ∈ D(A), t ≥ 0.

Definition 1.1.3. [109, Definition 1.5] A resolvent family {S(t)}t≥0 is called exponentially bounded

if there are constants M > 0 and ω ∈ R such that ‖S(t)‖ ≤ Meωt, for all t ≥ 0. The pair (M,ω) is

called a type of S(t).

Theorem 1.1.4. [109, Proposition 1.2] Let A be a closed linear operator in a Banach space X

with domain D(A), and a ∈ L1
loc(R+). If {S(t)}t≥0 is a resolvent family generated by A, and f ∈

W 1,1([0, b];D(A)), then

u(t) = S(t)f(0) +

∫ t

0

S(t− s)f ′(s)ds, t ∈ [0, b],

is a strong solution of (1.1.1).

Let a be exponentially bounded of order ω. We denote the Laplace transform of a by

â(λ) :=

∫ ∞
0

e−λta(t)dt, Re(λ) > ω.

Definition 1.1.5. [109, p. 90] A infinitely differentiable function a : (0,∞)→ R is called completely

monotonic if (−1)na(n)(t) ≥ 0 for all t > 0, n ∈ N0.

Definition 1.1.6. [107, p. 326] Let a ∈ L1
loc(R+) be such that a is Laplace transformable, a is called

completely positive if and only if 1
λâ(λ) and −â

′(λ)
[â(λ)]2 , with λ > 0 are completely monotone functions.

We recall [109, Section 3.2 p.69] that a function a ∈ L1
loc(R+) of subexponential growth is called

k-regular if there is a constant c > 0 such that

|λnâ(n)(λ)| ≤ c|â(λ)| for all Re(λ) > 0, 0 ≤ n ≤ k.
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Also a is said to be of positive type if | arg â(λ)| ≤ π
2 for all Re(λ) > 0.

Definition 1.1.7. Let a ∈ L1
loc(R+) and k ≥ 2. We say that a(t) is k− monotone if a ∈ Ck−2(0,∞),

(−1)na(n)(t) ≥ 0 for all t > 0, 0 ≤ n ≤ k − 2, and the function (−1)k−2a(k−2)(t) is nonincreasing

and convex.

1.2 Fractional differences

In this section, we introduce the notion of the fractional difference operator that will be used mainly

in Chapters 3 and 4. In what follows, we denote Na := {a, a + 1, a + 2, . . . }, for some a ∈ R, and

N ≡ N1 as usual. We denote by s(Na;R) the vectorial space that consists of all sequences f : Na → R.

Recall that given a sequence f ∈ s(Na;R) the first-order forward (or delta) difference of f at t ∈ Na,

denoted
(
∆af

)
(t), is defined by

(
∆af

)
(t) := f(t+ 1)− f(t).

Then one may define iteratively the higher order differences ∆n
a , for n ∈ N1, by writing

(
∆n
af
)
(t) :=

(
∆a ◦∆n−1

a f
)
(t).

We also denote ∆0
a ≡ Ia, where Ia : s(Na;R) → s(Na;R) is the identity operator, ∆1

a ≡ ∆a, and

∆n ≡ ∆n
0 .

Remark 1.2.1. For any f ∈ s(N0;R), l ∈ N0 we have

∆lf(t) =

l∑
j=0

(
l

j

)
(−1)l−jf(t+ j), t ∈ N0.

We define

kα(n) :=


Γ(n+α)

Γ(α)Γ(n+1) if α > 0, n ∈ N0,

δ0(n) if α = 0,
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where δ0(n) is the delta function,

δ0(n) :=

 1 if n = 0,

0 if n 6= 0.

The kernel kα, introduced in [94], appears in many fields of research and has a number of important

properties that concentrate all the information about the fractional difference operator which we will

define next. For a review, see [65, Section 3].

The definition of α-th fractional sum on the set N0 is given by:

Definition 1.2.2. For each α > 0 and f ∈ s(N0;R), we define the fractional sum of order α as

follows:

∆−αf(n) :=

n∑
j=0

kα(n− j)f(j), n ∈ N0.

The next concept was proposed in [94], it is analogous to the definition of a fractional derivative

in the sense of Riemann-Liouville, see [105].

Definition 1.2.3. Let α > 0 be given. The α−th fractional difference operator is defined by

∆αf(n) := ∆m∆−(m−α)f(n), n ∈ N0,

where m− 1 < α ≤ m, m ∈ N.

Let u, v be sequences (defined on Z+). We define two convolution products (u◦v)(n) and (u∗v)(n)

as follows,

(u ◦ v)(n) =

n∑
k=−∞

u(n− k)v(k), (1.2.1)

and

(u ∗ v)(n) =

n∑
k=0

u(n− k)v(k). (1.2.2)
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Note that for the first product we need conditions on the sequences in order to ensure the convergence

of the series (1.2.2), while for the second product (1.2.1) no condition on the sequences is required.

A useful property that satisfies the kernel kα is the semigroup property

(kα ∗ kβ)(n) = kα+β(n), n ∈ N0, α, β > 0, (1.2.3)

which is frequently used in the results and examples of Chapter 5.

We recall from [65, Lemma 3.2] the following result.

Lemma 1.2.4. For any α > 0 and n ∈ N0, the following identities hold:

(i) ∆kα(n) = (α− 1)
kα(n)

n+ 1
.

(ii) ∆2kα(n) = (α− 2)(α− 1)
kα(n)

(n+ 1)(n+ 2)
.

(iii) ∆3kα(n) = (α− 3)(α− 2)(α− 1)
kα(n)

(n+ 1)(n+ 2)(n+ 3)
.

Given a, b ∈ R, we define the translation (by a ∈ R) operator τa : s(Na;R)→ s(N0;R) by

τaf(n) := f(a+ n), n ∈ N0.

Note that τ−1
a = τ−a and τa+b = τa ◦ τb = τb ◦ τa.

Lemma 1.2.5. [65, Lemma 2.3] Let f, g ∈ s(N0;R) be sequences, then for each p ∈ N we have

(f ∗ τpg)(n) = τp(f ∗ g)(n)−
p−1∑
j=0

τpf(n− j)g(j).

We recall that the most commonly used fractional difference operator of order ν > 0 was defined
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by Atici and Eloe [13, 15, 16]

(
∆ν
af
)
(t) :=

1

Γ(−ν)

t+ν∑
s=a

(t− s− 1)−ν−1f(s), t ∈ Na+N−ν , (1.2.4)

where f ∈ s(Na;R), N ∈ N1 is the unique integer satisfying N − 1 < ν < N , and the map t 7→ tν is

defined by tν :=
Γ(t+ 1)

Γ(t+ 1− ν)
. In the integer cases of ν = N we have

∆N
a f(t) =

N∑
j=0

(
N

j

)
(−1)N−jf(t+ j), t ∈ Na. (1.2.5)

In [65, Theorem 4.3] the authors related (1.2.4) to Definition 1.2.3 by means of the operator of

translation, which allowed to transfer the properties of a sequence u between both definitions and

called a transference principle.

In the following, we have extended the formulation of the transference principle in order to include

the integer cases α = N ∈ N, being the proof immediate taking into account (1.2.5).

Theorem 1.2.6. (Transference Principle) Let N − 1 < α ≤ N, N ∈ N and a, β ∈ R. For each

sequence f ∈ s(Na;R) we have

τa+N−α ◦∆α
af = ∆α ◦ τaf,

and for each f ∈ s(Na+N−β ;R),

τN−β ◦∆α
a+N−βf = ∆α

a ◦ τN−βf.

In other words, the following diagrams are commutative:

s(Na;R) s(Na+N−α;R)

s(N0;R) s(N0;R)

∆α
a

τa τa+N−α

∆α

s(Na+N−β ;R) s(Na+2N−β−α;R)

s(Na;R) s(Na+N−α;R)

∆α
a+N−β

τN−β τN−β

∆α
a
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1.3 Some vector-valued spaces

We denote the linear space consisting of all vector valued sequences f : Z+ → X by s(Z+, X), where

Z+ = N ∪ {0}. Let a : Z+ → C be given. If

∞∑
k=0

|a(k)| < ∞, then we say that a is a summable

sequence. We introduce some notation on the vector-valued spaces used in the sequel.

1. l∞(Z, X) := {f : Z→ X : ‖f‖∞ := sup
n∈Z
‖f(n)‖ <∞}.

2. lpρ(Z, X) := {f : Z→ X : ‖f‖lpρ :=

∞∑
n=−∞

‖f(n)‖pρ(n) <∞}, where ρ : Z→ (0,∞) is a positive

sequence.

3. C0(Z, X) := {f ∈ l∞(Z, X) : lim
n→∞

‖f(n)‖ = 0}.

4. Cω(Z, X) := {f ∈ l∞(Z, X) : f is ω − periodic} where ω ∈ Z+ \ {0} is fixed.

5. UC(Z×X,X) is the set of all functions f : Z×X → X satisfying that for all ε > 0 there exist

δ > 0 such that ‖f(k, x)− f(k, y)‖ ≤ ε for all k ∈ Z and for all x, y ∈ X with ‖x− y‖ < δ.

6. UC(Z×X,X) is the set of all functions f : Z×X → X satisfying that for all ε > 0 there exist

δ > 0 such that ‖f(k, x) − f(k, y)‖ ≤ Lf (k)ε for all k ∈ Z and x, y ∈ X with ‖x − y‖ ≤ δ,

where Lf ∈ lp(Z).

Let h : Z → R+ be a sequence such that h(n) ≥ 1 for all n ∈ Z, and h(n) → ∞ as |n| → ∞.

Define

C0
h(Z, X) = {ξ : Z→ X : lim

|n|→∞

‖ξ(n)‖
h(n)

= 0},

endowed with the norm ‖ξ‖h = sup
n∈Z

‖ξ(n)‖
h(n)

.

It is clear that C0
h(Z, X) is a Banach space isometrically isomorphic with the space C0(Z, X)

consisting of all sequences ξ : Z → X that vanish at ±∞. Let U be the collection of positive

sequences ρ : Z→ (0,∞). For ρ ∈ U and, for n ∈ Z+ we use the notation

ν(n, ρ) =

n∑
k=−n

ρ(k),
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U∞ := {ρ ∈ U : lim
|n|→∞

ν(n, ρ) =∞},

Ub = {ρ ∈ U∞ : 0 < inf
k∈Z

ρ(k) ≤ sup
k∈Z

ρ(k) <∞} ⊂ U∞.

Hence, ν(n, ρ) are the symmetric partial sums, U∞ consists of those positive sequences ρ over Z for

which the sequence (ν(n, ρ))n∈N is unbounded, while Ub consists of the positive sequences ρ such

that for some fixed τ > 0, ρ(n) ≥ τ for all n ∈ Z.

Let ρ1, ρ2 ∈ U∞ be given. The sequence ρ1 is said to be equivalent to ρ2 (i.e. ρ1 ∼ ρ2) if

ρ1/ρ2 ∈ Ub. It can be proved that U∞ = ∪ρ∈U∞{% ∈ U∞ : ρ ∼ %}. For ρ ∈ U∞ and m ∈ Z.

A sequence f : Z → X is called almost automorphic if for every integer sequence {k′n}, there

exists a subsequence {kn} such that

f(k) := lim
n→∞

f(k + kn)

is well defined for each k ∈ Z and lim
n→∞

f(k − kn) = f(k). The set of such sequences is denoted by

AAd(Z, X). It is well known that the set AAd(Z, X) endowed with the norm ‖f‖∞ := sup
k∈Z
‖f(k)‖ is a

Banach space. (See [11]). A function f : Z×X → X is called almost automorphic if f(k, x) is almost

automorphic in k ∈ Z for any x ∈ X. We denote the space of all such functions by AAd(Z×X,X).

For ρ1, ρ2 ∈ U∞ [117], we define the space

PAA0S(Z, X, ρ1, ρ2) := {f ∈ l∞(Z, X) : lim
n→∞

1

ν(n, ρ1)

n∑
k=−n

‖f(k)‖ρ2(k) = 0}.

Let ρ1, ρ2 ∈ U∞ be given. A sequence f : Z→ X is called discrete weighted pseudo almost auto-

morphic if it can be represented as f = g + ϕ, where g ∈ AAd(Z, X) and ϕ ∈ PAA0S(Z, X, ρ1, ρ2).

The space of such functions is denoted by WPAAd(Z, X). The space WPAAd(Z, X) endowed with

the norm ‖f‖∞ := sup
k∈Z
‖f(k)‖ is a Banach space. (See [117, Lemma 10]). A function f : Z×X → X

is called discrete weighted almost automorphic in k ∈ Z for each x ∈ X if it can be expressed as

f = g+ϕ, where g ∈ AAd(Z×X,X) and ϕ ∈ PAA0S(Z×X,X, ρ1, ρ2). The space of such functions

is denoted by WPAAd(Z × X,X). In what follows, we denote by V∞ the set of all the functions

ρ1, ρ2 ∈ U∞ satisfying the following: there exists an unbounded set Ω ⊂ Z such that for all m ∈ Z,
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lim
|k|→∞,k∈Ω

sup
ρ2(k +m)

ρ1(k)
<∞ and lim

n→∞

∑
k∈([−n,n]\Ω)+m ρ2(k)

ν(n, ρ1)
= 0.

A function f : Z ×X → X is said to be locally Lipschitz-continuous with respect to the second

variable if for each positive number r, for all k ∈ Z and for all x, y ∈ X with ‖x‖ ≤ r and ‖y‖ ≤ r,

we have ‖f(k, x)− f(k, y)‖ ≤ L(r)‖x− y‖, where L : R+ → R+ is a nondecreasing function.

A sequence f ∈ l∞(Z, X) is called discrete asymptotically ω-periodic if there exists g ∈ Cω(Z, X),

ϕ ∈ C0(Z, X) such that f = g + ϕ. The collection of such sequences is denoted by APω(Z, X). A

sequence f ∈ l∞(Z, X) is called discrete S-asymptotically ω-periodic if there exist ω ∈ Z+ \ {0} such

that lim
n→∞

(f(n + ω) − f(n)) = 0. The collection of such sequences is denoted by SAPω(Z, X). (See

[117, Definition 5]).

Let ρ ∈ U∞ be given. A sequence f ∈ l∞(Z, X) is called discrete S-asymptotically ω-periodic

if there exist ω ∈ Z+ \ {0} such that lim
n→∞

1

2n

n∑
k=−n

‖f(k + ω) − f(k)‖ = 0. The collection of such

sequences is denoted by PSAPω(Z, X). (See [117, Definition 6]).

Let ρ1, ρ2 ∈ U∞. A sequence f ∈ l∞(Z, X) is called discrete weighted pseudo S-asymptotically

ω−periodic if there exist ω ∈ Z+ \ {0} such that

lim
n→∞

1

ν(n, ρ1)

n∑
k=−n

ρ2(k)‖f(k + ω)− f(k)‖ = 0.

Denote by WPSAPω(Z, X) the set of such sequences. (See [118, Definition 2.5]). Next, we will

recall some properties of WPSAPω(Z, X, ρ1, ρ2) proved in [118].

Lemma 1.3.1. [118, Lemma 2.2] Let ρ1, ρ2 ∈ V∞ be given, then

1. For each l ∈ Z, one has

lim sup
n→∞

ν(n+ l, ρ2)

ν(n, ρ1)
<∞.

2. WPSAPω(Z, X, ρ1, ρ2), where ω ∈ Z+ \ {0}, is translation invariant, that is

f(·+ l) ∈WPSAPω(Z, X, ρ1, ρ2) for each l ∈ Z, if f ∈WPSAPω(Z, X, ρ1, ρ2).
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3. WPSAPω(Z, X, ρ1, ρ2), where ω ∈ Z+ \ {0}, is a closed subspace of l∞(Z, X).

Remark 1.3.2. It is easy to see that the following inclusions hold: For ω ∈ Z+ \ {0}

Cω(Z, X) ⊂ APω(Z, X) ⊂ SAPω(Z, X) ⊂ PSAPω(Z, X) ⊂WPSAPω(Z, X) ⊂ l∞(Z, X).

Let ρ1, ρ2 ∈ U∞ be given, and ω ∈ Z+\{0}. In what follows, we will consider the setsM(Z, X) :=

{WPAAd(Z, X),WPSAPω(Z, X)} andM(Z×X,X) := {WPAAd(Z×X,X),WPSAPω(Z×X,X)}.

1.4 Measure of noncompactness and fixed point theorems

We will relate the notion of fixed point with the concept of measure of noncompactness. For this

reason, we next recall properties of this concept. For general information, see [22].

Definition 1.4.1. Let B be a bounded subset of a normed space X. The Hausdorff measure of

noncompactness of B is defined by

χH(B) = inf{ε > 0 : B has a finite cover by balls of radius ε}.

The Hausdorff measure of noncompactness has some useful properties, now we list some of them

that we will require in this thesis. See [22, 8, 23] for more details. Let B1, B2 be bounded subsets of

a normed space X. Then

(i) χH(B1) ≤ χH(B2) if B1 ⊆ B2,

(ii) χH(B1) = χH(B1), where B1 denotes the closure of B1,

(iii) χH(B1) = 0 if and only if B1 is totally bounded,
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(iv) χH(λB1) = |λ|χH(B1) with λ ∈ R,

(v) χH(B1 ∪B2) = max{χH(B1), χH(B2)},

(vi) χH(B1 +B2) ≤ χH(B1) + χH(B2), where B1 +B2 = {b1 + b2 : b1 ∈ B1, b2 ∈ B2},

(vii) χH(B1) = χH(co(B1)), where (co(B1)) is the closed convex hull of B1.

In what follows, we denote by ξ the Hausdorff measure of noncompactness defined in X, by

γ the Hausdorff measure of noncompactness on C([0, b];X). The following lemma on measure of

noncompactness will allow us to prove our main findings.

Lemma 1.4.2. [23, Lemma 5.1] Let G : X → X be a Lipschitz continuous map with constant k.

Then ξ(G(B)) ≤ kξ(B) for any bounded subset B of X.

Lemma 1.4.3. [121, Property 1.1] Let W ⊆ C([0, b];X) be a subset of continuous functions. If W

is bounded and equicontinuous on [0, b], then the set co(W ) is also bounded and equicontinuous on

[0, b].

Next, we set forth some lemmas that will play an important part in the proof of our main result

in Chapter 2, Section 2.2.

Lemma 1.4.4. [23, Lemma 5.3] Let W ⊆ C([0, b];X) be a bounded set. Then ξ(W (t)) ≤ γ(W ) for

all t ∈ [0, b]. If W is equicontinuous on [0, b], then ξ(W (t)) is continuous on [0, b], and

γ(W ) = sup{ξ(W (t)) : t ∈ [0, b]},

where W (t) = {w(t) : w ∈W}.

Lemma 1.4.5. [23, Lemma 5.4] If {un}n∈N ⊆ L1([0, b], X) is uniformly integrable, then for each
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n ∈ N the function t→ ξ({un(t)}n∈N
)

is measurable and

ξ
({ ∫ t

0

un(s)ds
}∞
n=1

)
≤ 2

∫ t

0

ξ({un(s)}∞n=1)ds.

Lemma 1.4.6. [32, Theorem 2] Let Y be a Banach space. If W ⊆ Y is a bounded set, then for each

ε > 0, there exist a sequence {un}n∈N ⊆W such that

ξ(W ) ≤ 2ξ({un}∞n=1) + ε. (1.4.1)

Lemma 1.4.7. [73, Theorem 3.1] For all 0 ≤ m ≤ n, denote by Cnm = n!
m!(n−m)! . If 0 < ε < 1, h > 0

and let

Sn = εn + Cn1 ε
n−1h+ Cn2 ε

n−2h
2

2!
+ ...+

hn

n!
, n ∈ N, (1.4.2)

then limn→∞ Sn = 0.

Next, we recall important fixed-point theorems.

Lemma 1.4.8. [73, Lemma 2.4] Let S be a closed and convex subset of a complex Banach space Y,

F : S → S be a continuous operator such that F (S) is a bounded set. Define

F 1(S) = F (S)

and

Fn(S) = F (co(Fn−1(S))), n = 2, 3, ...

If there exist a constant 0 ≤ r < 1 and n0 ∈ N such that

ξ(Fn0(S)) ≤ rξ(S),

then F has a fixed point in the set S.

Theorem 1.4.9. [102, Matkowski Fixed Point Theorem] Let (X, d) be a complete metric space and

let F : X → X be a map such that d(Fx,Fy) ≤ φ(d(x, y)) for all x, y ∈ X, where φ : [0,∞)→ [0,∞)
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is a nondecreasing function such that lim
n→∞

φn(t) = 0 for all t > 0, where φn is the n-th iterate of φ.

Then F has a unique fixed point z ∈ X.

Theorem 1.4.10. [67, Leray- Schauder Alternative Theorem] Let Ω be a closed convex subset of

the Banach space X such that 0 ∈ Ω. Let F : Ω→ Ω be a completely continuous map. Then the set

{x ∈ Ω : x = λF(x), 0 < λ < 1} is unbounded or the map F has a fixed point in Ω.

Theorem 1.4.11 (Schauder fixed point theorem). Let C be a nonempty, closed, bounded, and convex

subset of a Banach space X. Suppose that T : C → C is a compact operator. Then T has at least a

fixed point in C.

We recall a compactness criterion, the Leray-Schauder alternative theorem and Matkowski’s fixed

point theorem which will be useful in the future to prove existence and uniqueness of solution to

(0.0.2).

Lemma 1.4.12. [118, Lemma 2.1] Let h : Z→ R+ be a function such that h(n) ≥ 1 for all n ∈ Z,

and h(n)→∞ as |n| → ∞. Let S be a subset of C0
h(Z, X). Suppose that the following conditions are

satisfied:

1. The set H(S) =
{
u(n)
h(n) : u ∈ S

}
is relatively compact in X for all n ∈ Z.

2. S is weighted equiconvergent at ±∞, that is for every ε > 0, there is a T > 0 such that

‖u(n)‖ < εh(n) for each |n| ≥ T for all u ∈ S.

Then S is relatively compact in C0
h(Z, X).



Chapter 2

Nonlocal integrated solutions for a

class of abstract evolution

equations

In this chapter we study the following equation

u′′(t) +Au(t)− (k ∗Au)(t) =f(t, u(t)), t ∈ [0, b], (2.0.1)

u(0) = g(u), u′(0) =h(u),

where X is a Banach space, A : D(A) ⊆ X → X the generator of a resolvent family S(t) with

integrated kernel a(t) =
∫ t

0
(t− s)k(s)ds− t, where k ∈ L1(R+). Here, g, h : C([0, b];X)→ X are con-

tinuous maps, and f : [0, b]×X → X satisfies Carathéodory type conditions, which will be described

in Section 2.2. The objective is to establish a result concerning the existence of integrated solutions

for the above problem, using the theory of measure of noncompactness and fixed point theorems.

24
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2.1 A criteria for existence of integrated solutions

Let X be a Banach space, A : D(A) ⊆ X → X be a closed linear operator that generates a resolvent

{S(t)}t≥0 with kernel a(t) =
∫ t

0
(t − s)k(s)ds − t, where k ∈ L1(R+). In this section, we want to

study the existence of solutions for the following semilinear problem with local conditions

u′′(t) +Au(t)− (k ∗Au)(t) =f(t, u(t)), t ∈ [0, b], (2.1.1)

u(0) = u0, u
′(0) =u1, u0, u1 ∈ X.

Here f : R+ ×X → X is locally integrable. Let us consider the associated linear problem

u′′(t) +Au(t)− (k ∗Au)(t) =f(t), t ∈ [0, b], (2.1.2)

u(0) = u0, u
′(0) =u1, u0, u1 ∈ X.

Observe that integrating (2.1.2) twice, we obtain the following equivalent representation,

u(t)−A(a ∗ u)(t) = (g2 ∗ f)(t) + tu1 + u0, (2.1.3)

where gα(t) := tα−1/Γ(α), α > 0 and a(t) = (g2 ∗ k − g2)(t). Here Γ(α) denotes the Gamma func-

tion. Then, by Theorem 1.1.4, we have that

u(t) = S(t)h(0) +

∫ t

0

S(t− s)h′(s)ds,

solves (2.1.3) with h(t) := (g2 ∗ f)(t) + tu1 + u0, thus

u(t) =S(t)u0 +R(t)u1 +

∫ t

0

R(t− s)f(s)ds, (2.1.4)

where R(t)x :=

∫ t

0

S(τ)xdτ, x ∈ X solves (2.1.2) whenever S(t) and the initial data are regular

enough.

Motivated by this observation the following definition is meaningful.

Definition 2.1.1. Suppose that A is the generator of a resolvent family {S(t)}t≥0 with kernel

a(t) =
∫ t

0
(t − s)k(s)ds − t. Let u0, u1 ∈ X be given. We say that u ∈ C([0, b];X) is an integrated

solution of (2.1.1) if u satisfy the integral equation

u(t) = S(t)u0 +R(t)u1 +

∫ t

0

R(t− s)f(s, u(s))ds, t ∈ [0, b],
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where R(t)x :=

∫ t

0

S(τ)xdτ, x ∈ X.

Borrowing ideas from [57, Lemma 3.4 and Lemma 3.5] we obtain the following result.

Lemma 2.1.2. Let {S(t)}t≥0 be a resolvent family with generator A. Suppose that

(i) {S(t)}t≥0 is continuous in the uniform operator topology for all t > 0.

(ii) S(t) is compact for each t > 0.

Then

(a) limh→0 ‖S(t+ h)− S(h)S(t)‖ = 0 for all t > 0;

(b) limh→0 ‖S(t)− S(h)S(t− h)‖ = 0 for all t > 0.

Proof. We first prove (a). Let x ∈ X with ‖x‖ ≤ 1, t > 0 and ε > 0 be given. From (ii) we

deduce that the set Wt := {S(t)x : ‖x‖ ≤ 1} is also compact. Thus, there exists a finite family

{S(t)x1, S(t)x2, ..., S(t)xm} ⊂Wt such that for any x with ‖x‖ ≤ 1, there exists xi(1 ≤ i ≤ m) such

that

‖S(t)x− S(t)xi‖ ≤
ε

3(M + 1)
, (2.1.5)

where M = sup
t∈[0,b]

‖S(t)‖ < ∞. From the strong continuity of S(t), there exists 0 < hi < min{t, b}

such that

‖S(t)xi − S(h)S(t)xi‖ ≤
ε

3
, (2.1.6)

for all 0 ≤ h ≤ hi and 1 ≤ i ≤ m. On the other hand, from (i), there exists 0 < h2 < min{t, b} such

that

‖S(t+ h)x− S(t)x‖ ≤ ε

3
, (2.1.7)

for all 0 ≤ h ≤ h2 and ‖x‖ ≤ 1. Thus, for 0 ≤ h ≤ min{h1, h2} and ‖x‖ ≤ 1, it follows from
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(2.1.5)–(2.1.7) that

‖S(t+ h)x− S(h)S(t)x‖

≤ ‖S(t+ h)x− S(t)x‖+ ‖S(t)x− S(t)xi‖+ ‖S(t)xi − S(h)S(t)xi‖

+ ‖S(h)S(t)xi − S(h)S(t)x‖

≤ ‖S(t+ h)x− S(t)x‖+ (M + 1)‖S(t)x− S(t)xi‖+ ‖S(t)xi − S(h)S(t)xi‖ ≤ ε,

which implies (a).

We prove (b). Let t > 0 and 0 < h < min{t, b}. Then, there exist M > 0 such that

‖S(t)− S(h)S(t− h)‖

≤ ‖S(t)− S(t+ h)‖+ ‖S(t+ h)− S(h)S(t)‖+ ‖S(h)S(t)− S(h)S(t− h)‖

≤ ‖S(t)− S(t+ h)‖+ ‖S(t+ h)− S(h)S(t)‖+M‖S(t)− S(t− h)‖ (2.1.8)

which implies the desired result by (a) and (i).

Remark 2.1.3. In contrast with the theory of C0-semigroups, where compactness of the semigroup

implies their continuity in the uniform operator topology for t > 0 [106, Theorem 3.2], the com-

pactness of a resolvent family alone is not enough to guarantee their continuity in B(X), except in

particular cases of the kernel a(t). See [107, Corollary 2 and Theorem 7].

The following is the main result of this section.

Theorem 2.1.4. Suppose that A is the generator of a resolvent {S(t)}t≥0 exponentially bounded of

type (M,ω) and kernel a(t) =
∫ t

0
(t− s)k(s)ds− t, that is in addition compact and continuous in the

uniform operator topology for all t > 0. Let f : [0, b]×X → X be continuous with respect to the second

variable and assume that the function f(·, x) is measurable for all x ∈ X, and ‖f(t, x)‖ ≤ α(t)(‖x‖+1)

for a.e. t ∈ [0, b] and x ∈ X, with α ∈ L1([0, b];X). Then there is at least one integrated solution of

(2.1.1), provided that Mbeωb‖α‖L1 < 1.
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Proof. Fix u0, u1 ∈ X and define the operator G : C([0, b], X)→ C([0, b], X) by

Gu(t) = S(t)u0 +R(t)u1 +

∫ t

0

R(t− s)f(s, u(s))ds, t ∈ [0, b],

where R(t)x :=

∫ t

0

S(τ)xdτ, x ∈ X, and ‖S(t)‖ ≤ Meωb for all t ∈ [0, b], where M > 0 and w.l.o.g.

ω > 0. Then G is clearly well defined, and u is an integrated solution of (2.1.1) if and only if it is a

fixed point of operator G. Now we will show that the mapping G is continuous on C([0, b], X). Let

{un}n≥1 be a sequence in C([0, b], X) with limn→∞ un = u in C([0, b], X). Then

‖(Gun)(t)− (Gu)(t)‖ ≤Mbeωb
∫ t

0

‖f(s, un(s))− f(s, u(s))‖ds, t ∈ [0, b].

Since f(s, un(s)) converges to f(s, u(s)) in X for s ∈ [0, b], and

‖f(s, un(s)‖ ≤ α(s)(‖un(s)‖+ 1),

where α ∈ L1([0, b],R) then, by the Lebesgue dominated convergence theorem, we obtain that

G(un)→ G(u), as n→∞. This proves the claim.

We denote

WR = {u ∈ C([0, b], X) : ‖u(t)‖ ≤ R, for all t ∈ [0, b]},

where R > 0 is given. We claim that there exists r > 0 such that G maps Wr into itself. We choose

r > 0 such that

(Meωb‖u0‖+Mbeωb‖u1‖+Mbeωb‖α‖L1)(1−Mbeωb‖α‖L1)−1 < r.

Note that the last inequality implies

Meωb‖u0‖+Mbeωb‖u1‖+Mbeωb‖α‖L1(r + 1) < r.

Then by definition of G

‖G(u)‖ ≤Meωb‖u0‖+Mbeωb‖u1‖+Mbeωb‖α‖L1(r + 1) < r.
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This proves the claim.

Now, we will prove that G : Wr → Wr is a compact operator. Indeed, by the Arzela- Ascoli

theorem, we have to show that the set GWr := {Gu : u ∈ Wr} is equicontinuous, and the set

{Gu(t) : u ∈ Wr} is relatively compact in X for each t ∈ [0, b]. Let 0 ≤ t1 ≤ t2 ≤ b and u ∈ Wr, we

have

‖(Gu)(t2)− (Gu)(t1)‖ ≤ ‖S(t2)u0 − S(t1)u0‖+ ‖R(t2)u1 −R(t1)u1‖

+ ‖
∫ t2

0

R(t2 − s)f(s, u(s))ds−
∫ t1

0

R(t1 − s)f(s, u(s))ds‖

≤ ‖S(t2)u0 − S(t1)u0‖+ ‖R(t2)u1 −R(t1)u1‖

+

∫ t1

0

‖R(t2 − s)−R(t1 − s)‖‖f(s, u(s))ds‖ds

+

∫ t2

t1

‖R(t2 − s)f(s, u(s))‖ds

≤ ‖S(t2)u0 − S(t1)u0‖+ ‖R(t2)u1 −R(t1)u1‖

+

∫ t1

0

‖R(t2 − s)−R(t1 − s)‖α(s)rds+Mbeωb(r + 1)

∫ t2

t1

α(s)ds. (2.1.9)

If t1 = 0, then

lim
t2→0

‖(Gu)(t2)− (Gu)(t1)‖ = 0, uniformly for u ∈Wr.

If 0 < t1 < b. Note that R(t)x =
∫ t

0
S(τ)xdτ and hence R(t) is a norm continuous operator. Then,

from (2.1.9) we obtain

lim
|t1−t2|→0

‖(Gu)(t2)− (Gu)(t1)‖ = 0, uniformly for u ∈Wr.

Then, the set GWr is equicontinuous on C([0, b], X), proving the first part of the claim.

Now, we will show that the set M(t) := {(Gu)(t) : u ∈ Wr} is relatively compact in X for every

t ∈ [0, b]. If t = 0 then the set M(0) is clearly relatively compact in X. We denote g(s, u) :=∫ s

0

f(t, u(t))dt, 0 ≤ s ≤ b, u ∈ C([0, b], X), and note that the hypothesis implies

‖g(s, u)‖ ≤ ‖α‖L1(r + 1) for all 0 ≤ s ≤ b, u ∈Wr.

Moreover, integration by parts shows the identity∫ t

0

R(t− s)f(s, u(s))ds =

∫ t

0

S(t− s)
[ ∫ s

0

f(τ, u(τ))dτ
]
ds =

∫ t

0

S(t− s)g(s, u)ds.
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Let 0 < t ≤ b be given and 0 < ε < t. We first observe that the set {
∫ t−ε

0
S(t−s−ε)g(s, u)ds : u ∈Wr}

is bounded. Indeed, for all u ∈Wr

‖
∫ t−ε

0

S(t− s− ε)g(s, u)ds‖ ≤Mbeωb‖α‖L1(r + 1).

Thus {S(ε)
∫ t−ε

0
S(t− s− ε)g(s, u)ds : u ∈Wr} is relatively compact, since S(ε) is compact, and the

set {
∫ t−ε

0
S(t− s− ε)g(s, u)ds : u ∈Wr} is bounded.

Moreover, for all u ∈Wr

‖S(ε)

∫ t−ε

0

S(t− s− ε)g(s, u)ds−
∫ t−ε

0

S(t− s)g(s, u)ds‖

≤
∫ t−ε

0

‖S(ε)S(t− s− ε)− S(t− s)‖‖α‖L1(r + 1)ds

Moreover, since S(t) is compact and continuous in the uniform operator topology for all t > 0. Then

by part (b) of Lemma 2.1.2, we have that

S(ε)S(t− s− ε)− S(t− s)→ 0, as ε→ 0 for s ∈ [0, t− ε]

and ∫ t−ε

0

‖S(ε)S(t− s− ε)− S(t− s)‖ds ≤ ((Meωb)2 +Meωb)b.

From the Lebesgue dominated convergence theorem, it follows that

lim
ε→0
‖S(ε)

∫ t−ε

0

S(t− s− ε)g(s, u)ds−
∫ t−ε

0

S(t− s)g(s, u)ds‖ = 0.

Moreover,

‖S(ε)

∫ t−ε

0

S(t− s− ε)g(s, u)ds−
∫ t

0

S(t− s)g(s, u)ds‖

≤‖S(ε)

∫ t−ε

0

S(t− s− ε)g(s, u)ds−
∫ t−ε

0

S(t− s)g(s, u)ds‖

+ ‖
∫ t−ε

0

S(t− s)g(s, u)ds−
∫ t

0

S(t− s)g(s, u)ds‖

≤‖S(ε)

∫ t−ε

0

S(t− s− ε)g(s, u)ds−
∫ t−ε

0

S(t− s)g(s, u)ds‖+

∫ t

t−ε
Meωb‖α‖L1rds.

Thus,

lim
ε→0
‖S(ε)

∫ t−ε

0

S(t− s− ε)g(s, u)ds−
∫ t

0

S(t− s)g(s, u)ds‖ = 0.
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Then, {
∫ t

0
R(t− s)f(s, u(s))ds : u ∈ Wr} = {

∫ t
0
S(t− s)g(s, u)ds : u ∈ Wr} is relatively compact in

X by using the relative compactness of the set {S(ε)
∫ t−ε

0
S(t− s− ε)g(s, u)ds : u ∈Wr}. Hence, the

set M(t) = {(Gu)(t) : u ∈Wr} is relatively compact in X for each t ∈ [0, b], proving the claim.

Hence, by Schauder fixed point theorem, we conclude that (2.1.1) has an integrated solution.

Remark 2.1.5. The hypothesis ‖f(s, x)‖ ≤ α(s)(‖x‖+ 1), α ∈ L1([0, b],R), also has been considered

previously in [8, Theorem 5.2.2] in order to prove the existence of mild solutions for a class of

semilinear differential inclusions in a Banach space X.

2.2 Nonlocal initial conditions

Let X be a Banach space, A : D(A) ⊆ X → X be closed and linear operator and k ∈ L1(R+) be a

scalar memory kernel. We consider the problem

u′′(t) +Au(t)− (k ∗Au)(t) =f(t, u(t)), t ∈ [0, b], (2.2.1)

u(0) = g(u), u′(0) =h(u),

where g, h : C([0, b];X) → X are continuous maps and f : [0, b] × X → X. We set the following

conditions.

(H1) A generates a exponentially bounded resolvent {S(t)}t≥0 of type (M,ω) and kernel a(t) =∫ t
0
(t− s)k(s)ds− t.

(H2) g, h are compact maps.

(H3) The function f(·, x) is measurable for all x ∈ X and f(t, ·) is continuous for almost all t ∈ [0, b].

(H4) There exists a function m ∈ L1([0, b];R+) and a nondecreasing continuous function φ : R+ →

R+ such that

‖f(t, x)‖ ≤ m(t)φ(‖x‖),

for all x ∈ X and almost all t ∈ [0, b].
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(H5) There exists a function H ∈ L1([0, b];R+) such that for any bounded S ⊆ X

ξ(f(t, S)) ≤ H(t)ξ(S),

for almost all t ∈ [0, b].

We introduce the following definition.

Definition 2.2.1. A function u ∈ C([0, b], X) is called a nonlocal integrated solution of the equation

(2.2.1) if u satisfies

u(t) = R(t)h(u) + S(t)g(u) +

∫ t

0

R(t− s)f(s, u(s))ds, t ∈ [0, b], (2.2.2)

where R(t)x :=

∫ t

0

S(τ)xdτ, x ∈ X.

The following is the main result of this section.

Theorem 2.2.2. Suppose that A satisfies (H1), g, h : C([0, b];X) → X satisfies (H2), f : [0, b] ×

X → X satisfies (H3)-(H5), and there exists a constant R > 0 such that

Meωb(hR + bgR + bφ(R)

∫ b

0

m(s)ds) ≤ R, (2.2.3)

where gR := sup{‖g(u)‖ : ‖u‖∞ ≤ R} < ∞, and hR := sup{‖h(u)‖ : ‖u‖∞ ≤ R} < ∞. Then the

problem (2.2.1) has at least one nonlocal integrated solution.

Proof. Define the operator F : C([0, b], X)→ C([0, b], X) by

Fu(t) = S(t)h(u) +R(t)g(u) +

∫ t

0

R(t− s)f(s, u(s))ds, t ∈ [0, b],

where R(t)x :=

∫ t

0

S(τ)xdτ, x ∈ X. We will show that the mapping F is continuous on C([0, b], X).

Indeed, let {un}n≥1 be a sequence in C([0, b], X) with limn→∞ un = u, for the norm of uniform

convergence. Then

‖(Fun)(t)− (Fu)(t)‖ ≤Meωb‖h(un)− h(u)‖+Mbeωb‖g(un)− g(u)‖
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+Mbeωb
∫ t

0

‖f(s, un(s))− f(s, u(s))‖ds, t ∈ [0, b],

where w.l.o.g. ω > 0. Since g, h are continuous maps, we obtain g(un) → g(u), and h(un) → h(u)

as n → ∞. Moreover, since f satisfies hypotheses (H3), by the Lebesgue dominated convergence

theorem, we obtain that F (un)→ F (u), as n→∞. This proves the claim.

Define the set

BR = {u ∈ C([0, b], X) : ‖u(t)‖ ≤ R for all t ∈ [0, b]}.

Then

‖Fu(t)‖ ≤‖S(t)h(u)‖+ ‖R(t)g(u)‖+

∫ t

0

‖R(t− s)f(s, u(s))‖ds

≤Meωb(hR + bgR + bφ(R)

∫ b

0

m(s)ds) ≤ R.

Then, F maps BR into itself, and F (BR) is a bounded set. On the other hand, as in the proof of

Theorem 2.1.4, we get that the set F (BR) is an equicontinuous set of functions.

Now, we define the set A := co(F (BR)). By Lemma 1.4.3 such set A is equicontinuous. Since

A ⊆ BR, we conclude that the map F : A→ A is continuous and F (A) is a bounded set of functions.

Let ε > 0 be fixed. By Lemma 4 there exists a sequence {vn}n∈N ⊆ F (A) such that ξ(F (A)) ≤

2ξ({vn(t)}∞n=1) + ε ≤ 2ξ
( ∫ t

0
{R(t− s)f(s, un(s))}∞n=1ds

)
+ ε, where in the second inequality we have

used the compactness of h and g. By hypotheses (H4) and (H5), we have that

ξ(F (A)(t)) ≤4Mbeωb
∫ t

0

ξ({f(s, un(s))}∞n=1)ds+ ε

≤ 4Mbeωb
∫ t

0

H(s)ξ({un(s)}∞n=1)ds+ ε

≤ 4Mbeωbγ(A)

∫ t

0

H(s)ds+ ε.

By the hypotheses (H5) we haveH ∈ L1([0, b];R+). Then for α < 1
4Mbeωb

there exist ϕ ∈ C([0, b],R+)

such that
∫ b

0
|H(s)− ϕ(s)|ds < α. Hence

ξ(F (A)(t)) ≤4Mbeωbγ(A)
[ ∫ t

0

|H(s)− ϕ(s)|ds+

∫ t

0

ϕ(s)ds
]

+ ε
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≤4Mbeωbγ(A)[α+Nt] + ε,

where N = ‖ϕ‖∞. Then, we have

ξ(F (A)(t)) ≤ (a+ ct)γ(A), where a = 4αMbeωb and c = 4MNbeωb. (2.2.4)

Let ε > 0 be given, then by Lemma 4 there exist a sequence {wn}n∈N ⊆ co(F (A)) such that

ξ(F 2(A)(t)) ≤2ξ
( ∫ t

0

{R(t− s)f(s, wn(s))}∞n=1ds
)

+ ε

≤4Mbeωb
∫ t

0

ξ{f(s, wn(s))}∞n=1ds+ ε

≤4Mbeωb
∫ t

0

H(s)ξ(co(F 1(A)(s))) + ε

=4Mbeωb
∫ t

0

H(s)ξ(F 1(A)(s)) + ε.

By (4.2) we have that

ξ(F 2(A)(t)) ≤4Mbeωb
∫ t

0

[|H(s)− ϕ(s)|+ |ϕ(s)|](a+ cs)γ(A)ds+ ε

≤ 4Mbeωb(a+ ct)γ(A)

∫ t

0

|H(s)− ϕ(s)|ds+ 4MNbeωbγ(A)
(
at+

ct2

2

)
+ ε

≤ (a(a+ ct) + c(at+
ct2

2
))γ(A) + ε

≤ (a2 + 2act+
(ct)2

2
)γ(A).

By induction, for all n ∈ N,

ξ(Fn(A)(t)) ≤
(
an + Cn1 a

n−1ct+ Cn2 a
n−2 (ct)2

2!
+ ...+

(ct)n

n!
)γ(A),

where Cnm denotes the binomial coefficient
(
m
n

)
, for 0 ≤ m ≤ n. Moreover, Fn(A) is an equicontinuous

set of functions for all n ∈ N. Thus, by Lemma 2

γ(Fn(A)) ≤
(
an + Cn1 a

n−1c+ Cn2 a
n−2 c

2

2!
+ ...+

cn

n!

)
γ(A).

Since 0 ≤ a < 1 and c > 0, by Lemma 3 there exist n0 ∈ N such that

(an0 + Cn0
1 an0−1ct+ Cn0

2 an0−2 (ct)2

2!
+ ...+

(ct)n0

n0!
) = r < 1.

Therefore, γ(Fn0(A)) ≤ rγ(A). Then F has a fixed point in A by Lemma 1.4.8.
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2.3 Examples

Example 2.3.1. We set X = L2([0, 1]), and we consider Az(ξ) = d2z(ξ)
dξ2 with domain D(A) = {z ∈

H2[0, 1] : z(0) = z(1) = 0}. It is well known that A generates a bounded analytic semigroup on

L2[0, 1], see [55, Example 4.8]. Let a(t) = 1 + β
α −

β
αe
−αt where −α ≤ β ≤ 0 < α. We will prove that

a(t) is completely positive. See Definition 1.1.6.

Indeed, we have

â(λ) =
λ+ α+ β

λ(λ+ α)
,

then
1

λâ(λ)
=

λ+ α

λ+ α+ β
and

−â′(λ)

[â(λ)]2
=
λ2 + 2(α+ β)λ+ αβ + α2

(λ+ α+ β)2
.

If we denote c1(λ) = 1
λâ(λ) and c2(λ) = −â′(λ)

[â(λ)]2 , then we obtain that

c
(n)
1 (λ) =

(−1)n+1βn!

(λ+ α+ β)n+1
and c

(n)
2 (λ) =

(−1)n+1β(α+ β)(n+ 1)!

(λ+ α+ β)n+2
for n ∈ N.

Since −α ≤ β ≤ 0 < α, c1 and c2 are completely monotone. We conclude that a is completely

positive.

Let p : [0, 1]× [0, 1]→ R be Hilbert Schmidt, i.e.∫ 1

0

∫ 1

0

|p(x, y)|2dxdy = c <∞. (2.3.1)

Given −α ≤ β ≤ 0 < α, and s > 1
2Mc , we consider the following problem

∂2u(t, ξ)

∂t2
+
∂2u(t, ξ)

∂ξ2
+

∫ t

0

αβe−α(t−s) ∂
2u(s, ξ)

∂ξ2
ds = t

∫ 1

0

sin(u(t, s))ds, t, ξ ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0, 1],

u(0, ξ) =

∫ 1

0

sp(ξ, y)u(1/2, y)dy, ξ ∈ [0, 1],

∂u

∂t
(0, ξ) =

∫ 1

0

sp(ξ, y)u(1/2, y)dy, ξ ∈ [0, 1].

(2.3.2)

The problem (2.3.2) can be rewritten as
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u′′(t) +Au(t)− (k ∗Au)(t) = f(t, u(t)), t ∈ [0, 1]

u(0) = g(u),

u′(0) = h(u),

(2.3.3)

with k(t) = −αβe−αt ∈ L1(R+), and g, h : C([0, 1];X)→ X are explicitly given by

g(u) = skg(u(1/2)), h(u) = skh(u(1/2)), (2.3.4)

with (kgv)(ξ) = (khv)(ξ) =
∫ 1

0
p(ξ, y)v(y)dy, for v ∈ L2[0, 1], ξ ∈ [0, 1] and f(t, φ) = t

∫ 1

0
sin(φ(s))ds.

We will prove that the hypotheses (H1) - (H5) are satisfied.

(H1) From the above, a is completely positive. Thus, by [109, Theorem 4.2] the operator A generates

a resolvent operator S(t), which is exponentially bounded and of type (M,ω).

(H2) By [110, Theorem 8.83] g and h are compact maps.

(H3) Is clear.

(H4) Note that,

‖f(t, φ)‖ ≤‖t
∫ 1

0

sin(φ(s))ds‖ ≤ m(t)φ(‖x‖),

where m(t) = |t|, and φ(z) ≡ 1.

(H5) Since

‖f(t, φ1)− f(t, φ2)‖ = ‖t
∫ 1

0

(sin(φ1(s))− sin(φ2(s)))ds‖ ≤ |t|‖φ1 − φ2‖ ≤ ‖φ1 − φ2‖.

Thus, by Lemma 1.4.2,

ξ(f(t, S)) ≤ ξ(S) ≤ H(t)ξ(S),

with H(t) = 1, for all bounded S ⊂ X, t ∈ [0, 1].

Then, we have that conditions (H1)- (H5) are satisfied. Now, we will prove that the inequality (2.2.3)

is satisfied. Since m(t) = |t|, and φ(z) ≡ 1, then we have to find R > 0 such that

M
(
hR + gR + φ(R)

∫ 1

0

m(s)ds
)

= M(hR + gR +
1

2
) < R.
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Indeed, by [110, Lemma 8.20], we have ‖kg(v)‖ ≤ c‖v‖, for v ∈ X, where c is given in (2.3.1). Then

gR := sup{‖g(u)‖ : ‖u‖∞ ≤ R} = sup{‖skg(u(1/2))‖ : ‖u‖∞ ≤ R}

≤ sup
‖u‖≤R

sc‖(u(1/2))‖ ≤ scR.

Thus, gR + hR ≤ 2Rcs, so M(hR + gR + 1
2 ) ≤ M(2Rcs + 1

2 ). Since s < 1
2Mc , we have that for all

R > M
2(1−2Mcs) the inequality M(hR + gR + 1

2 ) < R is fulfilled. Then, all the hypotheses of Theorem

2.2.2 are satisfied and we conclude that the problem (2.3.2) has at least one nonlocal integrated so-

lution.

Example 2.3.2. We set X = c0(N), and we consider Az = Mqz = q · z where, q : N→ C with real

part bounded above, and domain D(A) = D(Mq) = {z ∈ X : qz ∈ X}. Then, A generates a strongly

continuous semigroup S of type (M ;ω) on X, see [55, Lemma, pag 65]. Let a(t) = 1 + β
α −

β
αe
−αt

where −α ≤ β ≤ 0 < α. Then a(t) is completely positive by Example 2.3.1. Given −α ≤ β ≤ 0 < α,

we consider the following problem
u′′(t) +Au(t)− (k ∗Au)(t) = f(t, u(t)), t ∈ [0, 1]

u(0) = g(u),

u′(0) = h(u),

(2.3.5)

where f : [0, 1]×X → X is given by

f(t, x) = m(t)
{
ln(|xk|+ 1) +

t

k2

}∞
k=1

, for t ∈ [0, 1], x = {xk}k ∈ c0, (2.3.6)

k(t) = −αβe−αt ∈ L1(R+), m ∈ L1([0, 1];R+), such that
∫ 1

0
m(s)ds 6= 1

2M , and c0 represents

the space of all sequences converging to zero, which is a Banach space with respect to the norm

‖x‖∞ = supk |xk|.

Let x = ( 1
4M , 0, 0, 0...). Define g, h : C([0, 1];X)→ X are explicitly given by

g(u)k = u(1/2)kxk, h(u)k = u(1/3)kxk, k ∈ N. (2.3.7)

We will prove that the hypotheses (H1) - (H5) are satisfied.

(H1) For the above, a is completely positive. Thus, by [109, Theorem 4.2] the operator A generates

a resolvent operator S(t), which is exponentially bounded of type (M,ω).
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(H2) Since g and h are bounded with finite rank, then g and h are compact maps.

(H3) Is clear.

(H4) Note that,

‖f(t, x)‖∞ =m(t)‖(ln(|xk|+ 1) +
t

k2
)k‖∞ ≤ m(t)(sup

k
|xk|+ t)

≤m(t)(‖x‖∞ + 1) := m(t)φ(‖x‖∞),

where φ(z) = z + 1. This shows that (H4) holds.

(H5) The Hausdorff measure of noncompactness ξ in the space c0 can be computed by means of the

formula

ξ(B) = lim
n→∞

sup
x∈B
‖(I − Pn)x‖∞,

where B is a bounded subset in c0 and Pn is the projection onto the linear span of the first n

vectors in the standard basis. The reader can see [8, 1.1.9, p. 5]. Analogously to [23, Example

5.1, p. 227] we obtain

ξ(f(t, B)) ≤ m(t)ξ(B). (2.3.8)

Then, we have that conditions (H1)- (H5) are satisfied. Now, we will prove that the inequality (2.2.3)

is satisfied. Since φ(z) = z + 1, then we have to find R > 0 such that

M
(
hR + gR + φ(R)

∫ 1

0

m(s)ds
)

= M
(
hR + gR + (R+ 1)

∫ 1

0

m(s)ds
)
< R. (2.3.9)

Note that,

gR := sup{‖g(u)‖ : ‖u‖∞ ≤ R} ≤
R

4M
, hR := sup{‖h(u)‖ : ‖u‖∞ ≤ R} ≤

R

4M
.

Therefore, since that
∫ 1

0
m(s)ds 6= 1

2M , then for all R >
2M

∫ 1
0
m(s)ds

1−2M
∫ 1
0
m(s)ds

the inequality (2.3.9) is

fulfilled. Then, all the hypotheses of Theorem 2.2.2 are satisfied and we conclude that the problem

(2.3.5) has at least one nonlocal integrated solution.



Chapter 3

Asymptotic behavior of mild

solutions for a class of abstract

nonlinear difference equations of

convolution type

In this chapter, we consider the following abstract difference equation of convolution type

u(n+ 1) =

n∑
k=−∞

a(n− k)Au(k + 1) +

n∑
k=−∞

b(n− k)f(k, u(k)), n ∈ Z,

where A : D(A) ⊂ X → X is a closed linear operator on X, f ∈ l1(Z ×X,X), and a, b : Z+ → R+

are given bounded positive sequences. Note that the associated nonhomogeneous linear equation is

given by

u(n+ 1) =

n∑
k=−∞

a(n− k)Au(k + 1) +

n∑
k=−∞

b(n− k)f(k), n ∈ Z. (3.0.1)

39
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3.1 Discrete resolvent families

In this section, we introduce the notion of discrete resolvent family of bounded and linear operators.

This concept will be a crucial tool for the solution of equation (3.0.1). The understanding of the

qualitive properties of this families provide insights on the qualitative behavior of the solutions of

(3.0.1).

Definition 3.1.1. Let A be a closed linear operator with domain D(A) defined on a Banach space

X. Let a and b be scalar valued sequences. An operator-valued sequence {S(n)}n∈N0
⊂ B(X) is

called a discrete resolvent family generated by A if it satisfies the following conditions

1. S(n)(X) ⊂ D(A), and S(n)Ax = AS(n)x for all x ∈ D(A), and n ∈ N0;

2. S(n)x = b(n)x+A

n∑
k=0

a(n− k)S(k)x for n ∈ N0 and x ∈ X.

Remark 3.1.2. Note that Definition 3.1.1 corresponds to the resolvent sequence defined in [1, 10]

when b(n) = a(n) = kα(n) := Γ(α+n)
Γ(α)n! , for α > 0, n ∈ N0. Sequences of operators for abstract

difference equations with the kernel kα(n) were introduced by Lizama in [94] and [93] in connection

with abstract difference equations of fractional order.

Remark 3.1.3. If a(0) = b(0) = 1, then by Definition 3.1.1 we have that

S(0)x = x+ S(0)Ax, x ∈ D(A)

and

S(0)x = x+AS(0)x, x ∈ X.

Therefore 1 ∈ ρ(A) and

S(0)x = (I −A)−1x.

Here, ρ(A) denotes the resolvent set of A.

Proposition 3.1.4. If 1/a(0) ∈ ρ(A), and there exists a discrete resolvent family corresponding to
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the kernels a and b, then it is unique.

Proof. Suppose that S(n) and R(n) are resolvent families generated by A. Let x ∈ X and define

ϕ(n) = S(n)x−R(n)x, n ∈ N0. Note that ϕ(n) ∈ D(A) for all k ∈ N0 and

ϕ(n) = A

n∑
k=0

a(n− k)ϕ(k). (3.1.1)

Let us consider two cases according to whether a(0) = 0 or a(0) 6= 0. In the case a(0) = 0, expanding

the sum in (3.1.1), we obtain ϕ(n) = 0 for all n ∈ N0. If a(0) 6= 0, then by Definition 3.1.1, and

since 1/a(0) ∈ ρ(A), we obtain S(0) = b(0)(I − a(0)A)−1 = R(0). Therefore ϕ(0) = 0. Using

(3.1.1), we obtain (I − a(0)A)ϕ(n) = 0 for all n ∈ N0. Then, the invertibility of (I − a(0)A) implies

S(n)x = R(n)x for all n ∈ N0 and x ∈ X.

Remark 3.1.5. Note that if b(0) 6= 0, then S(0)
b(0) (1 − Aa(0))x = x for all x ∈ D(A). Thus combining

with Definition 3.1.1 part (i), we have 1/a(0) ∈ ρ(A). Then the conclusion of the previous theorem

holds.

Theorem 3.1.6. If A is a closed linear operator defined on a Banach space X. Then, A is the

generator of a discrete resolvent family {S(n)}n∈N0
⊂ B(X) with a(n) = b(n) if only if 1

a(0) ∈ ρ(A).

Moreover, the discrete resolvent family {S(n)}n∈N0
⊂ B(X) is given by

S(n)x = [

n−1∑
j=0

1

a(0)j
φj(n)(T − I)j ]T 2x, n ≥ 2, for all x ∈ X, (3.1.2)

where T := (I − a(0)A)−1, and φ0(n) = a(n), φ1(n) =
∑n−1
k=1 a(n− k)a(k),

and

φj(n) =

n−1∑
k=j

a(n− k)φj−1(k), j ≥ 2, (3.1.3)

and for all x ∈ X we have that S(0)x = a(0)Tx, S(1) = a(1)T 2x.

Proof. If A is the generator of a discrete resolvent family {Sα(n)}n∈N0 ⊂ B(X), then 1
a(0) ∈ ρ(A) by
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Remark 3.1.5. On the other hand, we suppose that 1
a(0) ∈ ρ(A), and we will prove that {S(n)}n∈N0

is a discrete resolvent family generated by A.

First, we will prove (1) in Definition 3.1.1. It is clear that, S(n)X ⊂ D(A). Note that,

AT j = (A− 1

a(0)
I +

1

a(0)
I)T j =

1

a(0)
(T j − T j−1),

and

T jA = T j(A− 1

a(0)
I +

1

a(0)
I) =

1

a(0)
(T j − T j−1).

Therefore, for all x ∈ X, it is a straightforward consequence of the above representation of S(n) that

S(n)Ax = AS(n)x for all x ∈ D(A), and n ∈ N0.

Now, we will prove (2) in Definition 3.1.1. It is clear that S(0)x = a(0)Tx, satisfies the condition

(2) in Definition 3.1.1 for n = 0. Now, let x ∈ X, we have that

S(1)x = a(1)T 2x,

then,

S(1)(I − a(0)A)x = a(1)Tx = a(1)(a(0)AT + I)x.

Thus,

S(1)x = a(1)x+A(a(1)S(0) + a(0)S(1))x,

where we have used that T = a(0)AT+I and S(0)x = a(0)Tx. Therefore S satisfies the condition (2)

in Definition 3.1.1 for n = 1. In what follows of the proof we write 1
a(0) (T − I) as AT. By induction,

we suppose that

S(m)x = [

m−1∑
j=0

φj(m)(AT )j ]T 2x,

satisfies the condition (2) in Definition 3.1.1 for m ≤ n−1. For x ∈ X we write, using the definition:

S(n)x =[

n−1∑
j=0

φj(n)(AT )j ]T 2x

=a(n)T 2x+ φ1(n)AT 3x+ [

n−1∑
j=2

φj(n)(AT )j ]T 2x.

By the definition of φj(n) in (3.1.3), we obtain
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S(n)x = a(n)T 2x+ φ1(n)AT 3x+ [

n−1∑
j=2

n−1∑
m=j

a(n−m)φj−1(k)(AT )j ]T 2x. (3.1.4)

Now by Fubini’s Theorem,

S(n)x =a(n)T 2x+ φ1(n)AT 3x+ [

n−1∑
m=2

m∑
j=2

a(n−m)φj−1(m)(AT )j ]T 2x

=a(n)T 2x+ φ1(n)AT 3x+ [

n−1∑
m=2

m−1∑
j=1

a(n−m)φj(m)(AT )j+1]T 2x.

Thus, by definition of φ0(n), φ1(n), and induction hypothesis,

S(n)x =a(n)T 2x+ φ1(n)AT 3x+

n−1∑
m=2

a(n−m)

m−1∑
j=1

φj(m)Aj+1T j+3x

=a(n)T 2x+

n−1∑
m=1

a(n−m)a(m)AT 3x+

n−1∑
m=2

a(n−m)

m−1∑
j=1

φj(m)Aj+1T j+3x

=a(n)T 2x+ a(n− 1)a(1)AT 3x+AT 3
n−1∑
m=2

a(n−m)a(m)x+

n−1∑
m=2

a(n−m)

m−1∑
j=1

φj(m)Aj+1T j+3x

=a(n)T 2x+ a(n− 1)a(1)AT 3x+

n−1∑
m=2

a(n−m)[a(m)AT 3x+

m−1∑
j=1

φj(m)Aj+1T j+3]x

=a(n)T 2x+ a(n− 1)a(1)AT 3x+

n−1∑
m=2

a(n−m)

m−1∑
j=0

φj(m)Aj+1T j+3x

=a(n)T 2x+ a(n− 1)a(1)AT 3x+A

n−1∑
m=2

a(n−m)S(m)Tx.

Thus, for x ∈ X,

S(n)x = a(n)T 2x+ a(n− 1)a(1)AT 3x+A

n−1∑
m=2

a(n−m)S(m)Tx. (3.1.5)

Composing by the operator (I − a(0)A) on both sides of the above identity we obtain,
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(I − a(0)A)S(n)x = a(n)Tx+ a(n− 1)a(1)AT 2x+A

n−1∑
m=2

a(n−m)S(m)x.

Thus,

S(n) = a(n)Tx+ a(n− 1)a(1)AT 2x+ a(0)AS(n)x+A

n−1∑
m=2

a(n−m)S(m)x.

Therefore, since that T = I + a(0)AT,

S(n) = a(n)(I + a(0)AT )x+ a(n− 1)a(1)AT 2x+ a(0)AS(n)x+A
n−1∑
m=2

a(n−m)S(m)x

= a(n)x+ a(n)a(0)ATx+ a(n− 1)a(1)AT 2x+ a(0)AS(n)x+A

n−1∑
m=2

a(n−m)S(m)x.

As a(0)Tx = S(0)x, and a(1)T 2x = S(1)x, we have

S(n)x =a(n)x+ a(n)AS(0)x+ a(n− 1)AS(1)x+ a(0)AS(n)x+A

n−1∑
m=2

a(n−m)S(m)x

=a(n)x+A

n∑
m=0

a(n−m)S(m)x.

The next theorem gives necessary conditions in terms of C0-semigroups in order to ensure the

existence and summability of a discrete resolvent family. We will denote by f ∗g :=
∫ t

0
f(t−s)g(s)ds,

the Laplace convolution of the functions f and g, and ρn(t) will be the function ρn(t) = e−ttn

n! .

Theorem 3.1.7. Let A be the generator of a bounded analytic C0−semigroup on a Banach space

X. Let k(t), g(t) ≥ 0 be given by a(n) =
∫∞

0
ρn(t)k(t)dt, b(n) =

∫∞
0
ρn(t)g(t)dt, where k ∈ L1

loc(R+)

is 2-regular and of subexponential growth, of positive type, such that 1

λk̂(λ)
defined for λ 6= 0, has

a locally analytic extension at λ = 0, g(0) = 0, g ∈ W 1,1(R+), and 0 ∈ ρ(A). Then A generates a

summable discrete resolvent family {R(n)}n∈N0 , with sequences b(n) and a(n).
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Proof. By [109, Corollary 3.1] k̂(λ) 6= 0, 1

k̂(λ)
∈ ρ(A) for all Reλ > 0, and there exists a constant

M ≥ 1 such that H(λ) = (I − k̂(λ)A)−1/λ satisfies ‖H(λ)‖ ≤ M
|λ| , for all Reλ > 0. Then, by [109,

Theorem 10.2] there exists a resolvent family S(t) which is uniformly integrable. By [109, Definition

1.3,(S3)] for all x ∈ X and t > 0, we have that,

S(t)x = x+A(k ∗ S)(t)x. (3.1.6)

Define T (t)x := (g′ ∗ S)(t)x, for all x ∈ X, and t ≥ 0. Note that, T (t) ∈ L1(R+, X), since S(t) uni-

formly integrable and g′ ∈ L1(R+). Moreover, since g(0) = 0, it follows that (g′ ∗1)(t) =
∫ t

0
g′(s)ds =

g(t). Thus, for all x ∈ X, and t ≥ 0, we obtain from (3.1.6):

T (t)x =(g′ ∗ 1)(t)x+A(k ∗ g′ ∗ S)(t)x,

=g(t)x+A(k ∗ T )(t)x.

Define

R(n)x :=

∫ ∞
0

ρn(t)T (t)xdt =
(−1)n

n!
[
ĝ(λ)

k̂(λ)
(

1

k̂(λ)
−A)−1x](n)

∣∣∣
λ=1

, for alln ∈ N0, x ∈ X,

then, R(n)x ∈ D(A) for all x ∈ X. Now, from a(n) =
∫∞

0
ρn(t)a(t)dt, and b(n) =

∫∞
0
ρn(t)g(t)dt,

and using [94, Theorem 3.4], we have that for all x ∈ X,

R(n)x = b(n)x+A

n∑
j=0

a(n− j)R(j)x.

Finally, we prove that R(n) is summable. In fact, since that T (t) ∈ L1(R+, X), we have that,

∞∑
n=0

‖R(n)‖ =

∞∑
n=0

‖
∫ ∞

0

ρn(t)T (t)dt‖ =

∞∑
n=0

‖
∫ ∞

0

e−ttn

n!
T (t)dt‖ ≤

∫ ∞
0

‖T (t)‖dt <∞.

Remark 3.1.8. We note that the family T defined in the previous theorem is the convolution of a

function g′ with a resolvent family S. The resolvent families have been studied extensively by Prüss

in [109]. It is well known that under certain conditions on the function k, we can obtain resolvent

families with various additional properties: analytic, differentiable, exponentially bounded, uniform

integrable, among others, see [109]. Next, we will give conditions on g in order that the family T

have the same properties of S.
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• By Young’s inequality, if S(t) is uniformly integrable and g′ ∈ L1(R+), then T (t) ∈ L1(R+, X).

• Suppose that S is differentiable, then by [109, Definition 1.4] we see that S(·)x ∈W 1,1
loc (R+, X)

for each x ∈ D(A) and there is ϕ ∈ L1
loc(R+) such that ‖Ṡ(t)x‖ ≤ ϕ(t)‖x‖A a.e on R+, for

each x ∈ D(A). If g ∈W 1,1
loc (R+), then T (t) ∈W 1,1

loc (R+). Moreover,

‖ d
dt

(g′ ∗ S)(t)x‖ ≤‖S(0)g′(t)x‖+ ‖
∫ t

0

Ṡ(t− s)g′(s)xds‖ ≤M |x|A +M

∫ t

0

‖Ṡ(t− s)x‖ds

≤M |x|A +M

∫ t

0

ϕ(t− s)‖x‖Ads ≤ (M +K)‖x‖A,

where M = sup
t∈R+

|g′(t)|, and K = M
∫ t

0
ϕ(t− s)ds. Thus T (t) is differentiable.

Remark 3.1.9. The conditions on the sequences a(n) and b(n) are sufficient but not necessary. In [1,

Theorem 3.5] the authors proved that if 0 < α < 1 and A be the generator of an exponentially stable

C0 − semigroup {T (t)}t≥0, defined on a Banach space X, then A generates a summable discrete

resolvent family {Sα(n)}n∈N0
defined by

Sα(n)x :=

∫ ∞
0

∫ ∞
0

e−t
tn

n!
fs,α(t)T (s)xdsdt, n ∈ N0, x ∈ X,

where ft,α(λ) is a probability density function frequently called stable Lévy process. The latter is

defined by [116]

ft,α(λ) =
1

2πi

∫ σ+i∞

σ−i∞
ezλ−tz

α

dz, σ > 0, t > 0, λ > 0, 0 < α < 1,

where the branch of zα is so taken that Re(zα) > 0 for Re(z) > 0.

Now we describe properties for the convolution products (1.2.2) and (1.2.1).

Theorem 3.1.10. For f, g, h given sequences, the following properties hold:

(i) (f ∗ g)(n) = (g ∗ f)(n).

(ii) ((f ∗ g) ◦ h)(n) = (g ◦ (f ◦ h))(n).

(iii) (g ◦ (f ◦ h))(n) = (f ◦ (g ◦ h))(n).
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Proof. (i) is obvious. Now, we will prove (ii). By Fubini’s Theorem,

((f ∗ g) ◦ h)(n) =

n∑
j=−∞

(f ∗ g)(n− j)h(j) =

n∑
j=−∞

n−j∑
k=0

f(n− j − k)g(k)h(j)

=

∞∑
k=0

g(k)

n−k∑
j=−∞

f(n− j − k)h(j) =

∞∑
k=0

g(k)(f ◦ h)(n− k)

=

n∑
j=−∞

(f ◦ h)(j)g(n− j) = (g ◦ (f ◦ h))(n).

This proves (ii). Now, (iii) follows from (i) and (ii).

We next with the definition of strong solution for the equations (3.0.1).

Definition 3.1.11. Given a, b ∈ s(Z, X) bounded positive sequences, and f ∈ l1(Z, X), a sequence

u : Z → [D(A)] is called a strong solution for equation (3.0.1) if u ∈ l1(Z; [D(A)]) and satisfies

(3.0.1).

The following theorem gives conditions for better regularity.

Theorem 3.1.12. Let {S(n)}n∈N0
⊂ B(X) be a summable discrete resolvent family generated by A,

and f ∈ l1(Z, [D(A)]), then

u(n+ 1) :=

n∑
k=−∞

S(n− k)f(k)

is a strong solution of (3.0.1).

Proof. Note that u is clearly well defined and u ∈ l1(Z, [D(A)]). Now we will prove that u satisfies

(3.0.1). Indeed, by Definition 3.1.1 and Theorem 3.1.10,

u(n+ 1)−
n∑

k=−∞

b(n− k)f(k) =(S ◦ f)(n)− (b ◦ f)(n) =

n∑
k=−∞

S(n− k)f(k)− (b ◦ f)(n)

=

n∑
k=−∞

[b(n− k) +A

n−k∑
l=0

a(n− k − l)S(l)]f(k)− (b ◦ f)(n)
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=(b ◦ f)(n) +A(a ∗ S ◦ f)(n)− (b ◦ f)(n)

=A

n∑
k=−∞

a(n− j)u(j + 1).

Thus,

u(n+ 1) =

n∑
k=−∞

b(n− j)f(j) +A

n∑
k=−∞

a(n− j)u(j + 1).

This proves the claim.

Example 3.1.13. Consider the special case a(n) = b(n) = kα(n), n ∈ Z and {S(n)}n∈N satisfying

the Definition 3.1.1, then the nonlinear fractional difference equation

∆αu(n) = Au(n+ 1) + f(n), n ∈ Z,

for 0 < α < 1, can be written in the form (3.0.1). Here, A is the generator of an α resolvent sequence

{S(n)}n∈N0
in B(X),∆α denote fractional difference in Weyl-like sense (see [1, 10] ) and f satisfies

Lipschitz conditions of global and local type.

Now if

∆αu(n) = Au(n+ 1) + f(n),

then,
n∑

k=−∞

kα(n− k)∆αu(k) = A

n∑
k=−∞

kα(n− k)u(k + 1) +

n∑
k=−∞

kα(n− k)f(k).

Note that,

n∑
k=−∞

kα(n− k)(k1−α ◦ u)(k + 1) =

n+1∑
m=−∞

kα(n−m+ 1)(k1−α ◦ u)(m) = (kα ◦ (k1−α ◦ u))(m+ 1)

= ((kα ∗ k1−α) ◦ u)(m+ 1) =

m+1∑
k=−∞

u(k).

Analogously,
n∑

k=−∞

kα(n− k)(k1−α ◦ u)(k) =

m∑
k=−∞

u(k).
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Thus,

n∑
k=−∞

kα(n− k)∆αu(k) =

n∑
k=−∞

kα(n− k)[(k1−α ◦ u)(k + 1)− (k1−α ◦ u)(k)]

=

n+1∑
k=−∞

u(k)−
n∑

k=−∞

u(k) = u(n+ 1).

Then,

u(n+ 1) = A

n∑
k=−∞

kα(n− k)u(k + 1) +

n∑
k=−∞

kα(n− k)f(k).

In the next result, borrowing ideas from [10], we prove regularity under convolution in the above

mentioned spaces.

Theorem 3.1.14. Let ρ1, ρ2 ∈ V∞ be given. Assume that A generates a summable discrete resolvent

family {S(n)}n∈N0 ⊂ B(X). If f belongs to one of the spaces Ω ∈ M(Z, X) then the sequence u

defined by

u(n+ 1) =

n∑
k=−∞

S(n− k)f(k), n ∈ Z,

belongs to the same space Ω.

Proof. Note that u(n + 1) is well defined and ‖u(n + 1)‖ ≤ ‖S‖1‖f‖∞, for all n ∈ Z. First, we

consider f ∈WPAAd(Z, X). Let f = f1 + f2, where f1 ∈ AAd(Z, X) and f2 ∈ PAA0S(Z, X, ρ1, ρ2)

be the decomposition of f . Then

u(n) =

n−1∑
k=−∞

S(n− 1− k)f1(k) +

n−1∑
k=−∞

S(n− 1− k)f2(k) =: u1(n) + u2(n).

From [11, Theorem 2.12], u1 ∈ AAd(Z, X). Now, we will prove that u2 ∈ PAA0S(Z, X, ρ1, ρ2).

Indeed,

1

ν(K, ρ1)

K∑
k=−K

‖u2(k)‖ρ2(k) =
1

ν(K, ρ1)

K∑
k=−K

‖
k−1∑
j=−∞

S(k − 1− j)f2(j)‖ρ2(k)

≤
∞∑
m=0

‖S(m)‖
( 1

ν(K, ρ1)

K∑
k=−K

‖f2(k − 1−m)‖ρ2(k)
)
.
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By [117, Lemma 10] the space PAA0S(Z, X, ρ1, ρ2) is invariant under translations, then f2(· −m) ∈

PAA0S(Z, X, ρ1, ρ2). Thus, by the Lebesgue dominated convergence theorem, we obtain

lim
K→∞

1

ν(K, ρ1)

K∑
k=−K

‖u2(k)‖ρ2(k) = 0.

This proves the claim for such space. Now, let f ∈ WPSAPω(Z, X, ρ1, ρ2). Then, there exists

ω ∈ Z+ \ {0} such that

lim
n→∞

1

ν(n, ρ1)

n∑
k=−n

ρ2(k)‖f(k + ω)− f(k)‖ = 0.

Now, we have

1

ν(m, ρ1)

m∑
n=−m

‖u(n+ ω)− u(n)‖ρ2(n)

≤ 1

ν(m, ρ1)

m∑
n=−m

n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k + ω)− f(k)‖ρ2(n)

≤
∞∑
k=0

‖S(k)‖
( 1

ν(m, ρ1)

m∑
n=−m

‖f(n− 1− k + ω)− f(n− 1− k)‖ρ2(n)
)
.

By [118, Lemma 2.2] WPSAPω(Z, X) is invariant under translations. Thus, applying again the by

Lebesgue dominated convergence theorem, we obtain

lim
m→∞

1

ν(m, ρ1)

m∑
n=−m

‖u(n+ ω)− u(n)‖ρ2(n)

≤ lim
m→∞

∞∑
k=0

‖S(k)‖
( 1

ν(m, ρ1)

m∑
n=−m

‖f(n− 1− k + ω)− f(n− 1− k)‖ρ2(n)
)

= 0

3.2 Semilinear difference equations

In this section we use the above defined resolvent families to investigate the existence and uniqueness

of solutions for the following class of abstract semilinear difference equations:

u(n+ 1) = A

n∑
k=−∞

a(n− k)u(k + 1) +

n∑
k=−∞

b(n− k)f(k, u(k)), n ∈ Z, (3.2.1)
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where A is the generator of a discrete resolvent family {S(n)}n∈N0 in B(X), f : Z × X → X is a

bounded function on bounded sets of X and a, b are given such that (3.2.1) makes sense.

We introduce the following conditions in order to prove our main results about asymptotic be-

havior of mild solutions.

(H2) A is the generator of a summable discrete resolvent sequence {S(n)}n∈N0
⊂ B(X).

(F1) f satisfies the Lipschitz condition:

‖f(k, h(k)u)− f(k, h(k)v)‖ ≤ Lf‖u− v‖, for all k ∈ Z, u, v ∈ X,

where Lf > 0 is a constant and h is given in Lemma 1.4.12.

(F2) f satisfies the local Lipschitz condition, that is, for each positive number r, and all u, v ∈ X

with ‖u‖ ≤ r, ‖v‖ ≤ r, we have

‖f(k, h(k)u)− f(k, h(k)v)‖ ≤ Lf (r)‖u− v‖, for all k ∈ Z,

where Lf : R+ → R+ is a nondecreasing function and h is given in Lemma 1.4.12.

(F3) f satisfies the following condition:

‖f(k, h(k)u)− f(k, h(k)v)‖ ≤ Lf (k)‖u− v‖, for all k ∈ Z, u, v ∈ X,

where Lf : Z→ R+ is a summable function and h is given in Lemma 1.4.12.

(F4) f satisfies

‖f(k, h(k)u)− f(k, h(k)v)‖ ≤ φ(‖u− v‖), for all k ∈ Z, u, v ∈ X,

where φ : R+ → R+ is a nondecreasing function and h is given in Lemma 1.4.12.
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(F5) f satisfies

‖f(k, u)− f(k, v)‖ ≤ Lf (k)‖u− v‖θ, for all k ∈ Z, u, v ∈ X,

where θ ∈ (0, 1), Lf : Z→ R+ is a sequence (depending on f) such that lim
|k|→∞

Lf (k) = 0.

Next we introduce the definition of solution for the semilinear difference equation.

Definition 3.2.1. Let A be the generator of a discrete resolvent family {S(n)}n∈N0 ⊂ B(X), and f :

Z×X → X. We say that a sequence u : Z→ X is a mild solution of (3.2.1) if k → S(n−k)f(k, u(k))

is summable on N0, for each n ∈ Z and u satisfies

u(n+ 1) =

n∑
k=−∞

S(n− k)f(k, u(k)), n ∈ Z.

In the next theorems 3.2.2, 3.2.3 and 3.2.4, we show existence, uniqueness and asymptotic behavior

of discrete mild solutions of (3.2.1). We assume that f satisfies Lipschitz and locally Lipschitz

conditions, the proofs are based on the Banach fixed point theorem.

Theorem 3.2.2. Assume that (H2), (F1) hold and Lf‖S‖1 < 1, then there is a unique mild solution

u(n) of (3.2.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

Proof. Consider the operator F : C0
h(Z, X)→ C0

h(Z, X) defined by

(Fu)(n) :=

n−1∑
k=−∞

S(n− 1− k)f(k, u(k)), n ∈ Z, (3.2.2)

Note that F is well defined. Indeed,

‖(Fu)(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k, u(k))− f(k, 0)‖+

n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k, 0)‖

≤Lf‖S‖1‖u‖h + ‖S‖1 sup
k∈Z
‖f(k, 0)‖,
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hence lim
|n|→∞

‖(Fu)(n)‖
h(n)

= 0, which implies that F is well defined. In addition, for u, v ∈ C0
h(Z, X)

and n ∈ Z the following inequality holds,

‖(Fu)(n)− (Fv)(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k, u(k))− f(k, v(k))‖ ≤ Lf‖S‖1‖u− v‖h,

therefore, ‖Fu − Fv‖h ≤ Lf‖S‖1‖u − v‖h. From the assumption Lf‖S‖1 < 1 we see that F is

a contraction, and using the Banach fixed point Theorem we conclude that there exist a unique

discrete mild solution of (3.2.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

In the following theorem, we assume a modified hypothesis on the previous Lipschitz condition,

namely we consider a local condition instead of the global one.

Theorem 3.2.3. Suppose (H2), (F2) and there exist r0 > 0 such that ‖S‖1
(
Lf (r0)+ 1

r0
sup
k∈Z
‖f(k, 0)‖

)
<

1, then there is a unique mild solution u(n) of (3.2.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

Proof. Define the operator F as in (3.2.2), then H is well defined. Let

Br0 := {u ∈ C0
h(Z, X) : ‖u‖h ≤ r0}.

For u ∈ Br0 ,

‖(Fu)(n)‖ ≤ ‖S‖1
(
Lf (r0) +

1

r0
sup
k∈Z
‖f(k, 0)‖

)
r0 ≤ r0.

Therefore, ‖Fu‖ ≤ r0, that is Fu ∈ Br0 . Moreover, for u, v ∈ Br0 , we have

‖(Fu)(n)− (Fv)(n)‖ ≤ Lf (r0)‖S‖1‖u− v‖h,

then there is a unique fixed point u ∈ Br0 , so there is a unique mild solution u(n) of (3.2.1) such

that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

Theorem 3.2.4. Assume that (H2), (F3) hold, then there is a unique mild solution u(n) of (3.0.1)

such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.
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Proof. Define the operator F as in (3.2.2), then by the hypothesis (F4), we have that

‖Fu)(n)‖ ≤
n−1∑
k=∞

‖S(n− 1− k)‖Lf (k)
‖u(k)‖
h(k)

+ ‖S‖1 sup
k∈Z
‖f(k, 0)‖

≤‖S‖∞‖Lf‖1‖u‖h + ‖S‖1 sup
k∈Z
‖f(k, 0)‖,

where ‖Lf‖1 :=

∞∑
k=−∞

Lf (k), so F is well defined.

For u, v ∈ C0
h(Z, X), one has

‖(Fu)(n)− (Fv)(n)‖ ≤ ‖S‖∞
( n−1∑
k=−∞

Lf (k)
)
‖u− v‖h.

Similarly, by [44, Lemma 3.2],

‖(F 2u)(n)− (F 2v)(n)‖ ≤
∞∑

k=−∞

Lf (k)‖S(n− 1− k)‖‖(Fu)(k)− (Fv)(k)‖
h(k)

≤(‖S‖∞)2
( n−1∑
k=−∞

Lf (k)
( k−1∑
j=−∞

Lf (j)
))
‖u− v‖h

≤ (‖S‖∞)2

2!

( ∞∑
k=−∞

Lf (k)
)2

‖u− v‖h.

By induction, one easily see that

‖(Fnu)(n)− (Fnv)(n)‖ ≤ (‖S‖∞‖Lf‖1)n

n!
‖u− v‖h.

Therefore, ‖Fnu−Fnv‖h ≤ (‖S‖∞‖Lf‖1)n

n! ‖u−v‖h. For sufficiently large n, we have
(‖S‖∞‖Lf‖1)n

n! < 1.

By the Banach contraction mapping principle, F has a unique fixed point in C0
h(Z, X), so there is a

unique mild solution u(n) of (3.0.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

The following theorem establishes the existence of a mild solution of (3.2.1) in C0
h(Z, X), based

on the fixed point theorem of Matkowski.

Theorem 3.2.5. Let (H2), (F4) hold and assume further that (‖S‖1φ)n(t)→ 0 as n→∞ for each

t > 0. Then there is a unique mild solution u(n) of (3.2.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.
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Proof. Define the operator F as in (3.2.2), then by the hypothesis (F3), we have that,

‖Fu)(n)‖ ≤
n−1∑
k=∞

‖S(n− 1− k)‖φ
(‖u(n)‖
h(n)

)
+ ‖S‖1 sup

k∈Z
‖f(k, 0)‖

≤‖S‖1
(
φ(‖u‖h) + sup

k∈Z
‖f(k, 0)‖

)
.

Thus, F is well defined. For u, v ∈ C0
h(Z, X), we have

‖(Fu)(n)− (Fv)(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖φ
(u(k)− v(k)

h(k)

)
≤ ‖S‖1φ(‖u− v‖h).

Therefore, ‖Fu − Fv‖h ≤ ‖S‖1φ(‖u − v‖h). Since (‖S‖1φ)n(t) → 0 as n → ∞ for each t > 0, by

Matkowski’s fixed point Theorem, F has a unique fixed point u ∈ C0
h(Z, X), so there is a unique

mild solution u(n) of (3.2.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

In the next theorem, the main tool used in proving existence of solutions of (3.2.1) is the classical

Leray-Schauder Alternative Theorem combined with Lemma 1.4.12.

Theorem 3.2.6. Suppose (H2), (F5). Then under the following additional condition:

(A1) For all a, b ∈ Z, a ≤ b and σ > 0, the set {f(k, x) : a ≤ k ≤ b, ‖x‖ ≤ σ} is relatively compact in

X; there exist a function h : Z → [1,∞) such that h(n) → ∞ as |n| → ∞ and a mild solution u(n)

of (3.2.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.

Proof. Define the function h : Z→ R+ by h(k) :=
(

L∞
Lf (k)

)1/θ

, where L∞ = sup
k∈Z

Lf (k), k ∈ Z. Note

that h(k) ≥ 1, for all k ∈ Z and since lim|k|→∞ Lf (k) = 0, we also have lim|k|→∞ h(k) =∞. Consider

the operator F as defined in (3.2.2). Using the Leray-Schauder Alternative Theorem, we will show

that F has a fixed point in C0
h(Z, X). The proof will be carried out in several steps.

(i) F is well defined. For u ∈ C0
h(Z, X), one has

‖(Fu)(n)‖ ≤
n−1∑
k=∞

‖S(n− 1− k)‖(Lf (k)‖u(k)‖θ + ‖f(k, 0)‖) ≤ ‖S‖1(L∞‖u‖θh + sup
k∈Z
‖f(k, 0)‖),
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whence lim
|n|→∞

‖(Fu)(n)‖
h(n)

= 0. Thus F is C0
h(Z, X)- valued.

(ii) F : C0
h(Z, X)→ C0

h(Z, X) is a continuous map. In fact, for u, v ∈ C0
h(Z, X), one has

‖(Fu)(n)− (Fv)(n)‖ ≤
n−1∑
k=∞

‖S(n− 1− k)‖Lf (k)h(k)θ
(‖u(k)− v(k)‖

h(k)

)θ
≤ L∞‖S‖1‖u− v‖θh.

Since that h(k) =
(

L∞
Lf (k)

)1/θ

≥ 1, for all k ∈ Z, then

sup
n∈Z

‖(Fu)(n)− (Fv)(n)‖
h(n)

≤ L∞‖S‖1‖u− v‖θh.

So ‖Fu− Fv‖h ≤ L∞‖S‖1‖u− v‖θh. Hence F is a continuous map.

(iii) F is a completely continuous map. Let r be a positive real number and Br(Z) be a closed ball

with center at 0 and radius r in the space Z. We set V = F (Br(C0
h(Z, X))) and v = Fu for

u ∈ Br(C0
h(Z, X)). We prove that for each n ∈ Z,

Ωn(V ) :=
{ v(n)

h(n)
: v ∈ V

}
is relatively compact in X. Indeed, for ε > 0, we choose l ∈ Z+ such that

∞∑
k=l

‖S(k)‖
(
L∞r

θ + sup
k∈Z
‖f(k, 0)‖

)
≤ ε.

Since v = Fu for u ∈ Br(C0
h(Z, X)),

v(n) =

l−1∑
k=0

S(k)f(n− 1− k, u(n− 1− k)) +

∞∑
k=l

S(k)f(n− 1− k, u(n− 1− k)).

Thus,

v(n)

h(n)
=

l

h(n)

(1

l

l−1∑
k=0

S(k)f(n− 1− k, u(n− 1− k))
)

+
1

h(n)

∞∑
k=l

S(k)f(n− 1− k, u(n− 1− k)).

Note that

1

h(n)
‖
∞∑
k=l

S(k)f(n− 1− k, u(n− 1− k))‖ ≤ 1

h(n)

∞∑
k=l

‖S(k)‖(L∞rθ + sup
k∈Z
‖f(k, 0)‖) ≤ ε.

Therefore
v(n)

h(n)
∈ l

h(n)
co(K) +Bε(X), (3.2.3)
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where co(K) denotes the convex hull of K and

K = ∪l−1
k=0{S(k)f(ξ, x) : ξ ∈ [n− l, n− 1] ∩ Z, ‖x‖ ≤ R},

where R = rmax{h(ξ) : ξ ∈ [n − l, n − 1] ∩ Z}. Hence, K is relatively compact, since that

S(k) ∈ B(X) for all k ∈ N0 and {f(k, x) : a ≤ k ≤ b, ‖x‖ ≤ σ} is relatively compact in X, for

all a, b ∈ Z, a ≤ b and σ > 0. In view of

Ωn(V ) ⊆ l

h(n)
co(K) +Bε(X),

we deduce that Ωn(V ) is relatively compact in X.

Next, we prove that V is weighted equiconvergent at ±∞. Indeed proceeding as in (i), we have:

‖v(n)‖
h(n)

≤ 1

h(n)

n−1∑
k=−∞

‖S(n− 1− k)‖(L∞‖u‖θh + ‖f(k, 0)‖) ≤ 1

h(n)
‖S‖1(L∞r

θ + sup
k∈Z
‖f(k, 0)‖),

therefore ‖v(n)‖
h(n) → 0 as |n| → ∞ and this convergence is independent of u ∈ Br(C0

h(Z, X)).

Hence V satisfies the conditions of Lemma 1.4.12, so V is a relatively compact set in C0
h(Z, X).

(iv) Now, we will prove that the set C := {u ∈ C0
h(Z, X) : u = λFu, λ ∈ (0, 1)} is bounded. In fact,

if u ∈ C0
h(Z, X) is a solution of u = λFu for 0 < λ < 1, then

‖u(n)‖
h(n)

≤
n−1∑
k=−∞

‖S(n− 1− k)‖(L∞‖u‖θh + sup
k∈Z
‖f(k, 0)‖) ≤ ‖S‖1(L∞‖u‖θh + sup

k∈Z
‖f(k, 0)‖).

Hence
‖u‖h

‖S‖1(L∞‖u‖θh + supk∈Z ‖f(k, 0)‖)
≤ 1.

Observe that in view of the condition θ < 1, it follows that C is bounded.

(v) There exists r0 > 0 such that F (Br0(C0
h(Z, X))) ⊂ Br0(C0

h(Z, X)). Assume that the assertion

is false, then for all r > 0, arguing similarly as in (iv), we deduce that 1 ≤ ‖S‖1
(
L∞r

θ−1 +

1
r supk∈Z ‖f(k, 0)‖

)
, which is a contradiction because θ < 1.

(vi) Finally, by Theorem 1.4.10, F has a fixed point u ∈ C0
h(Z, X).
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In the next results, we study the existence uniqueness of WPAAd, and WPSAPω mild solutions

of (3.2.1).

Theorem 3.2.7. Let ρ1, ρ2 ∈ V∞ be given. Assume that (H2) holds, f ∈ Ω ∈ M(Z × X,X) is

globally Lipschitz in the following sense:

‖f(n, x)− f(n, y)‖ ≤ L‖x− y‖, for all n ∈ Z and all x, y ∈ X,

where L < 1
‖S‖1 , then (3.2.1) has a unique mild solution u which belongs to the corresponding subset

Ω ∈M(Z, X).

Proof. Consider the operator F : WPAAd(Z, X)→WPAAd(Z, X) defined by

(Fu)(n) :=

n−1∑
k=−∞

S(n− 1− k)f(k, u(k)), n ∈ Z, (3.2.4)

where f ∈ WPAAd(Z, X). Note that F is well defined by [117, Theorem 16] and Theorem 3.1.14.

In addition, for u, v ∈WPAAd(Z, X) and n ∈ Z the following inequality holds:

‖(Fu)(n)− (Fv)(n)‖ =‖
n−1∑
k=−∞

S(n− 1− k)(f(k, u(k))− f(k, v(k)))‖ ≤ L‖S‖1‖u− v‖∞.

Since ‖S‖1L < 1 we conclude that F is a contraction, and using Banach’s fixed point Theorem we

get that there exists a unique discrete weighted pseudo almost automorphic solution of (3.2.1). The

proof for the space of S-asymptotic ω−periodic sequences is analogous, but in this case, we use [118,

Theorem 2.4] and Theorem 3.1.14 in order to prove that F is well defined.

In the following theorem, we show that with a local Lipschitz condition on f the conclusion of

the previous theorem holds.

Theorem 3.2.8. Let ρ1, ρ2 ∈ V∞ be given. Assume that (H2) holds and let f ∈ M(Z × X,X)

that satisfies a local Lipschitz condition, that is, for each positive number r, and all u, v ∈ X with

‖u‖ ≤ r, ‖v‖ ≤ r, we have

‖f(k, h(k)u)− f(k, h(k)v)‖ ≤ Lf (r)‖u− v‖, for all k ∈ Z,
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where Lf : R+ → R+ is a nondecreasing function. If there exists r0 > 0 such that

‖S‖1
(
L(r0) +

sup
k∈Z
‖f(k, 0)‖

r0

)
< 1,

then the semilinear difference equation (3.2.1) has a unique mild solution u which belongs to the

same space as f with ‖u‖∞ ≤ r0.

Proof. Consider f ∈WPAAd(Z×X,X). Note that F : WPAAd(Z, X)→WPAAd(Z, X) given by

(3.2.4) is well defined by Corollary [10, Corollary 2.4] and Theorem 3.1.14.

Let

Br0(0) := {u ∈WPAAd(Z, X) : ‖u‖∞ < r0}.

We show that F (Br0(0)) ⊂ Br0(0). Indeed, let u be in Br0(0). Since f is locally Lipschitz, we obtain

‖f(k, u(k))‖ ≤ ‖f(k, u(k))− f(k, 0)‖+ ‖f(k, 0)‖ ≤ L(r0)‖u(k)‖+ ‖f(k, 0)‖, for k ∈ Z.

Moreover, we have the estimate

‖F (u)(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖‖(f(k, u(k))− f(k, 0)‖+

n−1∑
k=−∞

‖S(n− 1− k)f(k, 0)‖

≤L(r0)

n−1∑
k=−∞

‖S(n− 1− k)‖‖u(k)‖+ ‖S‖1 sup
k
‖f(k, 0)‖

≤‖S‖1
(
L(r0) +

supk ‖f(k, 0)‖
r0

)
r0 ≤ r0,

proving the claim. On the other hand, for u, v ∈ Br0(0) we have that

‖Fu(n)− Fv(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖‖(f(k, u(k))− f(k, v(k)))‖

≤L(r0)

n−1∑
k=−∞

‖S(n− 1− k)‖‖u(k)− v(k)‖ ≤ ‖S‖1L(r0)‖u− v‖∞.

Observing that ‖S‖1L(r0) < 1, it follows that F is a contraction in Br0(0). Then there is a unique

u ∈ Br0(0) such that Fu = u. Analogously, we can prove the Theorem for f ∈WPSAPω(Z×X,X, ρ).

For that purpose, we use [118, Theorem 2.4] and Theorem 3.1.14 in order to prove that F is well

defined, and we just have to take the ball of radius r0 in WPSAPω(Z×X,X, ρ).
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Theorem 3.2.9. Let ρ1, ρ2 ∈ V∞ be given. Assume that (H2) holds and f ∈ Ω ∈ M(Z × X,X),

satisfies the following condition:

‖f(n, x)− f(n, y)‖ ≤ φ(‖x− y‖), for all n ∈ Z and all x, y ∈ X,

where φ : R+ → R+ is a nondecreasing function. Then (3.2.1) has a unique mild solution u which

belongs to the corresponding subset Ω ∈ M(Z, X), provided (‖S‖φ)n(t) → 0 as n → ∞ for each

t > 0.

Proof. Consider the operator F : WPAAd(Z, X)→WPAAd(Z, X) defined by

(Fu)(n) :=

n−1∑
k=−∞

S(n− 1− k)f(k, u(k)), n ∈ Z,

where f ∈ WPAAd(Z, X). Note that F is well defined by [117, Theorem 16] and Theorem 3.1.14.

In addition, for u, v ∈WPAAd(Z, X) and n ∈ Z the following inequality holds,

‖(Fu)(n)− (Fv)(n)‖ =‖
n−1∑
k=−∞

‖S(n− 1− k)(f(k, u(k))− f(k, v(k)))‖ ≤ L‖S‖1φ(‖u− v‖).

Since (‖S‖1φ)n(t)→ 0 as n→∞ for each t > 0, by Matkowski fixed point Theorem (Theorem 2.2),

F has a unique fixed point u ∈ WPAAd(Z, X), so there is a unique mild solution u(n) of (3.2.1).

The proof for the space of S-asymptotic ω−periodic sequences is analogous, we just use Theorem

[118, Theorem 2.4] and Theorem 3.1.14 in order to prove that F is well defined.

In the following theorem, we study under certain non-Lipschitz conditions on the function f

the existence of solutions in WPSAPω(Z × X,X) of the equation (3.2.1). We consider functions

f : Z×X → X to establish our result.

Remark 3.2.10. The hypothesis (B1) below has also been considered previously in [5] and [118] in

order to prove the existence of mild solutions for a class of semilinear difference equations in a Banach

space X.

Theorem 3.2.11. Assume that f ∈ WPSAPω(Z ×X,X) ∩ UCk(Z ×X,X), ρ1, ρ2 ∈ V∞ and that

the assumptions (H1), (H2) and (A1) hold. Under the following additional conditions:
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(B1) There exists a nondecreasing function W : R+ → R+ and a function M : Z → R+ such that

‖f(k, x)‖ ≤M(k)W (‖x‖) for all k ∈ Z, x ∈ X.

(B2) For each ν > 0, lim
|n|→∞

1

h(n)

n−1∑
k=−∞

‖S(n−k−1)‖M(k)W (νh(k)) = 0, where h is given in Lemma

1.4.12.

(B3) For each ε > 0, there exists δ > 0 such that for u, v ∈ C0
h(Z, X), ‖u − v‖h ≤ δ implies that

n∑
k=−∞

‖S(n− k)‖‖f(k, u(k)− f(k, v(k))‖ ≤ ε for all n ∈ Z.

(B4) lim inf
r→∞

r

β(r)
> 1, where

β(r) = sup
n∈Z

( 1

h(n+ 1)

n∑
k=−∞

‖S(n− k)‖M(k)W (rh(k))
)
.

Then (3.2.1) has a mild solution in WPSAPω(Z ×X,X).

Proof. Consider the operator F : C0
h(Z, X)→ C0

h(Z, X) defined by

(Fu)(n) :=

n−1∑
k=−∞

S(n− 1− k)f(k, u(k)), n ∈ Z,

by Leray-Schauder Theorem, we will prove that F has a fixed point in WPSAPω(Z × X,X). We

divide the proof into several steps.

(i) F is well defined. For u ∈ C0
h(Z, X), by (B1), one has

‖(Fu)(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖M(k)W (‖u(k)‖) ≤
n−1∑
k=−∞

‖S(n− 1− k)‖M(k)W (‖u‖hh(k)),

whence ‖(Fu)(n)‖
h(n) ≤ 1

h(n)

n−1∑
k=−∞

‖S(n− 1− k)‖M(k)W (‖u‖hh(k)). It follows from (B2) that F

is C0
h(Z, X)−valued.

(ii) F is continuous. In fact, for each ε > 0, by (B3) there exists δ > 0 such that for u, v ∈

C0
h(Z, X), ‖u− v‖h ≤ δ, one has

‖(Fu)(n)− (Fv)(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k, u(k)− f(k, v(k))‖,
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since h(n) ≥ 1, by (B3), one has ‖Fu− Fv‖h ≤ ε, hence F is continuous.

(iii) F is completely continuous. Let V = F (Br(C0
h(Z, X))) and v = Fu for u ∈ C0

h(Z, X). First, we

prove that Ωn(V ) :=
{
v(n)
h(n) : v ∈ V

}
is relatively compact in X for each n ∈ Z. By (B2), for

ε > 0, we can choose l ∈ Z+ such that

∞∑
k=l

‖S(k)‖M(n− 1− k)W (rh(n− 1− k)) ≤ ε.

Since v = Fu for u ∈ C0
h(Z, X), then

v(n)

h(n)
=

l

h(n)

(1

l

l−1∑
k=0

S(k)f(n− 1− k, u(n− 1− k))
)

+
1

h(n)

∞∑
k=l

S(k)f(n− 1− k, u(n− 1− k)).

Note that,

1

h(n)
‖
∞∑
k=l

S(k)f(n− 1− k, u(n− 1− k))‖ ≤ 1

h(n)

∞∑
k=l

‖S(k)‖M(n− 1− k)W (rh(n− 1− k))‖

≤ ε.

So (3.2.3) holds. Then Ωn(V ) is relatively compact in X for all n ∈ Z. Next, we show that V

is weighted equiconvergent at ±∞. In fact,

‖v(n)‖
h(n)

≤ 1

h(n)

n−1∑
k=−∞

‖S(n− 1− k)‖M(k)W (rh(k)),

hence ‖v(n)‖
h(n) → 0 as |n| → ∞ by (B2), and this convergence is independent of u ∈ Br(C0

h(Z, X)),

V is a relatively compact set in C0
h(Z, X) by Lemma 1.4.12.

(iv) Now, we will prove that the set

{u ∈ C0
h(Z, X) : u = λFu, λ ∈ (0, 1)} (3.2.5)

is bounded. In fact, if u ∈ C0
h(Z, X) is a solution of u = λFu for 0 < λ < 1, then

‖u(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖M(k)W (‖u‖hh(k)) ≤ h(n)β(‖u‖h).

Hence, ‖u‖h
β(‖u‖h) ≤ 1. We conclude using (B4)..
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(v) There exists r0 > 0 such that F (Br0(C0
h(Z, X))) ⊂ Br0(C0

h(Z, X)). Assume that the assertion

is false, then for all r > 0, we can choose ur ∈ Br0(C0
h(Z, X)) such that ‖Fur‖h > r. Similar as

(iv), we deduce that r
β(r) ≤ 1, then lim inf

ξ→∞

ξ

β(ξ)
≤ 1, which contradicts condition (B4).

(vi) It follows from Theorem [118, Theorem 2.3] and Theorem 3.1.14, that the vector valued space

WPSAPω(Z, X) is invariant under F. Consequently, combining this with step (iv), we have

that

F (Br0(C0
h(Z, X)) ∩WPSAPω(Z, X)) ⊆ Br0(C0

h(Z, X)) ∩WPSAPω(Z, X).

Hence, we arrive at the following conclusion

F
(
Br0(C0

h(Z, X)) ∩WPSAPω(Z, X)
C0h(Z,X)

)
⊆ F (Br0(C0

h(Z, X)) ∩WPSAPω(Z, X))
C0h,(Z,X)

⊆ Br0(C0
h(Z, X)) ∩WPSAPω(Z, X)

C0h,(Z,X)

where B
C0h(Z,X)

denotes the closure of a set B in the space C0
h(Z, X). Thus, we can consider

the following application

F : Br0(C0
h(Z, X)) ∩WPSAPω(Z, X)

C0h(Z,X)
→ Br0(C0

h(Z, X)) ∩WPSAPω(Z, X)
C0h(Z,X)

By (i) − (iii), we have that F is completely continuous. Applying (iv) and the Leray-

Schauder Theorem (Theorem 1.4.10), F has a fixed point u which belongs to the space

Br0(C0
h(Z, X)) ∩WPSAPω(Z, X)

C0h(Z,X)
.

(vii) Finally, we prove that u (the fixed point of F given in (vi)) is discrete weighted pseudo S-

asymptotically ω−periodic. Indeed, let (um)m be a sequence inBr0(C0
h(Z, X))∩WPSAPω(Z, X)

such that um → u, as m → ∞ in the norm C0
h(Z, X). For ε > 0, let δ > 0 be the constant in

(B3), that is, there exist m0 ∈ Z+ such that ‖um − u‖h ≤ δ for all m ≥ m0. Note that for

m ≥ m0,

‖Fum − Fu‖∞ ≤ sup
n∈Z

n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k, um(k))− f(k.u(k))‖ ≤ ε,

which implies that (Fum)m converges to Fu = u uniformly in Z. Since Fum belongs to

WPSAPω(Z, X), we get that u ∈WPSAPω(Z, X).
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Theorem 3.2.12. Assume that f ∈WPSAPω(Z×X,X), ρ1, ρ2 ∈ V∞, (H2), (A1) hold, and satisfies

the following conditions:

(B5) There exists a nondecreasing and surjective function W : R+ → R+ such that

‖f(k, h(k)u)− f(k, h(k)v‖ ≤ W(‖u− v‖) for all k ∈ Z, u, v ∈ X,

where h is given in Lemma 1.4.12.

(B6) lim inf
τ→∞

τ

‖S‖1(W(τ) + supk∈Z ‖f(k, 0)‖)
> 1.

Then (3.0.1) has a mild solution u ∈WPSAPω(Z, X).

Proof. Consider the operator F : C0
h(Z, X)→ C0

h(Z, X) defined by

(Fu)(n) :=

n−1∑
k=−∞

S(n− 1− k)f(k, u(k)), n ∈ Z.

For u, v ∈ C0
h(Z, X), we have the following estimates:

‖Fu(n)‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖‖f(k, u(k))‖ ≤ ‖S‖1
(
W(‖u‖h) + sup

k∈Z
‖f(k, 0)‖

)
, (3.2.6)

and ‖f(k, u)− f(k, v)‖ ≤ W
(
‖u−v‖
h(k)

)
≤ W(‖u− v‖), hence F is well defined and f ∈ UC(Z×X,X).

For u, v ∈ C0
h(Z, X), we have

‖(Fu(n))− (Fv(n))‖ ≤
n−1∑
k=−∞

‖S(n− 1− k)‖W
(‖u(k)− v(k)‖

h(k)

)
≤ ‖S‖1W(‖u− v‖h),

which implies that F is continuous. Next, let V = F (Br(C0
h(Z, X))) and v = Fu for u ∈ Br(C0

h(Z, X)).

For ε > 0, we choose l ∈ Z+ such that

∞∑
k=l

‖S(k)‖
(
W(r) + sup

k∈Z
‖f(k, 0)‖

)
≤ ε. Let u ∈ Br(C0

h(Z, X)),

we have

1

h(n)
‖
∞∑
k=l

S(k)f(n− 1− k, u(n− 1− k))‖ ≤
∞∑
k=l

‖S(k)‖
(
W(r) + sup

k∈Z
‖f(k, 0)‖

)
≤ ε. (3.2.7)

From (3.2.3),(3.2.7) and (A1), we have that Ωn(V ) is relatively compact in X for all n ∈ Z. For

u ∈ Br(C0
h(Z, X)), by (3.2.6), we have

‖v(n)‖
h(n)

≤ ‖S‖1
h(n)

(
W(r) + sup

k∈Z
‖f(k, 0)‖

)
.
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Hence lim
|n|→∞

‖v(n)‖
h(n)

= 0 uniformly in u ∈ Br(C0
h(Z, X)). By Lemma 1.4.12, F is completely contin-

uous.

Finally, we prove the boundedness of the set defined in (3.2.5). If u ∈ Br(C0
h(Z, X)) is a solution of

u = λFu for 0 < λ < 1, then by (3.2.6),

‖u‖h
‖S‖1(W(‖u‖h) + sup

k∈Z
‖f(k, 0)‖)

≤ 1.

From (B6), we conclude that the set (3.2.5) is bounded. Similar as the proof of Theorem 3.2.11,

(3.2.1) has a mild solution u ∈WPSAPω(Z, X) by Theorem 1.4.10.

3.3 An Example

Define a(n) = 1
a (1− 1

(1+a)n+1 ), and b(n) = 1− n−1
2n+2 . Then one can verify that a(n) =

∫∞
0
ρn(t)k(t)dt,

and b(n) =
∫∞

0
ρn(t)g(t)dt, where k(t) =

∫ t
0
e−asds, and g(t) = 1 − e−t(t + 1) in a straightforward

way. Denote a1(t) = e−at, t ≥ 0, then a1 ∈ L1(R+), a1(t) ≥ 0, and −a′1(t) ≥ 0, for all t > 0,

nonincreasing and convex, so a1 is 3-monotone. Thus a1(t) is 2- regular and of positive type by [109,

Proposition 3.3]. It is easy to see that k(t) is of positive type and by the remarks following [109,

Definition 3.3] it follows that k(t) is 2-regular too.

Clearly g(0) = 0, and g ∈W 1,1(R+). Note that

k̂(λ) =
a0

λ
+
â1(λ)

λ
.

By [109, page 266] 1

λk̂(λ)
is locally analytic at λ = 0. Thus k(t) satisfies the hypotheses of Theorem

3.1.7. Therefore, A generates a summable discrete resolvent family {R(n)}n∈N0
, with a(n) = 1

a (1−
1

(1+a)n+1 ), and b(n) = 1− n−1
2n+2 , such that ‖R(n)‖ ≤M,M > 0, for all n ∈ N. We set X = L2([0, 1]),

and we consider the second order differential operator Az(ξ) = ∂2
ξξz(ξ) with domain D(A) = {z ∈

H2[0, 1] : z(0) = z(1) = 0}. It is well known that A generates a bounded analytic semigroup

on L2[0, 1]. (See [55, Example 4.8]). Let us consider the following differential-difference Volterra

equation on X = L2([0, 1]),

u(n+1, x) =

n∑
k=−∞

a(n−k)∂2
xxu(k+1, x)+

n∑
k=−∞

b(n−k)f(k, u(k, x)), n ∈ Z, x ∈ [0, 1], (3.3.1)
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where f(k, u) = sinu
ek2K

, with K > M. Consider h(n) = en
2

, then h(n) ≥ 1 for all n ∈ Z and

lim
|n|→∞

h(n) =∞. On the other hand,

‖f(k, h(k)u)− f(k, h(k)v)‖ =‖ sin(ek
2

u)− sin(ek
2

v)

Kek2
‖ ≤ ‖u− v‖

K
.

Therefore, (H2), (F1) hold and Lf‖R‖1 < 1, with Lf = 1/K. Thus by Theorem 3.2.2 there is a

unique mild solution u(n) of (3.3.1) such that lim
|n|→∞

‖u(n)‖
h(n)

= 0.



Chapter 4

Analytical properties of nonlocal

discrete operators: Convexity.

In this chapter, we study the connection between positivity, monotonicity and convexity of sequences

and the sign of the discrete version of the Riemman-Liouville fractional difference operator proposed

by Lizama in [94], (
∆αf

)
(n) := ∆N

[ n∑
j=0

kN−α(n− j)f(j)

]
, (4.0.1)

where N − 1 < α < N , N ∈ N.

We extend the results obtained in [65] to an entire region that covers sequential orders in two

parameters, exploring limit cases and providing examples that demonstrate the sharpness of the

results. Furthemore, applying the Transference Principle, we transfer all the results to the operator

(0.0.3) defined by Atici and Eloe in [2, 13, 15, 16].

67
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4.1 Properties of the operator of fractional difference ∆α

In this section we collect some important new properties of the higher order differences ∆l, for l ∈ N

and of the α-th fractional difference operator ∆α, for α > 0. These results generalize [65, Proposition

2.9] and [65, Theorems 5.7, 6.11, 6.16, 6.21, 7.8]. We begin with the following result.

Proposition 4.1.1. For any a, b ∈ s(N0;R) and l ∈ N we have

∆l(a ∗ b)(n) = (∆la ∗ b)(n) +

l∑
j=1

j−1∑
i=0

(
l

j

)
(−1)l−ja(i)b(n+ j − i).

Proof. Note that, by Remark 1.2.1 and Lemma 1.2.5 we get for l ∈ N

(∆la ∗ b)(n) =

n∑
i=0

b(i)∆la(n− i) =

n∑
i=0

b(i)

l∑
j=0

(
l

j

)
(−1)l−ja(n+ j − i)

=

n∑
i=0

l∑
j=0

(
l

j

)
(−1)l−ja(n+ j − i)b(i) =

l∑
j=0

(
l

j

)
(−1)l−j

n∑
i=0

τja(n− i)b(i)

=

l∑
j=0

(
l

j

)
(−1)l−j(τja ∗ b)(n), n ∈ N0.

Thus, we have that for n ∈ N0,

∆l(a ∗ b)(n) =

l∑
j=0

(
l

j

)
(−1)l−j(a ∗ b)(n+ j) =

l∑
j=1

(
l

j

)
(−1)l−jτj(a ∗ b)(n) +

(
l

0

)
(−1)l−0(a ∗ b)(n)

=

l∑
j=1

(
l

j

)
(−1)l−j [(τja ∗ b)(n) +

j−1∑
i=0

a(i)τjb(n− i)] + (−1)l(a ∗ b)(n)

=

l∑
j=1

(
l

j

)
(−1)l−j(τja ∗ b)(n) + (−1)l(a ∗ b)(n) +

l∑
j=1

(
l

j

)
(−1)l−j

j−1∑
i=0

a(i)τjb(n− i)

=

l∑
j=0

(
l

j

)
(−1)l−j(τja ∗ b)(n) +

l∑
j=1

j−1∑
i=0

(
l

j

)
(−1)l−ja(i)b(n− i+ j)

= (∆la ∗ b)(n) +

l∑
j=1

j−1∑
i=0

(
l

j

)
(−1)l−ja(i)b(n+ j − i).

which proves the result.
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Remark 4.1.2. In particular, for l− 1 < α < l, l ∈ N, a(n) := u(n) and b(n) := kl−α(n) we have the

following identity

∆αu(n) = (kl−α ∗∆lu)(n) +

l∑
j=1

j−1∑
i=0

(
l

j

)
(−1)l−ju(i)kl−α(n+ j − i), n ∈ N0.

Concerning the composition of two operators, we prove the following result.

Proposition 4.1.3. The following properties hold:

(i) For any α > 0 and u ∈ s(N0;R) we have

∆ ◦∆αu(n) = ∆α+1u(n),

where m− 1 ≤ α ≤ m, m ∈ N.

(ii) For any α > 0, l ∈ N0 and u ∈ s(N0;R) we have

∆l ◦∆αu(n) = ∆α+lu(n),

where m− 1 ≤ α ≤ m, m ∈ N.

(iii) For any α > 0 and u ∈ s(N0;R) we have

∆α ◦∆u(n) = ∆α+1u(n)−∆mkm−α(n+ 1)u(0),

where m− 1 ≤ α ≤ m, m ∈ N.

(iv) For any α > 0, l ∈ N and u ∈ s(N0;R) we have

∆α ◦∆lu(n) = ∆α+lu(n)−
l−1∑
j=0

∆m+jkm−α(n+ 1)∆l−1−ju(0),

where m− 1 ≤ α ≤ m, m ∈ N.

(v) For any α, β > 0 and u ∈ s(N0;R) we have

∆β ◦∆αu(n) = ∆α+βu(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0),

where m− 1 ≤ β ≤ m, l − 1 < α ≤ l, m, l ∈ N, and m+ l − 1 < α+ β ≤ m+ l.
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(vi) For any α, β > 0 and u ∈ s(N0;R) we have

∆β ◦∆αu(n) = ∆α+βu(n+ 1)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0),

where m− 1 ≤ β ≤ m, l − 1 < α ≤ l, m, l ∈ N, and m+ l − 2 < α+ β ≤ m+ l − 1.

Proof. (i) The cases α = m and α = m − 1 are trivial. If m − 1 < α < m, then the proof is

immediate from the definition. Indeed,

∆ ◦∆αu(n) = ∆ ◦∆m(km−α ∗ u)(n) = ∆m+1(km+1−(α+1) ∗ u)(n) = ∆α+1u(n).

(ii) By proceeding by induction on l. For l = 0 is trivial and l = 1 is the previous case (i). For

l ∈ N0, we have ∆l ◦∆αu(n) = ∆α+lu(n), where m− 1 ≤ α ≤ m. Then, for l + 1 we obtain

∆l+1 ◦∆αu(n) = ∆ ◦ (∆l ◦∆αu)(n) = ∆ ◦ (∆α+lu)(n) = ∆α+l+1u(n).

(iii) If α = m, then km−α(n+1) = k0(n+1) = 0, hence we have the result. Note that, ∆mk(n+1) =

∆m1 = 0, where 1(n) ≡ 1, thus we get the case α = m− 1.

Suppose m− 1 < α < m. By Remark 1.2.1, Lemma 1.2.5 and the previous property, we obtain

∆α ◦∆u(n) =∆m(km−α ∗∆u)(n) = ∆m(km−α ∗ (τ1u− u))(n)

=∆m(km−α ∗ τ1u)(n)−∆m(km−α ∗ u)(n)

=

m∑
j=0

(
m

j

)
(−1)m−j(km−α ∗ τ1u)(n+ j)−∆m(km−α ∗ u)(n)

=

m∑
j=0

(
m

j

)
(−1)m−j [(km−α ∗ u)(n+ j + 1)− km−α(n+ j + 1)u(0)]−∆m(km−α ∗ u)(n)

=

m∑
j=0

(
m

j

)
(−1)m−j(km−α ∗ u)(n+ j + 1)−

m∑
j=0

(
m

j

)
(−1)m−jkm−α(n+ j + 1)u(0)

−∆m(km−α ∗ u)(n)

=∆m(km−α ∗ u)(n+ 1)−∆mkm−α(n+ 1)u(0)−∆m(km−α ∗ u)(n)

=∆ ◦∆m(km−α ∗ u)(n)−∆mkm−α(n+ 1)u(0)

=∆ ◦∆αu(n)−∆mkm−α(n+ 1)u(0)

=∆α+1u(n)−∆mkm−α(n+ 1)u(0).
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(iv) By induction on l. For l = 1 is the previous case (iii). For l ∈ N, we have

∆α ◦∆lu(n) = ∆α+lu(n)−
l−1∑
j=0

∆m+jkm−α(n+ 1)∆l−1−ju(0),

where m− 1 ≤ α ≤ m. Then, for l + 1 we obtain

∆α ◦∆l+1u(n) = ∆α ◦∆l(∆u)(n) = ∆α+l(∆u)(n)−
l−1∑
j=0

∆m+jkm−α(n+ 1)∆l−1−j(∆u)(0)

= ∆l(∆α ◦∆u)(n)−
l−1∑
j=0

∆m+jkm−α(n+ 1)∆l−ju(0)

= ∆l[(∆α+1u)(n)−∆mkm−α(n+ 1)u(0)]−
l−1∑
j=0

∆m+jkm−α(n+ 1)∆l−ju(0)

= ∆α+1+lu(n)−∆m+lkm−α(n+ 1)u(0)−
l−1∑
j=0

∆m+jkm−α(n+ 1)∆l−ju(0)

= ∆α+1+lu(n)−
l∑

j=0

∆m+jkm−α(n+ 1)∆l−ju(0).

(v) First we show the property when m− 1 < β < m, l− 1 < α < l and m+ l− 1 < α+β < m+ l.

By definition and using the semigroup property of kα, namely: kα◦kβ = kα+β for any α, β > 0,

as well as the properties (ii) and (iv), we have for n ∈ N0,

∆β ◦∆αu(n) = ∆β ◦∆l(kl−α ∗ u)(n)

= ∆β+l(kl−α ∗ u)(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0)

= ∆l ◦∆β(kl−α ∗ u)(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0)

= ∆l ◦∆m(km−β ∗ kl−α ∗ u)(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0)

= ∆m+l(km+l−(α+β) ∗ u)(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0)

= ∆α+βu(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0).

Thus, we obtain the first part of the (v). We observe that the following identity is true in
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general for m− 1 < β < m and l − 1 < α < l:

∆β ◦∆αu(n) = ∆m+l(km+l−(α+β) ∗u)(n)−
l−1∑
j=0

∆m+jkm−β(n+1)∆l−1−j(kl−α ∗u)(0). (4.1.1)

Now, we study the borderline cases. If β = m, by property (ii), we get ∆m ◦ ∆αu(n) =

∆α+mu(n) for any l − 1 ≤ α ≤ l. Furthermore, km−m(n+ 1) = k0(n+ 1) = 0, thus

∆m ◦∆αu(n) = ∆α+mu(n)−
l−1∑
j=0

∆m+jkm−m(n+ 1)∆l−1−j(kl−α ∗ u)(0) = ∆α+mu(n).

If β = m− 1, applying again property (ii), we obtain ∆m−1 ◦∆αu(n) = ∆α+m−1u(n) for any

l− 1 ≤ α ≤ l. Also, ∆m+jkm−(m−1)(n+ 1) = ∆m+jk(n+ 1) = ∆m+j1 = 0, thus we obtain the

result analogously to the proof for β = m.

If α = l, by property (iv), we have ∆β◦∆lu(n) = ∆β+lu(n)−
∑l−1
j=0 ∆m+jkm−β(n+1)∆l−1−ju(0),

for any m − 1 ≤ β ≤ m. Moreover, ∆l−1−ju(0) = ∆l−1−j(k0 ∗ u)(0) = ∆l−1−j(kl−α ∗ u)(0),

that shows the result. Moreover, since it is valid for the points α = l and β = m, we deduce

that in particular it is true for α+ β = m+ l.

(vi) We proceed analogously to the proof of property (v). We have, by (4.1.1), for m− 1 ≤ β ≤ m

and l − 1 < α ≤ l,

∆β ◦∆αu(n) = ∆m+l(km+l−(α+β) ∗ u)(n)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0).

Suppose m+ l − 2 < α+ β < m+ l − 1. Using the fact that ∆(k ∗ u)(n) = u(n+ 1), we have

∆m+l(km+l−(α+β) ∗ u)(n) = ∆m+l−1 ◦∆(k ∗ km+l−1−(α+β) ∗ u)(n)

= ∆m+l−1(km+l−1−(α+β) ∗ u)(n+ 1)

= ∆α+βu(n+ 1), n ∈ N0.

Therefore,

∆β ◦∆αu(n) = ∆α+βu(n+ 1)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0).

Finally, if α+ β = m+ l − 1, then m− 1 < β = m+ l − 1− α < m and l − 1 < α < l. Hence,

by (4.1.1), we have for all n ∈ N0

∆m+l(km+l−(α+β) ∗ u)(n) = ∆m+l(km+l−(m+l−1) ∗ u)(n) = ∆m+l−1u(n+ 1) = ∆α+βu(n+ 1).
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This finishes the proof.

Remark 4.1.4. Examining the previous proof, we deduce that for any α, β > 0 with m− 1 ≤ β ≤ m,

l − 1 < α ≤ l, m, l ∈ N, and u ∈ s(N0;R), if α+ β = m+ l − 1, then

∆β ◦∆αu(n) = ∆α+βu(n+ 1)−
l−1∑
j=0

∆m+jkm−β(n+ 1)∆l−1−j(kl−α ∗ u)(0), n ∈ N0.

4.2 Positivity, α-monotonicity and α-convexity

In this section we recall the definitions of a α-monotone and α-convex sequence, and we provide

a geometrical interpretation. We summarize, and in some cases improve, several theorems of [65,

Sections 5 and 6]. Moreover, we give new examples showing the necessity of imposed conditions.

We begin recalling the following definition.

Definition 4.2.1. [17, Definitions 2.3 and 2.4] Let α ≥ 0 be given. We say that a sequence

u ∈ s(N0,R) is α-increasing (respectively, decreasing) if

u(n+ 1) ≥ αu(n) (4.2.1)

(respectively, u(n+ 1) ≤ αu(n)) for all N0.

Remark 4.2.2. Iterating (4.2.1), we observe that each α-monotone increasing sequence must satisfy:

u(n) ≥ αnu(0), n ∈ N0.

We conclude that if a sequence u is α−monotone increasing then their graph lies above the graph

of the sequence Mα(n) := αnu(0). In Figure 4.1, assuming u(0) = 1, we have drawn the behavior of

the sequence Mα(n) for different values of α. In particular, observe that the graph of each monotone

increasing sequence lies above the graph of the constant sequence M1 ≡ 1. Note that an α-monotone

increasing sequence could be decreasing for α < 1.
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Figure 4.1: α- monotone increasing sequences

We now recall the following theorem that give us conditions to ensure positivity and α-monotonicity

in the closed interval 0 ≤ α ≤ 1.

Theorem 4.2.3. [65, Theorem 5.4] Let 0 ≤ α ≤ 1 and u ∈ s(N0;R) be a given sequence. Suppose

that

(i) (∆αu)(n) ≥ 0 for all n ∈ N0,

(ii) u(0) ≥ 0.

Then u is positive and α-increasing on N0.

The following example shows that the condition u(0) ≥ 0 is necessary for positivity.

Example 4.2.4. Let γ < α < 1 and define u(n) := −γn, 0 < γ < 1, n ∈ N0. Then

• (∆αu)(n) ≥ 0
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• u is negative.

Indeed, by part (i) in Proposition 4.1.1 with a := k1−α, b := u, l = 1 and part (i) in Lemma 1.2.4,

we obtain the identities

(∆αu)(n) = (∆k1−α ∗ u)(n) + u(n+ 1) = −α
n∑
j=0

k1−α(n− j)
n− j + 1

u(j) + u(n+ 1), n ∈ N0.

Hence,

(∆αu)(n) = −α
n−1∑
j=0

k1−α(n− j)
n− j + 1

u(j) + (−α)u(n) + u(n+ 1)

= α

n−1∑
j=0

k1−α(n− j)
n− j + 1

γj + γn(α− γ) ≥ 0,

proving the claim.

Remark 4.2.5. Actually, a converse for Theorem 4.2.3 holds: If u(0) ≥ 0 and u is increasing (hence

positive), then (∆αu)(n) ≥ 0 for all n ∈ N0. This follows immediately from Remark 4.1.2 with l = 1

which asserts

∆αu(n) = (k1−α ∗∆u)(n) + k1−α(n+ 1)u(0), n ∈ N0, 0 < α < 1.

The following Theorem was proved in [65, Corollary 5.6] for the open sector {(ν, µ) : 0 < ν <

1, µ = 0}. We extend this result to the borderline cases.

Theorem 4.2.6. [65, Corollary 5.6] Let 0 ≤ ν ≤ 1, a ∈ R and v ∈ s(Na;R) be given a sequence.

Suppose that

(i) ∆ν
av(t) ≥ 0, for all t ∈ Na+1−ν ;

(ii) v(a) ≥ 0.

Then v is positive and ν-increasing on Na.
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Proof. In case ν = 0, by hypothesis (i), we have ∆0
av(t) = v(t) ≥ 0 on Na+1. Moreover, v(a) ≥ 0

implies that v is positive. For 0 < ν ≤ 1, the proof follows from [65, Corollary 5.6] and the

transference principle (Theorem 1.2.6).

In the following theorem we show sufficient conditions to deduce the positivity and (α+β)−monotonicity

on N0 of a real sequence u in the region R := {(α, β) ∈ [0, 1]× [0, 1] : 0 ≤ α+β ≤ 1}. We remark that

it was initially proved in [65, Theorem 5.8] for the open sector {(α, β) ∈ (0, 1)×[0, 1) : 0 < α+β < 1}.

We extend slightly this result to include the borders.

Theorem 4.2.7. Let (α, β) ∈ R and u ∈ s(N0;R) be a given sequence. Assume that

(i)
(
∆β ◦∆αu

)
(n) ≥ β

2
(1− β)u(0), for all n ∈ N0;

(ii) u(1) ≥ (α+ β)u(0);

(iii) u(0) ≥ 0.

Then u is positive and (α+ β)-increasing on N0.

Proof. In case α+ β = 1, by Proposition 4.1.3 part (vi), we have the identity

(∆1−α ◦∆αu)(n) = ∆u(n+ 1)−∆kα(n+ 1)u(0),

and then the proof follows analogously to [65, Theorem 5.8]. We observe that even the case α = 0

is true by (i), because ∆β ◦ ∆0u(n) = ∆βu(n) ≥ 0, and the proof follows from Theorem 4.2.3. In

conclusion, Theorem 4.2.7 holds for (α, β) ∈ R.

The following example shows that the hypothesis (ii) in Theorem 4.2.7 is necessary in order to

conclude positivity.

Example 4.2.8. Define the sequence u : N0 → R by u(0) = 0 and u(n) = −2−n, n ∈ N. It is clear

that u(0) = 0 and negative. For 1
2 < α + β < 1, note that by Proposition 4.1.3, part (vi), with
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l = m = 1 we have the identity

(∆β ◦∆αu)(n) = (∆α+βu)(n+ 1)−∆k1−β(n+ 1)u(0) = (∆α+βu)(n+ 1),

where by Proposition 4.1.1 part (i) with a := k1−(α+β), b := u, l = 1 and Lemma 1.2.4 part (i), we

obtain

(∆α+βu)(n+ 1) = (∆k1−(α+β) ∗ u)(n+ 1) + u(n+ 2)

= −(α+ β)

n∑
j=0

k1−(α+β)(n+ 1− j)
n+ 2− j

u(j)− (α+ β)u(n+ 1) + u(n+ 2)

= −(α+ β)

n∑
j=0

k1−(α+β)(n+ 1− j)
n+ 2− j

u(j) + 2−(n+2) [2(α+ β)− 1] ≥ 0.

Therefore (∆β ◦∆αu)(n) ≥ 0 and thus (i) in Theorem 4.2.7 is verified. However, we have u(1) =

− 1
2 < 0 = (α+ β)u(0).

Applying the Transference Principle (Theorem 1.2.6), we can slightly improve the statement of

[65, Corollary 5.10].

Theorem 4.2.9. Let a ∈ R and v ∈ s(Na;R) be given. Suppose that (µ, ν) ∈ R and

(i)
(
∆ν

1+a−µ ◦∆µ
av
)
(t) ≥ 0, for all t ∈ Na+2−µ−ν ;

(ii) v(a+ 1) ≥ (µ+ ν)v(a);

(iii) v(a) ≥ 0.

Then v is positive and (µ+ ν)-increasing on Na.

Proof. Follows from application of the transference principle and Theorem 4.2.7.

We next recall the following notion introduced in [65].
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Definition 4.2.10. Let α ≥ 1. We say that a sequence u ∈ s(N0,R) is α-convex (respectively,

α-concave) if

u(n+ 2)− αu(n+ 1) + (α− 1)u(n) ≥ 0, n ∈ N0, (4.2.2)

(respectively ≤ 0).

Note that, when α = 2 we recover the geometrical notion of convexity for a sequence, and when

α = 1 the concept of monotonicity (increasing) on the set N. It is interesting to observe the following

counterpart of Remark 4.2.2, which is also new.

Remark 4.2.11. If u ∈ s(N0,R) is α-convex then for each α 6= 2

u(n) ≥
[

(α− 1)n − 1

α− 2

]
(u(1)− u(0)) + u(0), n ∈ N0,

and

u(n) ≥ n(u(1)− u(0)) + u(0), n ∈ N0,

in case α = 2. Indeed, we note that u is α-convex if and only if ∆u(n+ 1) ≥ (α− 1)∆u(n), n ∈ N0.

Iterating, we obtain

u(n+ 1) ≥ (α− 1)n(u(1)− u(0)) + u(n), n ∈ N0. (4.2.3)

Thus, iterating again we arrive at

u(n) ≥

n−1∑
j=0

(α− 1)j

 (u(1)− u(0)) + u(0),

and hence the conclusion follows.

Remark 4.2.12. If a sequence u is α−convex, then their graph lies above the graph of the sequence

Cα(n) :=
[

1−(α−1)n

2−α

]
(u(1)− u(0)) + u(0) for α 6= 2 and above of the graph of the sequence C2(n) =

n(u(1) − u(0)) + u(0) in case α = 2. Assuming u(0) = 0, u(1) = 1, the behavior of the sequence

Cα(n) for different values of α is drawn in Figure 4.2. Since a sequence u is 2-convex iff u is convex,

we observe that the graph of each convex sequence lies above the graph of the sequence C2(n) = n.

Also, we observe that an α-convex sequence could be geometrically concave for 1 < α < 2.
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Figure 4.2: α-convex with u(0) = 0 and u(1) = 1

Conditions to obtain positivity, monotonicity and α−convexity in the closed interval 1 ≤ α ≤ 2

are given in the following theorem.

Theorem 4.2.13. [65, Theorem 6.3] Let 1 ≤ α ≤ 2 and u ∈ s(N0;R) be given and assume that

(i)
(
∆αu

)
(n) ≥ 0, for all n ∈ N0;

(ii) u(1) ≥ αu(0);

(iii) u(0) ≥ 0.

Then u is positive, increasing and α-convex on N0.

Remark 4.2.14. A partial converse of the can be established by taking into account the following

identity, valid for 1 ≤ α < 2, and that follows from Remark 4.1.2 with l = 2 :

∆αu(n) = (∆2k2−α ∗ u)(n) + u(n+ 2)− αu(n+ 1), n ∈ N0,

which proves that if u(0) ≥ 0 and u is α-increasing on N0 (and hence, positive) then ∆αu(n) ≥ 0.
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Remark 4.2.15. A second partial converse of Theorem 4.2.13 can be established using now the

following identity, that again follows from Remark 4.1.2 with l = 2 :

∆αu(n) = (k2−α ∗∆2u)(n) + k2−α(n+ 1)(u(1)− u(0)) + k2−α(n+ 2)u(0), n ∈ N0.

It proves that if u(0) ≥ 0, u(1) ≥ αu(0) (and therefore u(1) ≥ αu(0) ≥ u(0)) and u is convex on N0

(i.e. 2-convex) then ∆αu(n) ≥ 0.

The following example shows that the condition u(1) ≥ αu(0) in Theorem 4.2.13 is necessary for

a sequence to be monotone increasing.

Example 4.2.16. Define the sequence u : N0 → R by u(n) = γn, 0 < γ < 1. Assume that
1+2γ+

√
1+4γ−4γ2

2 ≤ α < 2. The following statements are true.

• (∆αu)(n) ≥ 0, for all n ∈ N0;

• u(0) ≥ 0.

• u is positive and decreasing.

Indeed, it is clear that u is such that u(0) ≥ 0 and is positive and decreasing. Next, observe that by

Proposition 4.1.1 part (i), with a := k2−α, b := u, l = 2, we obtain for n ∈ N0 :

∆αu(n) = (∆2k2−α ∗ u)(n) +

2∑
j=1

j−1∑
i=0

(
2

j

)
(−1)2−jk2−α(i)u(n+ j − i)

= (∆2k2−α ∗ u)(n) + u(n+ 2)− αu(n+ 1)

=

n−1∑
j=0

∆2k2−α(n− j)u(j) + ∆2k2−α(0)u(n) + u(n+ 2)− αu(n+ 1)

=

n−1∑
j=0

∆2k2−α(n− j)γj +
α(α− 1)

2
γn + γn+2 − αγn+1.

By Lemma 1.2.4 part (ii), we have that ∆2k2−α(n) ≥ 0 for all n ∈ N0. Thus,

∆αu(n) ≥α(α− 1)

2
γn + γn+2 − αγn+1 =

γn

2
[α2 − α(1 + 2γ) + 2γ2] ≥ 0,
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because
1+2γ+

√
1+4γ−4γ2

2 ≤ α < 2. This proves the claim. On the other hand, we also have u(1) =

γ < α = αu(0). It shows that the condition u(1) ≥ αu(0) in Theorem 4.2.13 is necessary.

Observe that as γ goes from 0 to 1 the function
1+2γ+

√
1+4γ−4γ2

2 goes from 1 to 2, respectively.

We give a slight improvement to the borders of the following theorem.

Theorem 4.2.17. [65, Corollary 6.9] Let 1 ≤ ν ≤ 2, a ∈ R and v ∈ s(Na;R) be given a sequence.

Suppose that

(i) ∆ν
av(t) ≥ 0, for all t ∈ Na+2−ν ;

(ii) v(a+ 1) ≥ νv(a);

(iii) v(a) ≥ 0.

Then v is positive, increasing and ν-convex on Na.

Proof. For ν = 1, we obtain ∆av(t) = v(t+ 1)− v(t) ≥ 0, i.e., v is monotone increasing and positive,

using hypotheses (ii) and (iii). For ν ∈ (1, 2], the conclusion follows from [65, Corollary 6.9].

Remark 4.2.18. Let a ∈ R, and v(n) := τ−au(n), n ∈ N0 where u(n) = γn, 0 < γ < 1. Assume that
1+2γ+

√
1+4γ−4γ2

2 ≤ α < 2. By Theorem 1.2.6 and Example 4.2.22, we have

∆α
av(t) = (τa+2−α ◦∆α

av)(n) = (τa+2−α ◦∆α
a ◦ τ−au)(n) = ∆αu(n) ≥ 0, t := n+ a+ 2− α.

Therefore, we conclude that ∆α
av(t) ≥ 0 for all t ∈ Na+2−α, and v(a) = u(0) ≥ 0. Also, v is

decreasing if u is decreasing. Moreover v(a + 1) = u(1) = γ < 1 < α = αu(0) = αv(a). It follows

that the condition v(a+ 1) ≥ αv(a) in Theorem 4.2.17 is necessary in order to have the conclusion.

Note that this example generalizes [56, Example 2.4] where the authors proved that for v(t) = 2−t

and 2+
√

2
2 < α < 2 they have ∆α

0 v(t) ≥ 0 for all t ∈ N2−α.
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In the following theorem we summarize, improve and extend [65, Theorems 6.12, 6.17, 6.22].

Indeed, compared with [65], we have included the borders of the regions and added a new condition,

namely (∆α+βu)(0) ≥ 0, in order to ensure positivity, monotonicity and (α + β)−convexity on N0

of a real valued sequence u in the region M := {(α, β) ∈ [0, 2] × [0, 2] : 1 ≤ α + β ≤ 2}. We will

consider the following subsets of M (see also Figure 4.3):

M1 := {(α, β) ∈ [0, 2]× [0, 2] : 0 ≤ α ≤ 1, 1 ≤ β ≤ 2, 1 ≤ α+ β ≤ 2},

M2 := {(α, β) ∈ [0, 2]× [0, 2] : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 1 ≤ α+ β ≤ 2},

M3 := {(α, β) ∈ [0, 2]× [0, 2] : 1 ≤ α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α+ β ≤ 2}.

Theorem 4.2.19. Suppose that u ∈ s(N0;R), and

(i)

(∆β ◦∆αu)(n) ≥


0 if (α, β) ∈M1,

β
2 (1− β)u(0) if (α, β) ∈M2,

β
2 (1− β)[u(1)− (α− 1)u(0)] if (α, β) ∈M3;

(4.2.4)

(ii) u(2) ≥ (α+ β)u(1)− (α+β)(α+β−1)
2 u(0);

(iii) u(1) ≥ (α+ β)u(0);

(iv) u(0) ≥ 0.

Then u is positive, increasing and (α+ β)-convex on N0.

Proof. We divide the proof in the following cases:

M1: (α, β) ∈M1. We have that the case α = 0 is true by (i), because ∆β ◦∆0u(n) = ∆βu(n) ≥ 0.

Hence we can apply Theorem 4.2.13 for β ∈ [1, 2].

In other case, by Proposition 4.1.3 part (vi), with l = 1, m = 2, we obtain

(∆α+βu)(n+ 1) = (∆β ◦∆αu)(n) + (∆2k2−β)(n+ 1)u(0). (4.2.5)
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Moreover, by Lemma 1.2.4 part (ii), we have (∆2k2−β)(n+1) ≥ 0. Thus, by (iii), (∆2k2−β)(n+

1)u(0) ≥ 0. Then, by (i), we have that

(∆α+βu)(n) ≥ 0, for all n ∈ N.

Therefore by hypotheses (ii), (iii), (iv) and Theorem 4.2.13, the conclusion follows.

M2: (α, β) ∈M2. Note that kγ(n) ≥ 0 and is decreasing for any 0 < γ < 1 fixed. Then we have

∆kγ(n+ 1) =
γ − 1

n+ 2
kγ(n+ 1) ≥ γ − 1

2
kγ(1) =

γ − 1

2
γ. (4.2.6)

Since 0 ≤ 1− β ≤ 1, by hypothesis (iv) and (4.2.6), we obtain

∆k1−β(n+ 1)u(0) ≥ −β
2

(1− β)u(0). (4.2.7)

If α + β = 1 then, by Remark 4.1.4 with l = m = 1, (4.2.7) and hypothesis (i), we get

∆u(n+ 1) = ∆β ◦∆αu(n) + ∆k1−β(n+ 1)u(0) ≥ 0, i.e., u is 1-convex = monotone increasing

on n ∈ N. But, by hypothesis (iii), it is also on n ∈ N0.

In other case, by Proposition 4.1.3 part (v), with l = m = 1, we obtain

(∆α+βu)(n) = (∆β ◦∆αu)(n) + (∆k1−β)(n+ 1)u(0), n ∈ N0. (4.2.8)

Therefore, by hypothesis (i) and (4.2.6), we have (∆α+βu)(n) ≥ (∆β ◦ ∆αu)(n) − β
2 (1 −

β)u(0) ≥ 0. Then, (∆α+βu)(n) ≥ 0 on N0. Using hypotheses (iii), (iv), and Theorem 4.2.13,

the conclusion follows.

M3: (α, β) ∈ M3. If α = 1, by Proposition 4.1.3 part (iii), with l = 2, m = 1, hypothesis (i)

and (4.2.6), we have ∆β+1u(n) = ∆β ◦∆u(n) + ∆k1−β(n + 1)u(0) ≥ 0. Hence we can apply

Theorem 4.2.13 for β + 1 ∈ [1, 2].

In other case, by Proposition 4.1.3 part (vi), with l = 2, m = 1, we have

(∆α+βu)(n+ 1) = (∆β ◦∆αu)(n) + (∆2k1−β)(n+ 1)u(0) + (∆k1−β)(n+ 1)∆α−1u(0). (4.2.9)

Since ∆2k1−β(n+1) ≥ 0 and ∆k1−β(n+1) ≥ −β2 (1−β), by Lemma 1.2.4 part (ii) and (4.2.6)

respectively. Then by the above identity and the hypotheses (i) and (iv), we obtain

(
∆α+βu

)
(n+ 1) ≥

(
∆β ◦∆αu

)
(n) + ∆k1−β(n+ 1)∆α−1u(0),
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≥
(
∆β ◦∆αu

)
(n)− β

2
(1− β)∆α−1u(0).

Hence (∆α+βu)(n) ≥ 0 on N. Using the hypotheses and Theorem 4.2.13 we obtain the conclu-

sion.

Remark 4.2.20. In Theorem 4.2.19, for 1 < α < 2, we have ∆α−1u(0) = u(1) − (α − 1)u(0).

Analogously, hypothesis (ii) can be rewritten only in terms of the positivity of (∆α+βu)(0) because

of the following identity

(α+ β)(α+ β − 1)

2
u(0)− (α+ β)u(1) + u(2) = (∆α+βu)(0).

Remark 4.2.21. Note that if β = 1 the right hand side in (4.2.4) is exactly the same in the regions

M1 and M2, and if α = 1 then, again, the right hand side in (4.2.4) of Theorem 4.2.19 is the same

in the regions M2 and M3. This means that the given conditions allows a continuous transition

between a region and other.

The following example shows that the condition u(1) ≥ (α+β)u(0) in Theorem 4.2.19 is necessary

for a sequence to be positive and monotone increasing.

Example 4.2.22. Define the sequence u : N0 → R by u(n) = γn − 1, 0 < γ < 1. Assume that

γ + 1 < α+ β < 2. The following statements are true.

(i) (∆β ◦∆αu)(n) ≥


0 if (α, β) ∈M1.

0 if (α, β) ∈M2.

β
2 (1− β)u(1) if (α, β) ∈M3.

(ii) u(2) ≥ (α+ β)u(1)

(iii) u(0) = 0.

(iv) u is negative and decreasing.
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Indeed, it is clear that u is such that u(0) = 0 and is negative and decreasing. Also, u(2) =

(γ+ 1)(γ− 1) ≥ (α+β)(γ− 1) = (α+β)u(1). This proves (ii), (iii) and (iv). We will prove that (i)

holds. In fact, observe that by Proposition 4.1.1 part (ii) with a := u, b := k2−α−β , l1 = l2 = 1, we

obtain for n ∈ N0

∆α+βu(n) = (∆u ∗∆k2−α−β)(n)− 2u(0)k2−α−β(n+ 1) + u(0)k2−α−β(n+ 2)

+ u(1)k2−α−β(n+ 1) + ∆u(n+ 1)k2−α−β(0)−∆u(0)k2−α−β(n+ 1)

= (∆u ∗∆k2−α−β)(n)− 2u(0)k2−α−β(n+ 1) + u(0)k2−α−β(n+ 2)

+ u(1)k2−α−β(n+ 1) + ∆u(n+ 1)− [u(1)− u(0)]k2−α−β(n+ 1)

=

n∑
j=0

∆u(n− j)∆k2−α−β(j) + ∆u(n+ 1) + ∆k2−α−β(n+ 1)u(0)

=

n∑
j=1

∆u(n− j)∆k2−α−β(j) + (1− α− β)∆u(n)

+ ∆u(n+ 1) + ∆k2−α−β(n+ 1)u(0).

By Lemma 1.2.4 part (i), we have that ∆k2−α−β(n) ≤ 0 for all n ∈ N0. Thus,

∆α+βu(n) ≥ (1− α− β)∆u(n) + ∆u(n+ 1) = (1− α− β)γn(γ − 1) + γn+1(γ − 1)

= γn(γ − 1)[(1− α− β) + γ] ≥ 0,
(4.2.10)

because γ+1 < α+β < 2. On the other hand, by the identities (4.2.5), (4.2.8), (4.2.9) and u(0) = 0,

we have

(∆β ◦∆αu)(n) =


∆α+βu(n+ 1) if (α, β) ∈M1.

∆α+βu(n) if (α, β) ∈M2.

∆α+βu(n+ 1)−∆k1−β(n+ 1)u(1) if (α, β) ∈M3.

Moreover, by (4.2.6), we have the inequality −∆k1−β(n+1)u(1) ≥ β
2 (1−β)u(1). This, together with

(4.2.10), proves (i). On the other hand, we also have u(1) = γ − 1 < 0 = (α+ β)u(0). It shows that

the condition u(1) ≥ (α+ β)u(0) in Theorem 4.2.19 is necessary.

In the next theorem, the result in M1 refines [65, Corollary 6.24]. The corresponding result to

M2 is an improvement of [65, Corollary 6.14] with an extra assumption that was not previously



CHAPTER 4. ANALYTICAL PROPERTIES OF NONLOCAL DISCRETE OPERATORS. 86

considered. Finally, the result in M3 is a substantial improvement of [65, Corollary 6.19]. We note

that a careful study of only monotonicity in the sectorsM1,M3 andM2 was carry out by Goodrich

(see [64] and [63], respectively). We remark that further advances in the sector M2 via homotopy

methods have recently appeared [66].

Theorem 4.2.23. Let a ∈ R and v ∈ s(Na;R) be given. Suppose that,

(i) 
(∆ν

a+1−µ ◦∆µ
av)(t) ≥ 0, t ∈ Na+3−µ−ν if (µ, ν) ∈M1,

(∆ν
a+1−µ ◦∆µ

av)(t) ≥ ν
2 (1− ν)v(a), t ∈ Na+2−µ−ν if (µ, ν) ∈M2,

(∆ν
a+2−µ ◦∆µ

av)(t) ≥ ν
2 (1− ν)[v(a+ 1)− (µ− 1)v(a)], t ∈ Na+3−µ−ν if (µ, ν) ∈M3.

(ii) v(a+ 2) ≥ (ν + µ)v(a+ 1)− (ν+µ)(ν+µ−1)
2 v(a);

(iii) v(a+ 1) ≥ (ν + µ)v(a);

(iv) v(a) ≥ 0.

Then v is positive, monotone increasing and (ν + µ)-convex on Na.

Proof. For (µ, ν) = (0, 1) ∈ M1 we have (∆1
a+1 ◦ ∆0

av)(t) = ∆a+1v(t) ≥ 0 and by hypotheses

we arrive at the conclusion. For (µ, ν) = (0, 1) ∈ M2 the reasoning is analogous. For (µ, ν) =

(1, 0) ∈ M2 we have (∆0
a ◦∆1

av)(t) = ∆av(t) ≥ 0 and hence v is positive and monotone increasing.

For (µ, ν) = (1, 0) ∈ M3 we have (∆0
a+1 ◦ ∆1

av)(t) = ∆a+1v(t) ≥ 0 and hence by hypotheses we

obtain the conclusion. In other cases, the proof follows from the transference principle and Theorem

4.2.19.

4.3 Monotonicity and convexity

In this section we improve several results from [65, Section 7] and show, in some cases, new conditions

to ensure positivity, monotonicity and convexity.
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First studies on convexity of difference operators were performed by Atici and Yaldiz [18] and

Baoguo et.al. [27]. The next theorem is a substantial improvement of [65, Theorem 7.1] that now

ensure the properties of positivity and monotonicity in the semi-closed interval 2 ≤ α < 3 which

were not considered in [65]. As already it was mentioned, it is important to observe that this new

result, together with those proved in the previous section, allows us to conclude that the properties

of positivity, monotonicity and convexity for a given sequence u have a continuous transition as α

increase from 0 to 3. Our proof for convexity uses the new properties of the operator ∆α established

in Section 1.

Theorem 4.3.1. Let 2 ≤ α < 3 and u ∈ s(N0;R) be given and assume that

(i) ∆αu(n) ≥ 0, for all n ∈ N0;

(ii) u(2) ≥ αu(1)− α(α−1)
2 u(0);

(iii) u(1) ≥ αu(0);

(iv) u(0) ≥ 0.

Then u is positive, increasing and convex on N0.

Proof. If α = 2 then by hypothesis (i), ∆2u(n) ≥ 0, for all n ∈ N0, i.e. u is convex on N0. Now,

using the fact that u is convex on N0, we get ∆u(n+ 1) ≥ ∆u(n). By hypotheses (iii) and (iv) we

also have u(1) ≥ u(0), then ∆u(0) ≥ 0 and

∆u(n+ 1) ≥ ∆u(n) ≥ ... ≥ ∆u(0) ≥ 0.

Hence, u is monotone increasing and positive on N0. Now, we assume 2 < α < 3. By Remark 4.1.2

with l = 3, we have

(k3−α ∗∆3u)(n) = ∆αu(n)−
3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)k3−α(n+ j − i)

= ∆αu(n)−
3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)τj−ik

3−α(n).
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Convolving with kα−2 we obtain

(kα−2 ∗ k3−α ∗∆3u)(n) = (kα−2 ∗∆αu)(n)−
3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)(kα−2 ∗ τj−ik3−α)(n).

Observe that, by Lemma 1.2.5 and the semigroup property of the kernel kγ , we get

(kα−2 ∗ τj−ik3−α)(n) = (kα−2 ∗ k3−α)(n+ j − i)−
j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l)

= 1−
j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l).

Therefore,

∆2u(n+ 1)−∆2u(0) = (kα−2 ∗∆αu)(n)−
3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)

+

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)

j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l).

(4.3.1)

Note that,

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i) = 3u(0)− 3u(0)− 3u(1) + u(0) + u(1) + u(2) = ∆2u(0). (4.3.2)

Also, since for any γ > 0, kγ(0) = 1, kγ(1) = γ and kγ(2) = γ(γ+1)
2 , we have

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)

j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l)

= 3u(0)kα−2(n+ 1)− 3[u(0)(kα−2(n+ 2) + kα−2(n+ 1)(3− α)) + u(1)kα−2(n+ 1)]

+ [u(0)(kα−2(n+ 3) + kα−2(n+ 2)(3− α) + kα−2(n+ 1)
(3− α)(4− α)

2
)

+ u(1)(kα−2(n+ 2) + kα−2(n+ 1)(3− α)) + u(2)kα−2(n+ 1)].

(4.3.3)

Replacing (4.3.2) and (4.3.3) in (4.3.1) we obtain that for n ∈ N0,

∆2u(n+ 1) = (kα−2 ∗∆αu)(n) + kα−2(n+ 3)u(0) + kα−2(n+ 2)[u(1)− αu(0)]

+ kα−2(n+ 1)

[
u(2)− αu(1) +

α(α− 1)

2
u(0)

]
.

(4.3.4)

Using the hypotheses (ii), (iii) and (iv) we conclude from (4.3.4) that ∆2u(n) ≥ 0, for all n ∈ N.

On the other hand, using (ii), we have

u(2)− αu(1) +
α(α− 1)

2
u(0) = ∆2u(0)− (α− 2)u(1) +

(α− 2)(α− 1)

2
u(0) ≥ 0.
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Hence, hypotheses (iii) and (iv) show that

∆2u(0) ≥ (α− 2)u(1)− (α− 2)(α− 1)

2
u(0)

≥
[
(α− 2)α− (α− 2)(α− 1)

2

]
u(0) =

(α− 2)(α+ 1)

2
u(0) ≥ 0.

This proves that ∆2u(n) ≥ 0 for all n ∈ N0 – i.e., u is convex.

Remark 4.3.2. Note that if a sequence u is convex on N0, and u(1) > u(0) ≥ 0 then it is positive

and increasing.

Remark 4.3.3. We can state the following converse for Theorem 4.3.1: Suppose that u(0) ≥ 0, u(1) ≥

αu(0) and u is α-convex. Then ∆αu(n) ≥ 0. In fact, we first observe that α-convexity implies

u(n+1)−u(n) ≥ (α−1)n(u(1)−u(0)) (see the proof of Remark 4.2.11). Since (α−1)n(u(1)−u(0)) =

(α− 1)n(u(1)−αu(0)) + (α− 1)n+1u(0), we obtain in view of the given hypothesis that ∆u(n) ≥ 0.

On the other hand, from Proposition 4.1.1 with a := u, b := k3−α, l1 = 1, l2 = 2 we have that the

following identity holds:

∆αu(n) = (∆u ∗∆2k3−α)(n) + ∆2k3−α(n+ 1)u(0) + (α− 1)u(n+ 1)− αu(n+ 2) + u(n+ 3).

Since ∆2k3−α(n) ≥ 0, it then follows from the given hypotheses and the previous identity that

∆αu(n) ≥ 0, as claimed.

The previous Remark, together with Remark 4.2.15, allows to conclude that the corresponding

analogue for the fractional difference operator ∆α of the well-known property

u convex =⇒ ∆2u(n) ≥ 0,

for α ∈ (1, 3), could be read as follows:

u(0) ≥ 0, u(1) ≥ αu(0), u convex =⇒ ∆αu(n) ≥ 0 (1 < α ≤ 2)

and

u(0) ≥ 0, u(1) ≥ αu(0), u α-convex =⇒ ∆αu(n) ≥ 0 (2 ≤ α < 3).

Indeed, taking into account that convex = 2-convex, we may conclude that as α increases from 1

to 3 then the geometrical property of convexity change continuously from convexity to α-convexity,

which gives a reasonable converse for Theorems 4.2.13 and 4.3.1.
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The following example shows that the condition u(2) ≥ αu(1)− α(α−1)
2 u(0) in Theorem 4.3.1 is

necessary for convexity.

Example 4.3.4. Define u : N0 → R by u(n) = γ − 1
γn−1 where γ > 1 is fixed. Observe that

3γ+2+
√
γ2+4γ−4

2γ < 3 and let
3γ+2+

√
γ2+4γ−4

2γ ≤ α < 3. The following statements are true:

• ∆αu(n) ≥ 0, for all n ∈ N0;

• u(1) ≥ αu(0);

• u(0) ≥ 0;

• u positive, monotone increasing and concave.

Indeed, first observe that u(0) = 0, and u(1) = γ − 1 > 0. Also, we have that u is positive and

∆u(n) = u(n+ 1)− u(n) = γ−1
γn ≥ 0, i.e., u is monotone increasing on N0.

Now, by Proposition 4.1.1 part (ii) with a := k3−α, b := u and l1 = 2, l2 = 1, we obtain for each

n ∈ N0

∆αu(n) =(∆2k3−α ∗∆u)(n) + 3k3−α(0)u(n+ 1)− 3[k3−α(0)u(n+ 2) + k3−α(1)u(n+ 1)]

+ [k3−α(0)u(n+ 3) + k3−α(1)u(n+ 2) + k3−α(2)u(n+ 1)] + ∆2k3−α(n+ 1)u(0)

−∆2k3−α(0)u(n+ 1)

=(∆2k3−α ∗∆u)(n) + u(n+ 3) + u(n+ 2)[−3 + k3−α(1)]

+ u(n+ 1)[3− 3k3−α(1) + k3−α(2)−∆2k3−α(0)] + ∆2k3−α(n+ 1)u(0)

=

n∑
j=0

∆2k3−α(j)∆u(n− j) + u(n+ 3)− αu(n+ 2) + (α− 1)u(n+ 1)

+ ∆2k3−α(n+ 1)u(0)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) + ∆2k3−α(0)∆u(n) + u(n+ 3)− αu(n+ 2)
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+ (α− 1)u(n+ 1) + ∆2k3−α(n+ 1)u(0)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) +
(α− 1)(α− 2)

2
[u(n+ 1)− u(n)] + u(n+ 3)− αu(n+ 2)

+ (α− 1)u(n+ 1) + ∆2k3−α(n+ 1)u(0)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) + u(n+ 3)− αu(n+ 2) +
α(α− 1)

2
u(n+ 1)

− (α− 1)(α− 2)

2
u(n) + ∆2k3−α(n+ 1)u(0)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) +
γn+3 − 1

γn+2
− αγ

n+2 − 1

γn+1
+
α(α− 1)

2

γn+1 − 1

γn

− (α− 1)(α− 2)

2

γn − 1

γn−1
.

By Lemma 1.2.4, part (ii), and ∆u(n) ≥ 0, we have
∑n
j=1 ∆2k3−α(j)∆u(n− j) ≥ 0. Thus, since

α ∈ [
3γ+2+

√
γ2+4γ−4

2γ , 3), and from the above, we obtain

∆αu(n) ≥ γn+3 − 1

γn+2
− αγ

n+2 − 1

γn+1
+
α(α− 1)

2

γn+1 − 1

γn
− (α− 1)(α− 2)

2

γn − 1

γn−1

=
(γ3 − γ2)α2 + (2γ + γ2 − 3γ3)α− 2 + 2γ3

2γn+2
≥ 0.

However u is concave, indeed,

∆2u(n) = u(n+ 2)− 2u(n+ 1) + u(n) =
γn+2 − 1

γn+1
− 2

γn+1 − 1

γn
+
γn − 1

γn−1
= − (γ − 1)2

γn+1
≤ 0.

Moreover, u(2) = (γ−1)(γ+1)
γ < 2(γ − 1) < α(γ − 1) = αu(1) − α(α−1)

2 u(0). It follows that the

condition u(2) ≥ αu(1)− α(α−1)
2 u(0) in Theorem 4.3.1 is necessary in order to ensure the convexity

of the sequence u.

Finally, observe that limγ→1
3γ+2+

√
γ2+4γ−4

2γ = 3, and limγ→∞
3γ+2+

√
γ2+4γ−4

2γ = 2. Conse-

quently, the interval where α runs in the above example is better as γ increases.

From Theorem 4.3.1 and the Transference Principle we deduce the following consequence.

Theorem 4.3.5. Let 2 ≤ ν < 3, a ∈ R and v ∈ s(Na;R) be given and assume that
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(i) ∆ν
av(t) ≥ 0, for all t ∈ Na+3−ν ;

(ii) v(a+ 2) ≥ νv(a+ 1)− ν(ν−1)
2 v(a);

(iii) v(a+ 1) ≥ νv(a);

(iv) v(a) ≥ 0.

Then v is positive, increasing and convex on Na.

Proof. In case ν = 2 the conclusion is clear from the hypotheses. Define u := τav. Using Theorem

1.2.6 we have

∆νu(n) = τa+3−ν ◦∆ν
a ◦ τ−au(n) = τa+3−ν ◦∆ν

a ◦ τav(n) = ∆ν
av(t) ≥ 0,

for t := n+ a+ 3− ν ∈ Na+3−ν . The conclusion follows from the transference principle.

Remark 4.3.6. Let a ∈ R, and v(n) := τ−au(n), n ∈ N0 where u(n) = γn−1
γn−1 , γ > 1. assume that

3γ+2+
√
γ2+4γ−4

2γ ≤ α < 3, by Theorem 1.2.6, and Example 4.3.4, we have for t := n + a + 3 − α ∈

Na+3−α

∆α
av(t) = (τa+3−α ◦∆α

a ◦ τ−au)(n) = (τa+3−α ◦∆α
av)(n) = ∆αu(n) ≥ 0.

Therefore, we conclude that ∆α
av(t) ≥ 0 for all t ∈ Na+3−α, v(a) = u(0) ≥ 0, and v(a + 1) =

u(1) ≥ αu(0) = αv(a). But v(a + 2) = u(2) = (γ−1)(γ+1)
γ < α(γ − 1) = αu(1) − α(α−1)

2 u(0) =

αv(a+ 1)− α(α−1)
2 v(a). It follows that the condition v(a+ 2) ≥ αv(a+ 1)− α(α−1)

2 v(a) in Theorem

4.3.5 is necessary in order to ensure the convexity of the sequence v.

The following Theorem widely improves [65, Theorems 7.9, 7.11, 7.13, 7.15, 7.17]. We have in-

cluded the borders of each region given and we have added a new hypotheses, namely: (∆α+βu)(0) ≥

0, in order to ensure positivity, monotonicity and convexity on N0 of a real sequence u in the set

C := {(α, β) ∈ [0, 3] × [0, 3] : 1 ≤ α + β ≤ 2}. This allow us to see that all the conditions indicated

in the theorem, below, overlap with all the conditions in Theorem 4.2.19. It implies that all the

properties of a sequence u remain valid as the parameters (α, β) move and cross from one band

R,M or C to another. For the resulting plot, see Figure 4.3.
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We will consider the following subregions of C,

C1 := {(α, β) ∈ [0, 3]× [0, 3] : 0 ≤ α ≤ 1, 2 ≤ β < 3, 2 ≤ α+ β < 3},

C2 := {(α, β) ∈ [0, 3]× [0, 3] : 0 ≤ α ≤ 1, 1 ≤ β ≤ 2, 2 ≤ α+ β < 3},

C3 := {(α, β) ∈ [0, 3]× [0, 3] : 1 ≤ α ≤ 2, 1 ≤ β ≤ 2, 2 ≤ α+ β < 3},

C4 := {(α, β) ∈ [0, 3]× [0, 3] : 1 ≤ α ≤ 2, 0 ≤ β ≤ 1, 2 ≤ α+ β < 3},

C5 := {(α, β) ∈ [0, 3]× [0, 3] : 2 ≤ α < 3, 0 ≤ β ≤ 1, 2 ≤ α+ β < 3}.

Theorem 4.3.7. Suppose that

(i)

(∆β ◦∆αu)(n) ≥



β(β − 1)(β − 2) (3−β)
24 u(0) if (α, β) ∈ C1.

0 if (α, β) ∈ C2.

0 if (α, β) ∈ C3.
β
2 (1− β)[u(1)− (α− 1)u(0)] if (α, β) ∈ C4.
β
2 (1− β)[u(2)− (α− 1)u(1) + (α−1)(α−2)

2 u(0)] if (α, β) ∈ C5.

(4.3.5)

(ii) u(3) ≥ (α+ β)u(2)− 1
2 (α+ β)(α+ β − 1)u(1) + 1

6 (α+ β)(α+ β − 1)(α+ β − 2)u(0);

(iii) u(2) ≥ (α+ β)u(1)− 1
2 (α+ β)(α+ β − 1)u(0);

(iv) u(1) ≥ (α+ β)u(0);

(v) u(0) ≥ 0.

Then u is positive, monotone increasing and convex on N0.

Proof. We divide the proof in the following cases:
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C1: Consider (α, β) ∈ C1. The case α = 0 is true by (i), because ∆β ◦∆0u(n) = ∆βu(n) ≥ 0. Hence

we can apply Theorem 4.3.1 for β ∈ [2, 3). In other cases, by Proposition 4.1.3 part (vi), with

l = 1, m = 3, we have

∆α+βu(n+ 1) = ∆β ◦∆αu(n) + ∆3k3−β(n+ 1)u(0). (4.3.6)

By part (iii) of Lemma 1.2.4, we obtain

∆3k3−β(n+ 1) = −β(β − 1)(β − 2)
k3−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)
.

Since that 0 < 3− β < 1, we deduce that

∆3k3−β(n+ 1) ≥ −β(β − 1)(β − 2)
k3−β(1)

24
.

Thus,

∆α+βu(n+ 1) ≥ ∆β ◦∆αu(n)− β(β − 1)(β − 2)
k3−β(1)

24
.

Then, by hypothesis (i), we conclude that ∆α+βu(n+ 1) ≥ 0. Therefore the claim follows from

hypothesis and Theorem 4.3.1.

C2: Suppose (α, β) ∈ C2. If α+ β = 2, then by Remark 4.1.4, with l = 1, m = 2 we have

∆2u(n+ 1) = (∆2−α ◦∆α)u(n) + ∆2k1−α(n+ 1)u(0).

By Lemma 1.2.4 part (ii), we have ∆2k1−α(n+1)u(0) ≥ 0. Moreover, by hypothesis (i) we have

∆2u(n+1) ≥ 0. Thus, by hypothesis (iv) and Remark 4.3.2, we obtain the claimed conclusions.

In other cases, by Proposition 4.1.3 part (v), with l = 1, m = 2 we have

∆β ◦∆αu(n) = ∆α+βu(n)−∆2k2−β(n+ 1)u(0). (4.3.7)

But by Lemma 1.2.4 part (ii), ∆2k2−β(n+ 1) ≥ 0. Then, by hypothesis (i)

∆α+βu(n) = ∆β ◦∆αu(n) + ∆2k2−β(n+ 1)u(0) ≥ ∆β ◦∆αu(n) ≥ 0.

Thus, ∆α+βu(n) ≥ 0 and the conclusion follows from hypothesis and Theorem 4.3.1.

C3: Assume (α, β) ∈ C3. If α = 1 and 1 ≤ β ≤ 2 then, by Proposition 4.1.3 part (iii), with m = 2,

we have

∆β+1u(n) = ∆β ◦∆u(n) + ∆2k2−β(n+ 1)u(0).
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Thus by hypothesis (i), and since that ∆2k2−β(n + 1) ≥ 0, we obtain ∆β+1u(n) ≥ 0. Hence,

we can apply Theorem 4.3.1 for β ∈ [1, 2] and the conclusion follows. In other cases, by

Proposition 4.1.3 part (vi), with l = m = 2, we have the identity

∆α+βu(n+ 1) = ∆β ◦∆αu(n) + ∆2k2−β(n+ 1)∆α−1u(0) + ∆3k2−β(n+ 1)u(0). (4.3.8)

Note that, 1+β < n+4 for all n ∈ N0, thus 1+β
n+4−1 < 0, for all n ∈ N0. Then, β+α > α+ 1+β

n+4−1

and we obtain

(α+ β)u(0) ≥ [α− 1 +
1 + β

n+ 4
]u(0).

Since u(1) ≥ (α+ β)u(0), then

u(1) ≥ [α− 1 +
1 + β

n+ 4
]u(0). (4.3.9)

On the other hand,

∆α−1u(0) = u(1)− (α− 1)u(0). (4.3.10)

And, by Lemma 1.2.4, part (ii) and (iii),

∆2k2−β(n+ 1) =
β(β − 1)

(n+ 2)(n+ 3)
k2−β(n+ 1), (4.3.11)

as well as

∆3k2−β(n+ 1) = −β(β − 1)(1 + β)
k2−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)
. (4.3.12)

Using (4.3.9), (4.3.10), (4.3.11) we obtain

∆2k2−β(n+ 1)∆α−1u(0) + ∆3k2−β(n+ 1)u(0)

=
β(β − 1)

(n+ 2)(n+ 3)
k2−β(n+ 1)[u(1)− (α− 1)u(0)]− β(β − 1)(1 + β)

k2−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)
u(0)

=
β(β − 1)

(n+ 2)(n+ 3)
k2−β(n+ 1)[u(1)− (α− 1)u(0)− (1 + β)

1

n+ 4
u(0)]

=
β(β − 1)

(n+ 2)(n+ 3)
k2−β(n+ 1)

[
u(1)− [(α− 1) + (1 + β)

1

n+ 4
]u(0)

]
≥ 0.

Then, by hypothesis (i) and the above inequality, we obtain from (4.3.8) that ∆α+βu(n+1) ≥ 0.

Therefore the conclusion follow from hypothesis and Theorem 4.3.1.

C4: Suppose (α, β) ∈ C4. If α+ β = 2, by Remark 4.1.4 with l = 2, m = 1, we have the identity

∆2u(n+ 1) = ∆2−α ◦∆αu(n) + ∆kα−1(n+ 1)∆α−1u(0) + ∆2kα−1(n+ 1)u(0).
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By part (ii) of Lemma 1.2.4 we have ∆2k1−β(n + 1) ≥ 0 and thus, by hypothesis (i), we

conclude that ∆2u(n+1) ≥ 0. By hypothesis (iv) and Remark 4.3.2, we have proved the claim.

In other cases, by Proposition 4.1.3 part (v) with l = 2, m = 1, we obtain

∆α+βu(n) = ∆β ◦∆αu(n) + ∆2k1−β(n+ 1)u(0) + ∆k1−β(n+ 1)∆α−1u(0). (4.3.13)

By part (ii) of Lemma 1.2.4, we have ∆2k1−β(n+ 1) ≥ 0. Since 0 < 1− β < 1, we obtain

∆k1−β(n+ 1) = −β k
1−β(n+ 1)

(n+ 2)
≥ −β k

1−β(1)

2
.

On the other had, by hypothesis (iv) and (v), we obtain

∆α−1u(0) =u(1)− (α− 1)u(0) ≥ (α+ β)u(0)− (α− 1)u(0) = (β + 1)u(0).

Thus,

∆α+βu(n) =∆β ◦∆αu(n) + ∆2k1−β(n+ 1)u(0) + ∆k1−β(n+ 1)∆α−1u(0)

≥∆β ◦∆αu(n)− β

2
(1− β)∆α−1u(0).

Thus, if (α, β) ∈ C4, we obtain ∆α+βu(n) ≥ 0, for alln ∈ N0. Therefore the conclusion follows

from hypothesis and Theorem 4.3.1.

C5: Suppose (α, β) ∈ C5. In case α = 2 and 0 ≤ β ≤ 1 by Proposition 4.1.3 part (iv), with l = 2,

m = 1, we have

∆β+2u(n) = ∆β ◦∆2u(n) + ∆k1−β(n+ 1)∆u(0) + ∆2k1−β(n+ 1)u(0).

Thus by hypothesis (i), (4.2.6), and since ∆2k2−β(n+ 1) ≥ 0 we obtain ∆β+2u(n) ≥ 0. Hence

we can apply Theorem 4.3.1 for β ∈ [1, 2] and obtain the claim. In other cases, by Proposition

4.1.3 part (vi), with l = 2, m = 1, we have

∆α+βu(n+ 1) =∆β ◦∆αu(n) + ∆3k1−β(n+ 1)u(0) + ∆2k1−β(n+ 1)∆α−2u(0)

+ ∆k1−β(n+ 1)∆α−1u(0).

Moreover, by part (ii) Lemma 1.2.4,

∆2k1−β(n+ 1) = β(1 + β)
k1−β(n+ 1)

(n+ 2)(n+ 3)
. (4.3.14)
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Since 0 < α− 2 < 1, we also have

∆α−2u(0) = ∆(k3−α ∗ u)(0) = (k3−α ∗ u)(1)− (k3−α ∗ u)(0) = (3− α)u(0) + u(1)− u(0)

= u(1)− (α− 2)u(0).

(4.3.15)

Moreover, by part (iii) in Lemma 1.2.4,

∆3k1−β(n+ 1) =− β(1 + β)(β + 2)
k1−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)
. (4.3.16)

And by part (i) in Lemma 1.2.4, since that 0 < 1− β < 1, then

∆k1−β(n+ 1) = −β k
1−β(n+ 1)

n+ 2
≥ −β k

1−β(1)

2
. (4.3.17)

On the other hand, for each n ∈ N0, we have (β + 2)(n+ 4) ≥ β + 2, and then

α(n+ 4) + (β + 2)(n+ 4) ≥ (β + 2) + α(n+ 4),

as well as

(α+ β)(n+ 4) ≥ β + 2 + (α− 2)(n+ 4).

Therefore

α+ β ≥ β + 2

n+ 4
+ α− 2.

Thus, since that u(1) ≥ (α+ β)u(0) and u(0) ≥ 0 we conclude that

u(1) ≥ [
β + 2

n+ 4
+ α− 2]u(0). (4.3.18)

Therefore, using (4.3.18), (4.3.15), (4.3.14) and (4.3.16) we obtain

∆3k1−β(n+ 1)u(0) + ∆2k1−β(n+ 1)∆α−2u(0)

=− β(1 + β)(β + 2)
k1−β(n+ 1)

(n+ 2)(n+ 3)(n+ 4)
u(0) + β(1 + β)

k1−β(n+ 1)

(n+ 2)(n+ 3)
[u(1)− (α− 2)u(0)]

=β(1 + β)
k1−β(n+ 1)

(n+ 2)(n+ 3)
[u(1)− (α− 2)u(0))− (β + 2)

1

(n+ 4)
u(0)]

=β(1 + β)
k1−β(n+ 1)

(n+ 2)(n+ 3)
[u(1)− [(α− 2) + (β + 2)

1

(n+ 4)
]u(0)] ≥ 0.

Thus, by hypothesis (i) and (4.3.17), we obtain from (??)

∆α+βu(n) ≥ 0, for all n ∈ N1. (4.3.19)

Therefore the conclusion follows from hypothesis and Theorem 4.3.1.
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Remark 4.3.8. Note that in the sector C4 we have 1 < α < 2 and an easy calculation shows that

∆α−1u(0) = u(1) − (α − 1)u(0). In case of the sector C5, we have 2 < α < 3, and the identity

∆α−1u(0) = u(2)− (α− 1)u(1) + (α−1)(α−2)
2 u(0) holds.

Remark 4.3.9. Note that for 2 ≤ α+ β < 3 we obtain, after a calculation

u(3)− (α+ β)u(2) +
(α+ β)(α+ β − 1)

2
u(1)− (α+ β)(α+ β − 1)(α+ β − 2)

6
u(0) = (∆α+βu)(0),

and hence the hypothesis (ii) in the previous theorem can be rewritten only in terms of the positivity

of (∆α+βu)(0).

Remark 4.3.10. The previous theorem improves the condition (i) on (∆β ◦ ∆αu)(n) in Theorems

7.13 and 7.17 of [65]. We recall that the condition (i) in [65, Theorem 7.13] is (∆β ◦ ∆αu)(n) ≥

β(1 + β)(β − 1) (2−β)
24 u(0), whereas the condition (i) of [65, Theorem 7.17] is (∆β ◦ ∆αu)(n) ≥

β(1 + β)(2 + β) (1−β)
24 u(0) + β (1−β)

2 ∆α−1u(0). In our findings, the condition on the right hand side

of (4.3.5) is less restrictive. Moreover, our new hypotheses allows the conditions on the right hand

side of (4.3.5) coincide when the pair (α, β) varies in the borders of each sector. This property was

not posed in the results of [65].

Moreover, we have added the hypothesis (∆α+βu)(0) ≥ 0, which allow us to improve the results in

[65, Theorems 7.11, 7.13, 7.15, 7.17] ensuring not only convexity but also positivity and monotonicity

of a sequence on the set N0. We also observe that for (α, β) ∈ C5 we added the conditions (ii) and

(iii), which were missing in [65, Theorem 7.17].

Remark 4.3.11. Note that if β = 2 the condition on the right hand side of (4.3.5) in Theorem 4.3.7

coincides in the regions C1 and C2. If α = 1 then the condition on the right hand side of (4.3.5)

coincides in the regions C2 and C3. If β = 1 then the conditions coincides in the regions C3 and C4
and, finally, if α = 2 then the conditions coincide in the regions C4 and C5.

The following example shows that the condition (ii) in Theorem 4.3.7 is necessary for convexity

in C1 and C3.
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Example 4.3.12. Define a sequence u : N0 → R by u(0) = u(1) = 0 and u(n) := 2− 21−n, n ∈ N2.

Let 4+
√

2
2 < α+ β < 3. Then the following assertions hold:

(i) (∆β ◦∆αu)(n) ≥

 0 if (α, β) ∈ C1.

0 if (α, β) ∈ C3.

(ii) u(2) ≥ (α+ β)u(1)− 1
2 (α+ β)(α+ β − 1)u(0);

(iii) u(1) ≥ (α+ β)u(0)

(iv) u(0) ≥ 0

(v) u is positive, increasing and concave on N2.

Indeed, it is clear that u is positive, increasing and the items (ii), (iii), (iv) and (v) are verified.

Proceeding analogously to Example 4.3.4, using Proposition 4.1.1, part (ii), with a := k3−(α+β), b :=

u, l1 = 2, l2 = 1 we obtain for any n ∈ N2 :

∆α+βu(n) =

n∑
j=1

∆2k3−(α+β)(j)∆u(n− j) + u(n+ 3)− (α+ β)u(n+ 2) +
(α+ β)((α+ β)− 1)

2
u(n+ 1)

− (α+ β − 1)(α+ β − 2)

2
u(n)

=

n∑
j=1

∆2k3−(α+β)(j)∆u(n− j) +
2n+3 − 1

2n+2
− (α+ β)

2n+2 − 1

2n+1
+

(α+ β)(α+ β − 1)

2

2n+1 − 1

2n

− (α+ β − 1)(α+ β − 2)

2

2n − 1

2n−1
.

Since ∆u(n) ≥ 0, by Lemma 1.2.4 part (ii), we have
∑n
j=1 ∆2k3−α(j)∆u(n − j) ≥ 0. Thus, since

α+ β ∈ [ 4+
√

2
2 , 3), and from the previous identity, we obtain

∆α+βu(n) ≥ 2(α+ β)2 − 8(α+ β) + 7

2n+2
≥ 0, n ∈ N2.

Note that 10+
√

10
6 < 4+

√
2

2 < (α+ β) < 3. Therefore, we also have

∆α+βu(1) ≥ ∆2k3−(α+β)(1)∆u(0) + u(4)− (α+ β)u(3) +
(α+ β)(α+ β − 1)

2
u(2)

=
1

8
(6(α+ β)2 − 20(α+ β) + 15) ≥ 0.
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We conclude that ∆α+βu(n + 1) ≥ 0 on N0. On the other hand, by (4.3.6), (4.3.8) and taking into

account that u(0) = u(1) = 0, we obtain

(∆β ◦∆αu)(n) =

 ∆α+βu(n+ 1) if (α, β) ∈ C1,

∆α+βu(n+ 1) if (α, β) ∈ C3.

This proves (i). We now prove that u is concave on N2. Indeed, by definition we obtain

∆2u(n) = u(n+ 2)− 2u(n+ 1) + u(n) =
2n+2 − 1

2n+1
− 2

2n+1 − 1

2n
+

2n − 1

2n−1
= − 1

2n+1
≤ 0,

proving the claim. However, note that u(3) = 7
4 < (α + β) 3

2 = (α + β)u(2). It follows that the

condition (ii) in Theorem 4.3.7 does not hold.

The next example shows that the condition u(2) ≥ (α + β)u(1)− (α+β)(α+β−1)
2 u(0) in Theorem

4.3.7 is necessary for convexity in C2.

Example 4.3.13. Define the sequence u : N0 → R by u(n) := γ − 1
γn−1 where γ > 1 is fixed. Let

3γ+2+
√
γ2+4γ−4

2γ ≤ α+ β < 3. The following statements are true:

• (∆β ◦∆αu)(n) ≥ 0, if (α, β) ∈ C2.

• u(3) ≥ (α+ β)u(2)− 1
2 (α+ β)(α+ β − 1)u(1) + 1

6 (α+ β)(α+ β − 1)(α+ β − 2)u(0)

• u(1) ≥ (α+ β)u(0)

• u(0) ≥ 0

• u is positive, monotone increasing and concave on N0.

In fact, we first observe that u(0) = 0, and u(1) = γ − 1 > 0. Also, we have that u is positive

and ∆u(n) = u(n + 1) − u(n) = γ−1
γn ≥ 0, i.e., u is monotone increasing on N0. Now, by Example

4.3.4, u is concave on N0 and, replacing α by α + β in Example 4.3.4, we have ∆α+βu(n) ≥ 0.

Consequently, by (4.3.7) we obtain

(∆β ◦∆αu)(n) = ∆α+βu(n)−∆2k2−β(n+ 1)u(0) ≥ 0.
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Notice that also have u(3)−(α+β)u(2)+ 1
2 (α+β)(α+β−1)u(1)− 1

6 (α+β)(α+β−1)(α+β−2)u(0) ≥ 0.

Therefore all the assertions are verified, proving the claim. On the other hand, we have u(2) =

(γ−1)(γ+1)
γ < 2(γ − 1) < (α + β)(γ − 1) = (α + β)u(1) − (α+β)(α+β−1)

2 u(0). It follows that the

condition (iii) in Theorem 4.3.7 is necessary in order to ensure convexity.

Now, in the following example we show that the condition (iii) in Theorem 4.3.7 is necessary for

positivity, monotonicity and convexity in C4 and C5.

Example 4.3.14. Define a sequence u : N0 → R by u(0) = u(1) = 0, u(2) = −1 and u(n) :=

kγ(n), n ∈ N3, γ > 11. Let 2 < α+ β < 3. Then the following assertions hold:

(i) (∆β ◦∆αu)(n) ≥

 0 if (α, β) ∈ C4.
β
2 (1− β)u(2) if (α, β) ∈ C5.

(ii) u(3) ≥ (α+ β)u(2)− 1
2 (α+ β)(α+ β − 1)u(1) + 1

6 (α+ β)(α+ β − 1)(α+ β − 2)u(0);

(iii) u(1) ≥ (α+ β)u(0)

(iv) u(0) ≥ 0

(v) u is non positive, non increasing and non concave on N0.

In fact, since kγ(n) ≥ 0, it is clear that (ii), (iii) and (iv) are verified. Moreover, u is non-positive

and non-increasing because u(2) = −1. This property also implies ∆2u(0) = −1 < 0 and therefore u

cannot be convex on N0.

We check assertion (i). By Definition 1.2.3 and the semigroup property of the kernel kγ (see

(1.2.3)) we obtain, by Definition and part (iii) of Lemma 1.2.4, the following identities:

∆α+βu(n) = ∆α+βkγ(n) = ∆3(k3−α−β ∗ kγ)(n) = ∆3(k3−α−β+γ)(n)

= (γ − (α+ β))(1 + γ − (α+ β))(2 + γ − (α+ β))
k3−α−β−γ

(n+ 1)(n+ 2)(n+ 3)
,

for all n ∈ N3. Therefore ∆α+βu(n) ≥ 0, n ∈ N3.
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We now prove that ∆α+βu(n) ≥ 0 for n = 0, 1, 2. In fact, since 2 < α + β < 3, from Definition

1.2.3, we obtain ∆α+βu(0) = u(3)− (α+ β)u(2) = kγ(3) + (α+ β) ≥ 0.

On the other hand, since 2 < α + β < 3 and γ > 11, we have 1
2 (α + β)(α + β − 1) < 3 and

γ + 3− 4(α+ β) > 1. Thus 1
4! [γ + 3− 4(α+ β)](γ + 2)(γ + 1)γ > 3 and we obtain

∆α+βu(1) = u(4)− (α+ β)u(3) +
1

2
(α+ β)(α+ β − 1)u(2)

= kγ(4)− (α+ β)kγ(3)− 1

2
(α+ β)(α+ β − 1)

=
1

4!
[γ + 3− 4(α+ β)](γ + 2)(γ + 1)γ − 1

2
(α+ β)(α+ β − 1) ≥ 0.

Finally, since 2 < α+ β < 3 and γ > 11, we have (γ + 4)− 5(α+ β) > 0. Therefore,

∆α+βu(2) = u(5)− (α+ β)u(4) +
1

2
(α+ β)(α+ β − 1)u(3)− 1

6
(α+ β)(α+ β − 1)(α+ β − 2)u(2)

= kγ(5)− (α+ β)kγ(4) +
1

2
(α+ β)(α+ β − 1))kγ(3) +

1

6
(α+ β)(α+ β − 1)(α+ β − 2)

≥ 1

5!
[(γ + 3)(γ + 4)− 5(α+ β)(γ + 3) + 10(α+ β)(α+ β − 1)](γ + 2)(γ + 1)γ

≥ 1

5!
[(γ + 3)[(γ + 4)− 5(α+ β)] + 10(α+ β)(α+ β − 1)](γ + 2)(γ + 1)γ ≥ 0.

We conclude that ∆α+βu(n) ≥ 0 for all n ∈ N0, as claimed. Moreover, since u(0) = u(1) = 0 and

u(2) = −1, by part (v) in Proposition 4.1.3, with l = 2, m = 1 we have in the sector C4 :

(∆β ◦∆αu)(n) = ∆α+βu(n) ≥ 0, n ∈ N0,

and by part (vi) in Proposition 4.1.3, for l = 3, m = 1 we obtain for the sector C5 :

(∆β ◦∆αu)(n) = ∆α+βu(n)−∆k1−β(n+ 1)u(2) ≥ β

2
(1− β)u(2), n ∈ N0,

where we have used the inequality −∆k1−β(n+1)u(2) ≥ β
2 (1−β)u(2) that follows from (4.2.6). This

proves (i). However, note that u(2) = −1 < 0 = (α + β)u(1). It follows that the condition (iii) in

Theorem 4.3.7 does not hold.

Our final theorem provides our new results and insights on convexity, which seems to be the

best possible. The result in the region C1 corresponds to [65, Theorem 7.9] after application of

the transference principle and adding one missing hypothesis. The result in C2 corresponds to a
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substantial improvement of [65, Theorem 7.11] where not only one hypothesis was missing but also

the conclusions on positivity and monotonicity. The result in C3 is an extension of [65, Theorem 7.13]

where, even after application of the transference principle, both an additional hypothesis and the

conclusions on positivity and monotonicity were absent. The result in C4 is a major improvement of

[65, Theorem 7.15]. Finally, the conclusion about the sector C5 widely improves [65, Theorem 7.17].

We notice that our next theorem also improves those in the reference [62] for the sectors C3, C2 and

C4.

Theorem 4.3.15. Let a ∈ R and v ∈ s(Na;R) be given. Suppose that,

(i) 

(∆ν
a+1−µ ◦∆µ

av)(t) ≥ ν(ν − 1)(ν − 2) (3−ν)
24 v(a) if (µ, ν) ∈ C1,

(∆ν
a+1−µ ◦∆µ

av)(t) ≥ 0 if (µ, ν) ∈ C2,

(∆ν
a+2−µ ◦∆µ

av)(t) ≥ 0 if (µ, ν) ∈ C3,

(∆ν
a+2−µ ◦∆µ

av)(t) ≥ ν
2 (1− ν)[v(a+ 1)− (µ− 1)v(a) if (µ, ν) ∈ C4,

(∆ν
a+3−µ ◦∆µ

av)(t) ≥ ν
2 (1− ν)[v(a+ 2)− (µ− 1)v(a+ 1) + (µ−1(µ−2

2 v(a) if (µ, ν) ∈ C5,
(4.3.20)

where,

 t ∈ Na+4−µ−ν if (µ, ν) ∈ C1, C3, C5,

t ∈ Na+3−µ−ν if (µ, ν) ∈ C2, C4.

(ii) v(a+ 3) ≥ (µ+ ν)v(a+ 2)− 1
2 (µ+ ν)(µ+ ν − 1)v(a+ 1) + 1

6 (µ+ ν)(µ+ ν − 1)(µ+ ν − 2)v(a);

(iii) v(a+ 2) ≥ (µ+ ν)v(a+ 1)− 1
2 (µ+ ν)(µ+ ν − 1)v(a);

(iv) v(a+ 1) ≥ (µ+ ν)v(a);

(v) v(a) ≥ 0.

Then v is positive, monotone increasing and convex on Na.
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Proof. Note that, when (µ, ν) = (0, 2), (µ, ν) = (1, 1) and (µ, ν) = (2, 0) the result is immediate in

the respective regions. Define u := τav. For (µ, ν) ∈ C1, using the transference principle we have,

∆ν ◦∆µu(n) =τa+3−ν ◦∆ν
a ◦ τ−a ◦∆µu(n) = τa+3−ν ◦∆ν

a ◦ τ−a ◦ τa+1−µ ◦∆µ
a ◦ τ−au(n)

=τa+3−ν ◦∆ν
a ◦ τ1−µ ◦∆µ

a ◦ τ−au(n) = τa+3−ν ◦ τ1−µ ◦∆ν
a+1−µ ◦∆µ

a ◦ τ−au(n)

=τa+4−µ−ν ◦∆ν
a+1−µ ◦∆µ

av(n),

for each n ∈ N0. Therefore,

∆ν ◦∆µu(n) = ∆ν
a+1−µ ◦∆µ

av(t), (4.3.21)

where t := n+ a+ 4− µ− ν ∈ Na+4−µ−ν . For (µ, ν) ∈ C2, using again the transference principle, we

obtain

∆ν ◦∆µu(n) =τa+2−ν ◦∆ν
a ◦ τ−a ◦∆µu(n) = τa+2−ν ◦∆ν

a ◦ τ−a ◦ τa+1−µ ◦∆µ
a ◦ τ−au(n)

=τa+2−ν ◦∆ν
a ◦ τ1−µ ◦∆µ

a ◦ τ−au(n) = τa+2−ν ◦ τ1−µ ◦∆ν
a+1−µ ◦∆µ

a ◦ τ−au(n)

=τa+3−µ−ν ◦∆ν
a+1−µ ◦∆µ

av(n),

for each n ∈ N0. Therefore, we conclude that

∆ν ◦∆µu(n) = ∆ν
a+1−µ ◦∆µ

av(t), (4.3.22)

where t := n+ a+ 3− µ− ν ∈ Na+3−µ−ν . For (µ, ν) ∈ C3 we have for each n ∈ N0 :

∆ν ◦∆µu(n) =τa+2−ν ◦∆ν
a ◦ τ−a ◦∆µu(n) = τa+2−ν ◦∆ν

a ◦ τ−a ◦ τa+2−µ ◦∆µ
a ◦ τ−au(n)

=τa+2−ν ◦∆ν
a ◦ τ2−µ ◦∆µ

a ◦ τ−au(n) = τa+2−ν ◦ τ2−µ ◦∆ν
a+2−µ ◦∆µ

a ◦ τ−au(n)

=τa+4−µ−ν ◦∆ν
a+2−µ ◦∆µ

av(n).

We conclude that

∆ν ◦∆µu(n) = ∆ν
a+2−µ ◦∆µ

av(t), (4.3.23)

where t := n+ a+ 4− µ− ν ∈ Na+4−µ−ν . Next, for (µ, ν) ∈ C4 we obtain for each n ∈ N0 :

∆ν ◦∆µu(n) =τa+1−ν ◦∆ν
a ◦ τ−a ◦∆µu(n) = τa+1−ν ◦∆ν

a ◦ τ−a ◦ τa+2−µ ◦∆µ
a ◦ τ−au(n)
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=τa+1−ν ◦∆ν
a ◦ τ2−µ ◦∆µ

a ◦ τ−au(n) = τa+1−ν ◦ τ2−µ ◦∆ν
a+2−µ ◦∆µ

a ◦ τ−au(n)

=τa+3−µ−ν ◦∆ν
a+2−µ ◦∆µ

av(n).

Therefore,

∆ν ◦∆µu(n) = ∆ν
a+2−µ ◦∆µ

av(t), (4.3.24)

where t := n+ a+ 3− µ− ν ∈ Na+3−µ−ν . Finally, for (µ, ν) ∈ C5

∆ν ◦∆µu(n) =τa+1−ν ◦∆ν
a ◦ τ−a ◦∆µu(n) = τa+1−ν ◦∆ν

a ◦ τ−a ◦ τa+3−µ ◦∆µ
a ◦ τ−au(n)

=τa+1−ν ◦∆ν
a ◦ τ3−µ ◦∆µ

a ◦ τ−au(n) = τa+1−ν ◦ τ3−µ ◦∆ν
a+3−µ ◦∆µ

a ◦ τ−au(n)

=τa+4−µ−ν ◦∆ν
a+3−µ ◦∆µ

av(n),

for each n ∈ N0. Therefore,

∆ν ◦∆µu(n) = ∆ν
a+3−µ ◦∆µ

av(t), (4.3.25)

where t := n + a + 4 − µ − ν ∈ Na+4−µ−ν . Moreover, if (µ, ν) ∈ C4, we have ∆µ−1u(0) = τa+2−µ ◦

∆µ−1
a ◦ τ−au(0) = ∆µ−1

a v(a+ 2−µ), and if (µ, ν) ∈ C5, then ∆µ−1u(0) = τa+3−µ ◦∆µ−1
a ◦ τ−au(0) =

∆µ−1
a v(a + 3 − µ). Thus the conclusion follows of (4.3.21)-(4.3.25), hypotheses (i), (ii), (iii), (iv),

(v) and Theorem 4.3.7.
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4.4 General conclusions

Geometric behavior for the composition of two operators ∆ν◦∆µ is represented in the drawing below.

The Theorem 4.2.7 represents the region R, Theorem 4.2.19 represents the regions M1 −M3, and

Theorem 4.3.7 represents the regions C1 − C5.

Figure 4.3: Geometry of the sequential operator ∆ν ◦∆µ
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[25] J. Banaś, R. Nalepa. On a measure of noncompactness in the space of functions with tempered

increments. J. Math. Anal. Appl. 435 (2) (2016), 1634–1651.

[26] J. Baoguo, L. Erbe, C. S. Goodrich, A. Peterson. Monotonicity results for delta fractional

difference revisited. Math. Slovaca. 67 (2017), 895-906.

[27] J. Baoguo, L. Erbe, A. Peterson. Convexity for nabla and delta fractional differences. J. Dif-

ference Equ. Appl. 21 (2015), 360–373.

[28] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres. Necessary optimality conditions for

fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Sys. Series

A. 29 (2) (2011), 417-437.

[29] H. Bateman. Some simple differential difference equations and the related functions. Bull.

Amer. Math. Soc. 49 (1943), 494-512.

[30] S. Blunck. Maximal regularity of discrete and continuous time evolution equations. Studia

Math. 146 (2) (2001), 157-176.

[31] S. Blunck. Analyticity and discrete maximal regularity on Lp−spaces. J. Funct. Anal. 183 (1)

(2001), 211-230.

[32] D. Bothe. Multivalued perturbation of m-accretive differential inclusions. Israel J. Math. 108

(1998), 109-138.



BIBLIOGRAPHY 110

[33] H. E. Braverman, S. H. Saker. Permanence, oscillation and attractivity of the discrete

hematopoiesis model with variable coefficients. Nonlinear Anal. 67 (2007), 2955-2965.

[34] J. Bravo, C. Lizama, S. Rueda. Analytical properties of nonlocal discrete operators: Convexity.

Submitted.

[35] L. Byszewskik. Existence and uniqueness of solutions of nonlocal problems for hyperbolic equa-

tion uxt = F (x, t, u, ux). J. Appl. Math. Stochastic Anal. 3 (3) (1990), 163-168.

[36] P. Cannarsa, D. Sforza. Decay estimates for second order evolution equations with memory. J.

Funct. Anal. 254 (2008), 1342–1372.

[37] P. Cannarsa, D. Sforza. Integro-differential equations of hyperbolic type with positive definite

kernels. J. Differential Equations. 250 (12) (2011), 4289–4335.

[38] C. Chen, M. Bohner, B. Jia. Ulam-Hyers stability of Caputo fractional difference equations.

Math. Meth. Appl. Sci. 42 (18) (2019), 7461-7470.

[39] C. Chen and M. Li. On fractional resolvent operator functions. Semigroup Forum. 80 (2010),

121–142.

[40] C. Chen, F. Li, M. Li. On fractional powers of generators of fractional resolvent families. J.

Funct. Anal. 259 (10) (2010), 2702–2726.

[41] L. Chen, X. Meng. Periodic solution and almost periodic solution for a nonautonomous

Lotka–Volterra dispersal system with infinite delay. J. Math. Anal. Appl. 339 (2008), 125–145.

[42] C. Cuevas. Weighted convergence and bounded solutions of Volterra difference systems with

infinite delay. J. Differ. Equations Appl. 6(4) (2000), 461-468.
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