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Introduction

In this tesis, we are concerned with quasilinear elliptic equations of the type

− div(a(x, u)∇u) = f(x, u,∇u), in Ω, (0.1)

u = 0, on ∂Ω .

where Ω is open bounded in Rn with n ≥ 1. Let us observe that under some conditions
on a and f , the existence, uniqueness and regularity of solutions of (0.1) have been widely
studied. These issues are usually treated by nonlinear functional analysis techniques such as
variational and non–variational methods, see e.g. [1], [4], [8], [9], [10], [12], [14], [15], [18] and
[19].

This thesis is composed by the study of three problems, which belong to the field of
nonlinear elliptic differential equations. The main techniques used here are the Blow up
technique, to obtain a priori bounds, and tools from the Topological Degree Theory.

We have divided our work in three chapters. In chapter 1, we start our investigation by
considering a one–dimensional problem. More specifically, we prove the existence of a positive
solution for the Sturm–Liouville problem

− (p(s, u)u′)′ = q̂(s)up h(s, u, u′) in (0, 1) , (0.2)

u(0) = 0 = u(1) .

Here p (s, u) = 1/(a(s) + c g(u)) , where g is a positive continuous function q̂ is a nonnegative
continuous function, a is a positive and continuous function, c ≥ 0 , p > 1, and the function
h is sub–quadratic function with respect to u′, i.e. given a compact set K in [0, 1]×R , there
exist positive constants A and B such that, for all (s, u, ψ) ∈ K × R , we have

h(s, u, ψ) ≤ A+B ψ2. (0.3)

By solutions we understand classical solutions, that is, u ∈ C1(0, 1) ∩ C0[0, 1] and
u′

a(s) + c g(u)
∈ C1(0, 1) verifying equation (0.2).
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We observe that one of the difficulties to prove our result lies in the fact that the coefficient
p(s, u) = 1/(a(s) + c g(u)) is not bounded from below by a positive constant which is
independent of u. In order to overcome this difficulty, we use a truncation gn(u) of the
function g(u), so that the new coefficient pn(s, u) = 1/(a(s) + c gn(u)) is bounded below
by a positive constant. This allows us to use results from the topological degree theory to
prove that the truncated problem has at least one positive solution. Finally, we show that for
n large enough, the solutions of the truncated problem are solutions of the initial problem.
Another difficulty of the problem is the dependence of h on u′, that leads us towards the
problem of establishing a priori bounds for the derivative. Note that this feature provides a
non-variational structure to the problem.

For a further discussion on problems modeled by equations of the type −(q(s, u)u′)′ =
f(s, u, u′) , see e.g. [2], [16], [28], [32], [39], [47], [48], [49], [50], [51]. Existence of a solution
when the coefficient q(s, u) does not depend on u is considered in [2], [28], [39], [47], [48],
[50]. For Sturm-Liouville’s problems where the coefficient q(s, u) depends explicitly on the
variable u, see for example [16], [32], [49], [51].

In this thesis we study problems whose structure differs from those mentioned above. For
instance, in [32], [49], [51] the problems are modeled by a nonlinearity f(s, u, u′) which is
negative, whereas in [16] the nonlinearity is bounded with respect to the variable u and u′.
Note that in our work f(s, u, u′) is nonnegative and unbounded with respect to the variables
u, u′.

The second step in our work is chapter 2, where we study the existence of positive solutions
of the system of ordinary differential equations

−(p1(t, u, v)u′)′ = h1(t)f1(t, u, v) in (0, 1) ,
−(p2(t, u, v)v′)′ = h2(t)f2(t, u, v) in (0, 1) ,

u(0) = u(1) = v(0) = v(1) = 0.
(0.4)

Here p1(t, u, v) = 1/(a1(t) + c1 g1(u, v)) and p2(t, u, v) = 1/(a2(t) + c2 g2(u, v)) . We assume
that g1, g2 are nonnegative continuous functions, a1, a2 are positive continuous functions,
c1, c2 ≥ 0, h1 , h2 ∈ L1(0, 1) and the nonlinearities f1, f2 are super-linear at zero and +∞,
i.e. we have

lim
u+v→0

f1(t, u, v)

u+ v
= 0 and lim

u+v→0

f2(t, u, v)

u+ v
= 0 ,

uniformly for all t ∈ [0, 1] , and there exist p , q > 1, ηi > 0 and 0 < αi < βi < 1 for i = 1, 2 ,
such that

f1(t, u, v) ≥ η1 u
p for all u ≥ 0 and t ∈ (α1, β1)

and
f2(t, u, v) ≥ η2 v

q for all v ≥ 0 and t ∈ (α2, β2).
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Once again, the difficulty we have to confront to prove our result is the fact that the coef-
ficients of the differential operator of the problem are nonlinear and not necessarily bounded
from below by a positive constant independent of u and v . We prove the existence of a pos-
itive solution of the truncated problem (as in problem (0.2)), and we show that for some n
sufficiently large the solution of the truncated problem is a solution of Problem (0.4) . Note
that, in general, this problem has a non–variational estructure.

Problems as (0.4) with a1(s) = a2(s) = 1 and g1(u, v) = g2(u, v) = 0 have been widely
studied under different conditions on the nonlinearity. For instance, assuming superlinear
hypothesis, many authors have obtained multiplicity of solutions with applications to elliptic
systems in annular domains. For homogenous Dirichlet boundary conditions, see [23], [17],
[29] and [30]. For non-homogenous Dirichlet boundary conditions, see [27] and [38].

The third part of the tesis (chapter 3) contains our main result: we study existence and
nonexistence of radial positive solutions for some nonlinear elliptic equations of the form

−div(a(x, u)∇u) = b(x, u) in Ω
u = 0 on ∂Ω

(0.5)

where Ω = BR(0) , is the ball of radius R > 0 in Rn, a(x, u) =
|x|α

(1 + g(u))γ
, and b(x, u) =

|x|βup. We assume that g is a nonnegative increasing continuous function, α, β ∈ R, γ ∈ (0, 1),
and p > 1.

Our main results are:

(i) For α, β ∈ R such that N + α − 2 > 0, N + β > 0, β − α + 1 > 0 and 1 < p <
(1− γ)N+2β−α+2

N+α−2 , the problem (3.1) has at least one positive solution.

(ii) For α, β ∈ R such that N + α − 2 > 0, N + β > 0 and p ≥ N+2β−α+2
N+α−2 , the problem

(3.1) does not have positive solutions. Furthermore, for β − α + 2 ≤ 0 we show the
nonexistence of positive solutions.

As for the one-dimensional problem, we obtain a priori bounds for the truncated problem.
Nonetheless, the discussion is more complex and we have to study the limiting problem,
including Liouville type theorems. Then, by means of fixed-point arguments, we prove the
existence of a positive solution for the truncated problem. Finally, we make use of Liouville
type theorems to prove that for n large enough , the solution of the truncated problem is a
solution of the initial problem.

On the other hand, for p ≥ N+2β−α+2
N+α−2 , via an adaptation of the Derrick-Pohozaev in-

equality (see [31]) we prove the nonexistence of positive solutions of problem (3.1). Finally,
assuming existence of (3.1), we use the properties of the solutions to prove nonexistence of
positive solutions if β − α+ 2 ≤ 0 .
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We observe that this result extends one of the results introduced by [19] (see Theorem
3.2) to a different class of differential operators. Problems as (3.1) have been widely studied,
see e.g. [1], [3], [8], [9], [10], [11], [12], [13], [14]. Note that in [1], [8], [9], [10], [12], [14], the
nonlinearity does not depend on u and the existence results hold for solutions in the viscosity
sense. In [8], the regularity of solutions is studied for a nonlinearity which is independent of
u. In [11], existence and uniqueness of solutions is studied for a differential operator having a
different structure from the one introduced here. In [3], [13], the existence and nonexistence
of solutions is studied for a nonlinearity with singularities.

9



Chapter 1

Positive solutions of a nonlinear

Sturm–Liouville boundary value

problem

In this chapter we establish the existence of positive solutions of the Sturm–Liouville problem

−(p(s, u)u′)′ = q̂(s)up h(s, u, u′) in (0, 1) ,
u(0) = 0 = u(1)

where p (s, u) = 1/(a(s) + c g(u)). We assume g and q̂ non–negative, continuous functions,
a(s) a positive continuous function, c ≥ 0 , p > 1, and the function h sub–quadratic with
respect to u′. We combine a priori estimates with a fixed–point result of Krasnosel’skii to
obtain the existence of a positive solution.

1.1 Introduction

We consider the second–order Sturm–Liouville problem

−
(

u′

a(s) + c g(u)

)′
= q̂(s)up h(s, u, u′) in (0, 1) , (1.1)

u(0) = 0 = u(1)

where p > 1 , c ≥ 0, a : [0, 1]→]0,+∞[ is a continuous function, and
q̂ : [0, 1] → [0,+∞[ is a non–trivial, continuous function. We will assume that the function
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g is continuous and increasing, and is such that g(0) ≥ 0 and that

lim
u→+∞

g(u)

u
p−1
p+1

= 0 . (1.2)

In addition, we will assume that the nonlinearity h is continuous, as well as bounded from
below, in other words

ch ≤ h(t, u, ψ) , for all (t, u, ψ) ∈ [0, 1]× [0,∞[×R (1.3)

where ch is a positive constant. We will further assume the following quadratic growth
condition on the function h with respect to the derivative: Given a compact set K in [0, 1]×R ,
there exist positive constants A and B such that, for all (s, u, ψ) ∈ K × R , we have

h(s, u, ψ) ≤ A+B ψ2. (1.4)

By solutions will be meant classical solutions, that is, u ∈ C1(0, 1) ∩ C0[0, 1] and
u′

a(s) + c g(u)
∈ C1(0, 1) satisfying equation (1.1).

Our main result can be stated as follows:

Theorem 1.1. The Problem (1.1) has at least one positive solution.

Certain difficulties which we may encounter while proving our main result are that the
coefficient p(s, u) = 1/(a(s) + c g(u)) is nonlinear and that it may not necessarily be bounded
from below by a positive bound which is independent of u. In order to overcome these
difficulties, we introduce a truncation gn(u) of the function g(u) so that the new coefficient
pn(s, u) = 1/(a(s) + c gn(u)) becomes bounded from below by a uniformly positive constant.
(See (1.5).) This allows us to use a fixed–point argument for the truncated problem. Finally,
we show the main result proving that, for n sufficiently large, the solutions of the truncated
problem are solutions of Problem (1.1) . A further difficulty in this argument is the dependence
of the function h on the derivative, which leads us to the problem of establishing a priori
bounds for the derivative. Observe that this dependence gives the problem a non–variational
structure.

For further discussion on problems modeled by equations of the type −(q(s, u)u′)′ =
f(s, u, u′) , see for example [2], [16], [28], [32], [39], [47], [48], [49], [50], [51]. For a study
of existence of solutions when the coefficient q(s, u) is constant on the variable u, see for
example [2], [28], [39], [47], [48], [50]. For Sturm–Liouville problems where the coefficient
q(s, u) depends explicitly on the variable u, see for example [16], [32], [49], [51]. Note that
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the problems studied in the preceding papers do not have the same structure as ours. For
example, the phenomena of [32], [49], [51] are modeled by a negative nonlinearity f(s, u, u′) ,
while in [16] the nonlinearity is bounded with respect to the variables u and u′. Observe that,
in this work, f(s, u, u′) is both non–negative and unbounded with respect to the variables
u, u′. As a model example, consider the equation

−(
u′

a(s) + c uq
)′ = q̂(s)up (c0 + c1|u′| θ) in (0, 1) ,

u(0) = 0 = u(1)

where 1 < p , 0 < q <
p− 1

p+ 1
, 0 ≤ θ ≤ 2, c ≥ 0 , c0 > 0 and c1 ≥ 0 .

Our study is organized as follows. In Section 2, we show the existence of positive solutions
of the truncation problem. In Section 3, we show that, for n sufficiently large, the solutions of
the truncation problem are solutions of Problem (1.1), which proves our main result: Theorem
1.1.

1.2 The truncation problem

Given n ∈ N , we consider the function

Tn(s) = max{−n,min{n, s}} ,

and we define the truncation gn(u) of the function g(u) defined by

gn(u) = (g ◦ Tn)(u) . (1.5)

Consider the truncation problem

−
(

u′

a(s) + c gn(u)

)′
= q̂(s)up h(s, u, u′) in (0, 1) , (1.6)n

u(0) = 0 = u(1) .

The following is an existence result for the truncation problem.

Theorem 1.2. Suppose hypotheses (1.3) and (1.4). Then Problem (1.6)n has at least one

positive solution.
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The proof of Theorem 1.2 is based on the well known fixed–point result due to Kras-
nosel’skii (see Theorem 4.2).

In order to apply the Krasnosesl’skii result, we need to establish a priori bounds for the
solutions of a family of problems parameterized by λ ≥ 0 .

In fact, consider the family

−
(

u′

a(s) + c gn(u)

)′
= q̂(s)up h(s, u, u′) + λ in (0, 1) , (1.7)n

u(0) = 0 = u(1) .

We now present three lemmas which lead to the proof of Theorem 1.2. We begin with a
result concerned with a priori bounds for the positive solutions of Problem (1.7)n.

Lemma 1.1. Suppose hypothesis (1.3). Then there exists a positive constant B1, which does

not depend on λ, such that for every positive solution u of Problem (1.7)n, we have

||u||∞ ≤ B1 . (1.8)

Proof. It is not difficult to show that every positive solution u of Problem (1.7)n satisfies

u(t) =

∫ 1

0
Kn(t, s)(q̂(s)up h(s, u, u′) + λ) ds (1.9)

where Kn(t, s) is the associated Green’s function

Kn(t, s) =

{
1
ρ

∫ t
0 (a(τ) + c gn(u(τ))

∫ 1
s (a(τ) + c gn(u(τ)) if 0 ≤ t ≤ s ≤ 1,

1
ρ

∫ s
0 (a(τ) + c gn(u(τ))

∫ 1
t (a(τ) + c gn(u(τ)) if 0 ≤ s ≤ t ≤ 1 .

(1.10)

Here ρ is given by ρ =
∫ 1

0 (a(τ) + c gn(u(τ)) . Simple computations show that every solution

u satisfies

u(s) ≥ q(s) ||u||∞ , for all s ∈ [0, 1] (1.11)

where q(s) =
1

ρ
min

{∫ s

0
(a(τ) + c gn(u(τ))) ,

∫ 1

s
(a(τ) + c gn(u(τ)))

}
.

Hence

q(s) ≥ min a

||a||∞ + c g(n)
s (1− s) , for all s ∈ [0, 1] (1.12)

and
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Kn(t, s) ≥


(min a)2

||a||∞ + c g(n)
t (1− s) if 0 ≤ t ≤ s ≤ 1,

(min a)2

||a||∞ + c g(n)
s (1− t) if 0 ≤ s ≤ t ≤ 1.

(1.13)

Therefore, for all t ∈ [0, 1] , every solution u of Problem (1.7)n satisfies

u(t) ≥ ch (min a)p+2

(||a||∞ + c g(n))p+1
||u||p∞

∫ β

α
G(t, s) q̂(s) sp(1− s)p ds (1.14)

where

G(t, s) =

{
t (1− s) if 0 ≤ t ≤ s ≤ 1,

s (1− t) if 0 ≤ s ≤ t ≤ 1.
(1.15)

The existence of a priori bounds B1 for the solutions u now follows.

The following shows the existence of a priori bounds for the derivatives of the solutions.

Lemma 1.2. Suppose hypotheses (1.3) and (1.4) . Then, for all λ̄ positive, there exists a

constant B2 such that, for λ ∈ [0, λ̄] , every solution of Problem (1.7)n satisfies

||u′||∞ ≤ B2 . (1.16)

Proof. By Lemma 1.1 and hypothesis (1.4) we know that there exist positive constants A and

B so that, for all s ∈ [0, 1] , every solution u of Problem (1.7)n satisfies

h(s, u(s), u′(s)) ≤ A+B u′(s)2. (1.17)

Therefore,

h(s, u(s), u′(s)) ≤ A+ Cn

(
u′(s)

a(s) + c gn(u)

)2

(1.18)

where Cn = B (||a||∞ + c g(n))2 .

Let u be a positive solution of Problem (1.7)n. Note that

d

ds
ln(λ+ Bp

1 ||q̂||∞A+ Bp
1 ||q̂||∞Cn (

u′(s)

a(s) + c gn(u)
)2)

=
−2Bp

1 ||q̂||∞Cn
u′(s)

a(s) + c gn(u) (q̂(s)up h(s, u, u′) + λ)

λ+ Bp
1 ||q̂||∞A+ Bp

1 ||q̂||∞Cn ( u′(s)
a(s) + c gn(u))2

.
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According to inequality (1.18) , if u′(s) < 0 , then

d

ds
ln

(
λ+Bp

1 ||q̂||∞A+Bp
1 ||q̂||∞Cn

(
u′(s)

a(s) + c gn(u)

)2
)
≤ −2

CnB
p
1 ||q̂||∞

min a
u′(s) , (1.19)

and if u′(s) > 0 , then

d

ds
ln

(
λ+Bp

1 ||q̂||∞A+Bp
1 ||q̂||∞Cn

(
u′(s)

a(s) + c gn(u)

)2
)
≥ −2

CnB
p
1 ||q̂||∞

min a
u′(s) . (1.20)

On the other hand, observe that there exists an s0 ∈]0, 1[ so that u(s0) = ||u||∞ , and so

that u is increasing on [0, s0] , while decreasing on [s0, 1]. Integration on the intervals [s, s0]

and [s0, s] yields

ln(λ+Bp
1 ||q̂||∞A+Bp

1 ||q̂||∞Cn (
u′(s)

a(s) + c gn(u)
)2)

≤ 2
CnB

p
1 ||q̂||∞

min a
(||u||∞ − u(s)) + ln(λ̄+Bp

1 ||q̂||∞A) .

(1.21)

Therefore,

ln(λ+Bp
1 ||q̂||∞A+Bp

1 ||q̂||∞B u
′(s)2)

≤ 2
CnB

p+1
1 ||q̂||∞
min a

+ ln(λ̄+Bp
1 ||q̂||∞A) .

(1.22)

The Lemma clearly results from this inequality.

We need the following step. Consider the Banach space

X = C1([0, 1], R)

endowed with the norm ||u||1 = ||u||∞ + ||u′||∞ , where ||u||∞ = maxt∈[0,1] |u(t)| .
Define the cone C by

C = {u ∈ X : u ≥ 0 and u(0) = u(1) = 0}

and the operator Fλ : X → X by

Fλ(u)(s) =
∫ 1

0 Kn(s, τ) (q̂(τ)u(τ)p h(τ, u(τ), u′(τ)) + λ) dτ.

Lemma 1.3. The operator Fλ : X → X is compact, and the cone C is invariant under Fλ.
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Proof Outline. The compactness of Fλ follows from the well known Arzelá–Ascoli Theo-
rem. The invariance of the cone C is a consequence of the fact that the nonlinearities are
non–negative.

Proof of Theorem 1.2.– To prove Theorem 1.2, it suffices to show that F0 has a fixed
point. For this, we will check that the four conditions of Theorem 4.2 are satisfied. Consider
the homotopy H : [0, 1]× C −→ C given by

H(t, u)(s) = Fλ t(u)(s) .

Note that H(t, u) is a compact homotopy, and since H(0, u) = F0(u), we have that condition
(b) is satisfied.

Concerning condition (a), by continuity, there exists a M > 0 such that, if ||u||1 ≤ 1 ,
then

|Kn(s, τ)h(τ, u(τ), u′(τ))| ≤M . (1.23)

Now if ||u||1 = δ, with δ > 0 , then

||F0(u)||1 = ||F0(u)||∞ + ||F0(u)′||∞ ≤ C δp−1||u||1

where C is a positive constant. Taking δ sufficiently small, we have

||F0(u)||1 < ||u||1 . (1.24)

From Lemmas 1.1 and 1.2 we conclude that there exists a η sufficiently large so that
Condition (c) is satisfied.

Checking that Condition (d) is satisfied is based on the following subsidiary lemma.

Lemma 1.4. The Problem (1.7)n has no solutions for λ large.

Proof. Let u be a solution of Problem (1.7)n, or in other words

u(t) =

∫ 1

0
Kn(s, t) (q̂(s)u(s)p h(s, u(s), u′(s)) + λ) ds.

Then

||u||∞ ≥ λ
∫ 1

0
Kn(s,

1

2
) ds.

By Lemma 1.1 we know that ||u||∞ ≤ B1 , and hence

λ ≤ B1∫ 1
0 Kn(s, 1

2) ds
.
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Therefore, for

λ >
B1∫ 1

0 Kn(s, 1
2) ds

there are no solutions of Problem (1.7)n.

So choosing λ sufficiently large in the homotopy H(t, u) , we see that Condition (d) is satisfied
by Lemma 1.4.

Thus all of Krasnosel’skii’s conditions are satisfied.

1.3 Proof of Theorem 1.1

The proof of Theorem 1.1 is direct consequence of the following.

Lemma 1.5. There exists an n0 ∈ N such that every solution u of Problem (1.6)n satisfies

||u||∞ < n0 . (1.25)

Proof. For otherwise, there would exist a sequence of solutions {un}n of Problem ((1.6)n such

that ||un||∞ ≥ n, for all n ∈ N. Using the same argument as in Lemma 1.1, we would obtain

the estimate

1 ≥ (min a)2

||a||∞ + c g(n)

(
min a

||a||∞ + c g(n)

)p
chn

p−1 max
t∈[0,1]

∫ 1

0
G(t, s) q̂(s) sp(1− s)p ds

≥ (min a)p+2ch

(
n
p−1
p+1

||a||∞ + c g(n)

)p+1

max
t∈[0,1]

∫ 1

0
G(t, s) q̂(s) sp(1− s)p ds .

But this is impossible, since limn→+∞
n
p−1
p+1

||a||∞+ c g(n) = +∞ by hypothesis (1.2) .
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Chapter 2

Nonlinear Systems of Second–Order

ODE’S

In this chapter we study existence of positive solutions of the system

−(p1(t, u, v)u′)′ = h1(t)f1(t, u, v) in (0, 1) ,
−(p2(t, u, v)v′)′ = h2(t)f2(t, u, v) in (0, 1) ,

u(0) = u(1) = v(0) = v(1) = 0

where p1(t, u, v) = 1/(a1(t) + c1 g1(u, v)) and p2(t, u, v) = 1/(a2(t) + c2 g2(u, v)) . Here is
assumed that g1, g2 are non-negative continuous functions, a1(t), a2(t) are positive continuous
functions, c1, c2 ≥ 0, h1 , h2 ∈ L1(0, 1) and that the nonlinearities f1, f2 satisfy super-linear
hypotheses at zero and +∞. The existence of solutions will be obtained using a combination
among the method of truncation, a priori bounded and the Krasnosel’skii well known result
on fixed–point indices in cones.

2.1 Introduction

We study existence of positive solutions for the following nonlinear system of second–order
ordinary differential equations

−(
u′

a1(s) + c1 g1(u, v)
)′ = h1(t)f1(t, u, v) in (0, 1) ,

−(
v′

a2(s) + c2 g2(u, v)
)′ = h2(t)f2(t, u, v) in (0, 1) ,

u(0) = u(1) = v(0) = v(1) = 0

(2.1)

18



where c1, c2 are non–negatives constants, the functions a1, a2 : [0, 1] −→]0,+∞[ are contin-
uous, the functions f1, f2 : [0, 1]× [0,+∞[2−→ [0,+∞[ are continuous and h1 , h2 ∈ L1(0, 1) .
We will suppose the following four hypotheses:

(H1) We have

lim
u+v→0

f1(t, u, v)

u+ v
= 0 and lim

u+v→0

f2(t, u, v)

u+ v
= 0 ,

uniformly for all t ∈ [0, 1].

(H2) There exist p , q > 1, ηi > 0 and 0 < αi < βi < 1 for i = 1, 2 , such that

f1(t, u, v) ≥ η1 u
p for all u ≥ 0 and t ∈ (α1, β1)

and
f2(t, u, v) ≥ η2 v

q for all v ≥ 0 and t ∈ (α2, β2).

(H3) The functions g1, g2 : [0,+∞[2−→ [0,+∞[ are continuous and

lim
u→+∞

gi(u, u) = +∞ , for i = 1, 2 .

We suppose that there exists a n∗ ∈ N such that g1, g2 are non–decreasing for all
u2 + v2 ≥ n2

∗. Here g1, g2 non–decreasing, means that

gi(u1, v1) ≤ gi(u2, v2) , for i = 1, 2

whenever (u1, v1) ≤ (u2, v2) , where the inequality is understood inside every compo-
nent.

(H4) We have

lim
n→+∞

g1(n, n)

n
r
p+1

= 0 and lim
n→+∞

g2(n, n)

n
r
q+1

= 0

where r = min{p− 1, q − 1}.

Here are some comments on the above hypotheses. Hypothesis (H1) is a superlinear con-
dition at 0 and Hypothesis (H2) is a local superlinear assumption at + ∞. About hypothesis
(H3) the fact that g1, g2 are unbounded leads us to use the strategy of considering a truncation
problem. Note that if g1, g2 are bounded we would not need to use that problem. Hypothesis
(H4) allows us to have a control on the nonlinear operator in Problem 2.1.
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We remark that, the case when a1(s) = a2(s) = 1 and g1(u, v) = g2(u, v) = 0, problems
of type (2.1) have been extensively studied in the literature under different sets of conditions
on the nonlinearities. For instance, assuming superlinear hypothesis, many authors have
obtained multiplicity of solutions with applications to elliptic systems in annular domains. For
homogeneous Dirichlet boundary conditions, see de Figueiredo–Ubilla [23], Conti–Merizzi–
Terracini [17], Dunninger–Wang [29] and [30]. For non–homogeneous Dirichlet boundary
conditions, see Lee [38] and do Ó–Lorca–Ubilla [27].

Our main goal is to study problems of type (2.1) by considering local superlinear assump-
tions at +∞ and global superlinear at zero.

The main result is the following

Theorem 2.1. Assume hypotheses (H1) through (H4). Then Problem (2.1) has at least one

positive solution.

Our study is organized as follows. In Section 2, we show the a priori bounds for a truncation
problem. In Section 3, we show that the a priori bounds imply a nonexistence result for
problem (2.4)n. In Section 4, we enunciated to the well-known result of Krasnosel’skii of fixed
point in cones. In Section 5, we show the existence of positive solutions of the truncation
problem. In Section 6, we prove the existence of solutions of the system of ordinary differential
equations (2.1) .

2.2 A priori bounds for a truncation problem

In this section we establish a priori bounds for a truncation problem. The hypothesis (H3)
allows us to find a n∗∗ ∈ N so that n ≥ n∗∗ implies

g1(u, v) ≤ g1(n, n) and g2(u, v) ≤ g2(n, n),

for all u2 + v2 ≤ n2.
Now for every n ∈ N such that n ≥ n∗∗ we define

gi,n(u, v) =

 gi(u, v) if u2 + v2 ≤ n2 ,

gi(
nu√
u2+v2

, nv√
u2+v2

) if u2 + v2 ≥ n2 .
(2.2)

for i = 1, 2.
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Our goal is to prove the existence of a positive solution for the following truncation problem

−
(

u′

a1(s) + c1 g1,n(u, v)

)′
= h1(t)f1(t, u, v) in (0, 1) ,

−
(

v′

a2(s) + c2 g2,n(u, v)

)′
= h2(t)f2(t, u, v) in (0, 1) ,

u(0) = u(1) = v(0) = v(1) = 0 .

(2.3)n

For our purpose we need to establish a priori bounds for solutions of a family of problems
parameterized by λ ≥ 0 . In fact, consider the family

−
(

u′

a1(s) + c1 g1,n(u, v)

)′
= h1(t)f1(t, u, v) + λ in (0, 1) ,

−
(

v′

a2(s) + c2 g2,n(u, v)

)′
= h2(t)f2(t, u, v) + λ in (0, 1) ,

u(0) = u(1) = v(0) = v(1) = 0 .

(2.4)n

It is not difficult to prove that every solution of Problem (2.4)n satisfies

u(t) =

∫ 1

0
K1,n(t, s)(h1(s)f1(s, u(s), v(s)) + λ) ds

v(t) =

∫ 1

0
K2,n(t, s)(h2(s)f2(s, u(s), v(s)) + λ) ds .

(2.5)

Here Ki,n(t, s), i = 1, 2 are the de Green’s functions given by

Ki,n(t, s) =

{
1
ρi

∫ t
0 (ai(τ) + ci gi,n(u(τ))

∫ 1
s (ai(τ) + ci gi,n(u(τ)) if 0 ≤ t ≤ s ≤ 1,

1
ρi

∫ s
0 (ai(τ) + ci gi,n(u(τ))

∫ 1
t (ai(τ) + ci gi,n(u(τ)) if 0 ≤ s ≤ t ≤ 1 .

(2.6)
where ρi denotes ρi =

∫ 1
0 (ai(τ) + ci gi,n(u(τ)) .

In order to establish the a priori bound result we need the following two lemmata

Lemma 2.1. Assume hypotheses (H1) and (H3). Then every solution of Problem (2.4)n

satisfies

u(t) ≥ q1(t)||u||∞ and v(t) ≥ q2(t)||v||∞ , for all s ∈ [0, 1] (2.7)

where qi(t) = (min ai)t(1−t)
||ai||∞+cigi(n,n) with i = 1, 2 .
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Proof. A simple computation shows that every solution (u, v) satisfies

u(s) ≥ q̂1(s, u, v) ||u||∞ and v(s) ≥ q̂2(s, u, v) ||v||∞ , for all s ∈ [0, 1] (2.8)

where q̂i(s, u, v) =
1

ρi
min {

∫ s

0
(ai(τ) + ci gi,n(u(τ), v(τ))) ,

∫ 1

s
(ai(τ) + ci gi,n(u(τ), v(τ)))} .

Since

q̂i(s, u, v) ≥ (min ai)s(1− s)
||ai||∞ + cigi(n, n)

for i = 1, 2 (2.9)

we have that (2.7) is proved .

Lemma 2.2. Assume hypothesis (H3). Then the Green’s functions satisfy

Ki,n(t, s) ≥ (min ai)
2

||ai||∞ + cigi(n, n)
G(t, s) , i = 1, 2 .

where

G(t, s) =

{
(1− t)s, 0 ≤ s < t ≤ 1

(1− s)t, 0 ≤ t ≤ s ≤ 1.

Proof. The inequality follows from (2.6) and using that gi,n is uniformly bounded by gi(n, n)

for i = 1, 2.

Theorem 2.2. Assume hypothesis (H1)− (H3). Then there is a positive constant B1 which

does not depend on λ, such that, for every solution (u, v) of Problem (2.4)n, we have

||(u, v)||1 ≤ B1 . (2.10)

Proof. By Lemma 2.1 and 2.2 every solution (u, v) of Problem (2.4)n satisfies

||(u, v)||1 ≥ (min a1)2η1
||a1||∞ + c1g1(n, n)

∫ β1

α1

h1(s)up(s) ds+
(min a2)2η2

||a2||∞ + c2g2(n, n)

∫ β2

α2

h2(s)vq(s) ds

≥ ĉ (||u||p∞ + ||v||q∞) ,

where ĉ = min
{

(min a1)p+2αp1(1−β1)pη1
(||a1||∞+c1g1(n,n))p+1

∫ β1
α1
h1(s) ds,

(min a2)q+2αq2(1−β2)qη2
(||a2||∞+c2g2(n,n))q+1

∫ β2
α2
h2(s) ds

}
.

Thus

1 ≥ ĉ ||u||
p
∞ + ||v||q∞

||u||∞ + ||v||∞
(2.11)

which proves (2.10).
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2.3 A Nonexistence Result

In this section we see that the a priori bounds imply a nonexistence result for Problem (2.4)n.

Theorem 2.3. Problem (2.4)n has no solution for all λ sufficiently large.

Proof. Let (u, v) be a solution of Problem (2.4)n, in other words,

u(t) =

∫ 1

0
K1,n(t, s)(h1(s)f1(s, u(s), v(s)) + λ) ds

v(t) =

∫ 1

0
K2,n(t, s)(h2(s)f2(s, u(s), v(s)) + λ) ds .

(2.12)

Then ,

||(u, v)||1 ≥ λ
(∫ 1

0
K1,n(s,

1

2
) ds+

∫ 1

0
K2,n(s,

1

2
) ds

)
.

By Theorem 2.2 we know that ||(u, v)||1 ≤ B1 , thus

λ ≤ B1∫ 1
0 K1,n(s, 1

2) ds+
∫ 1

0 K2,n(s, 1
2) ds

,

which proves Theorem 2.3.

2.4 Fixed Point Operators

Consider the following Banach space

X = C([0, 1],R)× C([0, 1],R)

endowed with the norm ||(u, v)|| = ||u||∞ + ||v||∞ , where ||u||∞ = maxt∈[0,1] |u(t)| .
Define the cone C by

C = {(u, v) ∈ X : (u, v)(0) = (u, v)(1) = 0 , y (u, v) ≥ 0}.

Define also the operator Fλ : X −→ X by

Fλ(u, v)(s) = (Aλ(u, v)(s),Bλ(u, v)(s)), for s ∈ [0, 1]

where
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Aλ(u, v)(s) =
∫ 1

0 K1,n(s, τ) (h1(τ)f1(τ, u(τ), v(τ)) + λ) dτ and

Bλ(u, v)(s) =
∫ 1

0 K2,n(s, τ) (h2(τ)f2(τ, u(τ), v(τ)) + λ) dτ.

Note that a simple calculation shows us that the fixed points of the operator Fλ are the
positive solutions of System (2.4)n .

Lemma 2.3. The operator Fλ : X → X is compact, and the cone C is invariant under Fλ.

Proof Outline. The compactness of Fλ follows from the well known Arzelá–Ascoli Theorem.
The invariance of the cone C is a consequence of the fact that the nonlinearities are non–
negative.

In section 5 we will give an existence result of the truncation Problem (2.3)n. The proof
will be based on the well known fixed–point result due to Krasnosel’skii (see Theorem 4.2).

2.5 Existence result of Truncation Problem (2.3)n

The following is an existence result of the truncation problem.

Theorem 2.4. Assume hipotheses (H1) through (H3). Then there exists a positive solution

of Problem (2.3)n.

Proof. We will verify the hypotheses of Theorem 4.2. Define the homotopy H : [0, 1]× C2 −→ C2

by

H(t, (u, v))(s) = (Aλ(t, u, v)(s),Bλ(t, u, v)(s)), for s, t ∈ [0, 1]

where λ is a sufficiently large parameter, and where

Aλ(t, u, v)(s) =
∫ 1

0 K1,n(s, τ) (h1(τ)f1(τ, u(τ), v(τ)) + tλ) dτ and

Bλ(t, u, v)(s) =
∫ 1

0 K2,n(s, τ) (h2(τ)f2(τ, u(τ), v(τ)) + tλ) dτ.

Note that H(t, u, v) is a compact homotopy and that H(0, u, v) = F0(u, v) , which verifies (b).

On the other hand, we have

||F0(u, v)||1 ≤ (||a1||∞ + c1g1(n, n))

∫ 1

0
h1(τ)

f1(τ, u(τ), v(τ))

u(τ) + v(τ)
dτ ||(u, v)||1

+ (||a2||∞ + c2g2(n, n))

∫ 1

0
h2(τ)

f2(τ, u(τ), v(τ))

u(τ) + v(τ)
dτ ||(u, v)||1 .
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Taking ||(u, v)||1 = δ with δ > 0 sufficiently small, from hypothesis we have

||F0(u, v)||1 < ||(u, v)||1, (2.13)

which verifies (a) of Theorem 4.2. By Theorem 2.2 we clearly have (c).

Finally, choosing λ sufficiently large in the homotopy H(t, u) , we see that Condition (d) of

Theorem 4.2 is satisfied by Theorem 2.3. The proof of Theorem 2.4 is now complete.

2.6 Proof of main result: Theorem 2.1

The proof of Theorem 2.1 is direct consequence of the following.

Theorem 2.5. There exists an n0 ∈ N such that every solution (u, v) of Problem (2.4)n

which n > n∗∗ satisfies

||(u, v)||1 < n2
0 . (2.14)

Proof. For otherwise, there would exist a sequence of solutions {(un, vn)}n of Problem (2.4)n

such that ||(un, vn)||1 ≥ n2, for all n ∈ N which n > n∗∗. Using the same argument as in

Theorem 2.2, we would obtain the estimate

1 ≥ min

{
(min a1)

p+2αp1(1− β1)pη1
(||a1||∞ + c1g1(n, n))p+1

∫ β1

α1

h1(s) ds,
(min a2)

q+2αq2(1− β2)qη2
(||a2||∞ + c2g2(n, n))q+1

∫ β2

α2

h2(s) ds

}
||u||p∞ + ||v||q∞
||u||∞ + ||v||∞

(2.15)

We have ||un||∞ =
√
||un||2∞ + ||vn||2∞ sin θn and ||vn||∞ =

√
||un||2∞ + ||vn||2∞ cos θn with

θn ∈ [0, 1
2 ]. Moreover, there exists a constant c > 0 such that sinp θn + cosq θn > c. Then

1

nmin{p−1,q−1} ≥ min

{
(min a1)

p+2αp(1− β)pη1c
(||a1||∞ + c1g1(n, n))p+1

∫ β1

α1

h1(s) ds,
(min a2)

q+2αq(1− β)qη2c
(||a2||∞ + c2g2(n, n))q+1

∫ β2

α2

h2(s) ds

}
,

(2.16)

which is impossible, since limn→+∞
n

r
p+1

||a1||∞+ c1 g1(n,n) = +∞ and

limn→+∞
n

r
q+1

||a2||∞+ c2 g2(n,n) = +∞ by hypothesis (H4) .
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2.7 Remarks

(i) We note that the solutions of nonlinear Problem (2.1) are C1 class in [0, 1] and C2 class
almost every where, in (0, 1). Note also that when h1(t), h2(t) are continuous functions
the solutions of Problem (2.1) are classic.

(ii) A little modification of our argument may be done to obtain an existence result of the
following more general system

−(
u′

a1(s) + c1 g1(u, v)
)′ = k1(t, u, v) in (0, 1) ,

−(
v′

a2(s) + c2 g2(u, v)
)′ = k2(t, u, v) in (0, 1) ,

u(0) = u(1) = v(0) = v(1) = 0

(2.17)

where k1, k2 satisfy (H2) and the property that there exist continuous functions
f̂1, f̂2 : [0, 1]× [0,+∞)2 −→ [0,+∞) satisfying (H1) and (H2) , and that there exist
h1 , h2 ∈ L1(0, 1) , such that

k1(t, u, v) ≤ h1(t)f̂1(t, u, v) and k2(t, u, v) ≤ h2(t)f̂2(t, u, v) ,

for all t ∈ [0, 1] .
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Chapter 3

Existence and Nonexistence of

positive radial solution of a

nonlinear boundary value problem

In this chapter we study the existence and nonexistence of radial positive solution for some
nonlinear elliptic equations of the form

−div(a(x, u)∇u) = b(x, u) in Ω
u = 0 on ∂Ω

(3.1)

where Ω = BR(0), R > 0, is the ball of radius R in Rn and the functions a(x, u) =
|x|α

(1 + g(u))γ
, b(x, u) = |x|βup, we assume g nonnegative increasing continuous function, the

constants α, β ∈ R, γ ∈ (0, 1), p > 1. We combine blow-up techniques and a priori estimates
with a fixed-point result of Krasnosel’skii.

3.1 Introduction

We study existence and nonexistence of positive radial solutions for the Problem (3.1), that
is, we study the existence and nonexistence of positive solutions for the following problem:

−
(
rN+α−1v′

(1 + g(v))γ

)′
= rN+β−1vp for r < R

v′(0) = 0 ,
v(R) = 0 .

(3.2)
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where p > 1, α, β ∈ R, g :]0,∞[→]0,∞[ is continuous and increasing.
Arguing as in the one-dimensional case, for N +α− 2 > 0 , N + β > 0 , β−α+ 1 > 0 and

1 < p < (1− γ)N+2β−α+2
N+α−2 we obtain a priori bounds for the truncated problem. Nonetheless,

the discussion is more complex and we have to study the limiting problem, including Liouville
type theorems. Then, by means of fixed-point arguments, we prove the existence of positive
solution for the truncated problem. Finally, we make use of Liouville type theorems to prove
that for n large enough , the solution of the truncated problem is a solution of the initial
problem.

On the other hand, for p ≥ N+2β−α+2
N+α−2 , via an adaptation of the Derrick-Pohozaev in-

equality (see [31]) we prove the nonexistence of positive solutions of problem (3.1). Finally,
we use the properties of the solutions of (3.1), to prove nonexistence of positive solutions if
β − α+ 2 ≤ 0 .

We observe that this result extends one of the results introduced by [19] (see Theorem
3.2), to a different class of differential operators. Problems of the form (3.1) have been widely
studied, see, for example, [1], [3], [8], [9], [10], [11], [12], [13], [14]. When we observe that
in [1], [8], [9], [10], [12], [14], nonlinearity does not depend on u, the results of existence of
solutions are solutions in the viscosity sense. In [8], regularity of solutions are studied where
nonlinearity is independent from u. In [11] the existence and the uniqueness of solution is
studied, where the differential operator has a different structure from the one we introduce
here. In [3], [13], the existence and nonexistence of solution is studied where the nonlinearity
has singularities.

3.2 Existence of positive solution

We study existence of positive solutions for the problem (3.2), under the following hypotheses:

(H0) The constants γ ∈ (0, 1) and α, β ∈ R such that N + α − 2 > 0, N + β > 0 and
β − α+ 1 > 0.

(H1) We suppose that 1 < p < (1− γ)
N + 2β − α+ 2

N + α− 2
.

(H2) The function g : [0,+∞[→]0,+∞[ is increasing, such that

lim
v→+∞

g(v)

v
= 1 .

The main result is the following:

Theorem 3.1. Assume hypotheses (H0), (H1) and (H2). The Problem (3.2) has at least one

positive solution.
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One of the difficulties here is that the coefficient of the operator, that is,
1

(1 + g(u))γ
is

not bounded from below. This implies that the clasical methods used in order to prove the
existence of a solution for problem (3.2) cannot be applied in general. In order to overcome
these difficulties, we introduce a truncation problem (see (3.3)k) depending on k so that the
new coefficient of the truncation problem becomes bounded from below by a uniformly positive
constant.

3.2.1 Truncation Problem

With the aim to prove the existence of positive solutions of the problem, for k > 0, we consider
the truncation function

Tk(s) = max{−k,min{k, s}} ,

and we define the function gk(s) = (g ◦ Tk)(s).

Now, for k ∈ N, we consider the following truncated problem

−
(

rN+α−1v′

(1 + gk(v))γ

)′
= rN+β−1vp for r < R

v′(0) = 0 ,
v(R) = 0 .

(3.3)k

3.2.2 A priori bounds for the truncated problem (3.3)k

Theorem 3.2. Assume hypoteses (H0), (H1) and (H2). Then there is a positive constant C

which depend on k, for every solution v of Problem (3.3)k, we have

||v||∞ ≤ C .

Proof. Let k ∈ N, by contradiction argument assume that there is a sequence of positive

solutions {vn}n of the equation (3.3)k, so that ||vn||∞ → +∞ when n→ +∞.

Now, consider the following changes of variables

y =
zn
tn
r ,

wn(y) =
vn(r)

tn

(3.4)

where tn := ||vn||∞ and zn = (1 + g(k))
γ

β−α+2 t
β−α+1+p
β−α+2

n .
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Then, the function wn is a solution of the following problem:

−
(

yN+α−1w′n
(1 + gk(tnwn))γ

)′
= tβ−α+1+p

n

zβ−α+2
n

yN+β−1wpn for y < znR
tn

w′n(0) = 0 ,

wn(0) = 1 ,

wn(Rzntn ) = 0 .

(3.5)

Besides, observe that the functions wn verify the equation

−(N + α− 1)yN+α−2

(
w′n(y)

(1 + gk(tnwn)(y))γ

)
− yN+α−1

(
w′n(y)

(1 + gk(tnwn)(y))γ

)′
=
tβ−α+1+p
n

zβ−α+2
n

yN+β−1wpn(y) ,

Since wn is a decreasing function, we see that

−(N + α− 1)yN+α−2

(
w′n(y)

(1 + gk(tnwn)(y))γ

)
> 0 ,

then, we obtain the inequality

−
(

w′n(y)

(1 + gk(tnwn)(y))γ

)′
≤ tβ−α+1+p

n

zβ−α+2
n

yβ−αwpn(y)

Replacing zn, the inequality adopts the shape

−
(

w′n(y)

(1 + gk(tnwn)(y))γ

)′
≤ 1

(1 + g(k))γ
yβ−αwpn(y)

Integrating from 0 to y,

−w′n(u) ≤ (1 + gk(tnwn)(y))γ

(1 + g(k))γ

∫ y

0
τβ−αwpn(τ) dτ ,

Since w′n(y) < 0 for all y ∈ (0, R zn
tn

), we have

|w′n(y)| ≤
∫ y

0
τβ−α dτ . (3.6)

By (3.6), we get that w′n is uniformly bounded in compact intervals, this is, for each

M ∈ R, there is a constant C(M) > 0 so that
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w′n(y) ≤ C(M) , for all n ∈ N , and for all y ∈ [0,M ] . (3.7)

Thus the sequence {wn}n is equicontinuous in [0,M ]. Since this sequence is uniformly

bounded, applying Ascoli Arzèla’s theorem, we obtain that {wn}n contains a convergent

subsequence, which we still denote by {wn}n, say wn → w in C[0,M ]) when n→ +∞.

Since every function wn, is solution of the equation

−
(

yN+α−1w′n(y)

(1 + gk(tnwn(y)))γ

)′
=

yN+β−1

(1 + g(k))γ
wpn(y) for r < R

w′n(0) = 0 ,

wn(0) = 1 ,

wn(Rzntn ) = 0 .

(3.8)

From the properties of the solutions of (3.8) we can observe that tnwn(y) → +∞ when

n→ +∞ for each y ∈ [0,M ]. If we suppose that exists y0 ∈]0,M [ so that tnwn(y0)→ c0, and

so wn(y0)→ 0 when n→ +∞, thus w(y) = 0 for all y ≥ y0.

Integrating equation in (3.8) on [0, y] ⊂ [0,M ], we find that

−w′n(y) =
(1 + gk(tnwn(y)))γ

(1 + g(k))γ
1

yN+α−1

∫ y

0
τN+β−1wpn(τ) dτ . (3.9)

Using Lebesgue’s dominated convergence theorem, and letting n→ +∞ we get

(1 + gk(tnwn(y)))γ

yN+α−1

∫ y

0
τN+β−1wpn(τ) dτ → (1 + g(c0))γ

yN+α−1

∫ y

0
τN+β−1wp(τ) dτ ,

integrating again in [y0, y] ⊂ [0,M ], we have

−(wn(y)− wn(y0)) =

∫ y

y0

(1 + gk(tnwn(s)))γ

(1 + g(k))γ
1

sN+α−1

∫ s

0
τN+β−1wpn(τ) dτ ds ,

Using again Lebesgue’s dominated convergence theorem, letting n→ +∞, we obtain

0 =

∫ y

y0

(1 + g(c0))γ

(1 + g(k))γ
1

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ ds .

Wich is absurd, because w ∈ C[0,M ] with w(0) = 1.

Thus, we conclude that tnwn(y)→ +∞ when n→ +∞, for each y ∈ [0,M ]
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Then, integrating again (3.9) in [0, y] ⊂ [0,M ], we have

−(wn(y)− 1) =

∫ y

0

(1 + gk(tnwn(s)))γ

(1 + g(k))γ
1

sN+α−1

∫ s

0
τN+β−1wpn(τ) dτ ds ,

Using again Lebesgue’s dominated convergence theorem, letting n→ +∞, we find that

−w(y) + 1 =

∫ y

0

1

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ ds .

Thus w is a nonnegative nontrivial solution in [0,M ] to the initial value problem

−(yN+α−1w′)′ = yN+β−1wp

w(0) = 1 , w′(0) = 0 .
(3.10)

By using a diagonal iterative scheme, as for example the last part of the proof of [[19], Proposi-

tion 4.1], w can be extended to all R+, as a nonnegative solution of (3.10). Furthermore, using

the argument of [19], it can be shown that w is indeed a positive solution of class C2(0,+∞)

of (3.10).

Theorem 3.3. Assume the hypoteses (H0) and (H1). Then Problem (3.10) does not have

nonnegative solutions.

Before the demonstration of the previous theorem, let’s consider the next proposition:

Proposition 3.1. Let u ∈ C2(0,+∞) be a nonnegative solution of (3.10), where α, β and p

satisfy (H0) and (H1) respectively. Then, the function y w′(y) + ρw(y) is nonnegative and

nonincreasing for ρ = N + α− 2.

In particular, the function yρw(y) is nondecreasing on ]0,+∞[.

Proof. We know that −
(
yN+α−1w′(y)

)′ ≥ 0 for all y ∈]0,+∞[ then

−
[
(N + α− 1)yN+α−2w′(y) + yN+α−1w′′(y)

]
≥ 0

thus

yN+α−2
[
(N + α− 1)w′(y) + yw′′(y)

]
≤ 0
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for y ∈]0,+∞[.

Let’s observe that:[
y w′(y) + ρw(y)

]′
= (y w′(y))′ + ρw′(y)

= w′(y) + y w′′(y) + ρw′(y)

= (1 + ρ)w′(y) + yw′′(y)

= (N + α− 1)w′(y) + y w′′(y) ≤ 0

this means that, y w′(y) + ρw(y) is a nonincreasing function.

On the other side, if we suppose that exists y0 > 0 such that

y0w
′(y0) + ρw(y0) < m0, with m0 < 0. then, y w′(y) + ρw(y) < m0 for all y ≥ y0. Then

w′(y) < m0y
−1, and integrating from y0 to y, we have

w(y)− w(y0) < m0 ln(
y

y0
) .

Thus

lim
y→∞

w(y) = −∞ ,

which is a contradiction. Thus we have proved that function y w′(y) + ρw(y) is nonnegative

and nonincreasing.

On the other hand, we have

(yρw(y))′ = ρ yρ−1w(y) + yρw′(y)

= yρ−1(y w′(y) + ρw(y)) .

Since function y w′(y + ρw(y)) is nonnegative, we have that (yρw(y))′ ≥ 0.

Proof Theorem 3.3. Assume that w is a nonnegative solution of Problem (3.10)

Integrating equation (3.10) from y to t, we obtain

−[tN+α−1w′(t)− yN+α−1w′(y)] =

∫ t

y
sN+β−1wp(s) ds .

Thus, using Proposition 3.1 and w′(y) ≤ 0, we have
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tN+α−1|w′(t)| ≥
∫ t

y
sN+β−1wp(s) ds

≥
∫ t

y
sN+β−1−ρp(sρw(s))p ds

≥ (yρw(y))p
∫ t

y
sN+β−1−ρp ds

= yρ pwp(y)
tN+β−ρ p − yN+β−ρ p

N + β − ρ p

Since ρw(t) ≥ −tw′(t), we obtain

tN+α−2w(t) ≥ yρ pwp(y)
tN+β−ρ p − yN+β−ρ p

N + β − ρ p
Taking t = 2y and using that w is decreasing, we have

(2y)N+α−2w(y) ≥ yρ pwp(y)
(2y)N+β−ρ p − yN+β−ρ p

N + β − ρ p

= yN+βwp(y)
2N+β−ρ p − 1

N + β − ρ p
,

and so, from the last inequality, we have

wp−1(y) ≤ y−(β−α+2)2N+α−2

[
2N+β−ρ p − 1

N + β − ρ p

]
. (3.11)

On another side, multiplying the equation of the initial value problem (3.10) by yw′(y)

and integrating from 0 to t, we obtain

∫ t

0
sN+βwp(y)w′(y) ds = −

∫ t

0
(sN+α−1w′(s))′sw′(s) ds

= −tN+αw′(t)2 +

∫ t

0
sN+α−1w′(s)2 ds+

∫ t

0
sN+αw′′(s)w′(s) ds .

Observe that∫ t

0
sN+αw′′(s)w′(s) ds =

tN+α

2
w′(t)2 − N + α

2

∫ t

0
sN+α−1w′(s)2 ds .
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Thus, combining the last two equations, we obtain∫ t

0
sN+βwp(y)w′(y) ds = − t

N+α

2
w′(t)2 − N + α− 2

2

∫ t

0
sN+α−1w′(s)2 ds . (3.12)

On another side, we have

∫ t

0
sN+βwp(y)w′(y) ds =

1

p+ 1

[
tN+βwp+1(t)− (N + β)

∫ t

0
sN+β−1wp+1(s) ds

]
. (3.13)

From equations (3.12) and (3.13), we have

− t
N+α

2
w′(t)2 − N + α− 2

2

∫ t

0
sN+α−1w′(s)2 ds =

1

p+ 1

[
tN+βwp+1(t)− (N + β)

∫ t

0
sN+β−1wp+1(s) ds

]
.

Multipying (3.10) by w and integrating from 0 to t, we obtain∫ t

0
sN+α−1w′(s)2 ds = tN+α−1w′(t)w(t) +

∫ t

0
sN+β−1wp+1(s) ds,

then,

− t
N+α

2
w′(t)2 − N + α− 2

2

[
tN+α−1w′(t)w(t) +

∫ t

0
sN+β−1wp+1(s) d

]
=

1

p+ 1

[
tN+βwp+1(t)− (N + β)

∫ t

0
sN+β−1wp+1(s) ds

]
hence, (

−N + α− 2

2
+
N + β

p+ 1

)∫ t

0
sN+β−1wp+1(s) ds =

1

p+ 1
tN+βwp+1(t) + w′(t)

tN+α−1

2

[
tw′(t) + (N + α− 2)w(t)

]
.

(3.14)

From the inequality (3.11), we have that

tN+βwp+1(t) ≤ C(N,α, β)t
p(N+α−2)−(N+2β−α+2)

p−1 , (3.15)
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where C(N,α, β) > 0.

By hypotesis (H1), we have N + 2β − α+ 2− p(N + α− 2) > 0, which implies

lim
t→∞

tN+βwp+1(t) = 0 . (3.16)

We also know that

w′(t)
tN+α−1

2

[
tw′(t) + (N + α− 2)w(t)

]
≤ 0 , (3.17)

in addition, we have

−N + α− 2

2
+
N + β

p+ 1
=
N + 2β − α+ 2− p(N + α− 2)

2(p+ 1)
> 0 .

Then, (
−N + α− 2

2
+
N + β

p+ 1

)∫ t

0
sN+β−1wp+1(s) ds > 0. (3.18)

Observing the inequalities (3.16), (3.17) and (3.18), of the equality (3.14), we have that

lim
t→+∞

∫ t

0
sN+β−1wp+1 ds ≤ 0 . (3.19)

Which contradicts (3.18). Then the initial value problem (3.10), does not have nonnegative

solutions in R+.

Finally, for k > 0 fixed we conclude that there exists a constant C > 0 such that for each
function v solution of the problem (3.3)k

||v||∞ ≤ C .

The existence of positve solution of the truncation Problem (3.3)k, will be based on the
well known fixed-point result due to Krasnosel’skii (See Theorem 4.2).

Consider the following Banach space

X = C([0, 1],R)

endowed whith the norm ||v||∞ = supt∈[0,1] |v(t)|.
Define the cone C by

C = {v ∈ C[0, R]; v ≥ 0 , v(R) = 0}.
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Define also the operator F : X → X by

(Fv)(r) =

∫ R

r

(1 + gk(v)(s))γ

sN+α−1

∫ s

0
τN+β−1vp(τ) dτ ds. (3.20)

Note that a simple calculation shows that the fixed point of the operator F are the positive
solutions of Problem (3.2).

Lemma 3.1. The operator F : X → X defined by (3.20) is compact, and the cone C is

invariant under F .

Proof Outline. The compactness of F follows from the well known Ascoli Arzèla’s the-
orem. The invariance of the cone C is a consequence of the fact that the nonlinearities are
nonnegative.

3.2.3 Existence result of Truncation Problem (3.3)k

We will give an existence result of the Truncation Problem (3.3)k. The proof will be based
on the well known fixed-point result due to Krasnosel’skii (See Theorem 4.2).

Theorem 3.4. Assume hipotheses (H0) , (H1) and (H2). Then there exists a positive solution

of Problem (3.3)k.

Proof. To prove the existence of positive solution for the truncated problem, it sufficies to

show that F has a fixed point. For this we will check the conditions of Theorem 4.2. Define

the homotopy H : [0, 1]× C → C by

H(t, v)(r) =

∫ R

r

(1 + gk(v)(s))(1−t)γ+tc̄

sN+α−1

∫ s

0
τN+β−1vp(τ) dτ ds,

where c̄ is a parameter sufficiently large.

Note that H(t, v) is a compact homotopy and that H(0, v)(r) = F (v)(r), which verifies

(b).

On the other hand, we have

tF (v)(r) ≤ (1 + g(k))γ ||v||p∞
∫ R

r

1

sN+α−1

∫ s

0
τN+β−1 dτ ds

=
(1 + g(k))γ

(N + β)(β − α+ 2)
Rβ−α+1||v||p∞.
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Taking δ = ||v||∞ sufficiently small, such that

(1 + g(k))γ

(N + β)(β − α+ 2)
Rβ−α+1δp−1 < 1,

we have |tF (v)| < ||v||∞, that is, tF (v) 6= v for all ||v||∞ = δ y t ∈ [0, 1].

If we consider η large such that η > C0, with C0 given by Theorem 3.2, we have that

H(t, v) 6= v for all ||v||∞ = η y t ∈ [0, 1].

Then, taking c̄ large enough, we have that:

H(1, v)(r) = λ

∫ R

r

(1 + gk(v)(s))c̄

sN+α−1

∫ s

0
τN+β−1vp(τ) dτ ds

> C0 ,

thus, H(1, v) 6= v for all ||v||∞ < η.

Hence using Theorem 4.2, we have that the operator (3.20) has a fixed–point v such that

δ < ||v||∞ < η, which is solution of equation (3.3)k .

3.2.4 Proof of existence result

Proof. Theorem 1. Now our objective is to prove that the problem (3.2) has a nontrivial
solution. For this, we will prove there is k0 ∈ N, such that the solution vk0 of problem
(3.3)k0verifies ||vk0 ||∞ ≤ k0.

We suppose by contradiction that ||vk||∞ > k for all k ∈ N, where vk is a solution of
(3.3)k .

Let us consider the change of variables

y =
zk
tk
r ,

wk(y) =
vk(r)

tk

(3.21)

where tk := ||vk||∞ and zk = (1 + g(k))
γ

β−α+2 t
β−α+1+p
β−α+2

k .

From (3.21), we have that wk satisfies
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−
(

yN+α−1w′k
(1 + gk(tkwk))γ

)′
=

tβ−α+1+p
k

zβ−α+2
k

yN+β−1wpk ,

w′k(0) = 0 ,
wk(0) = 1 ,

wk(
Rzk
tk

) = 0 .

(3.22)

We note that
Rzk
tk
→ +∞ when k → +∞.

Since w′k(y) < 0 for all y ∈ (0, zktkR), we have

−yN+α−1

(
w′k(y)

(1 + gk(tkwk(y)))γ

)′
≤
tβ−α+1+p
k

zβ−α+2
k

yN+β−1wpk(y)

then,

−
(

w′k(y)

(1 + gk(tkwk(y)))γ

)′
≤
tβ−α+1+p
k

zβ−α+2
k

yβ−αwpk(y) .

Integrating from 0 to y,

−w′k(y) ≤ (1 + g(k))γ
tβ−α+1+p
k

zβ−α+2
n

∫ y

0
sβ−αwpk(s) ds ,

we have

−w′k(y) ≤
∫ y

0
sβ−αwpk(s) ds ,

which implies

|w′k(y)| ≤
∫ y

0
sβ−α

for all k ∈ N.
Therefore, there exists a constant C1(M) > 0 such that

|w′k(y)| < C1(M) for all k ∈ N and all y ∈ [0,M ] .

Which means that the sequence {wk}k is equicontinuous. Since it is also uniformly bounded,
an application of Ascoli Arzèla’s theorem yields that {wk}k contains a convergent subsequence,
which we denote again by {wk}k, verifying

wk → w in C[0,M ] when k → +∞ . (3.23)

39



Now, we will study the limiting problem associated with (3.22).

Since tk > k for all k ∈ N, we have 0 < k
tk
< 1. Then there is a subsequence, that we

again refer to by { ktk }k and l ∈ [0, 1] such that k
tk
→ l.

Since {wk}k is a sequence of continuous functions, for each k ∈ N there is sk ∈
]
0,
zkR

tk

[
such

that

wk(sk) =
k

tk
. (3.24)

1. Suppose l = 0

In this case, we have
k

tk
→ 0, but sk ≤

zkR

tk
with sk → +∞ when k → +∞.

Then, for all M > 0 there is kM ∈ N such that sk > M for all k ≥ kM . Then we have
gk(tkwk(y)) = g(k) for all y ∈ [0,M ] y k ≥ kM .

From equation (3.22), is easy to see that wk satisfies

−wk(y) + 1 =

∫ y

0

1

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ ds , (3.25)

for each y ∈ [0,M ].

From (3.23), Lebesgue’s dominated theorem and by letting k → +∞ in (3.25), we obtain

1− w(y) =

∫ y

0

1

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ ds . (3.26)

Then, by differentianting (3.26) we obtain

−w′(y) =
1

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ .

Thus w is a nontrivial solution in [0,M ] of the initial value problem

−(yN+α−1w′)′ = yN+β−1wp

w(0) = 1 , w′(0) = 0 .
(3.27)

Since in the initial value problem (3.10), in (3.27), using a diagonal iterative scheme, w
can be extended to all R+, as a nonnegative solution of (3.27), and using [19], it can
be shown that w is indeed a positive solution of class C2(0,+∞) of (3.10). This is a
contradiction with Theorem 3.3.
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2. Suppose l = 1:

Integrating from 0 to sk ∈]0,M ] as in (3.25), we obtain:

− k
tk

+ 1 =
1

(1 + g(k))γ

∫ sk

0

(1 + gk(tkwk(s)))
γ

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ ds

=

∫ sk

0

1

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ ds

≥
(
k

tk

)p ∫ sk

0

1

sN+α−1

∫ s

0
τN+β−1 dτ ds

=

(
k

tk

)p sβ−α+2
k

(N + β)(β − α+ 2)
.

Note that by hypothesis
k

tk
→ 1 when k → +∞, we have that

sk → 0 when k → +∞ . (3.28)

Integrating equation (3.22) from 0 to y ∈ [0,M ] we obtain

−w′n(y) =
(1 + gk(tkwk(y))γ

(1 + g(k))γ
1

yN+α−1

∫ y

0
τN+β−1wpk(τ) dτ (3.29)

Now keeping in mind that function wk is decreasing, and integrating again from sk to
y ∈ [0,M ], we obtain

−wk(y) +
k

tk
=

∫ y

sk

(
1 + gk(tkwk(y))

1 + g(k)

)γ 1

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ

=

∫ y

sk

(
1 + g(tkwk(y))

1 + g(k)

)γ 1

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ.

By (3.23), hipothesis (H2) and Lebesgue’s dominated convergence theorem, and by
letting k → +∞ in the last equality, we obtain

−w(y) + 1 =

∫ y

0

(w(s))γ

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ .

for all y ∈ [0,M ].
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Thus w is a positive solution in [0,M ] to the initial value problem

−
(
yN+α−1w′

wγ(y)

)′
= yN+β−1wp

w(0) = 1 , w′(0) = 0 .

(3.30)

Using a diagonal iterative scheme, as in equation (3.10), w can be extended to all R+,
as a nonnegative solution of (3.30). Furthermore, using [19], it can be shown that w is
indeed a positive solution of class C2(0,+∞) of (3.30).

Let us consider the change of variables,

u(y) = w1−γ(y) then u′(y) = (1− γ)
w′(y)

wγ(y)
, (3.31)

then, we have that u ∈ C2(0,+∞) is a nontrivial solution of

−(yN+α−1u′)′ = (1− γ)yN+β−1u
p

1−γ

u(0) = 1 , u′(0) = 0 .
(3.32)

This is a contradiction by Theorem 3.3.

3. Suppose 0 < l < 1:

From (3.24), we have that wk(sk) = k
tk
→ l := 1

d when k → +∞ and wk(
zkR
tk

) = 0.
There exists c0 > 0 such that 0 < sk ≤ c0 for all k ∈ N. Then by compactness, there is
a subsequence of {sk}, which we still denoted by {sk}, and s0 ∈ R+ such that sk → s0

when k → +∞.

Observe that for y ∈]0, sk] we have that gk(tkwk(y)) = g(k), so that from (3.25) we have
that

−wk(y) + 1 =

∫ y

0

1

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ ds . (3.33)

From (3.23) and Lebesgue’s dominated convergence theorem, and letting k → +∞ in
(3.36), we have

−w(y) + 1 =

∫ y

0

1

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ ds . (3.34)
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Then, by differentianting (3.34) we obtain

−w′(y) =
1

yN+α−1

∫ y

0
τN+β−1wp(τ) dτ.

Thus w is a nonnegative nontrivial solution in [0, s0] to the initial value problem

−(yN+α−1w′)′ = yN+β−1wp , y ∈ (0, s0)
w(0) = 1 , w′(0) = 0 .

(3.35)

On the other side, for each y ∈ [sk,∞) we have that gk(tkwk(y)) = g(tkwk(y)), then
integrating from sk to y in (3.29), we have

−wk(y) +
k

tk
=

∫ y

sk

(
1 + g(tkwk(s))

1 + g(k)

)γ 1

sN+α−1

∫ s

0
τN+β−1wpk(τ) dτ ds . (3.36)

From (3.23) and Lebesgue’s dominated convergence theorem, and letting k → ∞ in
(3.36), we obtain

−w(y) +
1

d
=

∫ y

s0

(dw(s))γ

sN+α−1

∫ s

0
τN+β−1wp(τ) dτ ds . (3.37)

Then, by differentianting (3.37) we obtain

−w′(y) =
(dw(s))γ

yN+α−1

∫ y

0
τN+β−1wp(τ) dτ.

Thus w is a nonnegative nontrivial solution in [s0,+∞[ of the initial value problem

−
(
yN+α−1w′(y)

dγwγ(y)

)′
= yN+β−1wp(y) , y ∈ (s0,∞)

w(s0) = 1
d .

(3.38)

Then, we have that w is nontrivial solution of (3.35) and (3.38).

Lemma 3.2. The Problem (3.35), (3.38) has no nontrivial positive solutions .

Proof. In the equation (3.38) making the change of variable (3.31), we have

−(yN+α−1u′(y))′ = (1− γ)dγyN+β−1u
p

1−γ (y) , y ∈ (s0,+∞)

u(s0) = 1
d1−γ .

(3.39)
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If u is solution of the Problem (3.39), then by Proposition 3.1, we have that

yu′(y) + ρu(y) , y ∈ (s0,+∞) . (3.40)

where ρ = N + α− 2, is a nonincreasing and nonnegative function, and the function

yρu(y) , y ∈ (s0,+∞) . (3.41)

is nondecreasing.

Integrating the equation (3.39) on [y, t] ⊂]s0,+∞[, we have

−[tN+α−1u′(t)− yN+α−1u′(y)] = (1− γ)dγ
∫ t

y
sN+β−1u

p
1−γ (s) ds. (3.42)

Thus, using that u is decreasing from (3.42) and Proposition 3.1, we obtain

tN+α−2u(t) ≥ tN+α−1|u′(t)|

≥ (1− γ)dγ
∫ t

y
sN+β−1u

p
1−γ (s) ds

= (1− γ)dγ
∫ t

y
s
N+β−1− ρp

1−γ (sρu(s))
p

1−γ ds

≥ (1− γ)dγ(yρu(y))
p

1−γ

∫ t

y
s
N+β−1− ρp

1−γ ds

≥ (1− γ)dγy
ρp

1−γ u
p

1−γ (y)

(
t
N+β− ρp

1−γ − yN+β− ρp
1−γ

N + β − ρp
1−γ

)
.

Taking t = 2y and using Proposition 3.1 again, we obtain

(2y)N+α−2u(y) ≥ (2y)N+α−2u(2y)

≥ (1− γ)dγyN+βu
p

1−γ (y)

(
2
N+β− ρp

1−γ − 1

N + β − ρp
1−γ

)
,

hence we conclude
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u
p

1−γ−1
(y) ≤ y−(β−α+2) 2N+α−2

(1− γ)dγ

(
2
N+β− ρp

1−γ − 1

N + β − ρp
1−γ

)
. (3.43)

On the other side, multiplying the equation (3.39) by yu′(y) and integrating in [s0, t] we

have that

−
∫ t
s0

(yN+α−1u′(y))′yu′(y) dy = (1− γ)dγ
∫ t
s0
yN+βu

p
1−γ (y)u′(y) dy. (3.44)

But

−
∫ t
s0

(yN+α−1u′(y))′yu′(y) dy = −tN+α(u′(t))2 + sN+α
0 (u′(s0))2 +

∫ t
s0
yN+α−1(u′(y))2dy

+
∫ t
s0
yN+αu′(y)u′′(y)dy

(3.45)

and∫ t
s0
yN+α−1(u′(y))2dy +

∫ t
s0
yN+αu′(y)u′′(y)dy

=
∫ t
s0
yN+α−1(u′(y))2dy +

∫ t
s0
yN+α

(
u′2(y)

2

)′
dy

=
∫ t
s0
yN+α−1(u′(y))2dy + tN+α u

′(t)2

2

−sN+α
0

u′(s0)2

2 −
(
N+α

2

) ∫ t
s0
yN+α−1u′2(y)dy

= −
(
N+α−2

2

) ∫ t
s0
yN+α−1u′2(y)dy + tN+α u

′(t)2

2 − sN+α
0

u′(s0)2

2 .

(3.46)

Replacing (3.46) in (3.45), we obtain

−
∫ t
s0

(yN+α−1u′(y))′yu′(y) dy = −
(
N+α−2

2

) ∫ t
s0
yN+α−1u′2(y)dy − tN+α u

′(t)2

2

+sN+α
0

u′(s0)2

2 .
(3.47)

Now, multiplying the equation (3.39) by u and integrating on [s0, t], we obtain

−
∫ t
s0

(yN+α−1u′(y))′u(y) dy = (1− γ)dγ
∫ t
s0
yN+β−1u

p
1−γ+1

(y) dy , (3.48)

that is,

−
∫ t
s0

(yN+α−1u′(y))′u(y) dy = −tN+α−1u′(t)u(t) + sN+α−1
0 u′(s0)u(s0)

+
∫ t
s0
yN+α−1u′2(y) dy .

(3.49)
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Then, from (3.48) and (3.49) we have that∫ t
s0
yN+α−1u′2(y)dy = tN+α−1u′(t)u(t)− sN+α−1

0 u′(s0)u(s0)

+(1− γ)dγ
∫ t
s0
yN+β−1u

p
1−γ (y)u(y) dy ,

(3.50)

Replacing (3.50) in (3.47), we obtain

−
∫ t
s0

(yN+α−1u′(y))′yu′(y) dy = −
(
N+α−2

2

) [
tN+α−1u′(t)u(t)− sN+α−1

0 u′(s0)u(s0)

+(1− γ)dγ
∫ t
s0
yN+β−1u

p
1−γ+1

(y) dy
]
− tN+α u

′(t)2

2

+sN+α
0

u′(s0)2

2 .

(3.51)

On the other hand,

(1− γ)dγ
∫ t
s0
yN+βu

p
1−γ (y)u′(y) dy = (1−γ)dγ

p
1−γ+1

∫ t
s0
yN+β

(
u

p
1−γ+1

(y)
)′
dy

= (1−γ)2dγ

p+1−γ

[
tN+βu

p
1−γ+1

(t)− sN+β
0 u

p
1−γ+1

(s0)

−(N + β)
∫ t
s0
yN+β−1u

p
1−γ+1

(y)dy
]
.

(3.52)

Replacing (3.51) and (3.52) in (3.44), we obtain

(1− γ)dγ
(

(N + β)(1− γ)

p+ 1− γ
− N + α− 2

2

)∫ t

s0

yN+β−1u
p

1−γ+1
(y) dy =

u′(t)
tN+α−1

2

[
tu′(t) + (N + α− 2)u(t)

]
+

(1− γ)2dγ

p+ 1− γ
tN+βu

p
1−γ+1

(t)

− u′(s0)
sN+α−1

0

2

[
s0u
′(s0) + (N + α− 2)u(s0)

]
− (1− γ)2dγ

p+ 1− γ
sN+β

0 u
p

1−γ+1
(s0) . (3.53)

From hypotheses (H0) and (H1), we have that

(1− γ)dγ
(

(N + β)(1− γ)

p+ 1− γ
− N + α− 2

2

)
> 0 , (3.54)

then

(1− γ)dγ
(

(N + β)(1− γ)

p+ 1− γ
− N + α− 2

2

)∫ t

s0

yN+β−1u
p

1−γ+1
(y) dy > 0 , (3.55)
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for all t ∈]s0,+∞[.

Since u is a decreasing function, using Proposition 3.1, we have that

u′(t)
tN+α−1

2

[
tu′(t) + (N + α− 2)u(t)

]
≤ 0 (3.56)

for all t ∈]s0,+∞[.

Using inequality (3.43), we obtain

0 < tN+βu
p

1−γ+1
(t) ≤

[
2N+α−2

(1− γ)dγ

(
2
N+β− p

1−γ − 1

N + β − p
1−γ

)] 1−γ
p+1−γ

t
N+β−(β−α+2) p+1−γ

p−(1−γ) . (3.57)

From hipothesis (H1), we have that

N + β − (β − α+ 2)
p+ 1− γ
p− (1− γ)

= −(1− γ)(N + 2β − α+ 2)− p(N + α− 2)

p− 1 + γ
< 0 . (3.58)

Then by (3.57) and (3.58), we see that

tN+βu
p

1−γ+1
(t)→ 0 when t→ +∞ . (3.59)

Now we will study the sign of

u′(s0)
sN+α−1

0

2

[
s0u
′(s0) + (N + α− 2)u(s0)

]
+

(1− γ)2dγ

p+ 1− γ
sN+β

0 u
p

1−γ+1
(s0) . (3.60)

Making the change of variables (3.31), the equation (3.60) becomes

1− γ
w2γ(s0)

[
w′(s0)sN+α−1

0

2

(
(1− γ)s0w

′(s0) + (N + α− 2)w(s0)
)

+
(1− γ)dγ

p+ 1− γ
sN+β

0 wp+1+γ(s0)

]
.

(3.61)

Multiplying equation (3.35) by w and integrating from 0 to s0 (as in (3.14)), we obtain

(
N+β
p+1 −

N+α−2
2

) ∫ s0
0 yN+β−1wp+1(y)dy = wp+1(s0)

sN+β
0
p+1

+w′(s0)
sN+α−1
0

2 [s0w
′(s0) + (N + α− 2)w(s0)] .

(3.62)
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Using (3.62) and Proposition 3.1 in (3.61) , we have that

(3.61) ≥ 1−γ
w2γ(s0)

[(
N+β
p+1 −

N+α−2
2

) ∫ s0
0 yN+β−1wp+1(y)dy − wp+1(s0)

sN+β
0
p+1

+ (1−γ)dγ

p+1−γ s
N+β
0 wp+1+γ(s0)

]
≥ 1−γ

w2γ(s0)

[(
N+β
p+1 −

N+α−2
2

)
sN+β
0
N+β w

p+1(s0)− wp+1(s0)
sN+β
0
p+1

+ (1−γ)dγ

p+1−γ s
N+β
0 wp+1+γ(s0)

]
= 1−γ

w2γ(s0)
sN+β

0 wp+1(s0)
[(

N+β
p+1 −

N+α−2
2

)
1

N+β −
1
p+1 + (1−γ)dγ

p+1−γ w
γ(s0)

]
.

(3.63)

Recalling that w(s0) = 1
d , we have that

(3.61) ≥ 1−γ
dp+1−2γ s

N+β
0

[(
N+β
p+1 −

N+α−2
2

)
1

N+β −
1
p+1 + (1−γ)

p+1−γ

]
= 1−γ

dp+1−2γ s
N+β
0

[
(1−γ)(N+2β−α+2)−p(N+α−2)

2(N+β)(p+1−γ)

]
.

(3.64)

From hypothesis (H1) we have that

1− γ
dp+1−2γ

sN+β
0

[
(1− γ)(N + 2β − α+ 2)− p(N + α− 2)

2(N + β)(p+ 1− γ)

]
> 0 . (3.65)

Then by (3.65), we have that (3.60) is positive.

Taking t→ +∞ in (3.53), and using inequalities (3.54), (3.56) and (3.59), we obtain

(1− γ)dγ
(

(N + β)(1− γ)

p+ 1− γ
− N + α− 2

2

)
lim
t→∞

∫ t

s0

yN+β−1u
p

1−γ+1
(y) dy < 0 , (3.66)

which contradicts inequality (3.55). Thus, we conclude that limiting problem (3.35) and (3.38),

has no nonnegative solution.

Finally, we conclude that exists k0 ∈ N such that ||vk0 ||∞ ≤ k0. This implies that vk0 is
solution of Problem (3.2).

3.3 Nonexistence of positive solution

Theorem 3.5. Suppose hypothesis (H0). Then the Problem (3.2) has no positive solutions

for p ≥ N + 2β − α+ 2

N + α− 2
.
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Proof. Suppose v ∈ C1(Ω) ∩ C0(Ω̄) and
rN+α−1v′

(1 + g(v))γ
∈ C1(Ω) be a solution of Problem (3.2).

Multiplying (3.2) by rv′(r) and integrating on [0, R], we find

−
∫ R

0

(
rN+α−1v′(r)

(1 + g(v(r)))γ

)′
rv′(r) dr =

∫ R

0
rN+βvp(r)v′(r) dr , (3.67)

We rewrite this expression (3.67) as

A = B . (3.68)

The term on the left is

A := −R
N+αv′2(R)

(1 + g(0))γ
+

∫ R

0

rN+α−1v′2(r)

(1 + g(v(r)))γ
dr +

∫ R

0

rN+αv′′(r)v′(r)

(1 + g(v(r)))γ
dr

=: −R
N+αv′2(R)

(1 + g(0))γ
+

∫ R

0

rN+α−1v′2(r)

(1 + g(v(r)))γ
dr +A1 .

with,

A1 =
1

2

∫ R

0

rN+α(v′2(r))′

(1 + g(v(r)))γ
dr

=
1

2

RN+αv′2(R)

(1 + g(0))γ
− N + α

2

∫ R

0

rN+α−1v′2(r)

(1 + g(v(r)))γ
dr +

γ

2

∫ R

0

rN+αv′3(r)g′(v(r))

(1 + g(v(r)))γ+1
dr .

Now

A = −1

2

RN+αv′2(R)

(1 + g(0))γ
+

(
1− N + α

2

)∫ R

0

rN+α−1v′2(r)

(1 + g(v(r)))γ
dr +

γ

2

∫ R

0

rN+αv′3(r)g′(v(r))

(1 + g(v(r)))γ+1
dr .

(3.69)

On the other hand, the right hand side of (3.67) is

B =

∫ R

0
rN+βvp(r)v′(r) dr

=
1

p+ 1

∫ R

0
rN+β(vp+1(r))′ dr

=
1

p+ 1
rN+βvp+1(r)

∣∣R
0 −

N + β

p+ 1

∫ R

0
rN+β−1vp+1(r) dr .
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So that,

B = −N + β

p+ 1

∫ R

0
rN+β−1vp+1(r) dr . (3.70)

Similarly, if we multiply the equation (3.2) by v and integrating on [0, R], getting∫ R

0
rN+β−1vp+1(r) dr =

∫ R

0

rN+α−1v′2(r)

(1 + g(v(r)))γ
dr . (3.71)

Combine (3.70) and (3.71), we deduce

B = −N + β

p+ 1

∫ R

0

rN+α−1v′2(r)

(1 + g(v(r)))γ
dr . (3.72)

This calculation and (3.68) yield

(
1− N + α

2
+
N + β

p+ 1

)∫ 1

0

rN+α−1(v′(r))2

(1 + g(v(r)))γ
dr =

1

2

RN+αv′2(R)

(1 + g(0))γ
−γ

2

∫ R

0

rN+αv′3(r)g′(v(r))

(1 + g(v(r)))γ+1
dr .

(3.73)

Hence if v is non-negative and nontrivial solution, we have

1

2

RN+αv′2(R)

(1 + g(0))γ
− γ

2

∫ R

0

rN+αv′3(r)g′(v(r))

(1 + g(v(r)))γ+1
dr > 0 . (3.74)

Thus (
1− N + α

2
+
N + β

p+ 1

)∫ 1

0

rN+α−1(v′(r))2

(1 + g(v(r)))γ
dr > 0 , (3.75)

which implies

1− N + α

2
+
N + β

p+ 1
> 0 ,

hence,

p <
N + 2β − α+ 2

N + α− 2
.

Theorem 3.6. If β − α + 2 ≤ 0 then there is no solution v ∈ C[0, R] ∩ C1(0, 1) of Problem

(3.2).

50



Proof. Suppose that v ∈ C[0, R] ∩ C1(0, 1) is a solution of problem (3.2). Thus the function

v verifies the integral equation

v(r) =

∫ R

r

(1 + g(v(s)))γ

sN+α−1

∫ s

0
τN+β−1vp(τ)dτds .

Since v is nonnegative, nontrivial, and decreasing function, we have that, given ε > 0

small, there exists r0 ∈ (0, R2 ) such that

v(r0) > ε .

Then, we have

v(r) =

∫ R

r

(1 + g(v)(s))γ

sN+α−1

∫ s

0
τN+β−1vp(τ)dτds

≥ εp
∫ r0

r

1

sN+α−1

∫ s

0
τN+β−1dτds

=
εp

N + β

∫ r0

r

1

s−(β−α+1)
ds.

Since β − α+ 2 ≤ 0, we have

lim
r→0

v(r) = +∞ .

This proves v /∈ C[0, R] ∩ C1(0, 1).
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Chapter 4

Appendix

4.1 Topological Degree of Leray-Schauder

Let X be a real Banach space, let Ω be a bounded, open subset of X and let φ = I − T ,
where I is the inclusion map of Ω̄ into X and T : Ω→ X is compact.
If b /∈ φ(∂Ω), then there exists a map of finite range T1 : Ω → X1 (finite range means that
dimX1 <∞) such that

sup
u∈Ω̄

||T1u− Tu|| < dis(b, φ(∂Ω)) .

In addition, the integer given by the Brouwer degree deg((I−T1)|Ω∩X ,Ω, b) is independent
on T1 . Therefore we can define the topological degree of Leray-Schauder

deg(φ,Ω, b) = deg((I − T1)|Ω∩X ,Ω, b) .

It satisfies the following basic properties.

(i) Normalization property.

deg(I,Ω, b) = 1, if b ∈ Ω .

(ii) Additivity property.
Assume that Ω1 and Ω2 are open, bounded and disjoint subsets of Ω. If b /∈ φ(Ω \ (Ω1 ∪
Ω2)) then

deg(φ,Ω, b) = deg(φ,Ω1, b) + deg(φ,Ω2, b) .

52



(iii) Homotopy property.
Let S ∈ C([0, 1] × Ω, X) be a compact map and define H(t, u) = u − S(t, u). If b :
[0, 1]→ X is continuous and b(t) /∈ H([0, 1]× ∂Ω), then

deg(H(t, .),Ω, b(t)) = const for all t ∈ [0, 1] .

From the above properties it is easy to prove the following ones:

(iv) deg(φ, ∅, b) = 0 .

(v) Existence property.
If deg(φ,Ω, b) 6= 0, then there exists u ∈ Ω such that φ(u) = b.

(vi) Excision property.
If K ⊂ Ω is closed and b /∈ φ(K), then

deg(φ,Ω, b) = deg(φ,Ω−K, b) .

(vii)
S|∂Ω = T |∂Ω then deg((I − S),Ω, b) = deg((I − T ),Ω, b) .

(viii) General homotopy property.
Let Θ be a bounded, open subset of R×X and let H : Θ → X be a compact map. For
every λ ∈ R we consider the λ-slice

Θλ = {u ∈ X : (λ, u) ∈ Θ} ,

and the map Hλ : Θλ → X given by

Hλ(u) = H(λ, u) .

If u − Hλ(u) = b, for all u ∈ ∂Θλ , for all λ ∈ [a, b], then the topological degree
deg(I −Hλ, Θλ, b) is well-defined and independent of λ.

(ix) Continuity.

(a) Continuity with respect to b.
The degree is constant in each connected component of X − φ(∂Ω).

(b) Continuity with respect to T .
There exists a neighborhood V of T in the space Q(Ω, X) of the compact operators from
Ω̄ in X such that

deg(I − S,Ω, b) = const for all S ∈ V .
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4.1.1 A theorem of Leray and Schauder

Let X be a real Banach space, let Ω be a bounded and open subset of X, let a < b in R, and
let T : [a, b]× Ω→ X be a compact map. For λ ∈ [a, b], consider the equation

φ(λ, u) = u− T (λ, u) = 0, u ∈ X . (4.1)

Sometimes, to put in evidence the dependence of (4.1) on λ, we refer it as (4.1)λ. Observe
that T can be seen as a family of compact operators

Tλ(u) := T (λ, u), u ∈ X .

Similarly, we denote φλ = I − Tλ. Define

Σ = {(λ, u) ∈ [a, b]× Ω : φ(λ, u) = 0} .

We use the notation Σλ for the λ-slice, i.e. Σλ = {u ∈ Ω : (λ, u) ∈ Σ}.

Theorem 4.1 (Leray-Schauder, 1934). Assume that X is a real Banach space, Ω is a bounded,

open subset of X and φ : [a, b] × Ω → X is given by φ(λ, u) = u − T (λ, u) with T a compact

map. Suppose also that

φ(λ, u) = u− T (λ, u) = 0, for all (λ, u) ∈ [a, b]× ∂Ω .
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If

deg(φλ,Ω, 0) 6= 0 ,

then

(1) (4.1)λ has a solution in Ω for every a ≤ λ ≤ b.

(2) Furthermore, there exists a compact connected set O ⊂ Θ such that

O ∩Θa = ∅ and O ∩Θb 6= ∅ .

4.1.2 Index of an isolated zero

Let φ = I − T be with T : Ω̄ → X a compact operator. If u0 ∈ Ω is an isolated solution of
the equation φ(u) = 0, i.e. a unique solution of this equation in a neighborhood of u0, then,
for r0 > 0 sufficiently small, we deduce from the excision property that

deg(φ,Br0(u0), 0) = deg(φ,Br(u0), 0), for all r ∈ (0, r0) ,

where Br(u0) = {u ∈ Ω : |u − u0| < r}. Then we know that deg(φ,Br(u0), 0) is the same
integer for all r ∈ (0, r0]. This number is called the index of u0 and is denoted by i(φ, u0).

4.1.3 Fixed–point result due to Krasnosel’skii

Definition 4.1. A subset C of a Banach space X is said to be a cone if λC ⊂ C for all λ ≥ 0

and C ∩ (−C) = {0}.

The results of this work are based on the following well Known fixed - point result due to
Krasnosel’skii.

Theorem 4.2 (Krasnosel’skii). Let C be a cone in a Banach space, and let F : C → C be

a compact operator such that F (0) = 0. Suppose there exists δ > 0 verifying

(a) u 6= t F (u) , for all ||u|| = δ and t ∈ [0, 1] .

Suppose further that there exist a compact homotopy H : [0, 1] × C −→ C and η > δ such

that:

(b) F (u) = H(0, u) , for all u ∈ C.

(c) H(t, u) 6= u , for all ||u|| = η and t ∈ [0, 1].
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(d) H(1, u) 6= u , for all ||u|| ≤ η .

Then F has a fixed point u0 verifying δ < ||u0|| < η .

The proof can be seen in (cf. [37])
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[19] P. Clement, R. Manásevich and E. Mitidieri Positive solutionsfor a quasilinear system
via blow up, Comm. in P.D.E. 18 (1993), 2071-2106.

[20] E. N. Dancer, Fixed point index calculations and applications, Topological Nonlin-
ear Analysis; degree, singularity and variations, M. Maetzu and A. Vignoli editors,
Birkhauser, Boston, 1995, pp. 303–340.

[21] E.N. Dancer, Fixed point index calculations and applications, Topological Nonlinear Anal-
ysis; degree, singularity and variations, M. Maetzu and A. Vignoli editors (303–340).
Birkhauser, Boston 1995.

[22] D. G. de Figueiredo, Positive solutions of semilinear elliptic equations, Lecture Notes in
Mathematics 957, Springer–Verlag, Berlin–Heidelberg–New York, 1982, pp. 34–87.

[23] D. G. de Figueiredo and P. Ubilla, Superlinear Systems of Second–Order ODE’S, Non-
linear Anal. 68 (2008), 1765–1773.

58



[24] D. G. de Figueiredo, P. L. Lions, and R. D. Nussbaum, A priori bounds and existence of
positive solutions of semilinear elliptic equations, J. Math. Pura Appl. 61 (1982), 41–63.

[25] D. G. de Figueiredo and Yang J., A priori bounds for positive solutions of a non-
variational elliptic system , Comm. PDE 26 (2001), 2305–2321.

[26] K. Deimling, Nonlinear Functional Analysis, Springer–Verlag, New York, 1985.
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