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Informe de la Tesis del alumno Sr. Rodrigo Castro Marin titulada “Higher
Order lterative Methods on Riemannian Manifolds “.

La resolucién de ecuaciones no lineales es un problema clasico en matematicas. Para
ello se suelen utilizar métodos iterativos. Se parte de una aproximacion inicial y
mediante una funcion de iteracion se intenta mejorar las aproximaciones generando una
sucesion que bajo ciertas hipdtesis convergera a la solucion de la ecuacién original.

Son muchos grupos los que actualmente trabajan en la creacion y andlisis de métodos
iterativos. Los estudios contemplan tanto el caso escalar como el caso de sistemas de
ecuaciones e incluso ecuaciones entre espacios de Banach.

Uno de los métodos méas usado y estudiado es el método de Newton que se basa en una
linealizacion de primer orden de la ecuacion. Son muchas las variantes de este método
que podemos encontrar en la literatura especializada. Recientemente, se ha hecho una
extension del método para problemas entre variedades Riemannianas. Son este tipo de
problemas los abordados en la presente Tesis.

Para aproximar y entender este tipo de problemas es necesario usar herramientas de
diferentes ramas de la Matemaéticas. En particular, Geometria Diferencial, Analisis
Funcional, Analisis Numérico y Algebra Lineal. Esto hace que los problemas tengan
una motivacion extra para el investigador.

La presente Tesis esta estructurada en diferentes temas bien definidos donde se estudian
varias extensiones del método de Newton. En todos ellos se utiliza un paralelismo con
la teoria clasica en espacios de Banach. Se estudia la convergencia de los distintos
métodos y se dan resultados de existencia y unicidad de solucién del problema original.

La Tesis es original, interesante, no trivial y a su vez abre caminos de futuros estudios,
es por ello que propondria la méaxima clasificacion de 7 puntos para la misma.

Informe realizado por: Sergio Amat Plata



Informe de la Tesis del alumno Sr. Rodrigo Castro Marin titulada “High Order
Iterative Method in Riemannian Manifolds*.

En matematicas, uno de los problemas mas habituales al que nos enfrentamos es la
resolucion de ecuaciones. Cuando nos encontramos con la expresién F(x) = 0, cabe
pensar en diferentes situaciones, resolucion de un sistema de ecuaciones, encontrar la
solucion de una ecuacion diferencial o hallar las raices de un polinomio. Cuando la
obtencion de la solucion no es posible (hecho que ocurre en numerosas ocasiones), nos
debemos conformar con aproximaciones de las mismas. Este hecho da pie a los
procesos numéricos, dando vida a los métodos iterativos. El ejemplo mas estudiado es el
meétodo de Newton que tiene orden de convergencia dos.

El adelanto de los medios técnicos ha permitido el desarrollo de algunos métodos
iterativos, para resolver ecuaciones no lineales en espacios de Banach. Por ejemplo, la
simplicidad para evaluar inversas y segundas derivadas de Fréchet, en algunos casos, ha
aumentado el uso de métodos de tercer orden, como, los de Halley y Chebyshev.

Una vez testada la eficiencia de un método iterativo, el aspecto mas importante a
considerar es la convergencia. Existen resultados "“tipo Kantarovich’ que establecen
condiciones suficientes en el operador y en la primera aproximacion a la solucion para
asegurar que la sucesion de las iteraciones del pivote converja a una solucion de la
ecuacion, dando lugar a los llamados teoremas semilocales de convergencia.

En esta Tesis se intenta generalizar varios métodos, aparecidos en la literatura para
problemas entre espacios de Banach, al caso de problemas entre variedades
Riemannianas. El estudio es riguroso, donde teoremas de convergencia para todos los
métodos propuestos. Las familias de métodos estudiados suelen ser de orden mayor a
tres y pueden ser considerados como extensiones del método de Newton. Cabria notar
que en la literatura sélo aparece la extension de Newton para problemas entre
variedades. En particular, a lo largo de la Tesis se han tenido que desarrollar maquinaria
matematica para la extension y estudios de métodos de orden mayor a dos. Esta parte es
sin duda la mas compleja de la memoria. Ademas destacar los teoremas de existencia y
unicidad derivados de la teoria.

Del trabajo de la Tesis se podrén extraer un minimo de cinco publicaciones, asi pues se
trata de una memoria no muy larga pero cargada de aportes nuevos. No obstante se
complementa con un capitulo introductoria donde se plasman todas las herramientas que
después seran usadas.

Asi mi opinion es que la Tesis es merecedora de la méxima calificacion, es decir, 7
puntos.

Informe realizado por: Sonia Busquier Saez



Informe de Tesis para optar al grado de Doctor en Ciencia con Mencion
en Matematica

Titulo: “Higher order iterative methods on Riemannian Manifolds”
Alumno: Rodrigo Alberto Castro Marin.

Este trabajo de tesis consiste en la implementacién y generalizacién de algunos
métodos numéricos al contexto de variedades Riemannianas. Los métodos
numeéricos clasicos tales como el método de Newton, fueron desarrollados para
encontrar soluciones aproximadas a ecuaciones de la forma f(x)=0, donde f es
una funcién real. Naturalmente uno se pregunta si estos métodos pueden
extenderse a otro tipo de ecuaciones. Una generalizacion importante ha sido
la extensién del método de Newton a espacios de Banach por L. V. Kantorovich.
Esta generalizacion ha resultado muy fructifera, y se usa, por ejemplo, para
analizar la existencia de soluciones a ecuaciones integrales nolineales. Otra
generalizacion natural es a variedades Riemannianas. Esta es la problematica
considerada en esta tesis. Mas precisamente, el problema es probar que es
posible resolver, usando aproximaciones, ecuaciones del tipo X(p)=0, donde X es
un campo vectorial sobre una variedad Riemanniana dada.

Rodrigo Castro considera varios métodos numéricos clasicos, especialmente los
meétodos de Kantorovich y de Chebyshev-Halley, y los implementa sobre una
variedad Riemanniana. El trabajo es muy sofisticado y técnico, no se trata de una
generalizacion inmediata. La ausencia de estructuras lineales en  variedades
Riemannianas, y la necesidad de trabajar usando sélo herramientas definidas
geométricamente, hace que los teoremas sobre convergencia y unicidad de
soluciones que aparecen en esta tesis sean altamente no-triviales.

En mi opinién los resultados presentados en este trabajo son dignos de
publicacion en una revista internacional y la redaccion es adecuada, por lo que
considero el trabajo de tesis aprobado. Por otra parte, me parece que la tesis se
habria visto beneficiada si se hubiesen incluido aplicaciones, y si hubiese habido
una discusién mas acabada de métodos numéricos en espacios de Banach y de
trabajos previos en el contexto de variedades Riemannianas.

Califico este trabajo con nota 6.8.

Enrique Reyes Garcia

Profesor Asociado
Departamento de Matematica y Ciencia de la Computacién
Universidad de Santiago de Chile



The main theme of the thesis Higher order iterative methods on Rie-
mannian manifolds is that of introducing and studying iterative methods
to find singularities of vector fields defined on a (Riemmannian) manifold.
This theme grows as variations on classical root finding algorithms such as
Newton’s method. These methods were generalized by Kantorovich to the
context of finding zeros of Banach spaced valued functions defined on Banach
spaces. It is worth mentioning that Kantorovich’s method and its variations
refer to a semilocal study. That is, given an approximate zero of a function,
design a sequence that converges to a zero of the function which hopefully
is the unique one nearby. Moreover, one is interested on constructing such
sequence at a minimum computational cost and, it is of theoretical and prac-
tical importance to determine how large is the region where the limiting zero
is the unique one.

Castro’s work is inspired on recent results (e.g. [4] and [17]) that started
studying Newton-Kantorovich type methods to find singularities of vector
fields on manifolds (from now on all manifolds are endowed with a Rieman-
nian structure). This thesis brings the state of the art for these type methods
on manifolds to a substantially higher level. He starts by proving, in this con-
text, a version of Kantorovich’s simplified method which is computationally
cheaper but its convergence is slower when compared to the classical Kan-
torovich method. The proof is technical and requires appropriate and careful
analysis of the error bounds, which in the context of a “non-linear” ambient
space (i.e. a manifold) is much more subtle than in the context of Banach
spaces. Then the author continues to analyse variations of Chebychev-Halley
methods and other “higher order” methods. Here it is worth noting that it is
not inmediate what are the appropriate adaptations of these methods to the
context of manifold. The author proves convergence and uniqueness of the
methods and /or family of methods introduced. Whether the sequences given
by these “higher order” methods effectively converge faster (i.e. deserve to
be called higher order methods) is left open and looks as a natural direction
to proceed.

In my opinion, the work presented in this thesis is original, interesting
and of importance. As I pointed out before it represents a significant contri-
bution in the study of iterative singularity finding methods for vector fields
on manifolds. One of the aspects that I particularly would like to emphasize
is the fact that this thesis represents a systematic study of one theme with
many new results and that opens the path for new questions. My only regret
is that the writing is still rough in many parts (with plenty of misprints).



For this reason I evaluate the thesis with a 6.9.

Jan Kiwi.
Associate Prof.
Facultad de Matematicas

PUC Cahile.



Informe de tesis:
Higher order iterative methods on
Riemannian manifolds
presentada por
Rodrigo Castro Marin
para optar al gardo de Doctor en Ciencia con mencion
en Matematica de la Universidad de Santiago de Chile

En el trabajo arriba mencionado, el alumno Rorigo Castro se interesa en extender diver-
sos métodos numéricos para la extraccion de raices de ecuaciones al ambito de variedades
Riemannianas. Si bien éste es un tema ya tratado para el método mas célebre de todos,
a saber, el método de Newton, diversos otros métodos (en general, de orden superior) no
habian sido abordados en este contexto. Rodrigo demuestra un buen dominio del tema y
utilizando elementos concisos de los de geometria Riemanniana, logra tratar (entre otros) la
extension de métodos del tipo Chebyshev-Halley al &mbito de las variedades.

El escrito de Rodrigo dista atin mucho de estar convenientemente escrito: ademaés de
problemas de inglés, la Introduccién carece de un péarrafo en el que se den motivaciones
precisas del tema a tratar, y la discusién/contraposicién de/entre los resultados existentes
y los nuevos es claramente mejorable. Pese a esto, me parece que los resultados obtenidos
daran prontamente lugar a publicaciones de interés, y que por lo tanto justifican ampliamente
el otorgamiento del grado de Doctor al que se postula. Por esta razon, avalo la defensa de
tesis respectiva y califico este trabajo con nota 6.3 (seis coma tres).

Andrés Navas Flores



Abstract

The iterative methods of higher order for finding zeroes of a vector function have been extens-
ively studied for over a century. Maybe the most important ones are: Newton, Shamanskii,
Halley, Super-Halley, Chevyshev, Chevyshev-Halley and the T'wo steps method.

These methods have been extended to Banach spaces starting with the work of Kantorovich
in the 1960’s. There have been several proofs of convergence and uniqueness of the sequences
associated to these methods, under different types of hypotheses regarding the vector func-
tions considered and the starting points.

In this thesis we extend the methods mentioned above to the context of complete Riemannian
Manifolds. These extensions allow us to find zeroes (singularities) of vector fields on mani-
folds. We prove the convergence of the sequences appearing in each method, and uniqueness
of the singularities determined by them. For this we use non-trivial adaptations to the con-
text of manifolds of some of the techniques studied in Banach spaces such as the majorizing

sequence.



Introduction

Recently; [1], [4], [17], [18], there has been a growing interest in studying numerical algorithms
on manifolds. There are many numerical problems posed on manifolds that arise naturally in
many contexts. For example, finding roots of vector fields defined on surfaces or in spaces of
matrices (see [6]).

For us "a method" as the construction of a sequence of points, so we say that a method
converges if the associated sequence converges. In vector spaces, the most famous method
to approximatively solve a nonlinear differentiable equation F' (z) = 0 is Newton’s method,
where F' is a differentiable mapping from a vector space X into a vector space Y. This method,
can be extended to Banach spaces, using Fréchet-derivatives, as proven by Kantorovich [12].
In addition, he introduces the called "simplified method of Kantorovich", in which the deriv-
ative is computed only at a single point. In 2001, using Kantorovich’s ideas [17], Newton’s
method was extended to Riemannian manifolds. In this work, we will extend the Kantorovich
simplified method to Riemannian manifolds. Moreover, we will prove, in this context, that the
orders of convergence of the Kantorovich method and the simplified Kantorovich method are
two and one respectively. We will also extend the higher order method called the Shamanskii
method [2], [10], [27], to this new context. This method combines the Kantorovich and the
simplified Kantorovich methods.

As it is well known, there are several kinds of cubic order generalizations for Newton’s method.
The most important ones are the Chebyshev method and the Halley method [21], [23], [24].
Another more general family of cubic extensions is the family of Euler-Halley type methods
on Banach spaces.

The Chebyshev-Halley method are probably the best known cubically convergent iterative
procedures for solving nonlinear equations, in the same way as the Kantorovich method in
Banach spaces; it requires an evaluation of the second Fréchet-derivative at each step and
was proven for Ioannis K. Argyros in 1997 [5]. In this work we will extend this method to
Riemannian manifolds.

Within the methods of the Euler-Halley family, perhaps, the best known are Chebyshev,

Halley, Two-step, a-Methods and some of their approximations using divided differences or



similar techniques, in Banach spaces, some generalizations of them were made in [21], [24],
[22]. They are often used to find solutions of differential equations and integro-differential
equations in the space of continuous functions defined on an interval [5], [20], [21], they have
also been used to calculate basins of attraction of functions defined in the complex plane, that
give rise to beautiful fractals [22]. We will prove convergence and uniqueness on Riemannian
manifolds, with some changes in the hypotheses, for the methods described in [22] and [24].
There exist other methods of cubic convergence without evaluating any second derivative [23],
even without evaluating any first derivative or any bilinear operator [20]. these methods use
divided differences, techniques that we will generalize to the context of Riemannian manifolds.
We organize this work as follows:

In the first Chapter we introduce some basic concepts of Riemanian Geometry, which we will
use in chapters 2 and 3, such as the covariant derivative, geodesic, paralell transport, etc. In
the second Chapter we will prove a theorem on existence and uniqueness for the Kantorovich
method but fixing the covariant derivative in the point Py in all iterations, this method will
be called simplified Kantorovich method on Riemanian manifolds. Next combining the Kan-
torovich method with the simplified Kantorovich method, we will present our first method of
higher order on manifolds.

In the third Chapter, we study diferent kinds of third order methods, which generalize to
manifolds the higher order methods mentioned before. The first three of them involve the
second covariant derivate, in contrast with the last, which just involve one covariant derivative

by using divided differences, which is pleasant from the computational point of view.
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Chapter 1

Basic results

1.1 Basic definitions and preliminary results

In this section, we introduce some fundamental properties and notation of Riemannian man-

ifolds.

Definition 1 A differentiable manifold of dimension m is a set M and a family of injective
mappings Tq, : Uy CR™ — M of open sets Uy of R™ into M such that:

(i) Ugzq (Uy) = M.

(ii) for any pair o, B with x4 (Uy) Nag (Ug) = W # ¢, the sets (W) and :z:gl(W) are
open sets in R™ and the mappings xgl o xo are differentiable.

(11i) The family {(Uy,xq)} is mazimal relative to the conditions (i) and (ii).

The pair (Uy,xq) (or the mapping x,) with p € x4 (Uy) is called a parametrization (or
system of coordinates) of M at p; zo (Ua) is then called neighborhood at p and (zo (Ua),z3")
is called a coordinate chart. A family {(Uy, o)} satisfying (i) and (ii) is called a differentiable

structure on M.

Let M denote a differentiable manifold, given p € M and T),M denotes the tangent space at

pto M,let z: U C R™ — M be a system of coordinates around p whit z (21, x2,...2m) = p.

Let basis {821 0 0 } be the asociated basis of T,,M. The tangent bundle TM
P

p, Dz p,..., O

is defined as

TM ={(p,v); p€ M andve T,M} = | T,M
peEM



the set TM admits a differentiable structure of dimension 2m and the functions X € C* (M Ty M )

are called vector fields of class C* (see [3]). Next we define the concept of Riemannian metric

Definition 2 A Riemannian metric on a differentiable manifold M is a correspondence which
associates to each point p of M an inner product (., .>,p (that is, a symmetric, bilinear, positive-

definite form) on the tangent space T,M, which varies differentiably in the following sense:

x:U CR™ — M is a system of coordinates around p whit x (x1,x2,...xm) = p, then
0 0
Gij (.’L’l, o, .’lfm) =

(e (@)« ()
fL'ip l’jp

in which dx~' is the tangent map of x~1, is a differentiable function on U for each i,j =

1,2,..,n. The functions g;; are called the local representatives of the Riemannian metric.

This definition does not depend on the choice of a coordinate system, (see [3]).

Hereafter we will always assume that M is equipped with a Riemmannian metric g.The
inner product (., .),, induces in a natural way the norm [[.|,,. The subscript p is usually deleted
if there is not possibility of confusion.

Let v : (—e,e) — M be a piecewise smooth curve. If we choose a parametrizacion

x:U CR™ — M, we can express the curve v in this parametrization by

oy (t) = (z1(t), 20 (t),...,zn (t)).

Thus, the vector 7/ (¢) can be expressed in the parametrization = by




If p and ¢ are two points of a manifold M, let v : [0,1] — M be a piecewise smooth curve

connecting p and q. The arc length of ~ is defined by
1
/

1) = [l (11)

SIEER

o \dt’ dt ’

and the Riemannian distance from p to q by, (see [3], [15])
d(p,q) =1inf (7). (1.2)

Definition 3 Let x (M) be the set of all vector fields of class C* on M and D (M) the ring

of real-valued functions of class C*° defined on M, that is:

X(M)={XeTM: X eC®(MT,M)},
D (M) = C® (M,R).

An affine connection V on M is a mapping

Vi x (M) x x (M) — (M)

(X,Y) — VxY (1.3)

that satisfies the following properties:

Z) fo+gyz = fVxZ +gVvyZ.
ii) Vx (Y +2)=VxY +VxZ
iWi) Vx (fY)=fVxY +X(f)Y,

where X, Y, Z € x (M) and f,g € D(M).

Definition 4 If X is a C' vector field on M, the covariant derivative of X determined by
the connection V defines on each p € M a linear application of T,M in itself

DX (p): T,M — T,M

(1.4)
v — DX (p) (v) = Vy X (p)



where Y is a wvector field satisfying Y (p) = v. The value DX (p) (v) depends only on the

tangent vector v =Y (p) since V is linear in Y. In this way we can write
DX (p) (v) = Vo X (p).

Let us consider the curve 7 : [a,b] — M and vector field X along v i.e X (p) € T, )M,
where 7y (t) = p for all ¢. We say that a vector field X is parallel along of v (with respect
to V) if DX (p) (7' (t)) = 0. The affine connection is compatible with the metric (.,.), when
for any smooth curve vy and any pair of parallel vector fields P and P’ along v, we have that

(P, P') is constant; equivalently,

d
7 V) = (Vy X, V) + (X, VymY),
where X and Y are vector fields along the differentiable curve v : I — M (see [3], [15]). We

say that V is symmetric if
VxY - VyX =[X,Y] forall XY € x(M).

The theorem of Levi-Civita establishes that there exists an unique affine connection V on M
compatible with the metric and symmetric (see [15]). This connection is called the Levi-Civita

connection.

Definition 5 A parametrized curve v : I — M is a geodesic at ty € I if Vvl(t)ﬁy’ (t) =0 1in
the point to. If 7y is a geodesic at t, for all t € I, we say that vy is a geodesic. If [a,b] C I,the

restriction of «y to [a,b] is called a geodesic segment joining v (a) to v (b).

In some cases, by abuse of language, we refer to the image v (I), of a geodesic v, as a
geodesic. A basic property of a geodesic is that 4/ (¢) is parallel along of «y (¢) ; this implies
that ||y (¢)|| is constant.

Let B (p,r) and B [p, r| denote respectively the open geodesic and the closed geodesic balls

with center p and radius 7, that is:

B(p,r)={qe M :d(p,q) <r}
Blp,r]={qe M :d(p,q) <r}.



The Hopf and Rinnov’s theorem [3], establishes that if M is a complete metric space the

for every p,q € M there exists a geodesic v, called minimizing geodesic, joining p to q with

L(y)=d(p.q). (1.5)

Moreover, if v € T,M, there exists an unique locally minimizing geodesic  such that
v (0) = p and 4 (0) = v. The point 7 (1) is called the image of v by the exponential map at p,

that is, there exists a well-defined map
exp,: TpyM — M (1.6)

such that
exp, (v) =7 (1),

and for any ¢ € [0, 1],
v (t) = exp,, (tv).

It can be shown that exp,, defines a diffeomorphism of a neighborhood U of the origin 0, €
T, M onto a neighborhood U of p € M, called normal neighborhood of p, (see [14]).

Let p € M and U a normal neighborhood of p. Let us consider an orthonormal basis
{ei}i~, of T,M. This basis gives the isomorphism f : R™ — T, M defined by f (u1,...,up) =
Yo uiei. If g = exp, (307 wie;) , we say that (uy, ..., u,) are normal coordinates of q in the

normal neighborhood U of p and the coordinate chart is the composition
p:=exp,of :R" — U.

One of the most important properties of the normal coordinates is that the geodesies passing
through p are given by linear equations, see [15].

The exponential map has many important properties [3], [14]. When the exponential map
is defined for each value of the parameter t € R, we will say that the Riemannian manifold M is
geodesically complete or, simply, complete. The Hopf and Rinnov’s theorem, also establishes
that the property of the Riemannian manifold of being geodesically complete is equivalent to

being complete as a metric space.

Definition 6 Let v be a piecewise smooth curve. For any a,b € R, we define the parallel



transport along v which is denoted by P, as

Prap: oM — TypM

v V), (7

where V' is the unique vector field along v such that V)V =0 and V (v (a)) = v.

It 1s easy to show that P, 4 is linear and one-one, so that P, 4 is an isomorphism between
the tangent spaces T)M and T, M. Its inverse is the parallel transport along the reversed
portion of v from V (7 (b)) to V (v (a)) . Thus P, 4 is a isometry between T\ M and Ty ) M.

Moreover, for a positive integer i and for all (vi,va, ..., v;) € Ty M X TymyM x ... x Ty M,
we define Pé as

Pvi,a,b : T,y(a)M X ... X Tfy(a)M —_— T’y(b)M X ... X T’Y(b)M7

i-times i-times

where

P;@b (v1,V2, o, 05) = (Pyap (V1) s Pyap (V2) 5oy Pyap (Vi) -
The parallel transport has the important properties:

Pyapo Pypd= Pyad

1.8)
" (
P’Y,b,(l = P’Y7a7b'
Next we extend the concept of covariant derivative to higher order

DX : Ck(TM) —  CFY(TM) (1.9)

(v,.)) +— DX (Y)=VyX,

where T'M is the tangent bundle. Similar of the higher order Fréchet-derivative (see [28]).
We define the higher order covariant derivatives, (see [16], [25]), as the multilinear map or

j-tensor:

DIX: CF(TM)x CF(TM) x ...x C*(TM) — CFI(TM)

J-times

10



given by

DIX (Y1,Ya,..Y;—1,Y) = VyD' 1 (X (Y1, Y2,..Y;-1)) (1.10)
j—1
~ Y DX (N, Ya, ., VY, Y,)
=1

for each Y1,Ys,..Y;_1 € C*(TM). In the case j = 2, we have
D2X . CF(TM)x CK(TM) — C*F2(TM)
and

D X (Y1,Y) = VyDX (Y1) — DX (VyY)) (1.11)
= VY (Vle) — Vvyle.

The multilinearity refers to the structure of C* (M )-module, in that, the value of D/ X (Y1, Y2, ...Y;—1,Y)
at p € M only depends on the j-tuple of tangent vectors

(’Ul,’l)g, ...’Uj) = (YI (p) >Y2 (p) ) "'Y}—l (p> 7Y (p)) S (TPM)J :
Therefore, for any p € M, we define the map
DiX (p): (T,MY — T,M

by
DV X (p) (v1,v2,..v5) = DI X (Y1,Ys,..Y;_1,Y) (p). (1.12)

Definition 7 Let M be a Riemannian manifold, 2 C M an open convex set and X € x (M) .
The covariant derivative DX = V()X is Lipschitz with constant L > 0, if for any geodesic y
and a,b € R so that 7 [a,b] C Q, it holds that:

b
|PypaDX (7(8)) Pyap — DX (7(a))] < L / I @) dt. (1.13)

We will write DX € Lipy, (), (see [4],[17]).

11



Note that Py j DX (7 (b)) Pyp.a and DX (v (a)) are both operators defined in the same
tangent plane T’ M. If M is the euclidean space, the above definition coincides with the
usual Lipschitz definition for the operator DF : M — M.

Proposition 8 Let v be a curve in M and X a C' vector field on M, then the covariant
derivative of X in the direction of 7' (s) is (see Fig. 1).
DX ('7 (8>) 7/ (8) = V'y’(s))('y(s) (114)

zg%%(RMHWXQMs+M)—XOM$D

FesrnsX(y(st+h])

Fig. 1.

Note that if M = R"™, the previous proposition agrees with the definition of classic direc-
tional derivative in R"™; for the proof see [15].

Let us recall that if A : T,M — T, M is linear, then ||A|| = sup {||Av|| : v € T, M, |jv| =1}.

The following is an important lemma, that allows to know when an operator is invertible

and also allows to give on estimate for its inversse.

Lemma 9 (Banach’s lemma) Let A be an invertible bounded linear operator in an Banach

space B and B a bounded linear operator B in E. If

|A™'B—1|| <1,

12



then B~ exists and

1 A
R .

Ay
T 1 [[ATH[[|B - A

Moreover,

1
1-[[A1B—1]
< 1
1= ATIB - Al

|B14]

1.2 Taylor-like approximations

Next we will show some of the Taylor-type expansions on Riemannian manifolds, which will
be used in the subsequent chapters, in the prove the convergence of the sequences appearing
in each method, and uniqueness of the singularities determined by them.

It is also possible to obtain a version of the Fundamental Theorem of Calculus for manifolds

as it establishe in the following theorem.

Theorem 10 Let v be a geodesic in M and let be X a C' vector field on M. Then

t
PyooX (7() = X (7(0)) + /0 Pyoo (DX (7())7 (5)) ds. (1.15)
Proof. Let us consider the curve

f (3) = P’y,s,aX (’7 (3))

13



fs+h)—f(s)

!/ — 1
f(s) = lim Y
.1
i L (P X (5 1) = P X (3(5)
1
= flzli% E (P'y,s,o © P’y,s+h,sX ('Y (3 + h)) - P%S,OX (’7 (3>)) :

Since P, s, is linear and continuous, we have
o1
P/ = Pro (Jim 1 (P (54 10) = X (6
Using (1.14)

fl (3) = P"/,s,o (V'y’(s)X (7 (S)))
- P’y,s,o (DX (PY (8)) 7/ (3>) )

and from .
/Of’(S)dSZf(t)—f(O)
we obtain .
PyyoX (7(8) = X (4(0) + / Py oo (DX (7(5)) 7 (s)) ds.
| |

It is not hard to prove (using induction) that

Fi(s) = Py DX (v(5) (v ()7 (8) 07 (5))

n — ttmes

Theorem 11 Let v be a geodesic in M and let be X a ~? vector field on M. Then

Py1oDX (7() 7' (t) = DX (v(0))7' (0) + /O Pyso (D*X (v(s) (7' (5) .7 (5))) ds.

14

(1.16)

(1.17)

(1.18)



Proof. Let us consider the vector field along of the geodesic v (s) :

Y (v(s)) =DX (v(s)7 (s).

By the previous theorem,

t
PouoY (1) = Y (7 (0)) + /0 Py (DY (7(5)) 7 (s)) ds,

by (1.11),

D2X (7(8)) (7 (5),7" (5)) = V(P (X (7(5)) (V' (9))) = DX (7(5)) (Voy()7' (5))

D (DX (7() 7 () 7 (5) = DX (7/(5)) (V7 (5))

since 1y (s) is geodesic, we have V(5 (s) = 0, hence

D2X (7(s5) (7' (5),7' (5)) = D (DX (v())7 () 7 (5),

Therefore,

Py 10DX (v (1) (t) = DX (v(0)) ' (0) + /0 PysoD?X (7(s)) (7 (5),7 (5)) ds,

[
Note that (1.18) is equivalent to
P’y,t,ODX (7 (t)> P%O,t - DX (7 (0)) = /0 P%570D2X (’Y (3)) Pw,(),s (’Y, (O> ) ) ds.

In a similar way, using induction, we can prove that

Py 10D"X (v (1) Pyoy — D" X (v(0) = /OSPw,s,o (D"X (v (5)) PYos (4/(0),...,.)) ds. (1.19)
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Theorem 12 Let M be a Riemannian manifold, Q C M an open convez set, X € x (M) and
DX € Lipr, (). Take p € B (po,r) CQ, ve T,M, o:[0,1] — M be a minimizing geodesic

connecting po, p and
7 (t) = exp,, (tv) .

Then
Py 10X (v(t) = X (p) + Psp1tDX (po) Pr10v + R(1),

with .
IROI<L (50l + dnn)) ol

Proof. From Theorem 10, it follows that
t
PooX (1) = X (1 0) = [ oo (DX (1 (9) 7 (5)) ds.

since v is a minimizing geodesic, then +'(¢) is parallel and 7' (s) = Py 7 (0). Moreover
7' (0) = v then

t
PyyoX (4(8) — X (p) = /0 Py o (DX (3 (5)) Py o0) ds.

Thus
Py1oX (v () — X (p) — Pr01tDX (po) Pra,0v
t
= / Py oo (DX (7(5)) Pyosv)ds — Pyo1DX (po) Por,0v
0
t
= | (PaaDX (3(5)) P = oo DX () Praov) s,
0
letting

t
R (t) = / (P%S’OIDX (’)/ (S)) P%O’S’U — P070’1DX (po) PO,I,OU) dS,
0

16



and using the, by hypothesis, DX € Lipy, (2), we obtain
t
IR < /0 [(Py,5,0DX (7 (8)) Py,0,s = DX (p) + DX (p) — Po01DX (po) Po,0)l [[v] ds
t
< /0 (1Py,5,0DX (7 (5)) Pyo,s = DX (p)|| + [|[PX (p) — FPo01DX (po) Fo10ll) 0]l ds

1
(1Py,50DX (7 (5)) Pyo,s = DX (v (0)[| + [|1DX (0 (1)) = Pr01DX (0 (0) Fop0ll) [[0] ds

< /(/ [+ ()| dr + d (po. p )) [v]| ds
[ ([ @l dr+ aun) o as
=1 [ (s O+ dmop) Lol s
t2
= (S ol + a0 ) ol
Therefore,

1RO <L (5l + o) el

Theorem 13 Let M be a Riemannian manifold, Q@ C M an open set, X € x (M) and
DX € Lipr, (). Let us take p € Q , v € T,M and let

7 (t) = exp, (tv) .

If v]0,t) C Q, then
PyioX (7(t)) = X (p) + DX (p)v + R(1),

with I
[R@) < 5732 o]

Proof. From Theorem 10, it follows that

Py toX (7 (1) = X (7(0)) Z/OPV,S,O (DX (v(s)7' () ds.
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Given that «y is a geodesic, we have that ' (t) is parallel and v/ (s) = Py, 7' (0). Moreover,
since 7' (0) = v then

PyyoX (7(8) — X (p) = /0 Py a0 (DX (7(5)) Py o s0) ds.

Therefore
P V,t,otX (v(@) — X (p) —tDX (p)v
= /0 Py so(DX (7(8)) Pyosv)ds —tDX (p)v
= /0 (Pys,0 (DX (7(5)) Pyosv) — DX (p)v)ds,
let

t
R(t) = / (Py5,0DX (7(8)) Py,0,sv — DX (p)v)ds.
0
By hypothesis, DX € Lipr, (2) , hence
t
IR (@) < /0 [(Py,5,0DX (7 (5)) Py0,sv — DX (p) v)| ds

t

< /0 1(Py,5,0DX (7 (5)) Pyos = DX ()| [|v]| ds

< /Ot (L/O v @ dT> ol ds.

Since 7 is a geodesic, ||y (7)]| is constant. Therefore,

W @l =11 Ol = Il

thus

iRl [ t (2 [ oliar ) ol

t
— /0 Lol s [lo] ds

L 2 2
=t .
= o]
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Theorem 14 Let v be a geodesic in M such that [0,1] C Dom (). Let X be a C? vector
field on M. Then

1
Py10X (v(1)) = X (v(0)) + DX (v(0)) -+ (0) + /0 (1 =) PyroD?X (v (1)) (v (£) 7 (1)) dt.
(1.20)

Proof. Consider the curve
ft) =Py 0X(v(1)),

in TA/(O)M By (117),
S () = Py oD?X (v (1) (7 (), (1)),

and from Taylor’s theorem

f(l)—f(0)+f’(0)(1—0)+/0 (1 —t) £ (t) dt.

Therefore

1
Py 10X (v(1)) = X (v(0)) + DX (v(0))~' (0) +/0 (1—1) Py oD*X (v (1) (7 (), (t)) dt.

Theorem 15 Let v be a geodesic in M, [0,1] C Dom (v) and let be X a C? vector field on
M. Then

Py 50X (7(s)) = X (7(0)) + sDX (v(0)) 7' (0) + %8292){ (7(0)) (+(0),7(0))

3 =0 PaaDX (@) (7 (0.7 (0. (1) .

Proof. Consider the curve
f (3) = P’y,s,OX (7 (8))

in T’y(O)M- By (1.17)

F"(5) = Py oD*X (v(5)) (7 (s),7 (5),7' () ,
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and by Taylor’s theorem,

P& = £O)+F0)6=0)+5" 060 +3 [ =027 0

We thus conclude that

PrenX (3(5)) = X (3 (0)) + DX (3 0)) 7' (0) + LD2X (30)) (7 0).,/ 0)
" ;/ (5= 1) PuaDX (1(0) (7 ()7 ()7 (1) .
0

Theorem 16 Let M be a Riemannian manifold, Q@ C M an open convex set, X € C3 (M, T(.)M).
Suppose that there exist a real ¢ > 0 such that for any geodesic v and 11,720 € R with
v 1, m2] C Q it holds that

1Py s D2 (3 (7)) P2, 1 — D2 (7 (m))]| < e / “ ) de,

T1

provided that [0,1] C [r1,72]. Then

I(Py.50X (7 (5)) = X (v(0)) = sDX (v(0)) 7' (0)

—35°D°X (7(0)) (¥ (0) .7 () || < §s° I (0] (1.21)

and

(P aDX (7 (3)) Pro = DX (O] < (2K (O] + el @) sl )]
(1.22)

Proof. We start with the following Taylor’s expansion (Theorem 15):

Py50X (7(s)) = X (7(0)) + sDX (v(0)) 7 (0) + %321)2)( (7(0)) (+(0),7(0))

+ % / =0 PLuaDX (1(0) (7 ()7 ()7 (1)
0
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we have

IQWXWQD—Xfﬂm%ﬂDXWWNVWW—%%ﬂmehh%mnwa

2
<3 G- IDX Gy O a

<13y ol

Using (1.18) and (1.19), we obtain

and

Py 0D*X (3 () P, — 0) = [ Pro (DX (3 (0) Py (7 0)...))

Py s0DX (7(5)) Pyos = DX (v(0)) = /OSP 0 (DX (7 (8) Plos (v (0),.)) dt.

Therefore,

[1Py,5,0DX (7 (5)) Pyo,s = DX (v (0))]]

IN

IN

I VAN VAN

/OSPW’O (D2X (7 (t)) P2y, (7 (0), ))dtH

/s <sz<v(0))(v (0))+/ny0 (DX (v(1)) P24, (4 (0),7(0),.)) dT) dt‘

0
S

L/wam» et + o (DX (1 (1) Pl (7 0) (0),.) |
0

s |D2X (7 )| I (0 n+//HWX DI I ()2 drdt

s|ID2X (4 (0)] I (0 n+//dw )| drat

s [D2X ()] Y O] + 352l O)F

([D2X (v () + s v (O)) s 1 (O]l -
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Chapter 2

Kantorovich method on

Riemannian manifold

As a preamble for the Chebyshev-Halley method, in this section we will study the Newton’s
method for Riemannian manifolds. We will begin by establishing a parallel between Newton’s
method for Banach spaces and Newton’s method for Riemannian manifolds.

Let us recall Kantorovich’s Theorem or Newton’s method in Banach spaces, (see [12]).

Theorem 17 (Kantorovich) Let E be a Banach space, Q C E be an open conver set, F :
Q — Q be a continuous function, F € C' and DF Lipschitz in Q , so that, there existe
L > 0 such that:

IDF (z) = DF (y)|| < Lz —yll, for all z,y € Q.

Suppose that for some xg € Q, DF (x¢) is invertible and that for some a >0 and b >0 :

(1) ||DF (@) <a

@2) |DF (xo)*lF(mo)H <b

(3) c=abL <3

(4) B(zo,ts) € Q where t, = 1 (1 —/1T=12c).

If
v = —DF (x) " F (a),

Th+1 = Tk + Uk,
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then {xi}reny € B (w0,ts) and x, — px, which is the unique root of F' in B [xg,t.] . Further-
more, if ¢ < % and B (xg,7) C Q, with

t*<r§t**:$(1+\/1—20),

then py is also the unique root of F in B (xg,r). Also, the error bound is:
g — | < (2072, k=12,

Although the concepts will be defined later on, to extended the methodto riemannian
manifolds, preliminarily we will say that the derivative of F' at x,, is replaced by the covariant

derivative of X at p, :
VoX(n): Tp,M — Ty, M
v — VyX,

where Y is a vector field satisfying Y (p) = v. We adopt the notation DX (p)v = Vy X (p);
hence DX (p) is a linear mapping of T, M into T, M. So, in this new context,

—F (xn)_l F(xy)

1s written as

-DX (pn)_l X (pn) )

or

(v()X (pn))il X (pn) .

Now we can write Kantorovich’s theorem in the new context. We will say that a singularity
of a vector field X, is a point p € M for which X (p) = 0.

Theorem 18 (Kantorovich theorem on Riemannian manifolds) Let M be a Riemannian
manifold, Q@ C M an open convex set, X € x (M) and DX € Lipr, (2). Suppose that for
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some po € Q, DX (po) is invertible and that for some a >0 and b >0 :

1) [PX @) <a (|(vox @) | < a)

@ [PX ) X o) <6 ([[(VoX o) X (o)]| < b)
(3) c=abL <3

(4) B(po,ts) CQ where t, = 2 (1—/1—2c).

If (see Fig.2),
ve = =DX (pr) " X (p),

Pk+1 = expy, (Vk),

then {pr}reny € B (po,ts) and py — px which is the unique singularity of X in B [po,ts].
Furthermore, if ¢ < § and B (po,r) C Q with

t*<r§t**:i(1+\/1—2c),
alL

then py is also the unique singularity of X in B (pg,r). The error bound is:

d(prps) <2207 k=1,2,.. (2.1)

8XPy, (—[V( X (po)) ™' X (Pu])

7(t) = exp,, (tvg)

Fig. 2.

Proof. See [4], [17] =
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2.1 Simplified Kantorovich method on Riemannian manifolds

Next we will prove the method of Kantorovich on Riemannian manifold fixing DX (po) ' in
each iteration. This method we be called the Kantorovich’s simplified method on Riemannian

manifolds. In Banach spaces, this method was developed by Kantorovich (for the proof, see

[12]).

Theorem 19 (Kantorovich simplified method on Riemannian manifold ) Let M be a Rieman-
nian manifolds, Q@ C M an open convex set, X a C' vector field, DX € Lipy, (Q). Suppose
that for some py € Q, DX (po) is invertible and that for some a >0 and b >0 :

B (po,ts) C Q, where t, = (%L (1 —v1 - 20) .

Let )
v = =Py, 01DX (po)” Poy1,0X (Pr)

(2.2)
pk+1 = exppk ('Uk) )

where {0y, : [0,1] — M}, o is the minimizing geodesic family connecting po, pr. Then {pi} ey €
B (po,t«) and px, — p« which is the only one singularity of X in B [po,ts]. Furthermore , if
c< % and B (po,r) C Q with

t*<r§t**:%(l+\/l—20),

then py is also the only singularity of X in B (po,r). The error bound is:

d(pe,pe) <t (1—vI—20)", k=1,2,.. (2.3)

Before proceding to the proof of the theorem, we will establish some results that are of

primary relevance in this proof.

Lemma 20 Let M be a Riemannian manifold, Q C M an open convex set, X € x (M),
DX € Lipr, () and o : [0,1] — M be a minimizing geodesic connecting po, p . Take p € Q,
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veT,M and let
7 (t) = exp,, (tv) .

If v[0,t) € Q and Py01DX (po) Pra1ov =—X (p), then

1P ()] < 2 (G0l + o)) ol (2.4

Proof. It is immediate, by Theorem 12. m

Now we can prove the simplified Kantorovich theorem on Riemannian manifolds (Theorem
14). The proof of this theorem will be divided in two parts. First, we will prove that
simplified Kantorovich method is well defined, i.e. {pr}reny € B (po,t«); we will also prove
the convergence of the method. In the second part, we will establish uniqueness.

We will consider the auxiliary real function f : R — R defined by

L, 1 b
t)= —t*— —t+ —. 2.5
F)y=50 i (2.
Its discriminant is )

which is positive, because abL < % Thus, f has a least one real root (unique when ¢ = %) If

t. is the smallest root, a direct calculations show that f/(¢) < 0 for 0 <t < ¢, so f is strictly

decreasing in [0, ¢,] . Therefore (see [5]), Newton’s method can be applied to f, in other words:
If ty € [0, t4), for K =0,1,2,.. define

““‘“‘ﬁ%?

Then {t}},cy is well defined, it is strictly increasing, and it converges to t,. Furthermore, if
c=ablL < %, then

b
u—ngU—VLﬂqﬂﬂk:Lzm (2.6)

Let us take as starting point tg = 0. We want to show that Newton’s iteration is well-defined
for any g € B (po, t«) C .
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Now, define

Pyro1DX (po) " PrioX (q)H < |Jf/((t0))| —af(t), 0<t< t*}, (2.7)

k:(t):{qu[po,t} ;‘

where 0 [0,1] — M be the minimizing geodesic connecting pp and ¢. Note that k (t) # ¢
since po € k (t) .

Now we can prove te following proposition, which will be used in several places

Proposition 21 Under the hypotheses of either the Kantorovich or the simplified Kantorovich
method, if ¢ € B (po,t«), then DX (q) is nonsingular and

1
HDX (q)_lH < where A = d (po, q) < ts.

P
Proof. Let A = d (po,q) and « : [0,1] — M be a geodesic with « (0) = pp, o (1) = ¢ and
o’ (0)|| = A\. Define ¢ : T,M — T,M by letting

¢ = Pa10DX (po) Pao,- (2.8)

Since Py,1,0 and P, 1 are linear, isometric and DX (pg) is nonsingular, we have that ¢ is

linear, nonsingular and

1
/(O
with « ([0, 1]) € B (po, t«) . Since d (po, q) < t«, DX € Lipr, () and ||/ (0)|| = A. Therefore

l67!) = |PX o) | <

DX (q) — ¢l < LA. (2.9)
By (2.8) and (2.9), we have

|| 1IDX (q) — || < aLA

< alt,

- aLiL (1 _VIiZ 2abL>
a

<1,
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Using Banach’s lemma, we conclude that DX (¢) is nonsingular, and

< o]
T 1l HIIDX (q) — ¢l
a

|PX (@)

<
~—1—alL)
1

ST

m
Therefore, for any g € B (po,t+), we can apply the Kantorovich methods.

Lemma 22 Let q € k(t). Define
f(t)

b =170
g+ = exp, (-Po,o,le (o) Pr1oX (Q)> :

Thent <ty <t and q € k(t4).

Proof. Consider the geodesic v : [0, 1] — M defined by

v (0) = exp, (—HPU,O,le (o) " Pr1oX (Q)) ;

we have
d (po,v (0)) < d(po,q) + d(q,7(9))
<t+ H9Pa,0717)X (po) ' Pr1oX (Q)H
f (@)
0 .
=)
Since

7 (1) = exp, (_PU,O,IDX (po) ' Pr10X (q)) =qy,

this implies that

d (po,q+) = d(po,v (1)) <t + o bty
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therefore

q+ € B (po,ty) C B (po,t«) .

Moreover, if o4 [0, 1] — M is the minimizing geodesic connecting py and ¢, then
|~Pr 00D (0) ™ oy 10X (01| < [P (00) ™! 1 (@)1
furthermore, if v = —P, ¢ 1DX (pg)f1 P;10X (q), then

P;01DX (po) Pr1,0v = Ps01DX (po) P10 (—Pa,o,ﬂ)X (po) ' Pr1oX (Q))

= —P,01DX (po) DX (po) ' Pr1.0X (q)
=-X(q).

By Lemma 20,

X (gl = [1IX (v (W)

1
<2 (3ol + dnn) o]

IN

1 - —
L (2 |~ Prs01DX (00) " Py 10X (0)| +t> |~Pr 01 DX (0) ™ Pr 10X (0)

SL@ <|f,((’3)|) “) <|fj%)>|>’

thus, by (2.7), after some calculations,

|72 o0 Eresall 1 @ < (157 2 (3 (o) +) (7o)

= éL (2b — 2t + aLt?®) (2b + 2t + aLt?)

_ fy)
AL

we thus conclude
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and therefore
a4 € k(ty).

[ |
Now we are going to prove that starting with any point of & (¢), the Newton method

converges.
Lemma 23 Take 0 <t <t, and g € k(t), and define

To=1
Thtl = Tk — 7‘]}%’5%, k=0,1,..

Then the sequence generated by Newton’s method starting with the point qo = q is well defined
for any k and
qr € k (11,) . (2.10)

Moreover {qy}ycy converges to some gx € B (po,ts), X (¢:) =0 and
d(qx, qx) < ts — Tk, for all k.

Proof. It is clear that the sequence {7}, is the sequence generated by Newton’s method
for solving f (t) = 0. Therefore, {73}, is well defined, strictly increasing and it converges
to the root t. (see the definition of f). By hypothesis, gy € k (79) ; suppose that the points
4o, q1, -, qr, are well defined. Then, using Lemma 23, we conclude that g1 is well defined.

Furthermore,
d (qr+1,qr) < H—Pak,o,ﬂ)X (po) " Py 10X (%)H .

Since
Qk+1 = €XPgy, <_Pok,0,1DX (p0) " Poy 10X (Qk))

and oy, : [0,1] — M is the minimizing geodesic connecting py, gk, from Lemma 23 and using
(2.10) we obtain

d(qk+1,qk) < |§,((Tg>)‘ = Thi1 — Th- (2.11)

Hence, for £ > s, s € N,
d(qr,qs) < Ts — Tk (2.12)
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It follows that {qx},cy is a Cauchy sequence. Since M is complete, it converges to the some
g« € M. Moreover gy € k(1) C B [po, ts], therefore g. € B [po, t4] .
Next, we prove that X (¢.) = 0. We have next

| X (qr)]| = ’ Py, 01DX (p0) Py 1.0Ps, 01DX (po) ! Pyy 10X (%)H

< IDX (po) | [ DX (po) ™ X (@)

f (%)
£ (0)]
= (DX (po)ll) (k1 — ) -

< (IIPX (o)1)

Passing to the limit in k, we conclude X (g.) = 0. Finally, letting s — oo in (2.12), we get

d(Q*an) <ty — Tk-

These lemmas allows as to proved the convergence part of Theorem 17, by (2.6)

oo

1-vi—20)"", k=12

d(gs, qr) <

By hypothesis, pg € k(0), thus by the lemma 23, the sequence {py},cy generated by (2.2) is
well defined, contained in B (po, t«) and converges to some p,, which is a singular point of X
in B [po,t«]. Moreover, if ¢ < 1/2, then

oo

d (pr,ps) < = (1 - m)kﬂ.

Next we will show the uniqueness. This proof will be made in an indirect way, by contra-
diction. Before we are going to establish some preliminary results. The first step is to prove

a stronger version of Lemma 22.
Lemma 24 Take 0 <t < t. and q € k(t), and let

A7l = —-P,y1DX (po)~" P10
v=A"X(q),
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where o : [0,1] — M is the minimizing geodesic connecting po,pi. Define for € R,

T(0) =t+0af (t),
7 (0) = exp, (0v) .

Then, for 0 € [0,1],
t<71(0) <t. and ~(0)€k(7(9)).

Proof. Because v is a minimizing geodesic, for all § € [0, 1] we have

d (po,y (0)) < d(po,q) +d(q,v(0))
<t+0|v|

<t+0af(t)
=7(0).

This implies that
t<7(0) <7 (1) <t and 4 ([0.6]) C B (po,t) (2.13)

Using the Theorem 12, we obtain
X (v(0)) = P06 (X (p) + Pr010DX (po) Praov+ R(0)),

with ;
R(0) = / (Py,s0DX (7 (5)) Pyo,sv — Pr1DX (po) Pr1,0v) ds,
0

and p
1RO < (5l + o) olol.
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After some calculations, this yields

|A71X (7 (0))]] = HA—IPV,O,G (x@- [ ProaDX (7(5)) Py ds

Therefore

_ HA—lpy,o,e ((1 -0 X~ [ " (P,oDX (1 (3)) Pros — DX (0) ) ds

0
<[4 Pras (=0 X @] + 47 Py [ (PoaDX (05 Pras ~ DX (@) v
0

<@ =0)af(t) +a|RO)

<= 0)af () +aL (5 ol + d00)) O ol

<(1-0)af(t)+alL (gaf ) +t> baf ()
:é@b—%+au%p4ﬂ+&L%%?+@Lm+2@uﬂ—&@Wt+@

=af(7(0)).

7(0) € k(T (9)),

and the Lemma is proved. =

Lemma 25 Let 0 <t < t, and q € k(t). Suppose that q. € B [po,t.] is a singularity of the
vector field X and

Then

t+d(q,qs) = ts.

d(po,q) =t.

Moreover, letting

ty=t+af(t),
q+ = €XPgy (A_lX (Q)) )

then t <ty < ty, q+ € k(t4+) and

tr +d(g+,q:) = ts
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Proof. Consider the minimizing geodesic « : [0,1] — M joining g to ¢.. Since q € k (t),

we have

d (po,x (0)) < d(po,q) +d(q,x(0))

It follows that « ([0,1]) C B (po, ts) -

<t+6d(q,q)
<t+d(q,q)
—t,.

Taking u = o/ (0) , by Theorem 12 we have

Pa,l,OX (a (1)) =X (q) + Pmo,ﬂ)X (p()) P0-717()U + R (1) ,

with
IRV <L
Therefore
ir<z(
1 (
o
1

=L-
2

N = N = N =

(3 1ull+ o)) 1.

d (q,q+) + d (po, q)) d(q,q«)
(to—1) + d(po,q>) (b — 1)
(t, — 1) +t> (t, — 1)

(te +1) (e —1).
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On the other hand, since |f (¢)] is strictly decreasing in [0,¢.] and 0 < d (po,q) <t < ts,

IR )] = 11X () + Au] (2.16)
> % |A™1X (g) + ul|
oo |
> | O)][[ATX () +
> [ O (Jull = |47 X (@)]])
> | (0)] (lull = af (2))
=—f0)(t—t) = f(t) >
Because
ff@) =L
0= F(8) = F (O +F (5 (b =)+ 35" () (8. — 1),
and t
+/0 fr)dt
therefore
0= F(0)+ (') +1L) (b — 1) + 3L (6~ 1),
hence

;La* F 1) (te— 1) = —F (0) (ta — ) — F (£).

Thus, the last term in (2.14) is equal to the last term in the inequality (2.16), we conclude

that all these inequalities in (2.16) are equalities, in particular

i = Ol = a.

lull = [[ 471X (@)]| = [A72X (a) +u[| > 0,

|[A71X (q)|| = af (¢)

Lt —t)+dmo,q) (ts—t) =L (X (b — ) + 1) (2 — 1).

(2.17)

From the last equation in (2.17), we obtain

d (p()u Q) = t7
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the second equation in (2.17) implies that u and A~1X (q) are linearly dependent vectors in
TyM, so that there exists r € R such that

A7IX (¢) = —ru.
Thus, the second equation implies
L—|rl = [t =],
and because r # 0 and r # 1, we have 0 < r < 1, thus
Gt = expy (ru) = a(r).

Moreover, given that « is a minimizing geodesic joining g to g, we have that ¢, o (r) and g

are in the same geodesic line, thus

d(g,a(r)) +d(a(r),¢.) = d(q,4),

therefore,
d(q,q+) +d(q+, ) = d (g, q.) -
Moreover,
d(q,q4) = [Irul

=47 X (9]

=af(t)

— t+ - t,
hence

d(Q—i—;Q*) = d(Qa Q*) - d(Q?Q-‘r)
(1) (s — 1)

:t*_t+7

36



that is
d(qs,q«) +t4 = L

Lemma 26 Suppose that q. € B [po,t] is a singularity of the vector field X. If there exist t
and q such that
0<t<t, G€ k‘(f) and t+d(q,qs) = ts,

then
d (p07 Q*) = ts.

Proof. Changing 79 by ¢ and qq by § in Lemma 23, we obtain that
qr € k(x), for all k € N,

{7k }rery converges to ty, {q} o converges to some G« € B (po,t«), and X (¢g«) = 0. Moreover,
by Lemma 25 and applying induction, it is easy to show that for all k,

d(po,qr) =7 and d(q,qx) = tsx — Ty

Passing to the limit, we obtain

d(po,Gx) =t« and d(gs,q«) = 0.

Therefore ¢, = ¢, and
d (po, gx) = tx.
|
The two following lemmas complete the proof of the uniqueness.

Lemma 27 The limit p, of the sequence {py}cy s the unique singularity of X in B [po,t.] .

Proof. Let g. € B [po,t«| a singularity of the vector field X. Using induction, we neet
show that
d (Pks =) + e < ta.
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We need to consider two cases:
Case 1. (d(po,g«) < t«). First we show by induction that for all £ € N,

d (pr, @) + tg < ty. (2.18)

Indeed, for £ = 0 (2.18) is immediately true, because ty = 0. Now, suppose the property is

true for some k. Let us take the geodesic
Vi (0) = exp,, (—0vy) ,
where vy, is defined in (2.2). From Lemma 24, for all 6 € [0, 1],
Vi (0) € kb (tg + 0 (tkr1 — tr)) - (2.19)
Define ¢ : [0,1] — M by
¢(0) =d (v (0),q) +tr+0 (ths1 — tr) - (2.20)

We know that

We next show, by contradiction, that ¢ (6) # t. for all 6 € [0, 1].
Suppose that there exists a 6 € [0,1] such that ¢ (é) = t., and let § = (é) and

t =t + 6 (tps1 — t) . By (2.19) and (2.20),
je k(ﬂ and d (G, q.) +1 = t..
Applying Lemma 26, we conclude that

d (pOa CI*) = iy,

which contradicts our assumption. Thus ¢ () # t. for all € [0, 1], Since ¢ (0) < t, and ¢ is
continuous, we have that ¢ (0) < t, for all § € [0,1]. In particular, by (2.20),

d(ve (1), qe) +teyr = ¢ (1) < ty.
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Thus,
d (pk+17 Q*) + tk-‘rl < by,

in this way (2.18) is true for all k£ € N.
Case 2. (d(po, g«) = t«). Using induction, let us prove that for all £ € N,

d (Pk, 4+) + tk = ts. (2.21)

Indeed, for k£ = 0, this is immediately true, because to = 0. Now, suppose that (2.21) is true
for some k. Since py € k (tx), by Lemma 25 we conclude that

d (Pr+15 @) + trg1 = L
Finally, by (2.18) and (2.21), we conclude that for all £ € N,
d (Prs @) + e < e,
and passing to the limit k¥ — oo, we obtain d (p«, ¢.) = 0, and therefore
Px = Qx-
|

Lemma 28 Ifc=abl < % and B (po,r) C Q, with

1
t*<T§t**:—L(1+\/1—20),
a
then the limit p. of the sequence {py}cy 18 the unique singularity of the vector field X in
B (p07 ’I") .

Proof. Let g, € B (po,r) be a singularity of the vector field X in B (pg, ) . Let us consider

the minimizing geodesic « : [0, 1] — M joining pg to ¢.. By Lemma 20,

Po1,0X (0 (1)) = X (po) + Pr0,1DPX (po) Pyiou+ R(1),
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where
1 L )
IR < L { 5 lull +d(po, po) | llull = Zd(po, )" and |luf = d(po,q)- (2:22)
In a similar way to the inequality (2.16), is easy to prove that

IR = ¢ (Il = |2 (o)™ X ()]
> éd(po,q*) - S'

Therefore

SEES

L 9 b
=d * > —d yUYx) T T
5 (Po; qx)” = —d (po, gs) "

hence

f(d(po,q+)) =0,

since d (po, ¢x) < 7 < tux, then
d(po, qx) < ts.

Finally, from Lemma 27,

Px = Qx.

2.1.1 Order of convergence of Kantorovich methods

It is well-known that in Banach spaces the Kantorovich and simplified Kantorovich methods
have order of convergence one (linear) and two (quadratic), respectively (see [27]). Since the
analysis of the order of convergence is made in a local way, that is, in a neighborhood of the
singularity of the vector field which we are considering. We can define the order of convergence

on Riemannian manifolds in the following way:

Definition 29 Let M be a complete Riemannian manifold and let {py},cy be a sequence
on M converging to ps. If there exist a system of coordinates (U,z) of M whith p, € U,,
constants p > 0,¢ > 0, and K > 0 such that, for all k > K, {pg}ref is contained in Uy and
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the following inequality holds:

P (2.23)

|27 (prg1) — 27 (po)|| < ellz™ (or) — 271 (p4)|
then it is said that {py},cy converges to py with order at least p.

It can be shown that the definition above do not depend on the choice of the coordinates
system and the multiplictive constant ¢ depends on the chart, but for any chart, there exists
such a constant, (see [18]).

Notice that in normal coordinates of 0,,,
lexpy, (p) — expy! ()] = d (p,q).
thus, in normal coordinates, (2.23) is transformed into
d (prt1:p) < cd (pg, pe)"

Lemma 30 i) The order of convergence of the Kantorovich method on Riemannian manifolds
is two (quadratic convergence).
it) The order of convergence of the simplified Kantorovich method on Riemannian mani-

folds is one (linear convergence).

Proof. Let k be sufficiently large in such a way that ps, pg, Pk+1,..-belong to a normal
neighborhood U of pg. Let us consider the geodesic v; joining pi to ps defined by

where uy, € T, M and d (px, p«) = |lug| -
We know that if p, ¢ be in one normal neighborhood U of p;, then

lexp,! () — exp, ! (g)|| = d (p,q) -

i) By Theorem 13,
P’y,t,oX (p*) =X (pk) +DX (pk) Uug + R (1) )
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with I
W <5 Jugl? and [ug| = d (pk, ps) -

Hence,
0="DX (pr)" X (px) + wx + DX (p) ' R(1).
Since
-DX (pkf1 X (px) = exp;k1 (pk+1) and wp = exp;k1 (ps) ,
we have
exp,! (Prt1) — exp,t (0) = DX (o) ' R(1),
thus I
A (prs1,p2) < | DX (00) 7| 5 s
Moreover, by Proposition 21,
a
DX ()| <
X @07 < g
a
< =
~— 1—alm
a
R
— 1—alt,
B a
~ V1—2abL
Therefore
d (pk+17p*) S Cd (pkvp*)2 )
with
- La
© 2y/1—2abL’

ii) Let pp be sufficiently near to p, in such a way that pg is in the normal neighborhood U
of 0, , By Theorem 12, if oy, : [0, 1] — M is the minimizing geodesic connecting pg, pg, then

Py10X (ps) = X (pr) + Ps,,01DX (po) Poy0ur + R(1),
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with .
IR <2 (5 el + o)) ]

Therefore
0= Py, 01DX (p0) " Poy1.0X (p) + Uk + Pyry01DX (po) " Py 10R(1).
Since

— Py, 01DX (p0) " Pop 10X (pi) = expyl (prs1) and g, = expy ! (ps)

we have

exp, ! (prs1) — expy (pi) = Poy 01DX (p0) " Poyp10R(1).

We thus conclude that

d (Pr+1,P+) = HeXP;,cl (PE+1) — eXP;kl (p+) ||
= ‘ Py 01DX (po)~" Pak,l,OR(l)H

< |[ox o) | IR I

1
L (2 ael] + d(p07pk)> el

L (;d (pespe) + d<po,pk>) 4 (prsp)

1d (pr, p-
:aL< (Pk: P+)

- + 1) d(po,pr) d (pe, pe) -
2 (0o, o) ) (po, pi) d (P, P+)

If k is sufficiently large, then d (pk, ps) < d(po, px) , and therefore

1 ¥
( d(pk,p)+1> S%,

§d(p07pk)

and therefore, for pg sufficiently close to px,

d(pk+17p*) < KOd (p():pk‘) d(pkvp*) )
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with Ko < 3¢ m

Remark 31 Note that if instead of putting in the Kantorovich method the point py, we fix p;
sufficiently close to py, we will obtain a new convergent method. Indeed the calculations made

i the previous lemma become in

d (pr+1,p+) < Kjd (pj, ps+) d (PrsD+) 5

with Kj < % Thus,
d (Prg1,px) < Kd (pj,ps) d (prs Px) 5 (2.24)

with K < %

2.2 A family of higher order Newton type methods

There is a method in Banach spaces, the Shamanskii method, which combines the Newton
and simplified Newton methods; this method was introduced by V. E. Shamanskii [27]. Next,
we describe the method.

Given an integer m and an initial point x¢ in a Banach space, we move from x, to T,11
through an intermediate sequence {y%}zl which is a combination of the Kantorovich and the
simplified Kantorovich methods

y}l =z, — DF (:z:n)f1 F ()
Y2 =yl —DF (z,) " F (y})
Mp7f = M
m __ _ . m—1 -1 (m—1)

Under appropriate conditions, this method or family of methods is convergent to a root x,
of the equation F' (z) = 0. Moreover, if x¢ is sufficiently close to z., the convergence of the
Shamanskii method has order at least m + 1 (see [2], [10], [27]). We are going extend this

result to the context of Riemannian manifolds.
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Under the hypotheses of the Kantorovich theorems, let us consider the family of methods

;

gt =exp,, (-DX (pn) ' X (m))

2 -1 1
Gn = expgr | —Fo1,01DX (pn) ™~ Poy 10X (qn))
pf =9 (2.25)

- -1
q;/n - pn+1 - equ:Lnil <_P0m71,0,1’DX (pn> ! PO'mfl,LOX (q'glm )>> I

\
where o : [0,1] — M is the minimizing geodesic joining the points p, and qﬁ, whit k£ =
1,2,...(m —1). Thus,

0r(0) =p, and oy (1) = ¢~

Note that for p = 1 this yields the Kantorovich’s method. Moreover, at each step we use

the Kantorovich method fixing the initial point or the simplified Kantorovich method.

Theorem 32 Under the hypotheses of the Kantorovich theorem, the method described in

(2.25) converges with order of convergence m + 1.

Proof. Let us observe that

d (pnt1,pn) < d (pn+17q£m*1)> +d (q,ﬁmfl), qf{”*”) ot d (g2, qh) +d(gk,pn) -

Now, if we define p,11 = ¢™, p, = ¢}, looking at each step as a different method according
to (2.25) , then by Kantorovich theorem in the first step and by the simplified Kantorovich

theorem for the following steps, each one of the sequences {g/"} for fixed n, is convergent

meN
to the same point p, € M. Therefore, {pn}peN is convergent to p.. Moreover, for Lemma 30

i) and (2.24),

d (pny1,pe) < Kd (pn,ps) d (qﬁf"_”,p*) < Kd (pn,ps) Kd (pn,ps) d (qﬁf"_z),p*)

< < K™ N (p,p)™ (g, i)
< K™l (pmp*)m_l Cd (pmp*)Q :

Therefore,
d (pny1,pe) < CK™ Y (pn,pa)™ .
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Chapter 3

Third-order iterative methods on

Riemannian manifolds

A review to the amount of literature on high order iterative methods in Banach spaces, in the
two last decades, shows the importance of higher order schemes, see [21] and references therein.
In general the methods of third order ([5], [7-9], [11], [13], [20-24]), present the difficulty of
evaluating the second order Fréchet derivative. For a nonlinear system of m equations and
m unknows, the first Fréchet derivative is a matrix with m? entries, while the second Fréchet
derivative has m?3 entries. This implies a huge amount of operations, but a high convergence
order.

Let us suppose that F' is an operator defined on an open convex subset ) of a Banach

space F of class C?,
Lp (zn) = DF (z) " D*F (xy) DF ()" F () -
Some of the most famous methods of third order to find a root of the equation F (z) = 0 are:

e Halley:
1 —1
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Super-Halley:

Tt = — (1 + % (I = Lp (2)) " Ly (:pn)> DF (2,)" " F (2n).

Chebyshev:
1
Tp4+1 = Tp — (I + iLF ('rn)> DF (mn)_l F (.’L’n) .

Chebyshev like methods: for 0 < A < 2,

1 _
Tpil = Ty — <I + in(xn) + )\L% (xn)> DF (z,,) A () -

Chebyshev-Halley method:

A

1 - .
Tp+l = Yn — 9 [I - §LF (mn)] Lp (zn) DF (zn)”" F (25).

Two-step:
Yn = Tp — DF (:L‘n)_l F ()
Tpy1 = Yn — DF (xn)_l F (yn) )

where I is the identity operator in FE.

In this chapter, we will prove some methods on Riemannian manifolds that generalize the

methods described previously.

3.1 Chebyshev-Halley method on Riemannian manifolds

Let us first recall first the Chebyshev-Halley method to approach a local unique solution x*
of the equation
F(z)=0, (3.1)

where F' is a nonlinear operator defined in an open convex subset €2 of a Banach space E into
itself. Take xg € E. For n =0, 1, ..., define:
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Yn = o — F' ($7L)71 F(zy,),
Gn=1F" (xn)_l F" (zn) (Yn — @) , (3.2)
Tntl = Yn — %F’ (zn) " I+ %Gn]_l F" (2) (yn — x0)?.
Equivaletly
Yn = Tp — I (mn)71 F(zn),
G = F' (23) 7 F" (20) (yn — 20) » (3.3)
Tnal = Yn — % I+ %Gn]_l Gn (Yn — ) -
Under certain conditions, the convergence of these methods was proven by Argyros [5]; these
methods are actually cubically convergent. Here, F’ (z,,) and F” (z;,) denote the first and
second Fréchet-derivative of F' evaluated at x, and X is a nonnegative parameter. We obtain
the Halley Methods for A = 1 and the Euler-Chebyshev method for A = 0. In general (3.2) or
(3.3) are called The Chebyshev-Halley family.

We study an extension of this method to the problem of finding singularities of a vector
field X defined on a real, complete and connected m-dimensional Riemannian manifold M,
that is, we wish to solve

X(p)=0, pe M.

Recall that in the first line of (3.2),
Yn — Tn = _F, (xn)_l 5
on a manifold M this equation is transformed in

up = —DX (pn)_l X (pn) ,

where y,, — x,, is replaced by u,, F (z,) by X (p,) and F' (z,,) by DX (p,). We can hence
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write (3.3) as
Un = —DX (pn) " X (pn) ,
Gn = =DX (pn)” DX (pn) un,
qn = exppn (un) )
o (t) = expy, (tun), (34)
Hy = (I, v+ 3G,
vn = =3 Py01DX (pn) ™" Hy DX (pn) (n, un)
Pn+1 = €XPyg, (UTL) ’

where

DX (pn) = V()X (pn):
D*X (pn) = V) (V)X (n)) = Vv, ()X (Pn)

and I, pr is the identity on Tj,, M. We next proceed to the extension of this method to the
problem of finding a solution of X (p) = 0 for a vector field X € T'M defined on a real,
complete and connected m-dimensional Riemannian manifold M. In fact, we will consider a

much more general method than the one described in (3.4). This new method is:

up = —DX (pn)ilX (Pn),

qn = exp,, (un),

o(t)= exp,,, (tuy),

Gn =DX (pn) " B (pn) (un, ), (3.5)
Hy = [Ir, M + 5Ghn]

Up = —%PW,O,IDX (pn)_l HEIB (Pn) (Un, un) ,

DPn41 = €Xpg, (UTL) ’

where B (py) : Tp, M x T),, M — T, M is a bilinear operator. Note that for B =0 and B =
D2X , we obtain Newton’s and Chebyshev-Halley methods ([16]) on Riemannian manifolds,
respectively.

Before proving the theorem, introduce some notation. Let pg € 2 C M; a,b,n, N,c,d, A\ >
0,8 >0 and HDX (po) ' X (po)H < go < n we define the sequences for all n > 0:
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-1
_ 2 2 37
amangM\+kaH+u+é)@(é_Nﬂmmw) W”]hm

o= 1= %l (3 - Natonm)) |
o -1
Bn+1 = (% _Nd(pn+lap0)> )

fO =0,

In+1 = [n+1 + Bnt10m41, (3.6)
Jnt1=gn + %ﬁnhnb (gn - fn)2 )

where

Ont1 = % (fn+1 - gn)2 + [% (gn - fn)2 + %Bn (1 + %) (gn - fn)g} b,
-1

hn = [1 - %Bn (g_nl_ fn)] )
o= (5-NF)

We also consider the auxiliary function

B Bbr? 3 N 2 , o(1—BNr)r?+(1+%)BbNr3
T(r)=n+ 523z —wgr + 753 [27’ + 2B NT N :

Theorem 33 (Chebyshev-Halley’s method on Riemannian manifolds) Let M be a complete
Riemannian manifold, Q@ C M an open convex set, X € x (M). Suppose that the bilinear
operator D?>X exists on €.

Assume That:

1. The continuous linear operator DX (po)_1 exists on B (pg, R) and satisfies

[Px o) <8 sormen, >0, k>0

|D2X (p)|| < N for all p € B(po,R), N > 0;
3. If B(p) : T,M x T,M — T,M is a bilinear operator such that || B (p)|| < b, b >0, then

HPa’tODzX (a(t)) Pa2707t - B (p)H <a for allp € B(py,R) a >0,
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for all geodesic o : [0,1] — M, such that o (0) = p;

-1
HDX (po) X(po)H <
5. There exists a minimum nonnegative number r* satisfying

T (r*) <r*

6. The numbers r*, R, also satisfy
r* <R, B(2N+Xb)r* <2, BN 3r*+ R) <2, and B(po,R) C Q. (3.7)
Then

(a) The scalar sequences {gn}, {fn} (n € N) generated by (3.6) are monotonically in-

creasing and bounded from above by

r*= lim g, = lim f.
n—-:o0 n—oo

(b) The Chebyshev-Halley like iteration {py} o generated by (3.5) is well defined in B (po, ),
that is {pr}pen C B (po, "), and it converges to the unique root p. of the equation X (p) =0
in B (po, R) .

Moreover, the following error bounds hold for allm > 0 :

d(Qnapn) < gn— fm d(pn+laQn) < fn+1 — Gn,
d(Gn,px) <77 = Ggny, d(Pnypx) <7 — f

Before proving the Chebyshev-Halley method on Riemannian manifolds, we establish some

preliminary results.

Lemma 34 Assume that the method (5.5) is well defined for alln > 0, let o (t) = exp,, (tun),
then

1
Py10X (qn) = / (1 —t) Py 0D?*X (0 () (P ttin, Prpun) dt. (3.8)
0
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Proof. From the theorem 14,

1
Po,l,OX (Qn) =X (pn) + DX (pn) Up, + /0 (1 - t) Po,t,OD2X (J (t)) (OJ (t) 70, (t)) dt
1
=X () + DX (1) (DX (1) X 00) + [ (10 Paao DX (0 () (0 (0.7 (1) e
1
_ /0 (1- 1) PruoD2X (0 (1)) (o' (1), 0’ (1)) dt.

Because o is a geodesic, then o’ (t) is parallel and ¢’ (t) = Py 10’ (0), and because o’ (0) = up,
then

1
fthT%)Z/‘ﬂ—¢ﬂ%wD%Y®@DU%www%&mwdt
0

Lemma 35 Let M be a complete Riemannian manifold, Q@ C M an open convex set, X € C?.

Suppose that the bilinear operator D*X exists on Q. If

v (t) = exp,, (tvn),

assume that the method (3.5) is well defined for all n > 0. Then the following representation
of X is true for allm >0 :

Rmﬁx@wﬂy:Alu—ﬂqup%xw@»R%iwmwgﬁ

+RwJH;1(Alﬂ—w)U%¢ﬂﬂXXUﬁDPﬁW——BQ%ﬂ(UWUMdt

+3Pe0aDX () B o) (s [ (10 a2 (0 0) P )t

~1P, 0. /0 112,715,0292)( (o () Pros (un, DX (pn) "L H B (pn) (un, un)) dt.
Proof. Note that

g (O) =Pn, O (1) = (Qn,
and

7(0) = gn, v(1) = pny1-
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It is clear that

Py 10X (Pnt1) = Py10X (Pn+1) — X (qn) — DX (qn) (va) + X (gn) + DX (qn) (vn),  (3.9)

Now, since

X (02) 4 DX ) (0) = X (02) 4 DX an) (=5 Pra DX ()™ Hy B () (1))
= X (ga) ~ 5DX (gn) (PooaDX ()™ B (o) ()

1 1o 1 _
+ *PU,O,I,DX (pn) (DX (pn) ! Hn 'B (pn) (Umun)> - *PJ,O,IHn ' (pn) (umun)

2 2
1 1 -
= X (4n) = 5 [DX (@0) Prot = ProaDX (pa)] (DX (pa) ™" Hy ' B (pr) (n, un)
1 _
- §PU,0,1Hn 'B (Pn) (Un, un) -

By (1.18), we obtain

1
Py10DX (0 (1)) o’ (1) =DX (0 (0)) 0’ (0)+/0 Pr1oD*X (0 (1)) (o' (), 0 (1)) dt,

since
o' (0) = u, and o’ (t) = Py o.1Un,

this yields

1
Pa,l,oDX (Q’n) Pa,O,lun =DX (pn) Up + / Pa,t,OD2X <U (t)) (PO',O,tun7 PU,O,tun) dt.
0
Therefore

1
DX (4) Prot — ProaDX (pn) = Proa / Pyt o DX (0 (£)) (Prostims Poos () dt,
0
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hence

X (qn) + DX (qn) (vn)

1

=X (qn) — 3 |:Pa,0,1/ Py10D?X (0 (t)) P2o (tn, ) dt] (DX (pn) "V H1B (p,) (Unﬂn))
0

~5 P01 H; B (pn) (un, un)

= X (qn) — %Pa,0,1Hng (Pn) (Un, up)

1
—3Ps 01 / Py 0D?X (0 () P2o (un,DX (pn) P H;7'B (py) (un,un)) dt,
0

(3.10)
in the other side

X (qn) — %PU,OJHEIB (Pn) (un, un)

= 07071Hg1 (H Pr10X (qn) — 1B (Pn) (un, un))

= Pro i Hyt ([I,, M + 5Gn) Pr1.0X () — 3B (pn) (tn, un))

= ProaH, (|1, m (Pa,l,oX (gn)) + 3DX (pn) " B (pn) (un, )} Py1.0X (qn) — 5B (pn) (un,un)>
= ProtHy ' (| PraoX (@0) + 3DX (pa) ™" B (pa) (tn, PriroX (6a))| = 3B (pn) (tnyun) ) -

By (3.8), this yields

X (qn) — %PU,O,IHn_lB (Pn) (Un, un)
= 07071Hn_1 (Po,l,OX (qn) + %DX (pn)il B (pn) (tun, Pr1,0X (qn)) — %B (Pn) (Umun)>

Py H! < /O (1= 1) PoioD2X (0 (8) (Protns Pocstin) dt — LB () ()
+3DX (pn) " B (pn) <un /0 1 (1 —1) Py 0D?X (0 (t)) (Py.0.4tn, Prostn dt>>
= Pyo1H, ! </01 (1 =) PrtoD*X (0 (1) P2 4 (tn, tn) — 1B (py) (un,uy)) dt
+2P,01DX (pn) " B (pn) (un /01 (1—1t) PryoD2X (0 (t)) P24 (tn, un dt))
Py o H! </1 (1= #) PreoD2X (0 (1)) Poos — 1B (pn)) (s 1) dt

0
1
3PaaDX (52) B o) (1 [ (=) PagalD?X (o (0) P2 ) ) ).
0
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Replacing in (3.10), we obtain

X (gn) + DX <Qn2 (vn)

= U,O,ngl </O ((1 — t) Pg,t,ODQX (0' (t)) Po,O,t — %B (pn)) (un7un) dt
1
+5Pr01DX (pn) ' B (pn) (un/o (1= t) PryoD2X (0 (t)) Pros (un7un)dt>) (3.11)

-1 [Pmo,l /0 113(,,t7(J1>2)< (0 () Pros (tn,.) dt} (DX (o) "L H2B (pn) (tn, un)> .

Since

1
Py10X (7(1)) = X (v(0)) = DX (v(0))~' (0) + /0 (1 =) Pyt oD°X (v (1) (v (1) .7 (1)) dt,

we have

1
PyioX (Pnt1) = X (qn) + DX (gn) vn + / (1-1) P%LO,DQX (v (1)) P?,O,t (Un, vn) dL.
0

Finally, replacing (3.10) and (3.11) in (3.9), we obtain

1
Py1oX (pus1) = / (1= ) Py gD2X (7 (1)) P, (00, 00)

0
1
+Po0 1 Hyt ( / (1= 1) [Po0D*X (0 () P20 — B (pn)] (un, un) dt
0
1
#3Pa0aDX (1) B ) (1 [ (=) PasaDPX (o (0) B2 (am ) ) )
1
~3Pooa [ ParaD*X (7(0) Pros (0 DX (p2) ™ H B (po) (1)) .
0

]
Now we are ready to prove the Chebyshev-Halley method (Theorem 33):
Proof. For the proof of the part (a), (see [11]). Actually, therein it is proved that:

fe <9k < frr1 < gkg1- <77, kK EN (3.12)

For the part (b), by the Principle of Mathematical Induction, it suffices to show for all £ € N:
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L. pr € B(po, fr),

2. HDX (pk)_lu < By < Br,
3. d(qr, ) < gk — fr,

4. qr € B (po, 9k)

5. d(prt1,qk) < fer1 — k-

Let us see that these five properties are true for kK = 0. This is clear for the properties 1
and 2, but we have to prove 3, 4 and 5. We start with 3 and 4:

qx = expy, (ug),

we have
d(g0.0) = [[uoll = | DX (po) ™ X (o) < 90 = 90— fo-

which shows the properties 3 and 4. Now 5:

Since

Pr+1 = expg, (Vk),
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it holds

d (p1,q0) = [Jvol
TR

<||px o) 15[ 1B (o) ol

< 5| [Fa + 5P 0" B o) 00, )|

5 bgg

-1
<5 (1l = | 32 G0 B o) w0, )
A —1
<5 (1-5 [Px o 1B Gol ) o

A —1
< (1 - 2ﬁbgo> %
= f1— 9o

Therefore the five properties are true for k£ = 0.
Assume that the five properties are true for kK = 0,1,2,...,n, Let us prove that the five

properties are true for k =n + 1.

1. We have
d (Prnt1,p0) < d(Prt1,qn) + d(Gn,Pn) + d (P, po)
< (fn+1 - gn) + (gn - fn) + fn
= fn+17
so that
DPnt+1 € B (po, frt1) - (3.13)

2. Let o : [0,1] — M be a geodesic with o (0) = pg, o (1) = pp+1 and ||’ (0)|| = d (pn+1,po)-By
(1.18),

Py1,DX (0 (1))’ (1) = DX (0 (0)) o’ (0) + /O Py 0D?X (0 (s)) (o' (s),0' (s)) ds.
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Therefore,

1
Py1.0DX (pnt1) Proio’ (0) — DX (po) o’ (0) = / P, ,D*X (o (s))PiO’s (o' (0),0"(0)) ds,

0
hence
[ Po1,0PX (Pn+1) Proa — DX (po)|| < /01 | Prs,0D*X (0 () Po | ds || (0)]
<durran) [ [P (o )] ds
< d(pn+1,p0)/01Nd5
= Nd (pn+1,po) -
By (3.13),

| Ps,1,0DX (Pn+1) Prog — DX (po)|| < N fny1 < Nr¥.
In this way, using the hypotheses
B (2N + X\b)r* < 2,

we obtain

|PX (00) | 1Po1.0DX (pas1) oo = DX (o) < BN

<1-—\br*
<1.
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By Banach’s lemma, the operator Py 1 DX (pn+1) Psr0,1 is invertible; moreover

IDX (psn) |

thus

3. By Lemma 35,

1X ()l

= [1Py,10X (a1

-1

= HPU,LODX (pn—l—l) Pa,O,l
|2 (o)

S 1

1= [ DX 00) ™| 1Ps1.0DX (Bus1) Pros = DX (o)l
< B

1 — BNd (pn+1,P0)
= BnJrl
< B

1= BN frn+1

1 —1

= (5 - an+1>
= /8n+1-

IDX (Pus1) || ™" < Brtr < Bt

1
< / (1= 1) || PysoD?X (7 (1) Pyos (vn, v0)|| dt
0

1
+[|H, | (/0 (1= t) || [Prt0D*X (0 (t)) Prot — B (pn)] (tn,un)|| dt

+3 [PX 60) " B (p0)

+;/01 HD2X (o ()

<un, /O L= 1) | PooD2X (0 (1)) Poos (i )| dt))

) Prot (s DX ()™ Hy B (pr) (0, wn) ) | .
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Therefore

1
IX Gl < ol [ (=022 (0]
1
[l <Hunll2 | =0 [ProD2X (0 () P20 = B )]
1
3 [PX @ 1B @l [ @00 (o @) dt)
0

4 02 (o ()] ol [ ()™ | 1851 15 ),

hence

1X @nll < 3 ol + ([ (4 lunl® + 38abllunl® 5 ) = SN lun® 8ab | 2
= 3 oal® + (% lunl® + 38ab lunl® ¥ = 3 llunll® Ba) || 2
= S llenl® + (% lunll® + (14 3) 5260 lual*) (1217

By the induction hypotheses
HUTLH = d(pn+1v Qn) < fn+1 —gn and ||un|| = d(Qnapn) = Gn — fn,
hence

-1
-1
|7 =

A _
iyt + 50X () B o) 1)

< (Il =3 [PX G0~ Bow @0])

Ab -t
1- ?/671 (gn - fn))

A 1
< (Nezael = § 500
h
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and

N _ a A\ Nb
IX Gl < G ol + 12521 (5 el + (145 ) 570 el

<5 U=+ (5 0 = 52+ (145) 5080 0n = £0°)

2

=Qn+1-
We thus conclude that
d (Qn+17pn+1) = Hun—‘rln

<[P pue) ™| 1X )

< Bnt10nt1

= Gnt+1 — fni1-

4. Tt is clear that

d(qn+1,P0) < d(qnt1,Pnt1) +d (Prs1, Gn) + d(qn, Pn) + d (P o)
< Gnt+1 — fn+1. + fn+1 —9n+ gn — fn + fO

= gn+1,

hence

In+1 € B (po, gn+1) -

5. Note that

A
H (ITpn+1M - Hn+1> H = H2D2X (pn+1) B (pn+1) Un+1

AN

A
< §5n+1b | tn 1]

b
?5n+1 (Gn+1 — frt1.) -

IN

Moreover, By (3.12),

fnt1 <7* and  frqp1 < gg1 <7
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Therefore,

and

0< In+1 — fn-‘rl

< rt— fn+1
<r*—fo
=r.

Replacing this into (3.15) we obtain

H (ITPnﬂM - HnH) H < % <; — NT*>_1 r*

AbBr*
2(1— BNr*)
<1.

Therefore, by Banach’s lemma, H,,41 is invertible, and

1

1- %Bﬂ-‘rl (gn—i-l - fn+1.)

Ab !
<1 - ?ﬁn-ﬁ-l (gn—i-l - fn+l.)>

(reaeyl

IN

= hnt1-
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Thus,

d (Pn+2, Gnt1) = ||vng1l

1 1 7—
5 | DX (o) HL B (b (1, )|

1 - —
< 5 [PX o)™ | 1N 1B @) )

1
< §5n+1hn+1b (d (Pr+1s Qn+1))2

1
< §Bn+1hn+lb (gnJrl - fn+1)2

= fnt+2 — gn+1-

The induction has been completed, thus for all n € N:

d (Pn+1,0n) < d(Pns1,qn) + d (gn, pn)
S (fn+1 - gn) + (gn - fn)
= fn-l—l - fm

and similarly

d (Qn+1a qn) < In+1 — Gn-

We have hence showed that the sequences {pn}, e, 10n},en are Cauchy sequences. Since M

is complete, they must converge, and by construction, their limit point coincide:
p* = lim p, = lim g,,
n—oo n—oo

where p* € B [pg, 7] .
Now we prove that X (p*) = 0. By (3.8),

1
Pr10X (qn) = / (1= t) Py 0D*X (0 () (P ttin, Prpptin) dt.
0
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Hence,

Passing to the limit as n — oo, we obtain X (p*) = 0.
To show uniqueness, let us assume that there exist a second solution ¢* € B (pg, R) . Let

0 :[0,1] — M be a minimizing geodesic joining p* and ¢*. By (1.18), this yields
t
Ps1o,DX (0 (t)) 8 (t) = DX (6(0)) 8" (0) + / P50 (D*X (5(s)) (6" (s),6' (s))) ds,
0

hence

P51 0DX (6 (1)) Psor — DX (p*) = /U Pss0 (D*X (6 (s)) P5os (0" (0),.)) ds.

Therefore, by hypothesis and the triangle inequality

|Ps.0DX (5 (£)) Pos — DX ()] < /O 1D2X (5 ()| |5 (0)]| s

< Nt |8 (0)]|
= Ntd (p*, q")
< Nt (d(po,p") +d(po,q")) -
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As a consecuence,

|px )7 H/ P51 0DX (6 (1)) Psosdt — DX (p")

< (5-n) /Nt (po, p*) + d (po, g*)) dt
NN

—Nr)

= @

™+ R)

IN

Il
=~

By Banach’s Lemma, the operator

1
| PauoDX (50 Proutr,
0

is invertible. Finally

Therefore,
d'(0) =0,
thus
0= 5" (0)]| =d(»*,q"),
and we conclude that
pr=q

3.2 Third-order iterative methods on Riemannian manifolds

under Kantorovich conditions

When conditions as in the Kantorovich theorem [12], are imposed on zy and on F, to ensure

the convergence of sequence {,}, y to a solution of F'(x) = 0, we will say that we have
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imposed conditions of Kantorovich type.

In this section, we will prove convergence and uniqueness of another method which also
generalizes the Chebyshev and Halley methods to Riemannian manifolds. Moreover, this
method also generalizes others third order iterative methods, ([5], [7-9], [11], [13], [20-24]).

In Banach spaces, this method is described for:

Up = F' () L F (),
T, = %F’ (:L'n)_l F' (z,) up,
Tn4+1l = Tp — (I + Tn + ZkZ? ﬁkTylf) Un,

where F' is a nonlinear operator defined from an open convex subset €2 of a Banach space F in
itself and I is the identity operator in E. Under certain hypotheses, which will be stated later,
S. Amat and S. Busquier, showed the convergence of the method to a root of the nonlineal
operator F' (See [21]).

Let X € C2 be a vector field on the complete and connected m-dimensional Riemannian
manifold M, let pg € M and

Uy = DX (pn) " X (Pn)
Tn = %DX (pn)_l (D2X (Pn) (tn, )) )

(3.16)
Uy = — (ITpnM + T, + ZkZQ ,BkTrlf) U,
Pn+1 = €XPyp,, (Un) )
where {0} k>2 IS a decreasing sequence of positive real numbers such that
D Bk <dlpi], 0<d<2. (3.17)

k>2

We will find conditions so that the method (3.16) converges to the unique solution of the
equation X (p) = 0, but before doing so, we will establish some results which will allow us to

build a majorizing sequence and so we can prove the convergence of the method.

Lemma 36 Let a,b,c be positive real numbers with a # 0 and c# 0. We define

c b
= -t3+-t2—t+a.
g (1) 5 +2 +a
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Then, g (t) has two positive roots, to,t, if and only if

3
2

b2 +2¢)2 —b (b2 +3
ag( + 2) 362( + 3¢) (3.18)

and 0 < to < ta < t{,, where

ol

(—b + Vb2 + 26) , see Fig.3.

ty =

Proof. See [10]. m

Corollary 37 If a,b,c verify (3.18), then

ab <

N | =

Proof. See [21]. m

Proposition 38 Let a,b, ¢ be positive real numbers such that (3.18) is true. Then there exists

a third degree polynomial f (t) verifying:
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2. [ (to) = a,
3. f'(to) = 1,
4. " (to) = b,
5. F"(t) = —c for all t € R

Proof. It is sufficient to take the polynomial
€2
0 :t(—gt +Bt+7),

where )
(b+cty),v=1- 5ctﬁ — bty,

N

8=

and to consider Lemma 36. m

Remark 39 It is important to observe that for allt € (0,tg) , the previous polynomial verifies:

F), £, £ (1) >0, [ (8) <0, and ' (t)* > 5" (1) f (¢)

Proposition 40 Let us consider the sequence

tnr1 =t — | 1+ 0, + éﬁkﬁﬁ J{,((i’;)), (3.19)
where
g _ LI £ (t)
2 [f ()

If (8.17) is true, then {t,}, oy converges monotonically, and its limit is 0.
Proof. See [21]. =

Lemma 41 Under the considerations of the method (3.16), if v, is the geodesic defined by

T (t) = exp,,, (tvy,) .
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Then the following representation is true

Py, 10X (pnt1) = *D X (pn) (Um ( (Br—1 — 5k)Tflun))
z,

+%D2 H (Ty,) un, (I, p + TnH (T},)) un)

b0 0[PP (0 () P2 = DX ()] ()
where H (T,,) = I, ar+ Y g0 BT " and By = 1.
Proof. By (1.20),

P10 (us1) = Py 0X (n (1)
= X (0 (0) 4 DX (o )7, 0)+ [ (1= Py o DX G 0) (30,7, (1)
= X (30 (0)) + DX (30 (0))74, (0) + 302X (3 () (4, 0) 7, 0)
[0 0 [P D2 (0 () P20 (00).74,0)) = DX (3 0) (4 0) o, 0)]
= X (pa) + DX (pu) tn + 52X (pn) (v, v0)

1
+ /O (1= 1) [Py, 10D*X (7 (£)) P2, .4 (Vn, vn) — DX (pn) (vn, vy)] dt.

Note that
I, v +Th + Zk22 BkTr]f

= ITpnM + T, (ITpnM + ZkZQ ﬁijf_1>
= ITpnM +T,H (T,) .

70



By the definition of the method (3.16), this implies that

DX (pn)vn = DX (py) (— (ITP”M +T,H (Tn)) un)
= —X (pn) — DX (pn) TnH (T},) (un)

=—X (pn) — %,DzX (Pn) (un, H (Ty) un)

1
= —X (pn) — 52)2)( (Pn) (wn, H (Ty) uy) -
Moreover,

D*X (pn) (Vn,vn) = D?°X (pn) (_ (ITpnM +T,H (Tn)) Up, — (ITpnM + T, H (Tn)) un)
= DQX (pn) (un; un) + DQX (pn) (u'l“m T, H (Tn) un)
+ D’X (pn) (TnH (Tn) Un, un) + D’X (pn) (TnH (Tn) Un, T H (Tn) UTL) )

so that

1 1 1
Py, 10X (Pnt1) = _§D2X (Pn) (Un, H (Ty) upn) + §D2X (Pn) (Un, un) + EDQX (Pn) (tn, T H (Ty) up)

1 1
+ 52)2)( (pn) (T H (T}) tn, ) + 52>2X (pn) (T H (T}) wp, T H (Ty) up)
1
+ / (1 —1) [Py,.00D*X (7n (t))meQt (Vn,vn) — DX (Py) (Un, vy)] dt.
0
We conclude that

Py0X (pres) = 5 DX (pn) () + 5 DX (o) (s, (T H (T3) — H (T,)) )

- %DQX (pn) (TnH (Ty) tn, wn) + %D2X (pn) (TnH (Ty) tn, T H (T},) )

1
+ /0 (1—1) [Py, 10D*X (v (1)) P2 o; — D*X (pn)] (vn, vn) dt.
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In this way, taking 81 = 1, we obtain
Lo
P’le,UX (pn+1) = §D X (pn) (unaun)

1 _
+ 5 DX (pn) | tn, Y Ber = B) Ty~ = I, or | un
k>2

+ %172)( (pn) (T H (T) i, 1) + %172)( (pu) (T H (Tt T H (T) 1)
1
+ /0 (1-1) [Pvn,t,0D2X (7n (1)) P72n,0,t - D*X (pn)] (Vn, vn) dt.

Finally, we conclude that

P’yn,l,OX (pn+1) 7D X pn Unp, IBk—l - Bk) Trr]zf_lun

1
+§D2 H (T) un,(ITpM—i—T H(T,)) u)

1
+ /0 (1-1) [Pfyn,t,0D2X (7n (1)) P72n,0,t - D*X (pn)] (Vn, vn) dt.

Similarly, in the case of fuctions defined on R, we have the following result.

Lemma 42 If f (t) is the polynomial of the Proposition 38, then

2
Fltnsn) = 57 (0n) | 32 @651 — B 657 + (BB (6,))° (f <tn>>

k>2

1
=+ gc (tn - tn+l)3 )

where h(t) =1+ 45y Bpt*~1 and B = 1.

Now we can prove the convergence of the method (3.16). We will begin by showing that

{tn},cn is @ majorizing sequence for {pn},cx -

Theorem 43 Let us assume pg € Q@ C M and that DX (pg) invertible, and a,b and ¢ positive
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real numbers verifying (3.18), then for any geodesic v and 11,7 € R with ~[r, 1] C Q it
holds that:

11X (po)l < a,
2. HDX (po)_lH <1,

3. ||D2X (po)| <o,

4- HP%TmTlD? (7 (12)) Py2,‘rl,7-2 - D? (v (Tl))H < C/ H’Y/ (t)]| dt.

a

Moreover, if {ty}cy 5 defined by (8.19), then for all k € N :

(@ [pX 007" < 7
() | DX (o) < 1" ().

(c) 1 X (o)l < f (k)

(d) | Tx|| < O,

(e) |1H (Tk)|| < h (k) ,

(f) d(Pr+1,px) <t — tpgr

Proof. Proceed by induction.

Items (a)-(e) are clear for k = 0. for (f), notice that

d(p1,po) < Iy s + To+ Y BeTy || lluol
k>2

< | Mmoo | + 1700+ X2 Bl T | [ DX ()™ X (00)
k>2

<l1+0 k—lek—l f(t())

>~ + 0+kz>26k 0 f’(to)

=ty —t1.

Assume that the seven properties (a)-(f) are true for £ = 0,1,2,...,n. Let us prove all of
them for k =n + 1:
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(a) Let us consider the geodesic 7y, defined by
Yo (t) = exp,,, (tvn) .
Since
P, 10DX (pns1) Py,01 = DX (pn) [IT,,”M — DX (pn) " (DX (pn) — Py, 1,0DX (Pnt1) P%,,O,l)} ,
applying (1.22), we obtain
IP2.10PX (poi1) Proos = DX )l < (02X G O]+ gl O] ) 14, 0]
(122 @)l + geloal) o]
< (12X (ol + 50 i) ) )
(7764 geltn = tan)) 00 = ).
Given that
tns1
P (bnsn) = £/ (ta) + £ () (s — ) +-j£1 (s — 1) 1" (£) dt
= S (tn) + 1 t) (s = 1) = 56 (1 — ta 1)
= 17 0) = (£7(0)+ el — tai)) (b0 — i),

this yields

DX 07| 1P20.6DX () Prs = DX @)l < 5 (7 1) = (1)
. f/ (tn+1)
<(1-5%5)
<1
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Therefore, DX (pn+1) is invertible, and

- '(tn)
2 o) < — (f_tf;(f&b”)
1
- f/ (tn—H) ’

(b) Note that

ID°X (psn) || = [Py 100X (prss) P o1
< ||Py.10D*X (Pns1) P»y2n,0,1 —D*X (pa)|| + ||D*X (p0)]|
< cd (pns1,Pn) + || D°X (pn) ||
< c(tn = tnr1) + [ ()
=" (tn) + 1" (tn) (tns1 — t0)
= " (tn+1) -
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(c) Using the Lemmas 41 and 42, we obtain

1X (Pns1)ll = |1 Py,1,0X (Pos1) |

%HDZ (pn) | (Z (Be-1 5k)9ﬁ1> [ ¥

k>2

—

5 [1D2X (00)]| 6l (6) (L + 60l (6) [

+ /0 0= 2) [P X (3 (0) 2, — DX ()] (e, )

2
g ()

k>2

2
+ lf” (tn) Onh (0n) (1 4 0,0 (0,)) <JJ:/((TZ))>

/ (1= 1) || Py, 00D?X (30 (£)) P2 o — DX ()| ol

IN

%f (tn) (Z (ﬁk—l - Bk) Hfz_l + Onh (en) (1 + Onh (en))) <f/

k>2

+ (1 — 1) cd (pn v (1)) [d (P pos1)) dt

s~

IN
N |

f (tn—H) (Z (ﬁk—l - Bk) 97]3_1 + enh (Qn) (1 + th (Qn))> <
k>2

1
(1 —t) ted (pst, Pn) [d (Pns1s pn)]2 dt

+
o\

£ (tas1) (Z (Bt — Bi) 054+ B (6,) (1+ 0, <en>>> (

k>2

cld (pns1,p0)]?

2
e (Z (P = 00 0 (O <0n>>2) (7y)

k>2

IA
@M—‘ DO — C’ﬂ'—‘ [\.')M—t
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(d) It is clear that

1 _
Tl =[50 G (OX () (1)

IN

L [PX @) 127X )| [P ) X ()

< lf” (tn+1) f (thrl)
S 2 [f/ (tn+1)]2

= 9n+1-

(e) It follows inmediatlely true from (d) and from the fact that {8j},-, is a decreasing
sequence of positive real numbers.

(f) Finally, let us the geodesic k41 be defined by

Ynt1 (t) = eXPp, ., (tvp41) -

Then
d (Pn+2, Pnt1) = ||vns1]|
k—
< e | 1Tl + 3 B NToia 5| N
k>2
- f(tn—i-l)
<1401+ BpbF L | 2L
" kz>2 P F (fngn)
= tn+1 - tn+2-
|

Theorem 44 Under the same assumptions as in Theorem 44, {pn},en € B (po,to) and

Pn — Dx, where py is the uwique singularity of X in B [po,to]. Moreover, if

then py is also the unique singularity of X in B (po,to) .
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Proof. For all n € N,

d (pn,po) <Y d (pr: Pr—1)
k=1

n
< Z tg—1 — tk
k=1

=ty —1tp

<to

so that {pn},cny € B (po,to) . Moreover

d (pn+17pn) < tn - tn+1
<t,.

Thus, {pn},cn is a Cauchy secuence, hence it is convergent to p. € B [po, to] -
As for all n € N,

1X (o)l < f (),
passing to the limit as n — oo we obtain
1 X (p)[l < f (0) =0,

thus
X (p«) =01in T, M.

It is clear that for k > n,
d(pkapn) S tn - tk-

Passing to the limit as k — oo, we get

d (pn,ps) < tn.

To show uniqueness, let us assume that there exists a second singularity ¢* € B (pg, o), and

let v : [0,1] — M is a minimizing geodesic joining ¢*and p* where
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v(0) = p* and v (1) = ¢*. Then by (1.22),

HDX () H /0 1 Py oDX (7 (t)) Pyodt — DX (p¥)

1
< |Px )7 [ 1PeaDX (3 (0) Pros - DX (07 e
0

1
= [Px )| [ 1P,00DX () Py = DX 0D

22 (o) + et [ @) ¢ ]

,
f’lO) /01
J

wl (
<= [ (X e+ e 1y o) | o a
— s (GIPX 0+ Ged ) ) a0
< sy (3470 Ge@@am) 44" ) ) (@G 0) + a7 u)
<70 @f "o+ ila‘j“) 0
- f’2(0) @ (b+ cto) + ;ct0> to
(b+ Scto) to

Notice that
(b+ 2cto) to

13
< 1if and only if —ct2 + 2bty — 1 < 0.
“Le —btg+1 Yo Ta s

The roots of h (t) = Jct* + 3bt — 1 are

6 13 6 13
2y 2 2 _ 2 g 2
{ 130(b 6c—|—b>, 130<b+ 6C+b>}.
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Given that h (0) = —1, for ¢ > 0 we have

13 6 13
ECt% + 2btg — 1 < 0 if and only if tg < 3¢ (b— Ec—l— b2>

Since
6 13
O<tog< —— | b—14/— b2
< 1o 3¢ ( 6 c+ )
we have
(b+ 3cto) to

—gctd —btg+1 ~

Therefore

/ Py 10DX (v(t)) Pyoudl

is invertible.

Finally,

We conclude that
thus
hence

Theorem 45 Let us suppose that X has a single singularity p. in B [po,to] . If B (po,t;) C €,
then p, is the uique singularity of X in B [po,r], where to < r < t.

Proof. Let q. € Blpg,r| be a singularity of the vector field X. Let us consider the
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minimizing geodesic v : [0,1] — M joining poy to ¢, given by

Py 50X (v(1)) = X (v(0) + DX (v(0)) 7' (0) + %sz (7(0)) (+/(0),7'(0)) + R,

where
1
R= ;/0 (1= )" Pyt oD*X (7 (1) Py1o (7 (0),7' (0) 7' (0)) dt,
thus 1
7 0) = ~DX (o) (X () + 572X () (7 (00,9 0) + ).
Therefore
d (po, g«) = ||+ (0)]
<[ 6w (1 Gl + 5 22 Gl 1 @ + 171
<a+ %bd (po, ax)® + écd (Pos a)*
hence

9 (d (po,qs)) = 0.

Since d (po, g+) < r < t;, then
d(pOaQ*) < tp.

Finally, by Theorem 45,
Px = Gx.

3.3 A family of higher order iterative methods under Kan-

torovich conditions on Riemannian manifolds

Recently, S. Amat, S. Busquier, S. Plaza, C. Bermudez, M.J. Legaz (see [22]) proposed a
new family of higher order methods. which generalizes classical third order methods. Under

Kantorovich conditions, they proved the convergence of the methods in Banach spaces. This
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family of methods is given by:

Yn = Tp — DF (2,) " F (2)
Tnt+l = Yn — (I + L (zn) + L%’ (zn) G (xn)) DF (xn)_l F (yn) ,

where F' is a nonlinear operator defined on an open convex subset €2 of a Banach space E into

itself, I is the identity operator in E and Lp (x,) is defined by
Lr (2,) = DF (2,,) " D*F () DF (z,) "' F () ,

assuming that DF (x,) " exists and G (z,) : @ C E — E is a given nonlinear operator.
Our objective is to extend this method to the context of Riemannian manifolds, and to
establish a convergence and uniqueness theorem.
We suppose that M is a compete Riemannian manifold, 2 C M an open convex set, X €
C? and we want to find an approximation to the singularity of the vector field X : M — T M.

Let us consider the following family of high order iterative methods:

up = —DX (pn)_lx (Pn),

Un = DX (pn) " Pr,1,0X (Gn) Pov 0,1,

dn = €XPp,, (un)

Lx (pn) = DX (pn)il (D2X (Pn) (un, )) )

wn = = (I, 01 + L () + Lx () G () ) v

Pnt1 = expy, (Un +wn)

(3.20)

where G : M — TM is a vector field (usually depending on the vector field X and its

covariants derivatives) and {0y}, ¢y is a geodesic family defined by
On (t) = €XPp,, (tun) .
Let pg € €2 . Assume that the conditions of Kantorovich holds:

Cl. Ty = DX (po) " exist and ||| < 8,
C2. |[ToX (po)|l < m,

C3. ||D2X (p)|| < M for all p € 2,
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C. HP%QdDQX (y(e),-) P24, — D2X (v (d), )H < K/ 1V (£)]| dt, where ~ is an geodesic
" d
and v [d, ] C Q.

Under these hypotheses, it is possible to find a cubic polynomial f in an interval [a,b],

a > 0 such that:
FB) <0< f(a), F/(H)<0 f'(£)>0 and ["(t)>0,

in [a,t*] with ¢* the single simple solution of f (¢) = 0, and verifying:
For ¢y € [a,b] and f (t9) > 0:

HL. [|[To]| < — 5y

H2. |[ToX (po)|| < —425,

H3. | D2X (p,-)|| < f” (t) for all p €  such that d (p, po) <t — to < t* — to,

240~ DEX (1(d), )| < 17" () = 7" )], with /d I @l <

lu —v|, v[d,c] € Q and u,v € [a,t*].

H4. HP%QdDQX (v (c),-) P2

The construction is in ([16]), some properties of the polynomial f (¢) are:

1. f(t) is decreasing in the interval [a,t*),

2. f(t)>0in [a,t*],

3. f’(¢) is increasing and f (¢) is convex in [a, t*],

4. f"(t) is increasing in [a, t*],

5. Ny (t)=t— % is increasing in [a,t*), Ny (t*) =t* and N} (t*) = 0.

6. Ly (t) = fgffé’)’éﬂ > 0 in [a, t*).

For the validity of the previous statements, it suffices to consider the polynomial

K, M, 1 7
t) = —t3 4 — 12— ~t 4=
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with

n < 4K + M?B — MB/M? +2Kp3 (3.21)
T 38K (M /M2 QKB)

This polynomial has two positive real root t* and t** (See [16] for more details),
Let us suppose additionally that there exist a function g; associated to the vector field
Lx (pn) defined in (3.20) satisfying:

C5. ||Lx )G (0)| < Ly (17 9.(¢) for d(p,po) <t —to < t* —to,
C6. 1+ Ly (t)+ Ly (t)*g(t) >0 in [a,t*],

C7. m/(t) > 0 in [a, t*], where

f(t) 2
=t — —(14+L L
i) =t 0 (12 )+ Ly (09 () = i
Proposition 46 If (C6) and (C7) are true, then the sequence
_ f(tn)
Spn =1tn — &
F(tn) ) (3.22)

bt = 0 — (L Ly (6) + Ly (00)2 g (8)) F22).

starting from the above ty converges monotonically to t*. This is the smaller real, simple root

of f(t) =0 in [a,b].

Proof. See: [16], [22] =
Now, we are in conditions to prove the semilocal convergence of (3.20), with the notation
of (3.20) we have:

Theorem 47 Let us assume py € Q and ty € [a,t*]. Suppose that the hypotesis (C1)-(C7)
and (3.21) are true. If B (po,t*) C Q, then the sequence (3.20) is well defined and it converges
to the root py, which is the solution of X (p) =0 in B [po,t*].
Moreover:
i) For all n > 0,
d (pespn) <t —ty,
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where ty, is defined in (3.22).

i) If the number t* also satisfies

13K Bt* + 6M S < V6+/6M232 + 13K,
then the root p, is unique in B [pg,t*]
Proof. We procced by induction. It suffices to show for all k € N :
X 0] < i
i, [ D2X () 7| < 7 (1),
iii. (| X (pe)ll < f (),
iv. |Lx ()]l < Ly (t)

v. d (pn—l—l,pn) < tn+1 — tn.

The case k = 0 follows from the initial conditions on py and tg.
We assume that all the conditions are valid for k¥ = n, and we check them for £k =n + 1.

Let us consider the family of geodesics
Yo (t) = exp,, (t (un +wy)), for all n > 0.

i. By (1.22),

I(Py06PX (i (1) Proon = DX )l < (122X (2 O] + 55 54, 0] ) 55, )]

85



and so

DX (9) ™" (P 10DX (pus1) Proo1 = DX ()|

IN

_ 1
HDX (pn) 1H <szx (o)l + 3K lun + wn|]> tn + Wy

1

(776 + 3K ) ) dlpssop)

<f” (tn) + %K (thrl - tn)) (thrl - tn)

where the last inequality is due to that f’(t¢) is increasing. Therefore, using Banach’s

lemma,

|px )| = ——C2

1

I’ (tn+1) 7

ii. Is clear that

HDQX (Pot1)|| = || Pr1,0D* X (Prs1) Pw2n,0,1H
< [Py 10D X (pus1) Py 0.0 = DX (pa) |+ [|D°X (pa) |
< Kd (pny1,pn) + || D*X (pn)|
< Kd(tny1 —ta) + £ (tn)

= f” (tn+1) :
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iii. First we observe that, using the Taylor expansion (1.20),
1
Py, 10X (gn) = X (pn) + DX (pn) 0, (0) + §D2X (pn) (U;z (0), 0y, (0)) + Ron,
where
1
Roy = / (1= 1) (Pr, 40D X (04 (t)) P2 o1 — DX (pn)) (07, (0) , 0}, (0)) dt.
0
As a consequence,

1
X (gn)ll < || X (Pn) + DX (pn) un + 592X (Pn) (tn, un)|| + [ Ronl

< (15 () + DX (5n) (=DX () X (50)) + 50X () ()| + [ B

< (| 522X () s )| + 1 Ben
Since
! 2
Ronll < [ (1= )| Pr 0D (0 0) P2, 00 = DX ()| 1
1
gK/ (1= £) ¢ |[un|® dt
0
= % (d (Qnapn))ga
we have
I (@)l < 5 (ta) (50— ta)? + (50— t0)°
_ / f(tN) 1 " 2 N 3
= 0+ ) (L) 0 (50— 0 (s )
= () + 1 (1) (50— ) + 57" (1) (5 — 00)? + (50— 1)

= f(sn)-
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Again, using the Taylor expansion (1.20),

Pyo0X (us) = X (pn) + DX (pa) 75 (0) + 50X (pn) (4, 0) 7, (0)) + R,

where

1
R, = /0 (1 —t) (Py, t0D*X (0 (1) P2 o, — D2X (pn)) (74 (0) 7% (0)) dit.

Therefore,

Pr0X (prt) = X (o) £ DX (pn) (i + 1) + £ D°X (p1) (3, 0) 5 (0)) + R

= X (pa) + DX (pn) (~DX (pa) ™ X () +10n) + 5D°X (p2) (4, (0),7, (0)) + B

= DX (po) wn + 5 DX (pa) (4 (0), 7, (0)) + B

Since

DX (pn) wn + 3D2X (pn) (4, (0) 7, (0))]

< | DX (00) (P00 + Lx (o) + L (90)* G (90)) | + 3 [D2X (2) (9 (0) 17 (0))
</ (ta) (1 Ly () + Ly ()29 (1)) 8% + 17 () (tasr — ta)?

= £/ () (bns — 50) + 3" (B0) (b — )2

we also have
1
| Rnll S/O (1= 1) || Py, £0D*X (7 (8)) P2 00 — D*X (pn) || || 72 (0)H2dt
1 t
g/o <1t>K/0 s ()| drdt |, (O

1
— —_ ! ’
_K /0 (1= t) tdt ||+, 0)|

K

= (tne1 —tn)>.
g (tns1 = tn)
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Therefore

HX (pn—&-l)H < fl (tn) (tn-‘rl - Sn) + 1f, (tn) (tn-‘rl - tn)z + % (tn-i-l - tn)g

2
S f/ (tn) (tn+1 + ff’((ir:g - tn) + %f/ (tn) (tn—O—l - tn)2 + % (tn+1 - tn)3

= £ (1) + £ (00) (st = ) 3 (0) (s = 1) + - (s — )
=f (tn—l-l) .

iv. It is clear that

12x Ga)ll < DX o) ™| [D2X ()| ]

< L f (tﬂ+1) .
v. Finally, if we let the geodesic ;11 be defined by

Ynt1 (1) = exp,, , ( (Un+1 + Wni1)) -

Then

d(pn+1>pn) = Hun+1 + wn+1”
< |[PX o) X (i)

+ HITPHHM + Lx (pns1) + Lx (pn41)* G (Pos1) vnpa H

[ (tns1) f (Sn+1)
< —Wni) - (1 + Ly (tag1) + Ly (tas1)? g (tn+1)) an:)

=8p —tp ttht1 — Sp

== tn+1 - tn
Using item v, we have for k > n, n € N,

d(pkapn) <t — ty.

89



It follows that {t},y is Cauchy sequence. Since M is complete, it converges to the same

P« € M. Moreover, passing to the limit k& — oo, for all n € N we have
d(pe;pn) <t —tn,
passing to the limit in iii, we obtain
X ()l < f(t7) =0,

thus
X (p«) = 0.

To show uniqueness, show that the operator

1
| PreaDX (.0 Py
0

is invertible. let us assume that there exists a second singularity ¢* € B (po,to) and llet

v :[0,1] — M be a minimizing geodesic joining ¢*and p*, where v (0) = p* and v (1) = ¢*.
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By (1.22),

HDX *)_1H /Olp”toDX( (£)) Pyosdt — DX (p*)

< |px ) H/ |P0DX (7 (8)) Pyos — DX (5°)]] dt

:pr (0))~ H/ |Py4,0DX (7 () Pyor — DX (v(0))| dt

—_

22 (0 + e[ O ) ¢ 1 O]

!/

&h

—_

f/ t*

e, (
/(

o2 ( Ht+1Kt2Hv O ) ' O] d

1 1 ,, . . .
“F ) (2f p*,po) +d(q ,po))> (d (p*,po) +d (q", po))
f/ (215* (;fﬂ 9 - tU)) (t* - tO)

2

1
= — (M + Kt*) Kt
) <2 RO >
(M + 3Kt*) t*
< - 92 7
- f ()
Notice that
(MK
fr ()

The roots of h (t) = 13K t? + 12M 3t — 6 are

< 1if and only if 13K (t*)? + 12M Bt* — 6 < 0.

1 1
{13]{5 (—6Mﬁ+\/6\/6M252—|—13Kﬁ> —m (6Mﬁ+f\/6M2ﬁ2+13K/B>}'

Given that h (0) = —6, we have for t > 0

13Kt + 12MBt — 6 < 0 if and only if £ < (—GMB +VBy/6M2532 1 13K6) .

13K
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By hypothesis

O<t*§]325(—&W6+V@V%AP62+13KB>,
hence (M + 3Kt*) t*
37 L,
fr(t) B
Therefore,

1
| PreoDX 0.0 Py
0

is invertible.

Finally,
0=X(¢") — X (p")
1
— [ PoaaDX (06) Py (7 (0)
0
Therefore,
7' (0)=0

Thus,

which yields

Theorem 48 Without lost of generality, let us assume tg = 0. Suppose that X has a single
singularity ps in Blpg,t*]. If B (po,t™) C Q , then py is the unique singularity of X in
B po,r], where t* < r < t**.

Proof. Let ¢. € Blpo,r] be a singularity of a vector field X , Let us consider the

minimizing geodesic v : [0, 1] — M joining pgy to g«. Since

PysoX (v(1)) = X (v(0)) + DX (v(0)) 7' (0) + %DgX (7(0)) (v (0),7'(0)) + R,
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where

1
R=g [ 0= PoDX (3 (0) Puo (7 007 0)./ (0)
we have )
7 (0) = ~DX (o) (X () + 572X () (7 (00,9 0) + )
Thus
d (po,a+) = || (0)|
<[[ox 6 (1 Gl + 5 122 o 17 )P + 1
< M (o 0.)* + A (po, )’
Therefore,
G 0.0+ M (0, — S o)+ 20
hence

f(d (pOaQ*)) > 0.

Since d (po, g«) < r < t**, we have

Finally, by Theorem 48,

3.4 On a third-order method without bilinear operator under

Kantorovich-type condiction on Riemannian manifolds

In 2006, Jisheng Kou, Yitian Li and Xiuhua Wang presented in the case of escalar functions, a
new modification of the Newton method cubically convergent for solving nonlinear equations
f(z) =0, where f: Q@ C R — R with Q an open interval (see [11]). The method is described
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) (3.23)
Tn+l = Yn — ]]:/((a;;)) .

This new method is preferable if the computational costs of the first derivative are greater
or equal to those of the function itself, also it doesn’t involve the second derivative. In 2009,
S. Amat, C. Bermudez, S. Busquier, S. Plaza, presented a generalization of (3.23) to Banach
spaces (see [23]), so that:

Yn = Ty + DF (2,) " F ()
Tpi1 = Yn — DF (xn)il F (xn) ,

where F' is nonlinear operator defined on an open convex subset {2 of a Banach space E.
In [23] was shown, under Kantorovich condictions; its convergence, uniqueness and con-

vergence order. Actually, they studied the equivalent method:
Tpi1 = Ty — DF (acn)_1 [Yn, Tn; F] DF (mn)_l F (z,),
where the operator [y, z,; F| is called divided difference and is defined for

ly, 2 Fl(x —y) = F (z) = F(y) .

Note that if F' is Fréchet differentiable in z, then DF (z) = [z, z; F].
The objective now is to extend this method to the context of Riemannian manifolds and to
show, under Kantorovich condictions, its convergence and uniqueness. First we define divided

differences in this new context.

Definition 49 Let M be a Riemannian manifold, Q C M an open convex set. Asume that -y

is a curve in M , [a,b] C dom () and X : M — TM a C° vector field on M. We define the

divided difference of first order for the vector field X on the points v (s), v (s + h) in direction
/

7' (s) by:

1

(s +h),7(5); X7 (5) = 3 (Pystns X (7 (s +h)) = X (7(5))) - (3.24)

Note that in the case that M be a Banach space, if 7y is the geodesic joining « and y, such

94



that
1(s)=z+s(y—=x), teR,

then (3.24) implies
[y, 2 X] (y —2) = X (y) = X (2).

This is the classic definition of divided difference of first order in Banach spaces (see [23]).
Also if there exist DX (p), then DX (p) = [p, p; X] .

Let us suppose that we have the method

@ = exp,, (DX (p) ™' X (pu) .

B (3.25)
Pn+1 = €xp,, (DX (Pn)”" (X (pn) — Py10X (qn))) -
If
-1
7 (s) = expy, (DX () X (),
Then, using the definition of divided difference of first order, is clear that
[y (1),7(0): X9 (0) = Py10X (y(1)) = X (v(0)) -
Thus,
[P X] DX ()™ X (pn) = Py1.0X (4n) = X (pn)
and therefore
DX (pn) " (X (pn) = Py1,0X (gn)) = =DX (pn) ™" [gns pn; XI DX (pn) ™" X (pn) -
Then (3.25), is transformed in
an = exvy, (DX ()™ X () 20

Pnt1 = €xp,, (—DX (Pn) " [gn P X DX (pn) ' X (pn)) :
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We will also use the following notations

Iy =DX (pn) )

B (3.27)
¢, =DX (pn) [QmPn; X] DX (pn> .

Definition 50 We say that the divided difference of first order satisfies the w-condition,if

Ilp1, q1; X] = Py 10 [p2, q2; X]|| L w (d(p1,p2),d(q1,92)); P1,D2,4q1,92 € €, (3.28)

where 7 is a geodesic joining the points v (0) = q1, 7(1) = ¢ and w : Ry xRy — Ry isa

nondecreasing continuous function in two variables, such that w (0,z) = w (z,0) = tw (z,z).

Theorem 51 Let M be a complete Riemannian manifold, 2 C M an open convex set, X a
C wvector field on M. Suppose that the divided difference of first order satisfies the w-condition,
and let pg € Q. Assume that:

ey <5

2. max { Hfng (po)

5" X (po)||} <.

)

3. The equation
U (R L— ~0 (3.29)
1-28w(tt)) T '

has a small positive root R, where m = fw (n,n) .

4. Bw(R,R) < % and B(po, R) C Q.

Then,
m

"~ 1-2Bw(R,R)

and the method (3.26) is well defined, p, € B(po, R) for all n € N, and it converges to the
unique solution of X (p) =0 in B[po, R].

N € (0,1)

Proof. First, we note that

2
1-26w(R,R) 21~ =

W
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Thus,

m
128w (RR) - (330

on the another hand, as R is a root of equation (3.29), we obtain

(1_m) _n
1-28w(R,R)) R’

and by (3.30)

Therefore

and then
n < R. (3.31)

The previous inequality also implies

w(n,n) <w(R,R),

so that
m __ Bw(mm)
1280 (R, R)  1—2Bw(R,R)
fw (R, R)
=1_28w (R, R)
1
< _3
T 1-23
=1
We conclude,by (3.30),
m
0<———<1. 3.32
=1_2Bw(R,R) = (3.32)
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Now, let us begin considering the families of geodesic

T (t) = exp,,, (tuy),
o (t) = exp,, (tvy); for all n € N,

where

u, = DX (pn)il X (pn) and v, = =DX (pn)il [Qnapn;X] DX (pn)il X (pn) .

Thus
Y (0) =P, (1) =aqn
and

On (O) =DPn, On (1) = Pn+1 -

In this way, the functionales [gy, pn; X| and [pyt1, pn; X| are well defined through the geodesics
¥n and oy,.
Then, using notation (3.27),

Now our objective is to bound d (p2, p1) . For it, it is necessary to find bounds for
ITT Prg 0,1 ([p1,00; X] — ®0)|| and || @714 -

(a) For [Ty Py 0,1 ([p1,p0; X] — @o)]| -
Let us see that I'y is invertible:

TG00 = Pog,10T1ll = ([T HHIDX (p0) — Pro,1.0PX (p1)l]
= |IT5 Y| [P0 po; X] = P10 [p1, p1; X]|
<|t5!|w (d(po,p1),d (po,p1))
< Bw (n,n)
< Bw (R, R)
<1.
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Thus, by Banach’s lemma, I'; is invertible and

- 57
T < = (3.33)
1= |05 [ ITo — Pog,1,0T1
< __F__ :
1- /Bw (777 77)
In particular, we note that <I>f1 and po are well defined.
Now, because
175 1100 = [g0, po; X1I| < B |l [po, po; X] — [q0, po; X]|
< Bw (d (po, q0) , d (o, Po))
< Bw (|[Tg X (po)]| , 0)
< Bw (n,0)
<1,
we conclude, by Banach’s lemma, that [go, po; X] is invertible and
H[QOaPOSX]_lH < - — (3.34)
1- /Bw (777 0)

Now, is clear that ®( is well defined, and

|50 = b os X7 ol = {175, Lo, o 217 T |

< ||igo. o: X1 a0, po: X1 = Tl

B
§<1—&Mm®>wmﬂ)
_ 38w (n.n)

1- %6&) (7]7 77)

IA
—
| N[
[N
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Therefore,

T3 Pag 01 ([p1, po; X] — o)

= |17 Pog 0.1 ([p1,p0; X] = @0 + Lo — To) ||

<07 Pog 01 ([p1,po; X] = To)|| + ||T1  Pogo,1 (To — o) |

< |3 Wpr, pos X1 = Toll + |17 Py o1To | | (111 — T @0) |

< |13 Wpr, 2o X1 = Toll + |15 Pay. 010 | (P11 — T 0) |

<[P0 05 X) = [po, pos Xl + |5 P T | (77,00 =T o) |

< P51 s, 203 X1 = [po. pos X) + T3 Pog.oa ol | (06 — la0,03 X] Fog
X] -

< ||| Py, os [P0, o; X]|I + |11 Poy.0aTol| || (7,00 — (g0, po; X) ™" T

B 1 Bw(n,0)
1*5%(17,77)“} (d (1, po) ’01) + 1fﬁﬁw((n,g)) 1—-Bw(n,0)
w ’,77
T—Bw(mm® (7,0) + 1—Bw(n,n) 1—-Bw(n,0)
_ _Bwmm) 4—Bw(nn)
2—2pw(n,n) 2—Bw(n,m) "

VARRVAN

Note that
pw(m,n) 4-pwmmn)

2—=2Bw(n,n) 2 - Pw(n,mn) ~
Because fw (n,1) < pw (R, R) < % and Bw (n,n) < %, we obtain

Bw (1,m)

4 - /Bw (777 77)
2 — 28w (n,1m) and

1
=1 2 — Bw (n,m)

<A4.

(b) For ||®7'T]|.
First, let us note that

D (v0) = DX (po) [0, po; X] " DX (po) (—DX (p0) " [g0, po; X] DX (po) ' X (p0)>

= —X(po) -

Then
X (po) = —®o (vo) ,

and according to the definition of divided differences

00 (1), 00 (0); X] 0 (0) = Pry1,0X (7(1)) — X (7(0)),
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thus
[p1,P0; X]vo = Pry 10X (p1) — X (po)

therefore
Py1.0X (p1) = [p1,po; X]vo — @g (vo) (3.36)
= ([p1,po; X] — @) vo,
and
d(q1,p1) = [lua]
= [T (p) ||
- HIHIPUo,OJ ([p1, po; X] — ®o) ’UOH
< |0 Py 0,1 (Ip1, 105 X] = @o) | [lwoll
< lvoll
<n.
Then

|2z, 00 = T7 " [qu, p1; X1 < DT Ty = [g1, pr; X
< |t prs p1; X] = (a1, p1; X
<[P w (d (p1, 1), 0)
Bw (n,0)
1 pw(n,mn)
<1,
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since

H[Q17p1§X]_1 FlH = |07 g1, pi; X]H_l
1

1— ||z, 00 = T g, pr; X]|
1

1— Bw(mo)
1—-Bw(n,n)

_2-2Bw(n,m)
2 = 3Bw(n,m)’

IN

given that

Jlowms x| < (52 ) (B
2p3

T 2-3Bw(n,n)

in this way

| Iz, 00 = T7' @1 = HITle — g1, p1; X] 7 F1H
< H[ql,pl;X]le g1, p1; X] —T4|

< [Jlaa, 13 X7 | lgr. pas X] = T
<
~2-3Bw(n,n)
<
~ 2-3Bw(n,m)
__ Bwmn)
2= 3w (n,m)’

g1, p1; X] = [p1, P15 X]||

w (d(q1,p1),0)

Finally

1

1— _Bw(mm)
2—-3pBw(n,n)

_ 2-3Bw(n,n)
2 —4pw (n,m)’

@ T <
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Now, let us estimate d (p2, p1) . Using (3.35) and (3.37), we obtain

d (p2,p1) = ||va|

= [|e7 "X (o)

= || @1 1T Pry 0.1 ([p1, po; X] — @0) vo|
1@ T |77 oy 01 ([p1, P03 X] = o) [vo

2 — 35("} (77777> ﬁw (77777) 4 — /Bw (777 77)77
= 2—4pw(n,n) 2 — 26w (n,n) 2 — fw (n,m) "

IN

A

but
2-3fw(nn)  Pwlnmn) 4=pBwnm _  Bwnmn)

2_45(")(77777)2_2/8“](77777)2_Bw(77777) N 1—2,6(,0(7],77)

Because (3.38) is equivalent to

—2Bw (n,1) — (Bw (n,1))* < 0,
then

Buw (1,m)
1 —2Bw (n,n)
< Nn.

d(p2,p1) <

This way

d (p2,p0) < d(p2,p1) + d(p1,po)
< Nn+n
=(N+1)n,

and as R is root of

then
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Thus

(N+1)n= %(212—77)
<R,
therefore
d (p27p0) S R7
so that
p2 € B (po, R) .

using similar arguments, in an inductive way, we can prove

d (Pn+1,pn) < N"d (p1,p0) < N"n

and

d (qn,pn) < N"d(qo,po) < N™n.

Then, from the triangular inequality
n
d(pnt1,0) <> N,
k40

and given that

then
d(pn+17p0) < R:

so that,
Pn+1 € B (po, R)
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and (3.39) shows that the sequence {py}, y is of Cauchy and as M is complete, then it
converges to some py € B [po, R] .
We shall prove that p, is a singularity of X.

Since

IX ()| = [Tl " X ()|
< ||FnH d (pna Qn) )

by (3.28),
ITnll < IToll + w (R, R)

and passing to limit when n — oo we obtain

X (p«) = 0.

Moreover, if g, is another singularity of X in B [pg, R|, ¢ is the minimizing geodesic joining

the points pg and p, such that o (0) = pg and o (1) = ps, then

1T 1T = Po1,0 [gs, pa; Xl < w (d (po, ps) , d (po, gs))
<w (R, R)
<1

This shows that the operator [gs, ps; X] is invertible. If  is the minimizing geodesic joining

the points p, and g, such that v (0) = p. and (1) = ¢«, and because
[y (1),7(0): X]2 (0) = Py10X (v(1)) = X (v(0)),

then
[+, p+; X] ' (0) = 0.

Thus

and we conclude
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hence
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Conclusions

There exists a great interest, among other things, thanks to advances in computational
science, of studying the called higher order numerical methods. Recently several mathem-
aticians have been devoted to showing the validity of these methods in spaces more general
than Euclidean, such as Banach spaces. In this order of generalization it was easy to expect
the interest of showing the validity of those methods on sets even more general than the
Banach spaces such as Riemannian manifolds.

The main contribution of this work is to prove the context of Riemannian manifolds,
convergence and uniqueness theorems of higher order methods, some of which generalize the
classical methods of third order; such as for example, the Chebyshev-Halley.

Developing these methods on manifolds creates new difficulties, which did not exist in
Banach spaces. Some of these difficulties are technical; for example, to define a method in the
new context. Specifically, in Banach spaces there is not distinction made between the space
E and its tangent space T, F at a point p, since they are isomorphic. Thus it is “legitimate”
to sum points and vectors. In manifolds this does not happen, so we must be very careful.
For this, the exponential function is used, that is to say, to a point and a vector of a tangent
plane is assigned a new point of the manifold. Another difficulty is the definition of the
derivative; it might be thought that the ordinary derivative is sufficient to define the methods
in the case where the manifold is embed in a Euclidean space, but this not true since the
ordinary derivative is not necessary tangent to the manifold at the point considered. Thus it
is necessary consider the covariant derivative, which in this particular case is the projection
of the ordinary derivative on the tangent plane. For some of the third order methods such as
those studied in the third chapter it were necessary to define the second covariant derivative.

Another kind of difficulties found were general, since they depend on the manifold; par-
ticularly, one of the problems encountered, is that unlike Banach spaces, where the geodesics
are straight lines, the open balls on manifolds are not necessarily geodesically convex, namely,
given two points into an open ball, the geodesic joining those points, not necessarily is en-
tirely contained in the ball. This difference with the Banach spaces creates a great difficulty
to put in the new context the uniqueness theorems of the classical methods, as could be seen

in the proof of the uniqueness of the simplified method of Kantorovich. However, classical
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techniques for testing the uniqueness can be brought into the context of manifolds and show
the uniqueness but with more restrictive assumptions on the constants, which give rise to
minor radius of convergence which had for Banach spaces (see methods of chapter three).

A difference of the methods on manifolds with Euclidean space methods is the major
computational cost for one iteration. In Banach spaces, the cost usually depends on the
number of entries in the array that represents the derivative, although this is also true in
manifolds, we must add a new cost, which is derived from the new calculations required
to calculate the geodesic that join two consecutive iterations; remember that to find these
geodesics we must first calculate the Christoffel symbols (which in some cases it is not an easy
task) and with these symbols solve the system of differential equations that give rise to the
geodesic.

While the methods of the third chapter are named “Iterative methods of third order” this
name is just inherited from the corresponding methods in Banach spaces. It is left as an open
problem to prove that they are indeed third order of convergence. Another open problem to
analyze the possibility of increases the radius of convergence of the methods of 3.1, 3.2 and
3.3, since as we said before, to apply the techniques used in Banach spaces we had to make

additional hypothesis about the constants, which reduced the expected radius of convergence.
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