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Cristóbal Rivas

Tesis presentada al Departamento de Matemática
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Abstract

In this thesis we will consider a nonautonomous linear system which admits nonuniform contraction

and a nonlinear perturbation bounded at the origin. We search to establish an equivalence between

the solutions of the systems before mentioned, being our main objective to construct a topological

equivalence between them.

In order to obtain such a result we review the spectral theory associated with the nonuniform

hyperbolicity, specifically we consider nonuniform exponential dichotomy of the linear system. In

addition we highlight some fundamental results of the spectral theory such as: i) under certain

hypotheses the nonuniform spectrum of the linear system can be written as the finite union of

compact intervals, ii) the linear system is equivalent by means of a nonuniform kinematic similarity

to a new linear system composed of blocks, where the spectrum of each of these blocks corresponds

to one of the connected components of the original linear system spectrum.

On the other hand and thanks to the aforementioned spectral theory, we will show that the initial

linear system is nonuniformly contracted to its spectrum when it is nonuniformly kinemically

similar to a linear system composed of the sum of one diagonal matrix, where its elements are

functions whose images belong to the spectrum, and a matrix whose norm can be chosen sufficiently

small. We will call this property almost nonuniform reducibility.

Finally, if the linear system admits nonuniform contraction, we use the previous results combined

with Lyapunov’s theory of functions to establish the existence of homeomorphism that relates the

solutions of both systems.

Keywords: Systems of nonautonomous differential equations; nonuniform exponential di-

chotomy; nonuniform spectrum; Lyapunov functions; topological equivalence.
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Resumen

En esta tesis consideraremos un sistema lineal no autonomo el cual admite contracción no uniforme

y una perturbación no lineal acotada en el origen. Buscamos establecer una equivalencia entre las

soluciones de los sistemas anteriormente mencionados, siendo nuestro principal objetivo construir

una equivalencia topológica entre ellos.

Con la finalidad de obtener tal resultado repasamos la teoŕıa espectral asociada a la hiperbolicidad

no uniforme, especificamente la dicotomı́a exponencial no uniforme del sistema lineal. Además

destacamos algunos resultados fundamentales de la teoŕıa espectral tales como: i) bajo ciertas

hipótesis el espectro no uniforme del sistema lineal se puede escribir como la unión finita de

intervalos compactos, ii) el sistema lineal es equivalente por medio de una similaridad cinemática

no uniforme a un nuevo sistema lineal compuesto por bloques, donde el espectro de cada uno de

esos bloques corresponde a una de las componentes conexas del espectro del sistema lineal original.

Por otro lado y gracias a la teoŕıa espectral anteriormente mencionada, el sistema lineal inicial es no

uniformemente contráıdo a su espectro cuando es no uniformemente cinemáticamente similar a un

sistema lineal compuesto por la suma de una matriz diagonal, donde sus elementos son funciones

cuyas imágenes pertenecen al espectro, y una matriz cuya norma puede ser escogida suficientemente

pequeña. A esta propiedad la llamaremos casi reducibilidad no uniforme.

Finalmente, si el sistema lineal admite contracción no uniforme, usamos los resultados anteriores

combinado con la teoŕıa de funciones de Lyapunov para establecer la existencia del homeomorfismo

que relaciona las soluciones de ambos sistemas.

Palabras clave: Sistema de ecuaciones diferenciales no autónomo; dicotomı́a exponencial no

uniforme; espectro no uniforme; funciones de Lyapunov; equivalencia topológica.
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v

Introduction

In this thesis we will prove the existence of a topological equivalence between the nonautonomous

linear system

ẋ = A(t)x (1)

and a nonlinear perturbation

ẋ = A(t)x+ f(t, x), (2)

where A : R+
0 →Mn(R), f : R+

0 ×Rn → Rn and x is a column vector of Rn. The hypotheses with

which we will work are that the system (1) admits nonuniform contraction and the function f of

the equation (2) has a Lipschitz condition and it is bounded at the origin.

This work is based on different studies of nonautonomous differential equations, which we will

detail further; and in order to do this we will recall the tools which we study in a basic course of

autonomous differential equations. We will consider an autonomous linear system

ẋ = Ax (3)

where A is an n× n matrix and x as a column vector of Rn. It is known that the solution of the

linear system (3) with the initial condition x(0) = x0 is given by

x(t) = exp(At)x0

where exp(At) is an n× n matrix function defined by the Taylor series.

An important fact in the study of (3) is the algebraic technique of diagonalizing a square matrix

A, which can be used to reduce the linear system to an uncoupled linear system [36]. However, it is

worth mentioning that a matrix A is not always diagonalizable, so by using the eigenvalues and the

generalized eigenvectors we find a form to describe the matrix A by means of submatrices. These

submatrices are composed by the sum of a nilpotent matrix and a diagonal matrix, whose diagonal

element is one of the eigenvalues of A; this method is called the Jordan forms. The exponential of

a linear operator will help us find the solution to the equation (3), therefore the sign that has the

real part of each eigenvalues allowing us to construct the stable and unstable invariant manifolds

associated to the system. From the above mention we know that the eigenvalues of the matrix A

give us information about the qualitative behavior of (3).

We take note that x0 = 0 is the unique equilibrium point of (3) and when the real part of

the eigenvalues of A are not equal to 0, we have x0 as a hyperbolic equilibrium point. This fact
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about the equilibrium point is known as hyperbolicity and from this definition we begin the study

of nonlinear autonomous system

ẋ = f(x) (4)

with f : Ω ⊂ Rn → Rn a vector field of class C1 and x0 an equilibrium point of f . In this context

we mention two kinds of studies of these systems: local and global. For the local study, there is

a classic differential equation theorem that establishes equivalences between the solutions of the

systems (3) and (4), namely:

Theorem 0.1. ( [36]) [Hartman-Grobman Theorem] Let f : Ω ⊂ Rn → Rn be a vector field of

class C1 and let x0 an equilibrium point. Suppose that A = Df(x0) (the Jacobian matrix of f in the

point x0) has its eigenvalues with real part not null, then there exist open neighborhoods V,U ⊂ Rn

of x0 and 0 respectively, such that the maps f |V and A|U are topologically conjugated.

The global behavior study starts in 1969, when C. Pugh [40] studied a particular case of the

Hartman–Grobman’s Theorem focused on linear systems (3) and

ẋ = Ax+ f(x). (5)

If we consider µ > 0 small, then for each f bounded by µ and with Lipschitz constant ω ≤ µ, we

have that the systems (3) and (5) are globally topologically conjugated.

The work cited above inspired K.J. Palmer [34] to achieve the first result of global linearization

in the nonautonomous framework. In fact, Palmer considered the linear system (1) which admits

exponential dichotomy. Moreover, when we have the nonlinear system (2) where the perturbation

f is bounded and Lipschitz, and if we assume that there exists a relation between the bound of f ,

the Lipschitz constant and the parameters that depend on the exponential dichotomy, then there

exists a topological equivalence between the systems (1) and (2).

The seminal article of K.J. Palmer and its extensions [24,42] considers vector fields whose linear

component inherits the hyperbolicity property of the autonomous case, while the nonlinear part

satisfies boundedness and Lipschitzness properties. As well, a remarkable extension of the previous

work was made by F. Lin [31], who considered this problem by dropping the boundedness of the

nonlinear perturbations, opening new ideas and methods. The work of Lin is mainly based in three

steps:

(i) If the linear system (1) is supposed to be uniformly asymptotically stable, then it can be reduced

to the linear system

ẋ = [C(t) +B(t)]x (6)

where C(t) is diagonal, B(t) is small enough, and the diagonal part is contained in the spectrum

associated to nonautonomous hyperbolicity.

(ii) From the system (6), he consider a nonlinear system as follows

ẋ = [C(t) +B(t)]x+ g(t, x) (7)
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where g(t, x) has an equilibrium point at the origin for any t ∈ R and its Lipschitz constant depen-

dent of the smallness of B(t). The system (7) is topologically equivalent to an autonomous linear

system, which is uniformly asymptotically stable. The construction of this topological equivalence

is made by using the concept of crossing times with respect to the unit sphere. Notice that a

suitable Lyapunov function is used to find these crossing times.

(iii) Based on the steps (i) and (ii), a chain of homeomorphisms let him establish the topological

equivalence between the systems (1) and (2).

As in nonautonomous framework the hyperbolicity condition does not have an univocal def-

inition, it should be noted that in step (i) we will use nonautonomous hyperbolicity defined by

L. Barreira and C. Valls [5] with its associated spectrum [17, 47]; and with these tools we will

construct a topological equivalence generalizing the work of F. Lin in [31].

Structure of the thesis. This work is divided into three chapters, we will summarize each

one of them as follows.

In the first chapter we show the definition of nonuniform exponential dichotomy, which is

denoted Σ(A); its associated spectral theory; an application of the nonuniform spectrum of the

linear system (1), which is establish by means of a linear nonautonomous coordinate change, also

known as nonuniform kinematically similarity, that the linear system (1) is equivalent to a diagonal

block system noted below

ẏ =


B1(t)

. . .

Bm(t)

 y (8)

and the spectrum of each block corresponds to connected components of the spectrum.

Moreover, on the articles [4, 17, 47] spectrum properties are described and we will adapt these

proofs to the continuous context and on the half line, since that in [17, 47] the properties of the

spectrum are verified in the continuous context but for the case R; and in [4] the discrete case

was studied on the half line. The most remarkable property of the spectrum is that under certain

conditions this can be the finite union of compact intervals.

On the other hand, the second chapter presents our first main contribution obtained in this

investigation. We introduce the concept of nonuniform almost reducibility, which is a very impor-

tant development for us. This concept establishes that between systems (1) and a system of the

form

ẏ = (C(t) +B(t))y

there exists a nonuniform kinematical similarity, where the norm of B(t) can be chosen small

enough and the images of diagonal matrix C(t) is contained in the compact set Σ(A).

Some of the technical results of this chapter are based on the books of L. Y. Adrianova [1] and
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W. Coppel [18], while some of the results proved in chapter one are mentioned to contextualize

the tools that will be used in this chapter, which is guided by the work done by F. Lin [30]. At

the end of this chapter, three examples of this application are presented, two for them are scalar

linear systems and an example of a planar system, formed by the previous ones is also given.

Finally, in the third chapter the main objective of the thesis comes afloat, which consists

of establishing a theorem of the Hartman-Grobman in the nonautonomous context, between the

systems (1) and the nonlinear system (2) in order to construct a topological equivalence between

both systems. Some hypotheses that stand out in order to obtain the result shown are: (i) that the

system (1) supports nonuniform contraction, i.e., a kind of stability associated with nonuniform

exponential dichotomy, also (ii) the nonlinear perturbation (2) is bounded at the origin.

Starting with Lyapunov functions and quadratic form theory, we can make a relationship the

nonuniform contraction and Lyapunov functions. On the other hand, we use the main result

obtained in chapter two, which allows us to relate the Lyapunov function associated to (6) with

the behavior of the solutions of the perturbed system

ẋ = [C(t) +B(t)]x+ g(t, x) (9)

where g(t, x) has an equilibrium point at the origin for any t ∈ R+
0 and satisfies certain properties

with respect to its Lipschitz condition. It is possible to construct the topological equivalence

between (6) and (9), using the concept of crossing times for the Lyapunov function.

We will work with the systems (6) and (9) as auxiliary systems in order to conclude that (1)

and (2) are topologically equivalent.
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Chapter 1

Spectral Theory

The next step in the study of the ordinary differential equations is to consider the nonautonomous

context. Namely, to study the system

ẋ = A(t)x, (1.1)

where matrix function t 7→ A(t) ∈ Mn(R) and to use our knowledge of eigenvalues to obtain

qualitative information about system (1.1).

In the following example we will realize that the eigenvalues do not always allow to conclude

on the stability of the solutions.

Example 1.1 ( [32]). Consider the nonautonomous linear system in its matrix form(
ẋ

ẏ

)
=

 −1 +
3

2
cos2(t) 1− 3

2
cos(t) sin(t)

−1− 3

2
cos(t) sin(t) −1 +

3

2
sin2(t)

(x
y

)
. (1.2)

A simple calculation show that tr(A(t)) = −1

2
and det(A(t)) =

1

2
, this implies that the eigen-

values of A(t) (which are independents of t) have real part negative and as consequence the origin

is stable. However, a fundamental matrix for (1.2) denoted X(t), which satisfies the equation

Ẋ = A(t)X(t), is

X(t) =

exp

(
t

2

)
cos(t) exp(−t) sin(t)

− exp

(
t

2

)
exp(−t) cos(t)

 , (1.3)

and if we look at the first column of the (1.3), the solutions diverge when t tends to +∞ or −∞.

In view of the previous example, thus an alternative approach must be considered in order to

study the qualitative behavior of the system (1.1). A first approach in this direction was given

by G. Floquet [21], which established that a periodic system as (1.1) can be transformed into a

constant coefficients system. The Floquet’s result can be seen as an example of the properties of

kinematical similarity and reducibility, which refers that a linear system (1.1) can be transformed

into

ẏ = B(t)y (1.4)
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through a Lyapunov transformation x = L(t)y.

The problem to obtain a simpler form to (1.1) has been tackled by using the concept of re-

ducibility by O. Perron in [37], which proves that (1.1) can be reduced via unitary transformation

to a system (1.4) where B(t) has a triangular form whose diagonal coefficients are real. Moreover,

under subtle technical conditions it can be proved that B(t) has a block–triangular form consisting

of blocks whose diagonal coefficients are real.

We have mentioned that an eigenvalues–based approach has several shortcomings and is not

an adequate tool to cope with stability issues in the nonautonomous framework. A tool that

emulates the role of the eigenvalues in this context was developed in terms of the property of

uniform exponential dichotomy (a type of nonautonomous hyperbolicity), namely, the Sacker–Sell

spectrum associated to (1.1), which is the set

σ(A) = {λ ∈ R : ẋ = (A(t)− λI)x has not N.E.D on J ⊂ R.}

where the acronym N.E.D. means nonuniform exponential dichotomy. On the other hand and

retouching the concept of nonautonomous hyperbolicity, in this thesis we consider a more general

type of hyperbolic behavior than the uniform exponential dichotomy, which is the nonuniform expo-

nential dichotomy defined by L. Barreira and C. Valls [5]. They proved that in a finite-dimensional

space, essentially any equation as (1.1) with nonzero Lyapunov exponents has a nonuniform ex-

ponential dichotomy (see [5]). In relation to nonuniform part of the dichotomy, from the point of

view of ergodic theory, this can be arbitrarily small for almost every trajectory, as a consequence

of Oseledets multiplicative ergodic theorem in [33].

As well as in the case of exponential dichotomy a spectrum is defined, for nonuniform expo-

nential dichotomy the spectrum will be defined in a similar form.

1.1 Preliminaries.

To start, we first consider the nonautonomous linear differential system (1.1) with A : R+
0 →Mn(R)

square matrix function. We assumme that each solution of system (1.1) is defined on R+
0 . We

denote by Φ(t, s) the evolution operator associated to system (1.1). Then we have

x(t) = Φ(t, s)x(s), Φ(t, s)Φ(s, τ) = Φ(t, τ) for all t, s, τ ∈ R+
0

where x(t) is a solution of (1.1).

Definition 1.1. ( [5], [17], [47]) The system (1.1) has a nonuniform exponential dichotomy on

J ⊂ R if there exist an invariant projector P (·), constants K ≥ 1, α > 0 and µ ≥ 0, with such that
‖Φ(t, s)P (s)‖ ≤ K exp(−α(t− s) + µ |s|), t ≥ s, t, s ∈ J,

‖Φ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + µ |s|), t ≤ s, t, s ∈ J.
(1.5)

In our context, we consider the interval J = R+
0 .
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Remark 1.1. We have the following comments with respect to this nonuniform dichotomy:

1. In the definition of nonuniform exponential dichotomy the condition µ < α appears, for

technical reasons, in [17] and [47].

2. It is considered a projector P (t) that satisfies the equation

P (t)Φ(t, s) = Φ(t, s)P (s)

and it is invariant in the next sense

dim(Ker(P (t))) = dim(Ker(P (s))),

for all t, s ∈ R+
0 . In fact, for any fixed t ∈ R+

0 , there exists an invertible matrix J1 such that

J−1
1 P (t)J1 =

(
Ik 0

0 0

)
,

with k = dim (Im(P (t))). Now, since for any fixed s ∈ R+
0 we have P (t) = Φ(t, s)P (s)Φ(s, t),

then

J−1
1 Φ(t, s)P (s)Φ(s, t)J1 =

(
Ik 0

0 0

)
.

If we define J2 = Φ(s, t)J1, then B is an invertible matrix, with B−1 = J−1
1 Φ(t, s) and

J−1
2 P (s)J2 =

(
Ik 0

0 0

)
,

which implies that k = dim (Im(P (s))).

The nonuniform dichotomy spectrum of system (1.1) is the set

Σ(A) = {λ ∈ R : ẋ = (A(t)− λI)x has not nonuniform exp. dichotomy on J ⊂ R}

and its complement ρ(A) = R \ Σ(A) is called the resolvent set of system (1.1).

The following result shows that the images of projector P (τ) are uniquely determined, that

is, are independent of τ . We note that the same does not happen to the images of projector

Q(τ) = Id− P (τ).

Proposition 1.1. For each τ ∈ R+
0 , we have

Im(P (τ)) =

{
v ∈ Rn : sup

t≥τ
‖Φ(t, τ)v‖ < +∞

}
.

Proof. This proof follows the lines of the articles [4,47]. It follows from (1.5) that if v ∈ Im(P (τ)),

then

sup
t≥τ
‖Φ(t, τ)v‖ < +∞. (1.6)
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Now take a vector v ∈ Rn satisfying (1.6). Since v = P (τ)v +Q(τ)v, it follows from (1.5) that

sup
t≥τ
‖Φ(t, τ)Q(τ)v‖ < +∞. (1.7)

On the other hand, by (1.5) for t ≥ τ we have

‖Q(τ)v‖ = ‖Φ(τ, t)Φ(t, τ)Q(τ)v‖ ≤ K exp(−α(t− τ) + µt) ‖Φ(t, τ)Q(τ)v‖

and so
1

K
exp(α(t− τ)− µt) ‖Q(τ)v‖ ≤ ‖Φ(t, τ)Q(τ)v‖ .

Hence, if Q(τ)v 6= 0, and if α > µ we obtain

sup
t≥τ
‖Φ(t, τ)Q(τ)v‖ = +∞,

but this contradicts to (1.7). Therefore, Q(τ)v = 0 and so v ∈ Im(P (τ)).

The following statement specifies the freedom that is allowed when choosing the projector P (τ).

Proposition 1.2. Assume that the system (1.1) admits nonuniform exponential dichotomy with

projector P (·). Moreover, let P̃ (·) be projector such that

P̃ (t)Φ(t, s) = Φ(t, s)P̃ (s) for t, s ∈ R+
0 . (1.8)

Then the system (1.1) admits nonuniform exponential dichotomy with projector P̃ (·) if and only if

ImP (0) = ImP̃ (0).

Proof. This proof follows the ideas of the discrete case proved by Barreira and Vall in [4]. If

the system (1.1) admits nonuniform exponential dichotomy with projector P̃ (·), it follows from

Proposition 1.1 that

ImP̃ (0) =

{
v ∈ Rn : sup

t≥0
‖Φ(t, 0)v‖ < +∞

}
= ImP (0).

Now assume that ImP (0) = ImP̃ (0), then

P (0)P̃ (0) = P̃ (0) and P̃ (0)P (0) = P (0).

In particular,

P (0)− P̃ (0) = P (0)(P (0)− P̃ (0)) = (P (0)− P̃ (0))Q(0)
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and so it follows from (1.1) that∥∥∥Φ(t, 0)(P (0)− P̃ (0))v
∥∥∥ =

∥∥∥Φ(t, 0)P (0)(P (0)− P̃ (0))v
∥∥∥ ,

≤ K exp(−α(t− 0) + µ0)
∥∥∥(P (0)− P̃ (0))v

∥∥∥ ,
= K exp(−αt)

∥∥∥(P (0)− P̃ (0))Q(0)v
∥∥∥ ,

≤ K exp(−αt)
∥∥∥(P (0)− P̃ (0))

∥∥∥ ‖Q(0)v‖ ,

= K exp(−αt)
∥∥∥(P (0)− P̃ (0))

∥∥∥ ‖Φ(0, τ)Φ(τ, 0)Q(0)v‖ ,

= K exp(−αt)
∥∥∥(P (0)− P̃ (0))

∥∥∥ ‖Φ(0, τ)Q(τ)Φ(τ, 0)v‖ ,

≤ K2 exp(−αt+ (−α+ µ)τ)
∥∥∥(P (0)− P̃ (0))

∥∥∥ ‖Φ(τ, 0)v‖

for t, τ ∈ R+
0 and v ∈ Rn. Therefore, for t ≥ τ∥∥∥Φ(t, τ)P̃ (τ)v

∥∥∥ ≤ ‖Φ(t, τ)P (τ)v‖+
∥∥∥Φ(t, τ)(P (τ)− P̃ (τ))v

∥∥∥ ,
= ‖Φ(t, τ)P (τ)v‖+

∥∥∥Φ(t, 0)(P (0)− P̃ (0))Φ(0, τ)v
∥∥∥ ,

≤ K exp(−α(t− τ) + µτ) ‖v‖+K2 exp(−αt+ (−α+ µ)τ)
∥∥∥(P (0)− P̃ (0))

∥∥∥ ‖v‖ ,
≤ K exp(−α(t− τ) + µτ) ‖v‖+K2 exp(−α(t− τ) + µτ)

∥∥∥(P (0)− P̃ (0))
∥∥∥ ‖v‖ ,

= K̃ exp(−α(t− τ) + µτ) ‖v‖

where

K̃ = K +K2
∥∥∥P (0)− P̃ (0)

∥∥∥ .
Similarly, letting Q(τ) = Id− P (τ), for t ≤ τ we obtain∥∥∥Φ(t, τ)Q̃(τ)v

∥∥∥ ≤ ‖Φ(t, τ)Q(τ)v‖+
∥∥∥Φ(t, τ)(P (τ)− P̃ (τ))v

∥∥∥ ,
= ‖Φ(t, τ)Q(τ)v‖+

∥∥∥Φ(t, 0)(P (0)− P̃ (0))Φ(0, τ)v
∥∥∥ ,

≤ K exp(α(t− τ) + µτ) ‖v‖+K2 exp(−αt+ (−α+ µ)τ)
∥∥∥P (0)− P̃ (0)

∥∥∥ ‖v‖ ,
≤ K exp(α(t− τ) + µτ) ‖v‖+K2 exp(α(t− τ) + µτ)

∥∥∥P (0)− P̃ (0)
∥∥∥ ‖v‖ ,

= K̃ exp(α(t− τ) + µτ) ‖v‖ .

This shows that the system (1.1) admits nonuniform exponential dichotomy with projector P̃ (·).

1.2 Properties and Characteristics of Nonuniform Spectrum.

In this section, using the previous propositions, we will provide results that will allow us to give

properties and characteristics of the nonuniform spectrum.

A linear integral manifold (see [47]) of (1.1) is a nonempty set W of R+
0 × Rn satisfying{

(t,Φ(t, τ)v); t ∈ R+
0

}
⊂ W for each (τ, v) ∈ W , and for any given τ ∈ R+

0 the fiber W (τ) =

{v ∈ Rn; (τ, v) ∈W} is a linear subspace of Rn. We note that all the fibers W (τ) have the same

dimension, denoted by dimW .
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For each γ ∈ R and τ ∈ R+
0 we define

Uγ =
{

(τ, v) ∈ R+
0 × Rn : supt≥τ ‖Φ(t, τ)v‖ exp(−γ(t− τ)) < +∞

}
An immediate result of the definition of Uγ is the following

Proposition 1.3 ( [47]). The following statements hold.

(i) Uγ is linear manifold of system (1.1).

(ii) If γ1 ≤ γ2, then Uγ1(τ) ⊆ Uγ2(τ).

Proof. We will prove the two statements:

i) For any v ∈ Uγ(τ), by definition we only need to prove that Φ(s, τ)v ∈ Uγ(τ) for all s ∈ R+
0 .

In fact, it follows from the fact that

supt≥τ ‖Φ(t, s)Φ(s, τ)v‖ exp(−γ(t− τ)) = supt≥τ ‖Φ(t, τ)v‖ exp(−γ(t− τ)) < +∞,

ii) Let v ∈ Uγ1(τ), then

sup
t≥τ
‖Φ(t, τ)v‖ exp(−γ2(t− τ)) ≤ sup

t≥τ
‖Φ(t, τ)v‖ exp(−γ1(t− τ)) < +∞,

so v ∈ Uγ2(τ).

The following proposition is a characterization for Uγ(τ) using the projector P (·).

Proposition 1.4 ( [47]). For γ ∈ R, if

ẋ = (A(t)− γI)x (1.9)

admits a nonuniform exponential dichotomy with an invariant projector P (τ), then Uγ(τ) =

ImP (τ), for any τ ∈ R+
0 .

Proof. Let Φ(t, s) be a evolution operator of (1.1), some easy calculate show that Φγ(t, s) =

exp(−γ(t − s))Φ(t, s) is an evolution operator of (1.9), and that P (·) is an invariant projector of

Φ(t, s) if and only if is an invariant projector of Φγ(t, s). By the assumption there exist Kγ , αγ > 0

and µγ ≥ 0 such that

‖Φγ(t, s)P (s)‖ ≤ Kγ exp(−αγ(t− s) + µγs), t ≥ s,
‖Φγ(t, s)(I − P (s))‖ ≤ Kγ exp(αγ(t− s) + µγs), t ≤ s.

First we prove that ImP (τ) ⊂ Uγ(τ). Considering the characterization for ImP (τ) of the

Proposition 1.1, if v ∈ ImP (τ), then

sup
t≥τ

exp(−γ(t− τ)) ‖Φ(t, τ)v‖ ≤ sup
t≥τ
‖Φ(t, τ)v‖ < +∞.



1.2. Properties and Characteristics of Nonuniform Spectrum. 7

On the other hand, to prove Uγ(τ) ⊂ ImP (τ), consider v ∈ Uγ(τ), i.e., there exists a constant

cγ such that

sup
t≥τ
‖Φγ(t, s)‖ ≤ cγ .

Now we write v = P (τ)v +Q(τ)v. Since P (·) is an invariant projector of Φγ(t, s), we have

Q(τ)v = Φγ(τ, t)Q(t)Φγ(t, τ)v,

then for t ≥ τ , we obtain the estimation

‖Q(τ)v‖ ≤ Kγ exp(αγ(τ − t) + µγt) ‖Φγ(t, τ)v‖ .

If αγ > µγ and t→ +∞, we have Q(τ)v = 0 thus v = P (τ)v ∈ ImP (τ).

Now we establish a topological result to nonuniform spectrum and a property of linear manifold

Uγ(τ).

Proposition 1.5 ( [47]). The nonuniform spectrum Σ(A) is closed set. Moreover, for γ ∈ ρ(A)

we have

Uγ(τ) = Uη(τ)

for all τ ∈ R+
0 and η in some neighborhood J of γ.

Proof. For γ ∈ ρ(A), then the system (1.9) admits nonuniform exponential dichotomy with an

invariant projection P (·). So there exist K ≥ 1, α > 0 and µ ≥ 0 such that

‖Φγ(t, s)P (s)‖ ≤ K exp(−α(t− s) + µs), t ≥ s,
‖Φγ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + µs), t ≤ s.

If we consider µ < α, set σ = α−µ
2 > 0. For η ∈ (γ − σ, γ + σ), it is easy to see that P (·) is an

invariant projection of the evolution operator Φη(t, s) = exp(−η(t− s))Φ(t, s) of the system

ẋ = (A(t)− ηI)x. (1.10)

Moreover we have

‖Φη(t, s)P (s)‖ = exp((γ − η)(t− s)) ‖Φγ(t, s)P (s)‖ ,
≤ K exp((γ − η − α)(t− s) + µs)

for t ≥ s and

‖Φη(t, s)(I − P (s))‖ = exp((γ − η)(t− s)) ‖Φγ(t, s)(I − P (s))‖ ,
≤ K exp((γ − η + α)(t− s) + µs)

for t ≤ s. It follows from the choice of σ and η that in first place

−σ − α < γ − η − α < σ − α = −(α+ µ)

2
,
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so with α∗ = α+µ
2 > µ, we have

‖Φη(t, s)P (s)‖ ≤ K exp(−α∗(t− s) + µs)

for t ≥ s. In second place

α+ µ

2
= −(α− µ)

2
+ α < γ − η + α < σ + α,

then we have

‖Φη(t, s)(I − P (s))‖ ≤ K exp(α∗(t− s) + µs)

for t ≤ s. This proves that the systems (1.10) admits nonuniform exponential dichotomy with

α∗ > µ, for all η ∈ (γ − σ, γ + σ), thus (γ − σ, γ + σ) ⊂ ρ(A) and in particular the nonuniform

spectrum Σ(A) is closed. Moreover, it follows from Proposition 1.1 that

Uη(τ) = Uγ(τ) = ImP (τ).

The following Theorem give us a complete description of the structure of the nonuniform

spectrum.

Theorem 1.1 ( [17,47]). The nonuniform spectrum Σ(A) of system (1.1) is the union of m disjoint

closed intervals in R (called spectral intervals) with 0 ≤ m ≤ n. Precisely, if m = 0 then Σ(A) = ∅;
if m = 1 then Σ(A) = R or (−∞, b1] or [a1, b1] or [a1,+∞); if m > 1 then

Σ(A) = I1 ∪ [a2, b2] ∪ . . . [am−1, bm−1] ∪ Im (1.11)

with I1 = [a1, b1] or (−∞, b1] and Im = [am, bm] or [am,+∞), where ai ≤ bi < ai+1 for i ∈
{1, . . . ,m− 1}.

Proof. We first establish an auxiliary result.

Lemma 1.1 ( [47]). For each γ1, γ2 ∈ ρ(A) with γ1 < γ2, the following statements are equivalent:

(i) Uγ1(τ) = Uγ2(τ) for some τ ∈ R+
0 (and so for all τ ∈ R+

0 );

(ii) [γ1, γ2] ⊂ ρ(A).

Proof. Assume that Uγ1(τ) = Uγ2(τ) for all τ ∈ R+
0 . It follows from Proposition (1.1) and (1.2)

that the systems

ẋ = (A(t)− γ1I)x

and

ẋ = (A(t)− γ2I)x

admit nonuniform exponential dichotomies with the same projection P (·). Hence, there exist



1.2. Properties and Characteristics of Nonuniform Spectrum. 9

K1,K2 ≥ 1, α1, α2 > 0 and µ1, µ2 ≥ 0 such that

‖Φγi(t, s)P (s)‖ ≤ Ki exp(−αi(t− s) + µis) for t ≥ s (1.12)

and

‖Φγi(t, s)(I − P (s))‖ ≤ Ki exp(αi(t− s) + µis) for t ≤ s. (1.13)

For each γ ∈ [γ1, γ2], by (1.12) and if we take α = γ − γ1 + α1, β = γ2 − γ + α2, we have

‖Φγ(t, s)P (s)‖ = exp(−(γ − γ1)(t− s)) ‖Φγ1(t, s)P (s)‖ ,
≤ K1 exp(−α(t− s) + µ1s), for t ≥ s

and similary, by (1.13),

‖Φγ(t, s)(I − P (s))‖ = exp((γ2 − γ)(t− s)) ‖Φγ2(t, s)(I − P (s))‖ ,
≤ K2 exp(β(t− s) + µ2s), for t ≤ s.

Taking the constants α∗ = min {α, β} , µ∗ = max {µ1, µ2} andK∗ = max {K1,K2}, we conclude

that [γ1, γ2] ⊂ ρ(A).

Now we assume that [γ1, γ2] ⊂ ρ(A) and we proceed by contradiction. Namely, assume that,

in addition, Uγ1(τ) 6= Uγ2(τ) for some τ ∈ R+
0 . Let

b = inf
{
γ ∈ ρ(A) : Uγ(τ) = Uγ2(τ) for some τ ∈ R+

0

}
.

Since Uγ1(τ) 6= Uγ2(τ), it follows from Proposition 1.5 that γ1 < γ < γ2. We will show that

γ ∈ Σ(A). Otherwise, we consider two possibilities: either Uγ(τ) = Uγ2(τ) or Uγ(τ) 6= Uγ2(τ). In

the first case, by Proposition 1.5 we have Uγ′(τ) = Uγ2(τ) and γ′ ∈ ρ(A) for all γ′ ∈ (γ − ε, γ] and

some ε > 0. But this contradicts to the definition of γ. In the second case, again by Proposition

1.5 we have Uγ′(τ) 6= Uγ2(τ) and γ′ ∈ ρ(A) for all γ′ ∈ [γ, γ + ε) and some ε > 0, that again

contradicts to the definition of γ. Hence, γ ∈ Σ(A) but this contradicts to the assumption that

[γ1, γ2] ⊂ ρ(A).

We proceed with the proof of the Theorem 1.1. By Proposition 1.5, the set Σ(A) is a disjoint

union of (possibly infinite) closed intervals. Assume that Σ(A) is composed of n+ 1 disjoint closed

intervals. Then there exist γ1, . . . , γn ∈ ρ(A) such that the intervals

(−∞, γ1), (γ1, γ2), . . . , (γn−1, γn), (γn,+∞)

intersect Σ(A). By Lemma 1.1, we have

0 ≤ dim Uγ1 < dim Uγ2 < · · · < dim Uγn ≤ n. (1.14)

Now we show that

dim Uγn < n and dim Uγ1 > 0. (1.15)

If dim Uγ1 = 0 then Uγ1(τ) = {0} for τ ∈ R+
0 . Since γ1 ∈ ρ(A), there exist constants
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K ≥ 1, α > 0, µ ≥ 0 and projection P (τ) = 0 such that

‖exp(−γ1(t− s))Φ(t, s)‖ ≤ K exp(α(t− s) + µs) for t ≤ s.

Hence, for γ < γ1 we have

‖exp(−γ(t− s))Φ(t, s)‖ ≤ K exp(α(t− s) + µs) for t ≤ s.

This shows that (−∞, γ1) ⊂ ρ(A), which is impossible since (−∞, γ1) intersects Σ(A). Now we

assume that dim Uγn = n. Then Uγn(τ) = Rn for τ ∈ R+
0 . Since γn ∈ ρ(A), there exist a constants

K ≥ 1, α > 0, µ ≥ 0 and projection P (τ) = Id such that

‖exp(−γn(t− s))Φ(t, s)‖ ≤ K exp(−α(t− s) + µs) for t ≥ s.

Hence, for γ > γn, we have

‖exp(−γ(t− s))Φ(t, s)‖ ≤ K exp(−α(t− s) + µs) for t ≥ s.

This shows that (γn,+∞) ⊂ ρ(A), which is impossible since (γn,+∞) intersects Σ(A). Finally, it

follows from (1.15) that (1.14) cannot hold and so there are at most n disjoint closed intervals on

the right-hand side of (1.11).

Theorem 1.1 allows us to know the structure that the spectrum has. Next, we will present a

sufficient condition so that the nonuniform spectrum to be nonempty and bounded.

Definition 1.2 ( [17, 47]). The evolution operator Φ(t, s) of the system (1.1) has nonuniformly

bounded growth if there exist K ≥ 1, ᾱ ≥ 0 and µ̄ ≥ 0 such that

‖Φ(t, s)‖ ≤ K exp(ᾱ|t− s|+ µ̄s), t, s ∈ R+
0 . (1.16)

Remark 1.2. If µ̄ = 0 the evolution operator has bounded growth, which is a particular case of

the nonuniformly bounded growth (see [43] and [45]).

Theorem 1.2 ( [47]). Assume that the evolution operator of system (1.1) has a nonuniformly

bounded growth. Then the nonuniform spectrum Σ(A) is nonempty and bounded, i.e.,

Σ(A) = [a1, b1] ∪ · · · ∪ [am, bm], (1.17)

with m ≥ 1 and −∞ < a1 ≤ b1 < · · · < am ≤ bm <∞.

Proof. By the assumption the evolution operator of system (1.1) satisfies (1.16) with constants

K ≥ 1, ᾱ ≥ 0 and µ̄ ≥ 0. First we affirm that Σ(A) ⊂ [−ᾱ, ᾱ], an so it is bounded.

For γ > ᾱ, we get from (1.16) that

‖Φγ(t, s)‖ ≤ K exp(−(γ − ᾱ)(t− s) + µ̄s), for t ≥ s,

then the system ẋ = (A(t)− γI)x admits a nonuniform exponential dichotomy with the invariant

projector P (τ) = Id. This proves that γ ∈ ρ(A) and consequently (ᾱ,+∞) ⊂ ρ(A).
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For γ < −ᾱ, we have

‖Φγ(t, s)‖ ≤ K exp(−(γ + ᾱ)(t− s) + µ̄s), for t ≤ s,

then the system ẋ = (A(t)− γI)x admits a nonuniform exponential dichotomy with the invariant

projector P (τ) = 0. Hence we have (−∞,−ᾱ) ⊂ ρ(A). Consequently Σ(A) ⊂ [−ᾱ, ᾱ].

Now we will prove that Σ(A) 6= ∅. The above proof implies that for γ > ᾱ, Uγ = ImP (τ) = Rn

because P (τ) = Id, and that for γ < −ᾱ, Uγ = ImP (τ) = {0} because P (τ) = 0. Set

γ0 = inf {γ ∈ ρ(A) : Uγ(τ) = Rn} .

From the definition and previous comments, we have γ0 ∈ [−ᾱ, ᾱ]. To get a contradiction, let

us assume that γ0 ∈ ρ(A). There are two cases to consider: Uγ0(τ) = Rn or Uγ0(τ) 6= Rn. In the

first case, by Proposition 1.5 there is ε > 0 such that for γ ∈ (γ0 − ε, γ0 + ε), we have Uγ(τ) = Rn,

which contradicts the definition of γ0. In the second case, Proposition 1.5 implies Uγ(τ) 6= Rn for

γ ∈ (γ0 − ε, γ0 + ε), which contradicts the definition of γ0. So Σ(A) 6= ∅.

Our new objective will be to use the decomposition of the nonuniform spectrum (see equation

(1.17)) to write the system (1.1) as a new system, which will depend on the spectral intervals of

the spectrum Σ(A).

1.3 An application of the nonuniform spectrum for linear systems.

As first defined in [17], we say that system (1.1) and the system

ẏ = B(t)y (1.18)

are nonuniformly kinematically similar if there exists a matrix function S : R+
0 → GLn(R) satis-

fying

‖S(t)‖ ≤Mυ exp(υt) and
∥∥S−1(t)

∥∥ ≤Mυ exp(υt), (1.19)

with M = Mυ > 0, υ ≥ 0 constants, such that the change of coordinates y(t) = S−1(t)x(t)

transform the system (1.1) into (1.18) and S is called a nonuniform Lyapunov transformation.

Moreover, B(t) satisfies

B(t) = S−1(t)A(t)S(t)− S−1(t)Ṡ(t). (1.20)

Remark 1.3. It is important to mention that the nonuniform kinematic similarity is an equivalence

relation between the linear systems. In this context, we will assume that at 0 the S function has a

derivative on the right.

The following result characterizes the normal forms of nonautonomous linear differential sys-

tems via their nonuniform dichotomy spectrums.
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Theorem 1.3. Suppose that the evolution operator of system (1.1) has a nonuniformly bounded

growth. Let

Σ(A) = [a1, b1] ∪ · · · ∪ [am, bm],

with m ≥ 1 and −∞ < a1 ≤ b1 < · · · < am ≤ bm < ∞ be the nonuniform spectrum. Then system

(1.1) is nonuniformly kinematically similar to

ẏ =


B1(t)

. . .

Bm(t)

 y (1.21)

where Bi : R+
0 → Rni×ni and Σ(Bi) = [ai, bi] for i ∈ {1, . . . ,m}.

For proving this Theorem we need some preliminary results, which will be presented below.

Lemma 1.2. If the systems (1.1) and (1.18) are nonuniformly kinematically similar, then Σ(A) =

Σ(B).

Proof. In first place, we will prove that if (1.1) and (1.18) are nonuniform kinematically similar

with matrix function S, ΦA(t, s) and ΦB(t, s) their respective evolution operator, then we have

ΦA(t, s)S(s) = S(t)ΦB(t, s) (1.22)

for t, s ∈ R+
0 . In fact, we know that x(t) = ΦA(t, s)x(s) is a solution of (1.1) and y(t) = ΦB(t, s)y(s)

is a solution of (1.18). Moreover , x(t) = S(t)y(t) is a nonuniform Lyapunov transformation, for

all t ∈ R+
0 , so on the one hand we have

x(t) = S(t)y(t) = S(t)ΦB(t, s)y(s) = S(t)ΦB(t, s)S−1(s)x(s)

and on the other hand we have

x(t) = ΦA(t, s)x(s)

and the two previous equations imply

ΦA(t, s) = S(t)ΦB(t, s)S−1(s).

Now we continue the proof of Lemma. Let λ ∈ ρ(A) then the system

ẋ = [A(t)− λI]x

have a nonuniform exponential dichotomy on R+
0 with invariant projector P (·).

By (1.22) we have exp(−λ(t − s))ΦB(t, s) = S−1(t) exp(−λ(t − s))ΦA(t, s)S(s), which is the

evolution operator associated to system

ẏ = [B(t)− λI]y

and its invariant projection is Q(t) = S−1(t)P (t)S(t).

This fact combined with the submultiplicative property of norms and the estimates for S and
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S−1 allows to prove that if t ≥ s (the case t ≤ s can be proved similarly),

‖ΦB(t, s) exp(−λ(t− s))Q(s)‖ ≤
∥∥S−1(t)

∥∥ ‖ΦA(t, s) exp(−λ(t− s))P (s)‖ ‖S(s)‖ ,

≤M2
υKλ exp(υt) exp(−αλ(t− s) + µλs) exp(υs),

≤M2
υKλ exp(−(αλ − υ)(t− s) + (µλ + 2υ)s).

Finally, if αλ > υ, then λ ∈ ρ(B). To prove the other contention, we use the fact that

nonuniform kinematic similarity is an equivalence relation.

Lemma 1.3 ( [47]). Let P0 ∈ Rn×n(Mn(R)) be a symmetric projection and X(t) ∈ GLn(R) with

t ∈ R+
0 . Set Q(t) = P0X(t)TX(t)P0 + (I − P0)X(t)TX(t)(I − P0). Then

(i) Q(t) is positively definite and symmetric.

(ii) There exists a unique positively definite and symmetric matrix function R(t) such that

R2(t) = Q(t) and P0R(t) = R(t)P0.

(iii) S(t) = X(t)R−1(t) is invertible and satisfies S(t)P0S
−1(t) = X(t)P0X

−1(t) and

‖S(t)‖ ≤
√

2,
∥∥S−1(t)

∥∥ ≤√‖X(t)P0X−1(t)‖2 + ‖X(t)(I − P0)X−1(t)‖2. (1.23)

Proof. We will prove each statement:

(i) The next proof is for any fixed t ∈ R+
0 . In first place, the matrix Q(t) is symmetric and posi-

tively definite. In fact, deduce Q(t) = Q(t)T is a direct consequence of P T0 = P0 combinated

with the property (CD)T = DTCT . In order to prove that Q(t) is positively definite, let

ξ ∈ Rn \ {0} and notice that

ξTQ(t)ξ = ξTP0X(t)TX(t)P0ξ + ξT (I − P0)X(t)TX(t)(I − P0)ξ,

= ‖X(t)P0ξ‖2 + ‖X(t)(I − P0)ξ‖2 ≥ 0

and we will see that the inequality is strict. Indeed, otherwise if ξTQ(t)ξ = 0, it will be

equivalent to

X(t)P0ξ = 0 and X(t)(I − P0)ξ = 0,

which implies that X(t)ξ = 0 and ξ = 0 (since X(t) is invertible), obtaining a contradiction.

(ii) As Q(t) is symmetric and positively definite, we know that there exist a unique matrix

R(t) = R(t)T such that

R2(t) = Q(t),

which is a property of any real symmetric matrix. Now we will verify that R(t) and P0

commute. As P 2
0 = P0, it is easy to see that

R2(t)P0 = P0R
2(t) = P0X(t)TX(t)P0.
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As R2(t) and P0 are symmetric matrices they are diagonalizable. In addition, as they com-

mute the have simultaneous diagonalization, that is, there exist an invertible matrix W (t)

such that

R2(t) = W−1(t)Ã(t)W (t) and P0 = W−1(t)B̃(t)W (t),

where A and B are diagonal matrices containing the (positive) eigenvalues of R2(t) and P0

respectively.

As the diagonal matrix Ã(t) has only positive terms, we can consider Ã(t) = D̃(t)D̃(t), where

ãii =
√
d̃ii. Then, it follows that

R2(t) = W−1(t)D̃(t)D̃(t)W (t) = (W−1(t)D̃(t)W (t))(W−1(t)D̃(t)W (t))

and we have that R(t) = W−1(t)D̃(t)D̃(t)W (t).

As B̃(t)D̃(t) = D̃(t)B̃(t) since are diagonal matrices, we have

W−1(t)B̃(t)D̃(t)W (t) = W−1(t)D̃(t)R̃(t)W (t),

which is equivalent to

(W−1(t)B̃(t)W (t))(W−1(t)D̃(t)W (t)) = (W−1(t)D̃(t)W (t))(W−1(t)B̃(t)W (t)),

which is equivalent to

P0R(t) = R(t)P0.

(iii) Finally, as P0R(t) = R(t)P0, we also have that

R(t)(I − P0) = R(t)−R(t)P0,

= R(t)− P0R(t) = (I − P0)R(t).

Now let us consider the transformation S(t) = X(t)R−1(t). Note that

S(t)P0S
−1(t) = X(t)R−1(t)P0R(t)X−1(t),

= X(t)R−1(t)R(t)P0X
−1(t),

= X(t)P0X
−1(t)

since P0R(t) = R(t)P0.

By using S(t)R(t) = X(t) and RT (t) = R(t), we have that

R2(t) = P0X
T (t)X(t)P0 + (I − P0)XT (t)X(t)(I − P0),

= P0R
T (t)ST (t)S(t)R(t)P0 + (I − P0)RT (t)ST (t)S(t)R(t)(I − P0),

= P0R(t)ST (t)S(t)R(t)P0 + (I − P0)R(t)ST (t)S(t)R(t)(I − P0),

= R(t)P0S
T (t)S(t)P0R(t) +R(t)(I − P0)ST (t)S(t)(I − P0)R(t).

We multiply by R−1(t) by the right and the left, obtaining

I = P0S
T (t)S(t)P0 + (I − P0)ST (t)S(t)(I − P0).
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Now, let ξ ∈ Rn and note that

‖S(t)ξ‖2 = ‖S(t)P0ξ + S(t)(I − P0)ξ‖2 ,
≤ {‖S(t)P0ξ‖+ ‖S(t)(I − P0)ξ‖}2 ,
≤ 2

{
‖S(t)P0ξ‖2 + ‖S(t)(I − P0)ξ‖2

}
,

≤ 2
{
ξTP0S

T (t)S(t)P0ξ + ξT (I − P0)ST (t)S(t)(I − P0)ξ
}
,

≤ 2ξT
{
P0S

T (t)S(t)P0ξ + (I − P0)ST (t)S(t)(I − P0)
}
ξ,

≤ 2ξT ξ = 2 ‖ξ‖2 ,

the we can conclude that ‖S(t)‖ ≤
√

2. On the other hand

(S−1(t))TS−1(t) = (X−1(t))TRT (t)R(t)X−1(t),

= (X−1(t))TR2(t)X−1(t),

= (X−1(t))T [P0X(t)TX(t)P0 + (I − P0)X(t)TX(t)(I − P0)]X−1(t),

and hence ∥∥S−1(t)
∥∥2 ≤

∥∥X(t)P0X
−1(t)

∥∥2
+
∥∥X(t)(I − P0)X−1(t)

∥∥2
.

Moreover, if X(t) is continuous , or continuously differentiable, function of t in R+
0 , then from

the fact that the positive squart root of a continuous, or continuously differentiable, positive

symmetric matrix function R(t) is again continuous, or continuously differentiable, S(t) to

be too.

Lemma 1.4 ( [47]). Assume that system (1.1) has an invariant projector P (·) with P (t) 6= 0 or

I, for all t ∈ R+
0 . Then there exists a nonuniform Lyapunov matrix function S : R+

0 → GLn(R)

such that

S−1(t)P (t)S(t) =

(
I 0

0 0

)
.

Proof. Since P (·) is an invariant projection associated with the evolution operator Φ(t, s) of system

(1.1), i.e., P (t)Φ(t, s) = Φ(t, s)P (s) for t, s ∈ R+
0 and for what is mentioned in the Remark 1.1, we

have dim (ImP (t)) = dim (ImP (s)). the fact that P (·) is a projection implies that for any given

s ∈ R+
0 there exists a T (s) ∈ GLn(R) such that

T (s)P (s)T−1(s) =

(
In1×n1 0n1×n2

0n2×n1 0n2×n2

)
= P0 (1.24)

where n1 = dim (ImP (t)) and n2 = dim (KerP (t)). Applying Lemma 1.3 to X(t) = Φ(t, s)T−1(s)

and P0, we get an R(t) satisfying P0R(t) = R(t)P0 for t ∈ R+
0 . Set S(t) = Φ(t, s)T−1(s)R−1(t), we
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have

S−1(t)P (t)S(t) = R(t)T (s)Φ(s, t)P (t)Φ(t, s)T−1(s)R−1(t),

= R(t)T (s)P (s)Φ(s, t)Φ(t, s)T−1(s)R−1(t),

= R(t)P0R
−1(t),

= P0,

(1.25)

where we used the fact that Φ(t, s)Φ(s, t) = I, the invariance of the projection P (·) with respect

to Φ(t, s) and the equation (1.24).

By Lemma 1.3 the matrix function S satisfies S(t)P0S
−1(t) = X(t)P0X

−1(t) and using (1.25)

in the estimates of (1.23), we have

‖S(t)‖ ≤
√

2,
∥∥S−1(t)

∥∥ ≤
√
‖S(t)P0S−1(t)‖2 + ‖S(t)(I − P0)S−1(t)‖2,

‖S(t)‖ ≤
√

2,
∥∥S−1(t)

∥∥ ≤
√
‖P (t)‖2 + ‖(I − P (t))‖2

and by (1.5), in the last expression we obtain

‖S(t)‖ ≤
√

2,
∥∥S−1(t)

∥∥ ≤ √2K exp(µt)

and if we define M =
√

2K, we have

‖S(t)‖ ≤M exp(µt),
∥∥S−1(t)

∥∥ ≤M exp(µt)

which allow us conclude that S is a nonuniform Lyapunov transformation.

Lemma 1.5. The system (1.1) is nonuniform kinematically similar to an equation

ẏ = B(t)y (1.26)

where B(t) commute with P0 and satisfies

‖B(t)‖ ≤ ‖A(t)‖ , for every t ∈ R+
0 .

In particular, if there exist M > 0 and υ ≥ 0 such that ‖A(t)‖ ≤ M exp(υt) for all t ∈ R+
0 ,

then

‖B(t)‖ ≤ M exp(υt),

for all t ∈ R+
0 .

Proof. This proof follows the line of [18], (see Lemma 2, page 40). Under the present circumstances

the functions R(t) and S(t) of the Lemma 1.3 are continuously differentiable in R+
0 . Then change

of variable x(t) = S(t)y(t) transforms (1.1) into

ż = C(t)z, (1.27)

where C(t) = S−1(t)A(t)S(t) − S−1(t)Ṡ(t). From Lemma 1.3, X(t) = S(t)R(t) and if we derive
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this equation, then

A(t)X(t) = Ṡ(t)R(t) + S(t)Ṙ(t),

A(t)S(t)R(t) = A(t)S(t)R(t)− S(t)C(t)R(t) + S(t)Ṙ(t),

C(t) = Ṙ(t)R−1(t),

and as P0 is constant and commute with R(t), then also commute with C(t). Let U(t) be the

fundamental matrix for the equation

u̇ =
1

2
[C(t)− CT (t)]u (1.28)

such that U(0) = I. Then U(t) is unitary for every t ∈ R+
0 , since the coefficient matrix is symmetric.

Moreover U(t) commutes with P0 for every t ∈ R+
0 , since BT (t) commute with P T0 = P0 and the

solutions of (1.28) are uniquely determined by their initial values. It is easily verified that the

further change of variables z(t) = U(t)y(t) transform (1.27) into (1.18), where

B(t) =
1

2
U−1(t)[C(t) + CT (t)]U(t)

is symmetric and commutes with P0 for every t ∈ R+
0 .

For each fixed t ∈ R+
0 , there exist M > 0, υ ≥ 0 such that

−2M exp(υt)I ≤ A(t) +AT (t) ≤ 2M exp(υt)I

and since
∥∥AT (t)

∥∥ = ‖A(t)‖, we have that∥∥A(t) +AT (t)
∥∥ ≤ 2M exp(υt).

From the definition of R(t), we have

R(t)Ṙ(t) + Ṙ(t)R(t) = P0X
T (t)[A(t) +AT (t)]X(t)P0

+(I − P0)XT (t)[A(t) +AT (t)]X(t)(I − P0).

It follows that

−2M exp(υt)R2(t) ≤ R(t)Ṙ(t) + Ṙ(t)R(t) ≤ 2M exp(υt)R2(t)

and hence

−2M exp(υt) ≤ Ṙ(t)R−1(t) +R−1(t)Ṙ(t) ≤ 2M exp(υt).

Therefore ∥∥C(t) + CT (t)
∥∥ ≤ ∥∥A(t) +AT (t)

∥∥ .
Since U(t) is unitary, this implies that

‖B(t)‖ =
1

2

∥∥C(t) + CT (t)
∥∥ ≤ ‖A(t)‖ ≤ M exp(υt).

Finally, we have x(t) = T (t)y(t) that transform (1.1) into (1.26), where T (t) = S(t)U(t) and
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satifies

‖T (t)‖ ≤
√

2,
∥∥T−1(t)

∥∥ ≤ √2K exp(µt).

Now we are able to prove Theorem 1.3.

Proof. By hypothesis and Theorem 1.2 we have the nonuniform spectrum Σ(A) as in (1.17) with

m ≥ 1, a1 > −∞ and bm < +∞.

Next we will prove the following technical Lemma:

Lemma 1.6 ( [30]). If the evolution operator of system (1.1) has a nonuniform bounded growth

and if Σ(A) ⊂ [a, b] and λ > b (resp. or λ < a) the system

ẋ = (A(t)− λI)x

has a nonuniform exponential dichotomy with projector P (t) = I (resp. with projector P (t) = 0).

Proof. We have that the evolution operator satisfies

‖Φ(t, s)‖ ≤ K exp(ᾱ |t− s|+ µ̄s), t, s ∈ R+
0 .

We consider λ > b. Let h = max {ᾱ+ 1 + µ̄, λ+ 1 + µ̄} and

Φh(t, s) = Φ(t, s) exp(−h(t− s)).

Then

‖Φh(t, s)‖ = ‖Φ(t, s)‖ exp(−h(t− s)) ≤ K exp(ᾱ(t− s) + µ̄s− h(t− s)), (t ≥ s).

Now we define α = h− ᾱ > µ̄ and the previous equation becomes

‖Φh(t, s)‖ ≤ K exp(−α(t− s) + µ̄s) (t ≥ s),

which implies that the system

ẋ = (A(t)− hI)x

has a nonuniform exponential dichotomy with projector P (t) = I and [λ, h] ⊂ ρ(A).

By Lemma 1.1, the system

ẋ = (A(t)− λI)x

also has a nonuniform exponential dichotomy with projector P (t) = I.

For λ < a the proof is similar considering h = min {−(ᾱ+ 1 + µ̄), (λ− 1− µ̄)}.

In what follows we call the open intervals (−∞, a1), (b1, a2), . . . , (bm−1, am) and (bm,+∞) the

spectral gaps. As Σ(A) ⊂ [a1, bm], the previous Lemma implies that for γ ∈ (−∞, a1), the system
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ẋ = (A(t) − γI)x has a nonuniform exponential dichotomy with projector P (t) = 0 and for

γ ∈ (bm,+∞), the system ẋ = (A(t)−γI)x has a nonuniform exponential dichotomy with projector

P (t) = I, so we choose γi ∈ (bi, ai+1) for i ∈ {1, . . . ,m− 1}.

For γ1 ∈ (b1, a2), the system

ẋ = (A(t)− γ1I)x

admits a nonuniform exponential dichotomy with an invariant projector P1(·) associated to evolu-

tion operator Φγ1(t, s) = exp(−γ1(t− s))Φ(t, s). Then we have{
‖Φγ1(t, s)P1(s)‖ ≤ K1 exp(−α1(t− s) + µ1s), t ≥ s,

‖Φγ1(t, s)(I − P1(s))‖ ≤ K1 exp(α1(t− s) + µ1s), t ≤ s.
(1.29)

where K1 ≥ 1, α1 > 0 and µ1 ≥ 0.

We claim that system (1.1) is nonuniformly kinematically similiar to

ẏ =

(
B1(t) 0

0 B22(t)

)
y (1.30)

with B1 : R+
0 → Mn1(R) and B22 : R+

0 → Mm2(R), where n1 = dim (ImP1(t)) and m2 =

dim (KerP1(t)). Moreover, Σ(B1) = [a1, b1] and Σ(B22) = [a2, b2] ∪ · · · ∪ [am, bm].

Now we prove this claim. By Lemma 1.4 there exists a nonuniform Lyapunov matrix function

S1 : R+
0 → GLn(R) such that

S−1
1 (t)P1(t)S1(t) =

(
In1×n1 0n1×m2

0m2×n1 0m2×m2

)
= P̃1 (1.31)

We define

B(t) = S−1
1 (t)A(t)S1(t)− S−1

1 (t)Ṡ1(t), for t ∈ R+
0 ,

so the system (1.1) is nonuniformly kinematically similar to

ẏ = B(t)y, (1.32)

via the transformation x(t) = S1(t)y(t) and by (1.22) the evolution operator of (1.32) is

ΦB(t, s) = S−1
1 (t)Φ(t, s)S1(s). (1.33)

Set R(t) = S−1
1 (t)Φ(t, s)T−1(s). From the proof of Lemma 1.4, we have P̃1R(t) = R(t)P̃1. This

implies that R−1(t) and Ṙ(t) both commute with P̃1, since P̃1 is constant. By (1.33) and definition

of R(t), we have

ΦB(t, s) = R(t)T (s)S1(s) (1.34)

so if we derive (1.34) with respect to t, on the one hand we have

dΦB(t, s)

dt
= Ṙ(t)T (s)S1(s)
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and on the other hand

dΦB(t, s)

dt
= B(t)ΦB(t, s) = B(t)R(t)T (s)S1(s),

therefore, from the two previous equations it can be affirmed that

B(t) = Ṙ(t)R−1(t) and P̃1B(t) = B(t)P̃1. (1.35)

Now we write B(t) in the block form, i.e.,

B(t) =

(
B1(t) C1(t)

C22(t) B22(t)

)
where B1 : R+

0 → Mn1(R), B22 : R+
0 → Mm2(R), C1 : R+

0 → Mn1×m2(R) and C22 : R+
0 →

Mm2×n1(R). From (1.31) and the second expression of (1.35) we get that C1(t) = 0 and C22(t) = 0.

By Lemma 1.2, the systems (1.1) and (1.30) have the same nonuniform dichotomy spectrum.

Before continuing we will prove the following lemma.

Lemma 1.7. Consider the system (1.18) where B is written as

B(t) =

(
B1(t) 0

0 B2(t)

)
(1.36)

where B1 : R+
0 →Mn1(R), B2 : R+

0 →Mn2(R), then we have that

Σ(B) = Σ(B1) ∪ Σ(B2). (1.37)

Proof. If λ ∈ (ρ(B1) ∩ ρ(B2)), then the systems

ẋ1 = (B1(t)− λI)x1

and

ẋ2 = (B2(t)− λI)x2

with evolution operators Φλ,1(t, s) and Φλ,2(t, s) respectively, have a nonuniform exponential di-

chotomy, i.e., there exist constants K1,K2 ≥ 1, αi > 0, µi ≥ 0, for i ∈ {1, 2} and invariant

projectors P1 : R+
0 →Mn1(R), P2 : R+

0 →Mn2(R) respectively, satisfying{
‖Φλ,i(t, s)Pi(s)‖ ≤ Ki exp(−αi(t− s) + µis), t ≥ s,

‖Φλ,i(t, s)(I − Pi(s))‖ ≤ Ki exp(αi(t− s) + µis), t ≤ s.

If we consider the evolution operator of system ẋ = (B(t)− λI)x and invariant projection as

Φλ(t, s) = diag(Φλ,1(t, s),Φλ,2(t, s)) and P (t) = diag(P1(t), P2(t)) (1.38)

and K = max {K1,K2} , α = min {α1, α2} and µ = max {µ1, µ2}, then we have{
‖Φλ(t, s)P (s)‖ ≤ K exp(−α(t− s) + µs), t ≥ s,

‖Φλ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + µs), t ≤ s,
(1.39)
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so λ ∈ ρ(B).

If λ ∈ ρ(B), then the system ẋ = (B(t) − λI)x admits nonuniform exponential dichotomy,

which implies that it is satisfied (1.39). We can write Φλ(t, s) and P (t) as in (1.38) and we can get

the following estimates:

‖Φλ,i(t, s)Pi(s)‖ ≤ ‖Φλ(t, s)P (s)‖ ≤ K exp(−α(t− s) + µs), t ≥ s,
‖Φλ,i(t, s)(I − Pi(s))‖ ≤ ‖Φλ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + µs), t ≤ s,

which implies that λ ∈ (ρ(B1) ∩ ρ(B2)).

Now we continue with the proof of the Theorem 1.3. Using the previous Lemma and by (1.30),

we have that

Σ(B) = Σ(B1) ∪ Σ(B22) = [a1, b1] ∪ · · · ∪ [am, bm].

Moreover the evolution operator of system (1.30) has the invariant projection P̃1 given in (1.31).

Since the first inequality of (1.29) also holds for all γ ≥ a2, so we get that [a2,+∞) ⊂ ρ(B1), then

Σ(B1) ⊂ (−∞, a2). Similarly from the second inequality of (1.29) also holds for all γ ≤ b1,

so we get that (−∞, b1] ⊂ ρ(B22), then Σ(B22) ⊂ (b1,+∞). These last arguments imply that

Σ(B1) = [a1, b1] and Σ(B22) = [a2, b2] ∪ · · · ∪ [am, bm].

Now we work with the system

ẏ22 = B22(t)y22 (1.40)

and its evolution operator Φ2(t, s) , so for γ2 ∈ (b2, a3), the system

ẏ22 = (B22(t)− γ2I)y22

admits a nonuniform exponential dichotomy with an invariant projector P2 : R+
0 → GLn2(R)

associated to evolution operator Φγ2(t, s) = exp(γ2(t− s))Φ2(t, s). Then we have{
‖Φγ2(t, s)P2(s)‖ ≤ K2 exp(−α2(t− s) + µ2s), t ≥ s,

‖Φγ2(t, s)(I − P2(s))‖ ≤ K2 exp(α2(t− s) + µ2s), t ≤ s.
(1.41)

In the same way as before, it is proved that the system (1.40) is nonuniformly kinematically

similar to

ẏ23 =

(
B2(t) 0

0 B33(t)

)
y23

where B2 : R+
0 →Mn2(R), B33 : R+

0 →Mm3(R) and m2 = n2 +m3, via a nonuniformly Lyapunov

transformation y22(t) = S22(t)y23(t). Take

S2(t) =

(
In1×n1 0

0 S22(t)

)
S1(t).
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Then the system (1.1) is nonuniformly kinematically similar to

ż = C(t), C(t) =

B1(t) 0 0

0 B2(t) 0

0 0 B33(t)

 , (1.42)

via the nonuniformly Lyapunov transformation x(t) = C(t)z(t). Since the first inequality of (1.41)

also holds for all γ ≥ a3, taking into account equation (1.42) we get that Σ(diag(B1, B2)) ⊂
(−∞, a3). Similarly from the second inequality of (1.41) we have Σ(B33) ⊂ (b2,+∞). The last

arguments and Lemma 6 imply that Σ(B2) = [a2, b2] and Σ(B33) = [a3, b3] ∪ · · · ∪ [am, bm].

According to the above process, we get a nonuniform Lyapunov transformation x(t) = Sm−1(t)w(t),

which send system (1.1) to

ẇ = D(t)w, D(t) =


B1(t) 0 0 0

0
. . . 0 0

0 0 Bm−2(t) 0

0 0 0 Bm−1,m−1(t)

 ,

with Σ(Bi) = [ai, bi] for i ∈ {1, 2, . . . ,m− 2}. Take γm−1 ∈ (bm−1, am) and the system

ẇ = (D(t)− γm−1I)w

admits a nonuniform exponential dichotomy with an invariant projection Pm−1 : R+
0 → GLnm−1(R).

Using the same arguments as before, the system (1.1) is nonuniformly kinematically similar to sys-

tem (1.21). Again as before we get that Σ(diag(B1, . . . , Bm−1)) ⊂ (−∞, am) and

Σ(Bm) ⊂ (bm−1,+∞). This implies that Σ(Bi) = [ai, bi] for i ∈ {1, 2, . . . ,m}.

Remark 1.4. In the articles [4] and [47] the normal forms of nonautonomous differential systems

and properties of the Lyapunov exponents with respect to the nonuniform spectrum are studied

respectively.
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Chapter 2

Nonuniform Almost Reducibility of nonautonomous linear differ-

ential equations.

In the previous chapter we learned about the context that revolves around the nonuniform spec-

trum, from its definition to the properties of its structure.

This spectrum plays a fundamental role in a better localization of diagonal terms when the

system (1.1) can be transformed to a diagonal one. In fact, in 1967 B. F. Bylov in [8] introduced

the notion of almost reducibility , i.e., reducibility with a negligible error and proved that any

linear system is almost reducible to some diagonal system with real coefficients. Later in 1999, F.

Lin in [30] improves the Bylov’s result by proving that the diagonal coefficients are contained in

the Sacker–Sell Spectrum. Moreover, F. Lin proved that this spectrum is the minimal compact

set where the diagonal terms belong, this phenomenon is known as the contractibility of a linear

system.

We emphasize that these concepts of reducibility and almost reducibility also have a vast

literature as well as in the uniform hyperbolicity ( [18], [26]) or in Schrödinger operators [23].

2.1 Preliminaries.

We consider the linear system (1.1) with x as a column vector of Rn and the matrix function

t 7→ A(t) ∈Mn(R) with the following properties:

(P1) For θ,M > 0, ‖A(t)‖ ≤ M exp(θt) for any t ∈ R+
0 .

(P2) The evolution operator Φ(t, s) of (1.1) has a nonuniformly bounded growth ( [47]), namely,

there exist constants K ≥ 1, ᾱ ≥ 0 and µ̄ ≥ 0 such that

‖Φ(t, s)‖ ≤ K exp(ᾱ |t− s|+ µ̄s), t, s ∈ R+
0 .

The purpose of this chapter is to study the nonuniform contractibility or nonuniform almost

reducibility to a diagonal system. Namely, the δ-nonuniform kinematical similarity of (1.1) to

ẏ = U(t)y, (2.1)



2.1. Preliminaries. 24

when U(t) = C(t) + B(t), C(t) is a diagonal matrix and B(t) has smallness properties which will

be explained later.

Within this chapter you will find several of the definitions of the previous chapter, we will do

this in order to contextualize what will be the topics that we will use to prove the main result of

this chapter. To begin we will give the definition of nonuniform kinematical similarity.

Definition 2.1 ( [17], [47]). The system (1.1) is nonuniformly kinematically similar (resp.

δ−nonuniformly kinematically similar with a fixed δ > 0) to (2.1) if there exist an invertible

transformation S(t) (resp. Sδ(t)) and υ ≥ 0 satisfying

‖S(t)‖ ≤Mυ exp(υt) and
∥∥S−1(t)

∥∥ ≤Mυ exp(υt)

or respectively

‖S(δ, t)‖ ≤Mυ,δ exp(υt) and
∥∥S−1(δ, t)

∥∥ ≤Mυ,δ exp(υt),

such that the change of coordinates y(t) = S−1(t)x(t) (resp. y(t) = S−1
δ (t)x(t)) transforms (1.1)

into (2.1), where

U(t) = S−1(t)A(t)S(t)− S−1(t)Ṡ(t), (2.2)

for any t ∈ R+
0 .

Remark 2.1. Nonuniform kinematical similarity preserves nonuniformly growth bounded. In fact,

if (1.1) and (2.1) are nonuniform kinematically similar through of the function S(·) and their

respective evolution operators are Φ1(t, s) and Φ2(t, s), then by the proof of Lemma 1.2 (see equation

(1.22)) we have the equality

Φ1(t, s)S(s) = S(t)Φ2(t, s) for all t, s ∈ R+
0 ,

and if ‖Φ1(t, s)‖ ≤ K exp(ᾱ |t− s|+ µ̄s), then we have

‖Φ2(t, s)‖ ≤
∥∥S−1(t)

∥∥ ‖S(s)‖ ‖Φ1(t, s)‖ ,
≤Mυ exp(υt)Mυ exp(υs)K exp(ᾱ|t− s|+ µ̄s),

and finally, we obtain that

‖Φ2(t, s)‖ ≤M2
υK exp((υ + ᾱ)|t− s|+ (2υ + µ̄)s).

As we said previously, the concept of almost reducibility was introduced by B. F. Bylov in the

continuous context. A discrete version of this notion was given by Á. Castañeda and G. Robledo

(see [15]).

Now we introduce the definition of nonuniformly almost reducible which is a version of the

previous concept in the nonuniform framework.

Definition 2.2 ( [9]). The system (1.1) is nonunifomly almost reducible to

ẏ = C(t)y,
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if for any δ > 0 and ε ≥ 0, there exists a constant Kδ,ε ≥ 1 such that (1.1) is δ−nonuniformly

kinematically similar to

ẏ = [C(t) +B(t)]y, with ‖B(t)‖ ≤ δKδ,ε

for any t ∈ R+
0 .

In the case when C(t) is a diagonal matrix, if Kδ,ε = 1 it is said that (1.1) is almost reducible to

a diagonal system and it was proved in [8] that any continuous linear system satisfies this property

and the components of C(t) are real numbers.

The concept of almost reducibility to diagonal system was rediscovered and improved by F.

Lin in [30], who introduces the concept of contractibility in the continuous context, while in the

discrete case was proposed by Á. Castañeda and G. Robledo in [15]. In this thesis we introduce

its nonuniform version.

Definition 2.3. The system (1.1) is nonuniformly contracted to the compact subset E ⊂ R if is

nonuniformly almost reducible to a diagonal system

ẏ = Diag(C1(t), . . . , Cn(t))y,

where Ci(t) ∈ E, for any t ∈ R+
0 .

It is worth emphasize that while Bylov’s result only says that the diagonal components are real

numbers, Lin’s definition provides explicit localization properties, as the fact that a compact set

is contractible if it is the minimal compact set such that the system (1.1) can be contracted.

In the continuous and discrete cases, the concept of contractibility has been applied in some

results of topological equivalence and almost topological equivalence respectively (see [31], [16]).

The major contribution of [30] is to prove that the contractible set of a linear system (1.1) is its

Sacker and Sell spectrum (see [41]). Mimicing the construction of the Sacker and Sell spectrum,

J. Chu, et.al. in [17] and X. Zhang [47] defined the nonuniform spectrum Σ(A). To the best of

knowledge there no exists result in the nonuniform framework and the purpose of this chapter is

to obtain condition for the nonuniform contractibility of (1.1) to Σ(A) by following some lines of

Lin’s and Castañeda–Robledo’s works.

2.2 Main result: Nonuniform almost reducibility to diagonal systems.

2.2.1 Dichotomy, nonuniform spectrum and properties.

We begin this section by remembering the definition of nonuniform exponential dichotomy and the

nonuniform spectrum.

Definition 2.4. ( [5], [17], [47]) The system (1.1) has a nonuniform exponential dichotomy on
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J ⊂ R if there exist an invariant projector P (·), constants K ≥ 1, α > 0 and µ ≥ 0 such that{
‖Φ(t, s)P (s)‖ ≤ K exp(−α(t− s) + µ |s|), t ≥ s, t, s ∈ J,

‖Φ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + µ |s|), t ≤ s, t, s ∈ J.
(2.3)

Definition 2.5. ( [17] , [47]) The nonuniform spectrum (also called nonuniform exponential di-

chotomy spectrum) of (1.1) is the set Σ(A) of λ ∈ R such that the systems

ẋ = [A(t)− λI]x (2.4)

have not nonuniform exponential dichotomy on R+
0 .

Now we rewrite Theorem 3 of the previous chapter, which allows us to give a better description

of the spectrum if the evolution operator has a nonuniformly bounded growth.

Theorem 2.1. ( [4], [28], [43], [47]) If the evolution operator of (1.1) satisfies (P2), its nonuniform

spectrum Σ(A) is the union of m compact intervals where 0 < m ≤ n, namely,

Σ(A) =
m⋃
i=1

[ai, bi], (2.5)

with −∞ < a1 ≤ b1 < . . . < am ≤ bm < +∞.

The following result allows characterizing the nonuniformly bounded growth of the evolution

operator associated to (1.1) from subtle hypothesis about its nonuniform spectrum.

Proposition 2.1. Suppose that the system (1.1) has spectrum Σ(A) = [a, b], then its evolution

operator Φ(t, s) satisfies (P2).

Proof. Let γ, λ ∈ ρ(A) such that γ < a ≤ b < λ, then we have the system

ẋ = (A(t)− γI)x

has a nonuniform exponential dichotomy with projector P (t) = 0. On the other hand, the system

ẋ = (A(t)− λI)x

has a nonuniform exponential dichotomy with projector P (t) = I.

Then there exist α1, α2, > 0, µ1, µ2 ≥ 0, K1,K2 ≥ 1 such that satisfies

‖Φ(t, s)‖ ≤ K1 exp((γ + α1)(t− s) + µ1s) t ≤ s,

‖Φ(t, s)‖ ≤ K2 exp((λ− α2)(t− s) + µ2s) t ≥ s.

Now we define ᾱ = max {0,−γ − α1, λ− α2}, µ̄ = max {µ1, µ2} and K = max {K1,K2} then we

conclude that

‖Φ(t, s)‖ ≤ K exp(ᾱ|t− s|+ µ̄s) t, s ∈ R+
0 .
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2.2.2 Main result of chapter.

The main goal of this chapter is prove the following result.

Theorem 2.2. If (P1)-(P2) are satisfied, then (1.1) is nonuniformly contracted to Σ(A).

2.3 Preparatory Results.

The nonuniform kinematical similarity between (1.1) and (2.1) will be denoted by A ∼= U . Let us

recall that nonuniform kinematical similarity is an equivalence relation having several properties,

many of which were already demonstrated in chapter 1.

Lemma 2.1. If A ∼= B, then A− λI ∼= B − λI for any λ ∈ R

Proof. If A ∼= B by the transformation y(t) = S−1(t)x(t), then S(t) satisfies

B(t) = S−1(t)A(t)S(t)− S−1(t)Ṡ(t).

It is straightforward see that

(B(t)− λI) = S−1(t)(A(t)− λI)S(t)− S−1(t)Ṡ(t),

then A(t)− λI ∼= B(t)− λI.

Lemma 2.2. If A ∼= B, then Σ(A) = Σ(B).

Proof. See Lemma 1.2

Proposition 2.2. If Σ(A) ⊂ [a, b] and λ > b (resp. or λ < a) the system

ẋ = (A(t)− λI)x

has a nonuniform exponential dichotomy with projector P (t) = I (resp. with projector P (t) = 0).

Proposition 2.3. ( [17, 47]) If the system (1.1) satisfies (P1)–(P2) then its spectrum is as in

(2.5) and there exist m matrix functions Bi : R→Mni(R)such that

‖Bi(t)‖ ≤ Mi exp(µit) with µi ≥ 0,Mi > 0 (2.6)

where Σ(Bi) = [ai, bi] with i ∈ {1, . . . ,m}, such that (1.1) is nonuniformly kinematically similar to

ẏ = Diag(B1(t), . . . , Bm(t))y. (2.7)

We point out that in [7] the concept of diagonal significance is studied in the continuous

framework. In our case this condition it is not necessary. Moreover, in the case of nonuniform

exponential dichotomy the condition of diagonal significance is still open.
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Proposition 2.4. Let C(t) be an upper triangular n× n-matrix function such that Σ(C) = [a, b],

then
n⋃
i=1

Σ(cii) ⊂ Σ(C),

where cii(t) are the diagonal coefficients of C(t).

Proof. We will prove that
n⋃
i=1

Σ(cii) ⊂ Σ(C). Let λ /∈ Σ(C) = [a, b] such that λ > b. By Proposition

2.2, we have that the upper triangular system

ẋ = (C(t)− λI)x, (2.8)

has nonuniform exponential dichotomy with projector P (t) = I. That is, the evolution operator

of (2.8), namely Φλ(t, s), satisfies

‖Φλ(t, s)‖ ≤ Kλ exp(−αλ(t− s) + µλs) (t ≥ s).

Now for each i ∈ {1, . . . , n}, we have the following estimate

exp

(∫ t

s
(cii(r)− λ)dr

)
≤ ‖Φλ(t, s)‖ ,

≤ Kλ exp(−αλ(t− s) + µλs) t ≥ s,

and we conclude that the diagonal systems

ẋi = (cii(t)− λ)xi

has a nonuniform exponential dichotomy with projector P (t) = 1 (scalar systems), which implies

that λ /∈
⋃n
i=1 Σ(cii).

The case λ < a can be proved analogously, thus
⋃n
i=1 Σ(cii) ⊂ Σ(C).

2.4 Proof of Main Result of chapter.

2.4.1 Proof of Theorem 2.2.

The proof will be made in several steps:

Step 1): (1.1) is nonuniform kinematically similar to an upper triangular system: By Theorem

2.1, there exists a positive integer m ≤ n such that:

Σ(A) =
m⋃
i=1

[ai, bi], with −∞ < a1 ≤ b1 < . . . < am ≤ bm < +∞.

The Proposition 2.3 says that (1.1) is nonuniform kinematically similar to (2.7), where Bi(t) are
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matrix function of order ni × ni satisfying (2.6) and Σ(Bi) = [ai, bi] with i ∈ {1, . . . ,m}. Now, we

will prove two preliminary result.

Lemma 2.3 ( [1]). Any fundamental matrix X(t) of system (1.1) can be represented in the form of

the product of two continuously differentiable matrices: a unitary one U(t) and an upper triangular

one R(t) with positive diagonal.

Proof. Let

X(t) = {x1(t), . . . , xn(t)} .

We apply the Schmidt orthogonalization process to the basis vectors:

ξ1 = x1, e1 = ξ1
‖ξ1‖ ,

ξ2 = x2 − 〈x2, e1〉 e1, e2 = ξ2
‖ξ2‖ ,

...
...

ξn = xn −
n−1∑
j=1

〈xn, ej〉 ej , en = xn
‖ξn‖ .

Obviously, 〈ei, ej〉 = δij , i.e., the matrix

U(t) = {e1, . . . , en}

is unitary since UT (t)U(t) = I. At the same time

x1 = ‖ξ1‖ e1,

x2 = 〈x2, e1〉 e1 + ‖ξ2‖ e2,
...

xn =

n−1∑
j=1

〈xn, ej〉 ej + ‖ξn‖ en.

This implies that the equality

X(t) = U(t)R(t) (2.9)

holds, where

R(t) =


‖ξ1‖ 〈x2, e1〉 . . . 〈xn, e1〉

0 ‖ξ2‖ . . . 〈xn, e2〉
...

...

0 . . . . . . ‖ξn‖

 , (2.10)

i.e.,

rij(t) = 0, i > j, rii(t) > 0, for t ∈ R+
0 , i, j ∈ {1, . . . , n} .

Lemma 2.4 ( [1]). [Perron’s theorem on the triangulation of a linear system]. By means of a

unitary transformation any linear system (1.1) can be reduce to a system with an upper triangu-
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lar matrix. If the initial system has exponential growth coefficients, then the coefficients of the

triangular system are also exponential growth, and the unitary matrix is a nonuniform Lyapunov

transformation.

Proof. We show that there exists a transformation

x(t) = U(t)y(t), UT (t)U(t) = I, (2.11)

such that

ẏ = (U−1(t)A(t)U(t)− U−1(t)U̇(t))y = B(t)y, (2.12)

where

bkj(t) = 0, k > j.

Let us take the fundamental matrix X(t) of system (1.1) and choose the unitary matrix defined

by previous Lemma as U(t). The transformation (2.11) for the matrix X(t) uniquely defines a

fundamental matrix Y (t) of system (2.12),

X(t) = U(t)Y (t).

From condition (2.9) we obtain that Y (t) = R(t) is upper triangular with positive diagonal. From

system (2.12) we have Ẏ = B(t)Y (t), or

B(t) = Ẏ (t)Y −1(t) = Ṙ(t)R−1(t),

i.e., B(t) is upper triangular and

bkk(t) = ṙkk(t)r
−1
kk (t),

=

∥∥∥ξ̇k(t)∥∥∥
‖ξk(t)‖

,

=
d

dt
ln(‖ξk(t)‖)

which follows from (2.10). Thus the first part of the Lemma is proved. Now we show that ‖B(t)‖
has exponential growth for t ∈ R+

0 if ‖A(t)‖ has exponential growth. Indeed,

B(t) = U−1(t)A(t)U(t)− U−1(t)U̇(t) = Ã(t)− V (t).

If there exist M > 0 and υ ≥ 0 such that ‖A(t)‖ ≤M exp(υt), then∥∥∥Ã∥∥∥ ≤ ∥∥U−1(t)
∥∥ · ‖A(t)‖ · ‖U(t)‖ ≤M exp(υt), for t ∈ R+

0 .

Note that V T (t) = −V (t), i.e., V (t) is an antisymmetric matrix. Indeed, let us verify the

equality

(U−1(t)U̇(t))T = −U−1(t)U̇(t). (2.13)

By differentiating the identity UT (t)U(t) = I, we obtain

U̇T (t)U(t) + UT (t)U̇(t) = 0,
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therefore,

U̇(t) = −(UT (t))−1U̇T (t)U(t).

Substituting U̇(t) in the left-hand side of equation (2.13) and taking into account that UT (t)U(t) =

I we find that (2.13) holds. The diagonal elements of antisymmetric matrices are 0, therefore,

Vkk(t) = 0. B(t) is upper triangular, thus

Vkj(t) = ãkj(t) for k > j,

and, since V (t) is antisymmetric, we have

Vkj(t) = −Vjk(t) for k < j.

Hence, ‖V (t)‖ ≤M exp(υt), and, therefore,

‖B(t)‖ ≤
∥∥∥Ã(t)

∥∥∥+ ‖V (t)‖ ≤ 2M exp(υt), t ∈ R+
0 .

We claim that ‖U(t)‖ and
∥∥U−1(t)

∥∥ has exponential growth since U(t) is unitary, which prove

that the matrix U(t) is a nonuniform Lyapunov transformation.

By using the previous Lemma, we know that, for each i ∈ {1, . . . ,m}, the systems

ẋi = Bi(t)xi (2.14)

are kinematically similar (see Definition 2.1 with υ = 0) to

ẏi = Di(t)yi, (2.15)

where Di(t) is a upper triangular ni × ni-matrix function such that

‖Di(t)‖ ≤ Ni exp(ςit) and Σ(Di) = [ai, bi]

where the last estimate is obtained from the lemma 1.5.

Step 2): Nonuniform exponential dichotomy of scalar differential equation: From now on, the

diagonal terms of the upper triangular matrix Di described in (2.15) will be denoted by
{
d

(i)
rr

}ni
r=1

where i is a fixed element of {1, . . . ,m}. Now, by Proposition 2.4, we have

ni⋃
r=1

Σ(d(i)
rr ) ⊂ Σ(Di).

By Proposition 2.2, for any δ > 0 there exists Mδ = δ
m > 0 such that the scalar differential

equation

ẋ =
[
d(i)
rr (t)− (ai −Mδ)

]
x (2.16)
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has a nonuniform exponential dichotomy on R+
0 with projector P (t) = 0 and

ẋ =
[
d(i)
rr (t)− (bi +Mδ)

]
x (2.17)

has a nonuniform exponential dichotomy on R+
0 with projector P (t) = 1. In consequence, there

exist K ≥ 1, α > 0, µ ≥ 0 and in this case we need the condition α > µ, such that

{
| exp(Φ(t, s))| ≤ K exp(α(t− s) + µs) t ≤ s,
| exp(Ψ(t, s))| ≤ K exp(−α(t− s) + µs) t ≥ s,

(2.18)

where

exp(Φ(t, s)) = exp

(∫ t

s
(d(i)
rr (τ)− (ai −Mδ))dτ

)
,

and

exp(Ψ(t, s)) = exp

(∫ t

s
(d(i)
rr (τ)− (bi +Mδ))dτ

)
,

are the evolution operators of (2.16) and (2.17) respectively.

Step 3): Upper and lower bounds for (2.18): For any fixed i ∈ {1, . . . ,m}, there exist two

functions c(i) and λ(i) such that

ai ≤ c(i)
r (t) ≤ bi and |λ(i)

r (t)| ≤Mδ for any t ∈ R+
0 (2.19)

and there exist ∆̄, υ ≥ 0 verifying∣∣∣∣∫ t

0
[d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ))]dτ

∣∣∣∣ ≤ ∆̄ + υt, if t ≥ 0 (2.20)

for any r ∈ {1, . . . , ni}.

We will construct a strictly increasing and unbounded sequence of real numbers
{
T

(i)
l

}+∞

l=0

satisfying T
(i)
0 = 0 such that the function c

(i)
r , λ

(i)
r : R+

0 → R defined by:

c(i)
r (t) =

{
ai if t ∈ [T

(i)
q , T

(i)
q+1) (q = 0, 2, 4, . . . )

bi if t ∈ [T
(i)
q+1, T

(i)
q+2)

and

λ(i)
r (t) =

{
−Mδ if t ∈ [T

(i)
q , T

(i)
q+1) (q = 0, 2, 4, . . . )

Mδ if t ∈ [T
(i)
q+1, T

(i)
q+2)

satisfy properties (2.19) and (2.20) on R+
0 .

It is straightforward to see that (2.19) is always satisfied. In order to verify (2.20), we inter-

change t by s in the first inequality of (2.18), then we have:

{
Φ(t, s) ≥ α(t− s)− µt− ln(K) t ≥ s,
Ψ(t, s) ≤ −α(t− s) + µs+ ln(K) t ≥ s.

(2.21)
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By using induction, we will verify that there exists a sequence
{
T

(i)
l

}+∞

l=0
satisfying (2.20).

First, by the Proposition 2.1 combined with the fact that

exp

(∫ t

s
d(i)
rr (τ)dτ

)
≤ ‖ΦDi(t, s)‖

where ΦDi(t, s) is the evolution operator of the system (2.15) then there exist constants ᾱ ≥ 0,

µ̄ ≥ 0 and K̄ ≥ 1 such that satisfies the following∫ t

s
d(i)
rr (τ)dτ ≤ ᾱ|t− s|+ µ̄s+ ln(K̄). (2.22)

Then, using the equation (2.22) we have

Φ(t, s) ≤ ᾱ(t− s) + µ̄s+ ln(K̄) + |ai|(t− s) +Mδ(t− s). (2.23)

On the other hand, by (2.21) we obtain∫ t

s
d(i)
rr (τ)dτ ≥ α(t− s)− µt+ ai(t− s)−Mδ(t− s)− ln(K), (2.24)

and using the last expression we deduce

Ψ(t, s) ≥ (−α− (bi − ai)− 2Mδ)(t− s)− µt− ln(K). (2.25)

By the equations (2.21), (2.23) and (2.25) we have the following

{
Φ(t, s) ≥ (α− µ)(t− s)− µs− ln(K) t ≥ s,
Φ(t, s) ≤ (ᾱ+ |ai|+Mδ + µ̄)(t− s) + µ̄s+ ln(K̄) t ≥ s.

(2.26)

{
Ψ(t, s) ≤ −(α− µ)(t− s) + µs+ ln(K) t ≥ s,
Ψ(t, s) ≥ (−µ− (bi − ai)− 2Mδ)(t− s)− µs− ln(K) t ≥ s.

(2.27)

Now we will introduce constants and conditions that allow us to obtain the desired result (this

conditions are inherent in the nonuniform framework).

Let N, ξ, p, ξ̄, p̄ ∈ R constants that satisfy:

(C1) 0 < N < min {α− µ, ᾱ+ |ai|+Mδ + µ̄}.

(C2) max
{

ln(K̄), ln(K)
}
< p = −p̄.

(C3) 0 ≤ max {µ̄, µ} ≤ −ξ̄ ≤ ξ.

If s = 0 in the first inequality of (2.26) we obtain

Φ(t, 0) ≥ (α− µ)t− ln(K), t ≥ 0,
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which implies that Φ(t, 0) is unbounded in R+
0 , since α > µ. In consequence, given N, ξ, p ∈ R,

there exists T
(i)
1 > 0 such that{

Φ(T
(i)
1 , 0) = N(T

(i)
1 − 0) + ξ0 + p,

Φ(t, 0) < N(t− 0) + ξ0 + p (0 ≤ t < T
(i)
1 ).

(2.28)

Then we consider the value ξ̄T
(i)
1 + p̄ and

T
(i)
2 = min

{
ω ∈ R+

0 : Ψ(ω, T
(i)
1 ) = −N(T

(i)
1 − 0)− ξ0− p

}
,

with T
(i)
2 > T

(i)
1 . Now we will calculate the slope of the line that joins the points ξ̄T

(i)
r1 + p̄ and

−N(T
(i)
r1 − 0) − ξ0 − p, which we will denote by N̄ . Moreover, N̄ satisfies the following technical

condition

(C4) max {−(α− µ),−(µ+ (bi − ai) + 2Mδ)} < N̄ .

Then we have

N̄ =
(−N(T

(i)
1 − 0)− ξ0− p)− (ξ̄T

(i)
1 + p̄)

T
(i)
2 − T

(i)
1

,

N̄ =
−N(T

(i)
1 − 0)− ξ0− ξ̄T (i)

1

T
(i)
2 − T

(i)
1

.

Due to the conditions (C1) and (C3), we have that N̄ ≤ 0. In this way, we consider the straight

N̄(t− T (i)
1 ) + ξ̄T1 + p̄.

Based on the above and the equation (2.27), if s = T
(i)
1 then there exists T

(i)
2 > T

(i)
1 such that{

Ψ(T
(i)
2 , T

(i)
1 ) = N̄(T

(i)
2 − T

(i)
1 ) + ξ̄T1 + p̄,

Ψ(t, T
(i)
1 ) > N̄(t− T (i)

1 ) + ξ̄T
(i)
1 + p̄, T

(i)
1 ≤ t < T

(i)
2 .

(2.29)

By (2.26) and (2.28) we obtain that for t ∈ [0, T
(i)
1 )

−µt− ln(K)− (−N̄t− ξ̄t− p̄) ≤
∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ,

≤ Nt+ ξt+ p.

In fact, we have

−µt− ln(K)− (−N̄t− ξ̄t− p̄) ≤ −µt− ln(K),

by the equation (2.26)

−µt− ln(K) ≤
∫ t

0
(d(i)
rr (τ)− (ai −Mδ))dτ,

then by the equation (2.28)∫ t

0
(d(i)
rr (τ)− (ai −Mδ))dτ < N(t− 0) + ξ0 + p
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and finally,

N(t− 0) + ξ0 + p ≤ Nt+ ξt+ p.

On the other hand, from the equations (2.27) and (2.29), we have for t ∈ [T
(i)
1 , T

(i)
2 )

µt+ ln(K) +Nt+ ξt+ p ≥
∫ t

T
(i)
1

(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ,

≥ −(−N̄t− ξ̄t− p̄).

Similar to the previous, we have that

µt+ ln(K) +Nt+ ξt+ p ≥ µt+ ln(K),

by the equation (2.27) we have

µt+ ln(K) ≥
∫ t

T
(i)
1

(d(i)
rr (τ)− (bi +Mδ))dτ,

and then by the equation (2.29)∫ t

T
(i)
1

(d(i)
rr (τ)− (bi +Mδ))dτ > N̄(t− T (i)

1 ) + ξ̄T
(i)
1 + p̄,

≥ −(−N̄t− ξ̄t− p̄).

Thus for t ∈ [0, T
(i)
2 )∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ ≤ 2µt+ 2 ln(K) + 2J(t)

with J(t) = max
{
Nt+ ξt+ p,−N̄t− ξ̄t− p̄

}
.

As inductive hypothesis, we will assume that there exists 2m+ 1 numbers

0 = T
(i)
0 < T

(i)
1 < T

(i)
2 < · · · < T

(i)
2m−1 < T

(i)
2m

such that (2.19) is satisfies and for t ∈ [0, T
(i)
2m)

∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ ≤ 2µt+ 2 ln(K) + 2J(t)

with J(t) = max
{
Nt+ ξt+ p,−N̄t− ξ̄t− p̄

}
. By using the first inequality of (2.26) and consid-

ering s = T
(i)
2m, we have that

Φ(t, T
(i)
2m) ≥ (α− µ)(t− T (i)

2m)− µT (i)
2m − ln(K)

is unbounded for any t > T
(i)
2m. Then, there exists T

(i)
2m+1 > T

(i)
2m such that

{
Φ(T

(i)
2m+1, T

(i)
2m) = N(T

(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p,

Φ(t, T
(i)
2m) < N(t− T (i)

2m) + ξT
(i)
2m + p (T

(i)
2m ≤ t < T

(i)
2m+1).

(2.30)
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Now we consider the value ξ̄T
(i)
2m+1 + p̄ and

T
(i)
2m+2 = min

{
ω ∈ R+

0 : Ψ(ω, T
(i)
2m+1) = −N(T

(i)
2m+1 − T

(i)
2m)− ξT (i)

2m − p
}
,

with T
(i)
2m+2 > T

(i)
2m+1.

As before, let N̄ be the slope of the line joining the points

ξ̄T
(i)
2m+1 + p̄ and −N(T

(i)
2m+1 − T

(i)
2m)− ξT (i)

2m+1 − p.

By the conditions (C1), (C2) and (C3) we have N̄ ≤ 0. In this way, we consider the straight

N̄(t− T (i)
2m+1) + ξ̄T

(i)
2m+1 + p̄.

Combining the above straight and the equation (2.27), if s = T
(i)
2m+1 then there exists T

(i)
2m+2 >

T
(i)
2m+1 such that {

Ψ(T
(i)
2m+2, T

(i)
2m+1) = N̄(T

(i)
2m+2 − T

(i)
2m+1) + ξ̄T2m+1 + p̄,

Ψ(t, T
(i)
2m+1) > N̄(t− T (i)

2m+1) + ξ̄T
(i)
2m+1 + p̄,

(2.31)

for T
(i)
2m+1 ≤ t < T

(i)
2m+2.

Now we will prove that for t ∈ [0, T
(i)
2m+2) we obtain∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ ≤ 2µt+ 2 ln(K) + 2J(t).

By inductive hypothesis, we have proved the case in which t ∈ [0, T
(i)
2m). If t ∈ [T

(i)
2m, T

(i)
2m+1) we

have ∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ =

∣∣∣∣∣
∫ t

T
(i)
2m

(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

T
(i)
2m

(d(i)
rr (τ)− (ai −Mδ))dτ

∣∣∣∣∣ .
By the equations (2.26) and (2.30), as before we obtain that for t ∈ [T

(i)
2m, T

(i)
2m+1)

−µt− ln(K)− (−N̄t− ξ̄t− p̄) ≤
∫ t

T
(i)
r2m

(d(i)
rr (τ)− (ai −Mδ))dτ ≤ Nt+ ξt+ p.

In the case t ∈ [T
(i)
2m+1, T

(i)
2m+2), we have

∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ =
∣∣∣N(T

(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p

+

∫ t

T
(i)
2m+1

(d(i)
rr (τ)− (bi +Mδ))dτ

∣∣∣∣∣ .
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Then, by the equations (2.27) and (2.31), we have that for t ∈ [T
(i)
2m+1, T

(i)
2m+2) is satisfied that

µt+ ln(K) +Nt+ ξt+ p ≥ N(T
(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p

+

∫ t

T
(i)
2m+1

(d(i)
rr (τ)− (bi +Mδ))dτ

≥ −(−N̄t− ξ̄t− p̄).

In fact, (2.27) and (2.31) implies that

µt+ ln(K) ≥
∫ t

T
(i)
2m+1

(d(i)
rr (τ)− (bi +Mδ))dτ, (2.32)

Now considering the two previous inequalities separately in (2.32), we obtain

µt+ ln(K) +N(T
(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p ≥

∫ t

0
(d(i)
rr (τ)− (bi +Mδ))dτ

and ∫ t

0
(d(i)
rr (τ)− (bi +Mδ))dτ ≥ N̄(t− T (i)

2m+1) + ξ̄T
(i)
2m+1 + p̄+N(T

(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p.

Then for the first inequality we have

µt+ ln(K) +Nt+ ξt+ p ≥ µt+ ln(K) +N(T
(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p

and on the other hand for the second inequality we have

N̄(t− T (i)
2m+1) + ξ̄T

(i)
2m+1 + p̄+N(T

(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p ≥ −(−N̄t− ξ̄t− p̄).

Therefore, for t ∈ [0, T
(i)
2m+2)∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ ≤ 2µt+ 2 ln(K) + 2J(t).

Finally, we will prove that T
(i)
m → +∞ as m → +∞. For that, first of all we have by the

equations (2.26) and (2.30):

N(T
(i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p =

∫ T
(i)
2m+1

T
(i)
2m

(d(i)
rr (τ)− (ai −Mδ))dτ

≤ (ᾱ+ |ai|+Mδ + µ̄)(T
(i)
2m+1 − T

(i)
2m) + µ̄T

(i)
2m + ln(K̄),

which implies

(ξ − µ̄)T
(i)
2m + p− ln(K̄) ≤ (ᾱ+ |ai|+Mδ + µ̄−N)(T

(i)
2m+1 − T

(i)
2m).

By the conditions (C1) and (C2), we have the following
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0 <
p− ln(K̄)

ᾱ+ |ai|+Mδ + µ̄−N
≤ T (i)

2m+1 − T
(i)
2m.

On the other hand, in view of the equations (2.27) and (2.31) we have

N̄(T
(i)
2m+2 − T

(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄ =

∫ T
(i)
2m+2

T
(i)
2m+1

(d(i)
rr (τ)− (bi +Mδ))dτ

≥ −µT (i)
2m+1 − ln(K)

(−µ− (bi − ai)− 2Mδ)(T
(i)
2m+2 − T

(i)
2m+1),

which implies

(ξ̄ + µ)T
(i)
2m+1 + p̄+ ln(K) ≥ −(µ+ (bi − ai) + 2Mδ + N̄)(T

(i)
2m+2 − T

(i)
2m+1).

Similarly, the conditions (C2) and (C4) allow us to ensure that

0 <
−p̄− ln(K)

µ+ (bi − ai) + 2Mδ + N̄
≤ T (i)

2m+2 − T
(i)
2m+1.

So the above allows us to obtain the existence of c
(i)
r (t), λ

(i)
r (t) defined on R+

0 verifying (2.19)

and finally: ∣∣∣∣∫ t

0
(d(i)
rr (τ)− (c(i)

r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣ ≤ ∆ + υt (t ∈ R+
0 ),

with ∆ = 2(ln(K) + p) ≥ 0 and υ = υµ, defined by

υ = max
{

2(µ+N + ξ), 2(µ− N̄ − ξ̄)
}
. (2.33)

From our definition of c
(i)
r (t) and λ

(i)
r (t) we know that are piecewise continuous. Therefore,

there exists continuous functions c̄
(i)
r (t), λ̄

(i)
r (t) satisfying

ai ≤ c̄(i)
r (t) ≤ bi and |λ̄(i)

r (t)| ≤Mδ for any t ∈ R+
0 (2.34)

and

∫ t

0

∣∣∣(c(i)
r (τ) + λ(i)

r (τ))− (c̄(i)
r (τ) + λ̄(i)

r (τ))dτ
∣∣∣ ≤ 1,

thus ∣∣∣∣∫ t

0
[d(i)
rr (τ)− (c̄(i)

r (τ) + λ̄(i)
r (τ))]dτ

∣∣∣∣ ≤ ∆̄ + υt

with ∆̄ = ∆ + 1.

As a consequence of this result, we construct the ni × ni matrix:
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Li(t) = Diag(µ1(t), . . . , µni(t)),

where for any r ∈ {1, . . . , ni}, µr are defined by

µr(t) = exp

(∫ t

0
(d(i)
rr (τ)− (c̄(i)

r (τ) + λ̄(i)
r (τ))dτ

)
,

and we conclude that

‖Li(t)‖ ≤ Ω exp(υt) and
∥∥L−1

i (t)
∥∥ ≤ Ω exp(υt) for any t ∈ R+

0 ,

with Ω = exp(∆̄).

Step 4): The systems (2.14) can be nonuniformly contracted to [ai, bi], for any i ∈ {1, . . . ,m}:
The system (2.15) is nonuniform kinematically similar to

żi = Λi(t)zi, (2.35)

with yi(t) = Li(t)zi(t), where Λi(t) = L−1
i (t)Di(t)Li(t) − L−1

i (t)L̇i(t) is a ni × ni matrix whose

rs-coefficient is defined by

{Λi(t)}rs =


c̄

(i)
r (t) + λ̄

(i)
r (t) if r = s,

µs(t)
µr(t)

d
(i)
rs (t) if 1 ≤ r < s ≤ ni,

0 if 1 ≤ s < r ≤ ni.

We observe that |d(i)
rs (t)| ≤ K1 exp(κ1t) with K1 > 0, for 1 ≤ r < s ≤ ni and by the equation

(2.33), we have µs(t)
µr(t)

≤ K2 exp(κ2t) with K2 > 1 and κ2 = 2υ with υ as in (2.33), then

|{Λi(t)}rs| ≤ K2K1 exp(κt), (2.36)

where κ = κε = κ1 + κ2.

Let us define the transformation

zi(t) = Ri(t)wi(t),

with

Ri(t) = Diag(exp(−κMδKδt), η exp(−2κMδKδt), . . . , η
ni−1 exp(−niκMδKδt)),

and we also define Kδ such that KδMδ ≥ 1 and

0 < η <
Mδ

Mδ +K1K2
. (2.37)

Now, we can see that (2.35) and (2.15) are δ-nonuniform kinematically similar to

ẇi = Γi(t)wi,

where the rs-coefficient of Γi(t) is
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{Γi(t)}rs =


{Λi(t)}rs + rκMδKδ if r = s,

ηs−r {Λi(t)}rs exp(−(s− r)κMδKδt) if 1 ≤ r < s ≤ ni,
0 if 1 ≤ s < r ≤ ni.

Let us observe that Γi(t) can be written as follows:

Γi(t) = C̄i(t)I + B̄i(t),

where C̄i(t) = Diag(c̄1(t), . . . , c̄ni(t)) and the rs-coefficient of B̄i(t) is defined by

{
B̄i(t)

}
rs

=


{
λ̄r(t)

}
rs

+ rκMδKδ if r = s,

ηs−r µs(t)µr(t)
d

(i)
rs (t) exp(−(s− r)κMδKδt) if 1 ≤ r < s ≤ ni,

0 if 1 ≤ s < r ≤ ni.

By (2.34) and (2.36), we can verify that

∥∥B̄i(t)∥∥ ≤Mδ[1 + rκKδ] +K1K2[η + η2 + · · ·+ ηni ],

≤Mδ[1 + niκKδ] +K1K2
η

1−η .

Recall that Mδ = δ
m and by using (2.37) it follows that

∥∥B̄i(t)∥∥ ≤ δ
mKδ,µ, where Kδ,µ =

2 + niκKδ.

Thus, for any i ∈ {1, . . . ,m} the system (2.15) is δ̄-nonuniform kinematically similar (with

δ̄ = δ
m) to

ẇi = [C̄i(t) + B̄i(t)]wi,

where

c̄j(t) ∈ [ai, bi] = Σ(Bi), j ∈ {1, . . . , ni} and
∥∥B̄i(t)∥∥ ≤ δ

m
Kδ,µ.

Finally, (2.15) is nonuniformly contracted to Σ(Bi).

Step 5): The system (1.1) can be nonuniformly contracted to Σ(A): By using the previous

result, we can see that (1.1) is δ-nonuniform kinematically similar to

ẇ = [C(t) +B(t)]w,

where

C(t) = Diag(C̄1(t), . . . , C̄m(t)) and B(t) = Diag(B̄1(t), . . . , B̄m(t)).

In consequence, note that
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C(t) ⊂
m⋃
i=1

[ai, bi] = Σ(A) and ‖B(t)‖ ≤ δKδ,µ.

Finally, the system (1.1) is nonuniformly contracted to Σ(A).

Remark 2.2. The inequalities (2.26) and (2.27) show that the functions Φ(t, s) and Ψ(t, s) are

bounded. This bounds not necessarily cross to graph this functions, thus the conditions (C1)–

(C4) allows us to find straights that cross it to least once. Moreover this procedure enable us

to construct
{
T

(i)
l

}+∞

l=0
which is the sequences of first crossing time of the graph of this function

Φ(t, s) and Ψ(t, s) with that straights. We have proved that this sequence of crossing time has not

accumulations points.

2.5 Application of the main result

In this section, we present two examples of scalar systems, with their respective spectra and, in

addition, we will prove that there exists a Lyapunov transformation that allows each system to

contract its spectrum. Finally, we will present a diagonal planar example considering the previous

scalar systems

Example 2.1. Let us consider the scalar differential equation studied in [17, p.547] :

ẋ = L1(t)x, (2.38)

with L1(t) = λ0 + at sin t, λ0 < a < 0.

First, we will prove that the nonuniform spectrum of (2.38) is

Σ(L1) = [λ0 − |a|, λ0 + |a|].

In fact, the evolution operator of (2.38) is given by

Φ(t, s) = exp(λ0(t− s)− a cos t(t− s)− as(cos t− cos s) + a(sin t− sin s)).

For any γ ∈ R, the evolution operator of the system ẋ = (L1(t)− γ)x is given by

Φγ(t, s) = exp(−γ(t− s))Φ(t, s). (2.39)

For any γ ∈ (λ0 + |a|,+∞), it follows from (2.39) that

‖Φγ(t, s)‖ ≤ exp(2|a|) exp(−(γ − λ0 − |a|)(t− s) + 2|a|s), t ≥ s,

which implies that the system ẋ = (L1(t) − γ)x admits a nonuniform exponential dichotomy with

P (t) = 1, K = exp(2|a|), α = γ − λ0 − |a| > 0, µ = 2|a| > 0. Thus

(λ0 + |a|,+∞) ⊂ ρ(L1).
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For any γ̃ ∈ (−∞, λ0 − |a|), it follows from (2.39) that

‖Φγ̃(t, s)‖ ≤ exp(2|a|) exp((−γ̃ + λ0 − |a|)(t− s) + 2|a|s), t ≤ s,

which implies that the system ẋ = (L1(t) − γ̃)x admits a nonuniform exponential dichotomy with

P (t) = 0, K = exp(2|a|), α̃ = −γ̃ + λ0 − |a| > 0, µ = 2|a| > 0. Thus

(−∞, λ0 − |a|) ⊂ ρ(L1).

From the above, we have

(−∞, λ0 − |a|) ∪ (λ0 + |a|,+∞) ⊂ ρ(L1),

which implies that Σ(L1) ⊂ [λ0 − |a|, λ0 + |a|].

Now we show that [λ0−|a|, λ0 + |a|] ⊂ Σ(L1). To show this, we first prove that λ0 + |a| ∈ Σ(L1).

On the contrary, assume that γ1 = λ0 + |a| such that ẋ = (L1(t) − γ1)x admits a nonuniform

exponential dichotomy. We know that either the projector P (t) = 0 or P (t) = 1. If P (t) = 1 then

there exist constants K ≥ 1, α > 0 and µ ≥ 0 such that the following estimate holds

‖Φγ1(t, s)‖ = exp(−γ1(t− s)) ‖Φ(t, s)‖ ,
≤ K exp(−α(t− s) + µs), t ≥ s

Substituting γ1 = λ0 + |a|, we have for t ≥ s

exp(−|a|(1− cos t)(t− s)− as(cos t− cos s) + a(sin t− sin s)) ≤ K exp(−α(t− s) + µs),

which yields a contradiction for s = (2k + 1)π and t = 4kπ since we have

exp(2|a|π) ≤ K exp(−(α− µ)2kπ + (α+ µ)π)

where the left side of the inequality is constant and the right side converge to 0 when k → +∞ if

α > µ. If P (t) = 0 and t ≤ s, the dichotomy estimate is

exp(−|a|(1− cos t)(t− s)− as(cos t− cos s) + a(sin t− sin s)) ≤ K exp(α(t− s) + µs),

which also yields a contradiction for t = 0 and s = (2k − 1)π since we have

exp(2|a|(2k − 1)π) ≤ K exp(−(α− µ)(2k − 1)π)

where the left side of last inequality diverge and the right side converge to 0 when k → +∞ if

α > µ. Therefore λ0 + |a| ∈ Σ(L1).

Analogously, we can prove that λ0 − |a| ∈ Σ(L1), in fact, assume that γ1 = λ0 − |a| such that

ẋ = (L1(t)− γ1)x admits a nonuniform exponential dichotomy. We know that either the projector

P (t) = 0 or P (t) = 1. If P (t) = 1 then there exist constants K ≥ 1, α > 0 and µ ≥ 0 such that the

following estimate holds

‖Φγ1(t, s)‖ = exp(−γ1(t− s)) ‖Φ(t, s)‖ ,
≤ K exp(−α(t− s) + µs), t ≥ s
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Substituting γ1 = λ0 − |a|, we have for t ≥ s

exp(|a|(1 + cos t)(t− s)− as(cos t− cos s) + a(sin t− sin s)) ≤ K exp(−α(t− s) + µs),

which yields a contradiction for s = 0 and t→ +∞. If P (t) = 0 and t ≤ s, the dichotomy estimate

is

exp(|a|(1 + cos t)(t− s)− as(cos t− cos s) + a(sin t− sin s)) ≤ K exp(α(t− s) + µs),

which also yields a contradiction for t = 0 and s = (2k + 1)π since we have

1 ≤ K exp(−(α− µ)(2k + 1)π)

where the left side of last inequality is constant and the right side converge to 0 when k → +∞ if

α > µ. Therefore λ0 − |a| ∈ Σ(L1).

By Theorem 2.1, we know that Σ(L1) is an interval. Thus, for any γ ∈ [λ0 − |a|, λ0 + |a|], it

follows from the connectedness that γ ∈ Σ(L1). Consequently, [λ0 − |a|, λ0 + |a|] ∈ Σ(L1).

Therefore, Σ(L1) = [λ0 − |a|, λ0 + |a|].

Now we claim that (2.38) is nonuniformly contracted to Σ(L1). Indeed, given a fixed δ > 0 and

ε1 = 2|a|, we consider the matrix function t→ S1(t) ∈M1(R) defined by

S1(t) = exp
(ε1

2
t cos t− δ sin t

)
,

and we can verify that (2.38) is δ-nonuniformly kinematically similar to

ẏ = (C(t) +B(t))y, with C(t) = λ0 and B(t) = −δ cos(t)
(
1 + ε1

2δ

)
.

The claim follows since C(t) ∈ [λ0 − |a|, λ0 + |a|] and ‖B(t)‖ ≤ δKδ,ε1, where Kδ,ε1 = 1 + ε1
2δ .

Example 2.2. Consider the scalar system shown in [48] defined in R+
0

ẋ = L2(t)x, (2.40)

with L2(t) = λ1(sin(ln(t+ 1)) + cos(ln(t+ 1))) and λ1 6= 0.

First, we will prove that the nonuniform spectrum of (2.40) is

Σ(L2) = [−|λ1|, |λ1|].

In fact, the evolution operator of (2.40) is given by

Φ(t, s) = exp(λ1(t+ 1) sin(ln(t+ 1))− λ1(s+ 1) sin(ln(s+ 1))).

For any γ ∈ R, the evolution operator of system ẋ = (L2(t)− γ)x is given by

Φγ(t, s) = exp(−γ(t− s))Φ(t, s). (2.41)
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For any γ ∈ (|λ1|,+∞), it follows from (2.41) that

‖Φγ(t, s)‖ ≤ exp(−γ(t− s) + |λ1|(t+ s+ 2)),

≤ exp(2|λ1|) exp(−(γ − |λ1|)(t− s) + 2|λ1|s), t ≥ s,

which implies that the system ẋ = (L2(t) − γ̄)x admits a nonuniform exponential dichotomy with

P (t) = 1, K = exp(2|λ1|), α = γ − |λ1| > 0 and µ = 2|λ1| > 0. Thus

(|λ1|,+∞) ⊂ ρ(L2).

For any γ̄ ∈ (−∞,−|λ1|), it follows from (2.41) that

‖Φγ̄(t, s)‖ ≤ exp(−γ̄(t− s) + |λ1|(t+ s+ 2)),

≤ exp(2|λ1|) exp((−γ̄ + |λ1|)(t− s) + 2|λ1|s), t ≤ s,

which implies that the system ẋ = (L2(t) − γ̄)x admits a nonuniform exponential dichotomy with

P (t) = 0, K = exp(2|λ1|), ᾱ = −γ̄ + |λ1| > 0 and µ̄ = 2|λ1| > 0. Thus

(−∞,−|λ1|) ⊂ ρ(L2).

From the above, we have

(−∞,−|λ1|) ∪ (|λ1|,+∞) ⊂ ρ(L2),

which implies that Σ(L2) ⊂ [−|λ1|, |λ1|].

Now we show that [−|λ1|, |λ1|] ⊂ Σ(L2). To show this, we first prove that −|λ1| ∈ Σ(L2). On

the contrary, assume that γ2 = −|λ1| such that ẋ = (L2(t)−γ2)x admits a nonuniform exponential

dichotomy. We know that either the projector P (t) = 0 or P (t) = 1. If P (t) = 1 then there exist

constant K ≥ 1, α > 0 and µ ≥ 0 such that the following estimate holds

‖Φγ2(t, s)‖ = exp(−γ2(t− s)) ‖Φ(t, s)‖ ,
≤ K exp(−α(t− s) + µs), t ≥ s

Substituting γ2 = −|λ1|, we have for t ≥ s

exp(|λ1|(t− s) + λ1(t+ 1) sin(ln(t+ 1))− λ1(s+ 1) sin(ln(s+ 1))) ≤ K exp(−α(t− s) + µs),

which yields a contradiction for s = 0 and t→ +∞. If P (t) = 0 and t ≤ s, the dichotomy estimate

is

exp(|λ1|(t− s) + λ1(t+ 1) sin(ln(t+ 1))− λ1(s+ 1) sin(ln(s+ 1))) ≤ K exp(α(t− s) + µs),

which also yields a contradiction for t = 0 and s = exp
(

3π
2 + 2kπ

)
− 1 since we have

exp

(
|λ1|

(
exp

(
3π

2
+ 2kπ

)
− 1

)
+ λ1 exp

(
3π

2
+ 2kπ

))
≤ K exp(−(α−µ) exp

(
3π

2
+ 2kπ

)
−1),

where the left side if the last inequality is constant if λ1 < 0, diverge if λ1 > 0 and the right side

converge to 0 where k → +∞ if α > µ.Therefore −|λ1| ∈ Σ(L2).

Analogously, we can prove that |λ1| ∈ Σ(L1), in fact, assume that γ2 = |λ1| such that ẋ =
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(L2(t) − γ2)x admits a nonuniform exponential dichotomy. We know that either the projector

P (t) = 0 or P (t) = 1. If P (t) = 1 then there exist constants K ≥ 1, α > 0 and µ ≥ 0 such that the

following estimate holds

‖Φγ2(t, s)‖ = exp(−γ2(t− s)) ‖Φ(t, s)‖ ,
≤ K exp(−α(t− s) + µs), t ≥ s

Substituting γ2 = |λ1|, we have for t ≥ s

exp(−|λ1|(t− s) + λ1(t+ 1) sin(ln(t+ 1))− λ1(s+ 1) sin(ln(s+ 1))) ≤ K exp(−α(t− s) + µs),

which yields a contradiction for s = and t =. If P (t) = 0 and t ≤ s, the dichotomy estimate is

exp(−|λ1|(t− s) + λ1(t+ 1) sin(ln(t+ 1))− λ1(s+ 1) sin(ln(s+ 1))) ≤ K exp(α(t− s) + µs),

which also yields a contradiction for t = 0, s = exp(2kπ − π
2 )− 1 since we have

exp ((|λ1|+ λ1)
(

exp
(

2kπ − π

2

)
− 1
)
≤ K exp

(
−
(

exp
(

2kπ − π

2

)
− 1
)

(α− µ)
)

where the left side of last inequality is constant if λ1 < 0, diverge if λ1 > 0 and the right side

converge to 0 when k → +∞ if α > µ. Therefore |λ1| ∈ Σ(L2). By Theorem 2.1, we know

that Σ(L2) is an interval. Thus, for any γ ∈ [−|λ1|, |λ1|], it follows from the connectedness that

γ ∈ Σ(L2). Consequently, [−|λ1|, |λ1|] ∈ Σ(L2).

Therefore, Σ(L2) = [−|λ1|, |λ1|].

Now we claim that (2.40) is nonuniformly contracted to Σ(L2). Indeed, given a fixed δ > 0

and ε2 = 2λ1, we consider the matrix function t→ S2(t) ∈ M1(R) defined by S2(t) = exp(1
2δ[(t+

1) sin(ln(t + 1)) + (t + 1) cos(ln(t + 1))]), and is simple verify that (2.40) is δ-nonuniformly kine-

matically similar to

ẏ = (C(t) +B(t))y,

with C(t) = λ1 sin(ln(t+ 1)) and B(t) = λ1 cos(ln(t+ 1)) + δ cos(ln(t+ 1)).

The claim follows since C(t) ∈ [−|λ1|, |λ1|] and ‖B(t)‖ ≤ δKδ,ε2, where Kδ,ε2 = 1 + ε2
2δ .

Example 2.3. Consider the planar system defined in R+
0

ẋ = L(t)x, (2.42)

where

L(t) =

(
λ0 + at sin t 0

0 λ1(sin(ln(t+ 1)) + cos(ln(t+ 1)))

)
with the same conditions as in the previous examples and also λ0 − a < −|λ1|. We can see that in

view of the Lemma 1.7, the nonuniform spectrum of (2.42) is Σ(L) = [λ0 +a, λ0−a]∪ [−|λ1|, |λ1|].

Now we claim that (2.42) is nonuniformly contracted to Σ(L). Indeed, given a fixed δ > 0 and
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ε = max {ε1, ε2}, we consider the matrix function t→ S(t) ∈M2(R) defined by

S(t) =

(
S1(t) 0

0 S2(t)

)
,

where S1(t) and S2(t) are as in the previous examples. It is verified that (2.42) is δ-nonuniformly

kinematically similar to

ẏ = (C(t) +B(t))y,

with

C(t) =

(
λ0 0

0 λ1 sin(ln(t+ 1))

)
and

B(t) =

(
−δ cos(t)

(
1 + ε1

2δ

)
0

0 λ1 cos(ln(t+ 1)) + δ cos(ln(t+ 1))

)
.

The claim follows since C(t) ∈ Σ(L) and ‖B(t)‖ ≤ δKδ,ε, where Kδ,ε = max {Kδ,ε1 ,Kδ,ε2}.
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Chapter 3

Linearization of a nonautonomous unbounded system with nonuni-

form contraction: A Spectral Approach

In the first chapter we defined the nonuniform spectrum for a nonautonomous linear system and in

the second chapter we obtained an important result for this spectrum, which allows us to describe

system (1.1) as the system

ẏ = (C(t) +B(t)) (3.1)

with C(t) is a diagonal matrix, C(t) ∈ Σ(A) and ‖B(t)‖ ≤ δKδ,ε.

As presented in the first chapter, in the autonomous context, Hartman–Grobman’s theorem

allows to establish an equivalence between the flows of system (4) and system (3). For the nonau-

tonomous context and generalizing the Hartman–Grobman theorem, K. J. Palmer [35] worked the

topological equivalence between the solutions of system (1.1) and system

ẋ = A(t)x+ f(t, x) (3.2)

using tools of the Green’s function, assuming that the linear system has an exponential dichotomy,

f it is bounded and its Lipschitz constant is small. This same work was done by Á. Castañeda

and G. Robledo [15] but in the discrete context and the difference equations.

Following the line of the exponential dichotomy, F. Lin [30] established a topological equivalence

between systems (1.1) and (3.2), when system (1.1) has asymptotic stability (which can be related

to the identity projector), from a spectral point of view, namely, considering the Lipschitz constant

of f related to the spectrum and bounded at the origin. Á. Castañeda and G. Robledo [16] obtained

this same result for equations in differences.

It should be noted that L. Barreira and C. Valls have a result of the Hartman-Grobman type [6]

if system (1.1) has a nonuniform exponential dichotomy, but the approach presented in that article

is totally different from the one presented in this chapter.

The objective of this chapter is to obtain a result such as the Hartman-Grobman Theorem,

using the result of nonuniform almost reducibility and the Lyapunov functions and quadratic forms

theory.
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As we consider (3.2) as a perturbation of system (1.1), for the system (3.1) we consider

ẏ = (C(t) +B(t))y + g(t, y). (3.3)

3.1 Preliminaries.

3.1.1 Properties

In this article we consider the following couple of the systems

{
ẋ = A(t)x

ẋ = A(t)x+ f(t, x)

(3.4a)

(3.4b)

where A : R+
0 →M(n,R) and f : R+

0 × Rn → Rn is continuous on (t, x) and

{
ẏ = [C(t) +B(t)]y

ẏ = [C(t) +B(t)]y + g(t, y)

(3.5a)

(3.5b)

where B,C : R+
0 →M(n,R) and g : R+

0 ×Rn → Rn is continuous on (t, x). Moreover, the following

properties are verified:

(P1) For ν,M > 0, ‖A(t)‖ ≤ M exp(νt) for any t ∈ R+
0 .

(P2) The evolution operator Φ(t, s) of (3.4a) has a nonuniformly bounded growth [47], namely,

there exist constants K0 ≥ 1, a ≥ 0 and ε̄ ≥ 0 such that

‖Φ(t, s)‖ ≤ K0 exp(a |t− s|+ ε̄s), t, s ∈ R+
0 .

(P3) The system (3.4a) is nonuniform contractible if there exist K > 0, α > 0 and µ ≥ 0 such

that

‖Φ(t, s)‖ ≤ K exp(−α(t− s) + µs) for any t ≥ s ≥ 0. (3.6)

(P4) The function f is continuous on (t, x) and is an element of one of the following families of

functions:

A1 =

{
f : supt∈R+

0
‖f(t, 0)‖ < +∞ and ∃ Lf , β ≥ 0 s.t.

‖f(t, u)− f(t, v)‖ ≤ Lf exp(−2βt) ‖u− v‖ ∀t ∈ R+
0

}
,

A2 =
{
f : f ∈ A1 and f(t, 0) = 0 for all t ∈ R+

0

}
.
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3.1.2 Main Tools

The fundamental tools in our work are the concepts of topological equivalence, introduced by K.J.

Palmer in [35], the nonuniform exponential dichotomy which was introduced by L. Barreira and

C. Valls in [5], and the δ-nonuniform kinematical similarity.

Here we present the definition with which we will work throughout this chapter.

Definition 3.1. The systems (3.4a) and (3.4b) will be called topologically equivalent if there exists

a map H : R+
0 × Rn → Rn with the properties

(i) For each fixed t ∈ R+
0 , the map ξ 7→ H(t, ξ) is a bijection.

(ii) For any fixed t ∈ R+
0 , the maps ξ 7→ H(t, ξ) and ξ 7→ H−1(t, ξ) = G(t, ξ) are continuous.

(iii) If ‖ξ‖ → +∞, then ‖H(t, ξ)‖ → +∞.

(iv) If x(t) is a solution of (3.4a), then H(t, x(t)) is a solution of (3.5a). Similarly, if y(t) is a

solution of (3.4b), then G(t, y(t)) is a solution of (3.4a).

Remark 3.1. We can observe that the topological equivalence is an equivalent relation. Moreover,

it is easy to verify that δ-nonuniform kinematical similarity is a particular case of topological

equivalence. Indeed, the properties of Definition 3.1 are verified with H(t, ξ) = S−1(δ, t)ξ.

3.2 Mathematical preliminaries.

The following is the proof of the claim in the Remark 3.1.

Proposition 3.1. If

ẋ = F (t, x(t)) (3.7)

and

ẏ = G(t, y(t)), (3.8)

are nonuniformly kinematically similar, then they are topologically equivalent.

Proof. Let S(t) be the nonuniform kinematically similarity between (3.7) and (3.8). Now we define

the function H(t, x) = S−1(t)x, and if we denote Ht(x) = H(t, x) for any t ∈ R+
0 fixed, then Ht(x)

is continuous, has inverse Gt(y) = S(t)y for any t ∈ R+
0 fixed, which also is continuous. If X(t) is

solution of (3.7), then H(t,X(t)) = S−1(t)X(t) = Y (t) is solution of (3.8).

On the other hand, for any fixed t ∈ R+
0 , we have the following estimate

‖G(t,H(t, ξ))‖ = ‖ξ‖ ≤M exp(υt) ‖H(t, ξ)‖ ,

and if ‖ξ‖ → +∞, then ‖H(t, ξ)‖ → +∞.
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Now we will rewrite the definition of nonuniformly kinematically similar and nonuniformly

almost reducible, concepts that we already defined in the previous chapters and that will be

important in the development of this chapter.

Definition 3.2. ( [47]) Given a δ > 0, the linear system (3.4a) is δ-nonuniformly kinematically

similar to

ẏ = U(t)y, (3.9)

if there exist a Lyapunov’s transformation S(δ, t) and υ ≥ 0, with

‖S(δ, t)‖ ≤Mυ,δ exp(υt) and
∥∥S−1(δ, t)

∥∥ ≤Mυ,δ exp(υt),

such that the change of coordinates y(t) = S−1(δ, t)x(t) transforms the system (3.4a) into (3.9).

Remark 3.2. The nonuniform kinematical similarity preserves the nonuniform contraction (see

more details in chapter 2, Lemma 1.2). Thus, as the systems ( 3.4a) and (3.5a) are δ–nonuniformly

kinematically similar (see Theorem 2.2), and as the system (3.4a) satisfies the condition (P2) with

K ≥ 1, α > 0, µ ≥ 0 and if α > µ, then the system (3.5a) admits a nonuniform contraction, i.e.,

there exist K1 ≥ 1, α1 > 0 and µ1 ≥ 0 satisfying

‖Ψ(t, s)‖ ≤ K1 exp(−α1(t− s) + µ1s), t ≥ s ≥ 0, (3.10)

where Ψ(t, s) is the evolution operator of (3.5a).

Definition 3.3. ( [9]) The system (3.4a) is nonuniformly almost reducible to

ẏ = C(t)y,

if for any δ > 0 and ε ≥ 0, there exists a constant Kδ,ε ≥ 1 such that (3.4a) is δ−nonuniformly

kinematically similar to

ẏ = [C(t) +B(t)]y, with ‖B(t)‖ ≤ δKδ,ε

for any t ∈ R+
0 .

Some comments that we can provide in relation to the nonuniform spectrum and the nonuniform

almost reducibility, for the context of this chapter, are the following:

Remark 3.3. From the nonuniform exponential dichotomy spectrum, assumptions (P1), (P2)

and (P3) can be better understood. Indeed: (P2) implies that Σ(A) is a finite union of at most

m ≤ n compact intervals

Σ(A) =

m⋃
i=1

[ai, bi],

with −∞ < a1 ≤ b1 < . . . < am ≤ bm < +∞.

Therefore, in the charpter 2 we proved that diagonals terms of C(t) are contained in Σ(A).
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(P3) implies that Σ(A) ⊂ (−∞, 0). In fact, for λ ∈ R we have that

‖Φλ(t, s)‖ = ‖exp(−λ(t− s))Φ(t, s)‖ ,
≤ K exp(−(α+ λ)(t− s) + µs),

with α > µ and Φλ(t, s) is the evolution operator of system ẋ = (A(t) − λI)x. If α + λ > µ, so

λ > −(α− µ), then λ ∈ ρ(A). Thus

Σ(A) ⊂ (−∞,−(α− µ)) ⊂ (−∞, 0).

In Theorem 2.2 from chapter 2 it was proved that if (P1) and (P2) are satisfied, the system

(1.1) is δ-nonuniformly kinematically similar via S−1(δ, t) to (3.1), where C(t) = Diag(C1(t), . . . , Cn(t))

with Ci(t) ∈ Σ(A) and ‖B(t)‖ ≤ δKδ,ε.

In addition, under the same transformation, the system (3.2) is transformed in

ẏ = (C(t) +B(t))y + S−1(δ, t)f(t, S(δ, t)y). (3.11)

3.3 Lyapunov function and quadratic forms.

In this section, for the system (3.4a), we obtain a complete characterization of nonuniform con-

traction in terms of a Lyapunov function which will allow us to construct a topological equivalence

between systems (3.4a)–(3.4b) and (3.5a)–(3.5b). For this purpose, we recall the definition of strict

Lypaunov function and the main results from [29].

Definition 3.4. Given K ≥ 1 and υ ≥ 0. We say that a continuous function V : [0,+∞)×X → R+
0 ,

where X is a Banach space, is a strict Lyapunov function for (3.4a) if

(V1) ‖x‖2 ≤ V (t, x) ≤ K2 exp(2υt) ‖x‖2, for any t ≥ 0 and x ∈ X,

(V2) V (t,Φ(t, s)x) ≤ V (s, x), for any t ≥ s ≥ 0 and x ∈ X,

(V3) Exists γ > 0 such that V (t,Φ(t, s)x) ≤ exp(−2γ(t− s))V (s, x), ∀t ≥ s ≥ 0 and x ∈ X.

The last definition has subtle differences with respect to Liao et al. [29]. In fact, we have

tailored it in order to relate it with the nonuniform exponential dichotomy. Indeed, we have the

following result.

Theorem 3.1. The system (3.4a) has nonuniform contraction if and only if it admits a strict

Lyapunov function.
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Proof. Suppose that there exists a strict Lyapunov function for (3.4a). From the conditions (V1)

and (V3) we have

‖Φ(t, s)x‖2 ≤ V (t,Φ(t, s)x) ≤ exp(−2γ(t− s))V (s, x),

≤ exp(−2γ(t− s))K2 exp(2υs) ‖x‖2

which implies that

‖Φ(t, s)x‖ ≤ K exp(−γ(t− s) + υs) ‖x‖ .

Therefore, (3.4a) admits a nonuniform contraction with γ = α and υ = µ.

On the other hand, for t ≥ 0 and x ∈ X we define

V (t, x) = sup
τ≥t

{
‖Φ(τ, s)x‖2 exp(2α(τ − t))

}
.

As (3.4a) admits nonuniform contraction, we have that V (t, x) ≤ K2 exp(2µt) ‖x‖2. If we consider

τ = t, then ‖x‖2 ≤ V (t, x). Now, for t ≥ s ≥ 0

V (t,Φ(t, s)x) = supτ≥t

{
‖Φ(τ, t)Φ(t, s)x‖2 exp(2α(τ − t))

}
,

= exp(2α(s− t)) supτ≥t

{
‖Φ(τ, s)x‖2 exp(2α(τ − s))

}
,

≤ exp(2α(s− t)) supτ≥s

{
‖Φ(τ, s)x‖2 exp(2α(τ − s))

}
,

= exp(−2α(t− s))V (s, x).

Therefore, V is a strict Lyapunov function for (3.4a).

Now we will focus in Lyapunov functions that are defined in terms of quadratic forms. Let

S(t) ∈ B(X) be a symmetric positive-definite operator for t ≥ 0, where B(X) the space of bounded

linear operators in a Banach space X. A quadratic Lyapunov function V is given as

V (t, x) = 〈S(t)x, x〉 . (3.12)

Remark 3.4. Given two linear operators M,N , we write M ≤ N if they verify 〈Mx, x〉 ≤ 〈Nx, x〉
for x ∈ X.

The following result (see [29, Theorem 2.2] with µ(t) = et ) establishes a characterization of

nonuniform contraction in terms of the existence of quadratic Lypaunov function.

Proposition 3.2. Assume that there exist constants c > 0 and d ≥ 1 such that

‖Φ(t, s)‖ ≤ c, whenever t− s ≤ ln(d) (3.13)

Then (3.4a) admits a nouniform contraction if and only if there exist symmetric positive definite
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operators S(t) and constant C,K1 > 0 such that S(t) is of class C1 in t ≥ 0 and

‖S(t)‖ ≤ CK1 exp(2µt), (3.14)

S ′(t) +A∗(t)S(t) + S(t)A(t) ≤ (−Id+K1S(t)). (3.15)

Proof. First we consider the linear operator

S(t) =

∫ +∞

t
Φ(τ, t)∗Φ(τ, t) exp(2(α− %)(τ − t))dτ,

for some constant % ∈ (0, α) and Φ(τ, t)∗ represents the adjoint operator of Φ(τ, t). Clearly , S(t)

symmetric for each t ≥ 0. Moreover, by (3.12), we note that

‖V (t, x)‖ =

∫ +∞

t
‖Φ(τ, t)x‖2 exp(2(α− %)(τ − t))dτ,

≤ K2 exp(2µt) ‖x‖2
∫ +∞

t
exp(−2%(τ − t))dτ,

=
K2 exp(2µt)

2%
‖x‖2 .

Since the operator S(t) is symmetric for any t ≥ 0, then we have that

‖S(t)‖ = sup
‖x‖=1

V (t, x) ≤ K2 exp(2µt)

2%
,

and therefore (3.14) holds. Since

∂Φ(τ, t)

∂t
= −Φ(τ, t)A(t),

∂Φ(τ, t)∗

∂t
= −A(t)∗Φ(τ, t)∗,

we find that S(t) is of class C1 in t with derivative

S ′(t) = −Id−
∫ +∞

t
A(t)∗Φ(τ, t)∗Φ(τ, t) exp(2(α− %)(τ − t))dτ

−
∫ +∞

t
Φ(τ, t)∗Φ(τ, t)A(t) exp(2(α− %)(τ − t))dτ

−2(α− %)

∫ +∞

t
Φ(τ, t)∗Φ(τ, t) exp(2(α− %)(τ − t))dτ,

which implies that

S ′(t) = −Id−A(t)∗S(t)− S(t)A(t)− 2(α− %)S(t).

Therefore

S ′(t) +A(t)∗S(t) + S(t)A(t) = −(Id+ 2(α− %)S(t)), (3.16)

which establishes (3.15) with

K = 2(α− %). (3.17)

On the other hand, set x(t) = Φ(t, τ)x(τ). By (3.14), we have

V (t, x(t)) ≤ ‖S(t)‖ ‖x(t)‖2 ≤ CK2 exp(2µt) ‖x‖2 . (3.18)
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The following results allow us conclude this implicance

Lemma 3.1. There exists a constant η > 0 such that

V (t, x(t)) ≥ η ‖x‖2 . (3.19)

Proof. Note that

d

dt
V (t, x(t)) =

〈
S ′(t)x(t), x(t)

〉
+ 〈S(t)A(t)x(t), x(t)〉+ 〈S(t)x(t), A(t)x(t)〉 ,

=
〈
(S ′(t) + S(t)A(t) +A(t)∗S(t))x(t), x(t)

〉
.

(3.20)

Hence, by condition (3.15) and the fact that K > 0 we obtain

d

dt
V (t, x(t)) ≤ −‖x‖2 .

Now given τ > 0, take t > τ such that exp(t) = d exp(τ) with d as in (3.13). Then

V (t, x(t))− V (τ, x(τ)) =

∫ t

τ

d

dv
V (v, x(v))dv,

≤ −
∫ t

τ
‖x‖2 dv,

= −
∫ t

τ
‖Φ(v, τ)x(τ)‖2 dv,

≤ −‖x‖2
∫ t

τ

1

‖Φ(τ, v)‖2
dv.

It follows from (3.13) that

V (t, x(t))− V (τ, x(τ)) ≤ − 1

c2
‖x(τ)‖2

∫ t

τ
1dv,

= − log(d)

c2
‖x(τ)‖2 .

Since V (t, x(t)) ≥ 0, we have

V (τ, x(τ)) ≥ V (τ, x(τ))− V (t, x(t)) ≥ log(d)

c2
‖x‖2 .

which yields (3.19) with η = log(d)
c2

.

Lemma 3.2. For t ≥ τ we have

V (t, x(t)) ≤ exp(−K(t− τ))V (τ, x(τ)).

Proof. By (3.15) and (3.20) we have that

d

dt
V (t, x(t)) ≤ −KV (t, x(t)).

Therefore
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V (t, x(t))− V (τ, x(τ)) =

∫ t

τ

d

dv
V (v, x(v))dv ≤ −K

∫ t

τ
V (v, x(v))dv.

It follows from Gronwall lemma that

V (t, x(t)) ≤ exp(−K(t− τ))V (τ, x(τ)),

which yields the desired result.

By lemmas 3.1 and 3.2 together with (3.18), we obtain

‖Φ(t, τ)x(τ)‖2 = ‖x(t)‖2 ,

≤ η−1V (t, x(t)),

≤ η−1 exp(−K(t− τ))V (τ, x(τ)),

≤ η−1CK2 exp(2µτ) exp(−K(t− τ)) ‖x(τ)‖2 ,

and therefore

‖Φ(t, τ)‖ ≤ (η−1CK2)
1
2 exp(µτ) exp

(
−K

2
(t− τ)

)
.

Remark 3.5. If the system (3.4a) satisfies the properties (P3), this implies the condition (3.13).

3.4 Main results

The principal results of this chapter are the following:

Theorem 3.2. Consider the couple of system (3.5a)–(3.5b) such that Ci(t) ∈ Σ(A) for i = 1, . . . , n

and ‖B(t)‖ ≤ δKδ,ε. If (P1)–(P3) are satisfied, then

(1) If y(t) is solution of (3.5b) and α1 > µ1, then for Lg < α1 − µ1, we have

dV (t, y(t))

dt
≤ −2[α1 − µ1 − Lg]V (t, y(t)), (3.21)

where V (t, x) is a Lyapunov function associated to (3.5a).

(2) The systems (3.5a)–(3.5b) are topologically equivalent.

Theorem 3.3. If the properties (P1)-(P4) are verified with 0 < δ < α− µ and f ∈ A2 such that

Lf ≤
δ

M2
1

, (3.22)
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with ‖S(δ, t)‖ ≤ M1 exp(βt) and
∥∥S−1(δ, t)

∥∥ ≤ M1 exp(βt), for some β > 0, then the systems

(3.4a) and (3.4b) are topologically equivalent.

Theorem 3.4. If the properties (P1)-(P4) are verified with 0 < δ < α− µ and f ∈ A1 such that

Lf ≤ min

{
δ

M2
1

,
α

K

}
, (3.23)

then the systems(3.4a) and (3.4b) are topologically equivalent.

3.5 Some basic results

The following proposition is a classical result of local continuity with respect to the initial conditions

for differential equations.

Proposition 3.3. Let us consider the differential equation

ẋ = F (t, x) (3.24)

where F ∈ A2, then for the solution X(t, s, u) of (3.24) with X(s, s, u) = u, we have that

‖u− v‖ exp(−LF |t− s|) ≤ ‖X(t, s, u)−X(t, s, v)‖ ≤ ‖u− v‖ exp(LF |t− s|).

Proof. For any u ∈ Rn, we have

X(t, s, u) = u+

∫ t

s
F (X(r, s, u), r)dr,

so

‖X(t, s, u)−X(t, s, v)‖ ≤ ‖u− v‖+

∣∣∣∣∫ t

s
LF ‖X(r, s, u)−X(r, s, v)‖ dr

∣∣∣∣ .
By Gronwall’s Lemma,

‖X(t, s, u)−X(t, s, v)‖ ≤ ‖u− v‖ exp(LF |t− s|).

Replacing u and v with X(s, t, u) and X(s, t, v) respectively, it follows that

‖X(s, t, u)−X(s, t, v)‖ ≥ ‖u− v‖ exp(−LF |t− s|).

The following result is an extension to the nonuniform context of [31, Proposition 5].

Proposition 3.4. Assume that the system (3.4a) has a nonuniform exponential dichotomy on R+
0

with K ≥ 1, constants α > 0, µ ≥ 0 and P (t) = I for any t ∈ R+
0 . Let us consider the nonlinear

perturbation
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ẋ = A(t)x+ F(t, x(t), κ) (3.25)

where F : R+
0 × Rn ×B → Rn and B is a Banach space. Moreover, F satisfies the following

conditions:

(i) F(t, x, κ) is bounded with respect a t, for all x ∈ Rn and κ ∈ B fixed with the norm

‖F(x, κ)‖A = sup
t∈R+

0

exp(−µt) ‖F(t, x, κ)‖ .

(ii) There exist LF > 0 such that

‖F(t, x1, κ)−F(t, x2, κ)‖ ≤ LF exp(−2µt) ‖x1 − x2‖

for any t ∈ R+
0 and κ ∈ B.

(iii) K0 = supt∈R+
0 ,κ∈B

‖F(t, 0, κ)‖ < +∞

If KLF < α then for any fixed κ ∈ B the system (3.25) has a unique bounded solution Z(t, κ),

with the norm ‖·‖A, described by

Z(t, κ) =

∫ t

0
Φ(t, τ)F(τ, Z(τ, κ), κ)dτ. (3.26)

such that supt∈R+
0 ,κ∈B

‖Z(t, κ)‖ < +∞.

Proof. Let us consider a fixed κ ∈ B and construct the sequence {ϕj}j recursively defined by

ϕj+1(t, κ) =

∫ t

0
Φ(t, τ)F(τ, ϕj(τ, κ), κ)dτ

and

ϕ0(t, κ) =

∫ t

0
Φ(t, τ)F(τ, 0, κ)dτ,

where ϕ0(t, κ) ∈ C, where C is defined by

C =

{
U : R+

0 ×B → Rn : for any κ ∈ B fixed,

‖U(κ)‖A < +∞ and U is continuous in (t, κ)

}
with ‖U(κ)‖A = supt∈R+

0
exp(−µt) ‖U(t, κ)‖.

In the first place we will proof that (C, ‖·‖A) is a Banach space. Indeed, let {Un}n∈N be a

Cauchy sequence in C, then for any ε > 0 and for τ ∈ R+
0 fixed, there exists N ∈ N such that for

all n,m ∈ N

‖Un(κ)− Um(κ)‖A = sup
t∈R+

0

exp(−µt) ‖Un(t, κ)− Um(t, κ)‖ < ε,
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but the expression exp(−µτ) ‖Un(τ, κ)− Um(τ, κ)‖ ≤ ‖Un − Um‖A implies that

‖Un(τ, κ)− Um(τ, κ)‖ ≤ exp(µτ)ε,

then {Un(τ, κ)}n∈N is a Cauchy sequence in Rn, so we obtain a well-defined function U : R+
0 ×B →

Rn that satisfies U(τ, κ) = limn→+∞ Un(τ, κ) for τ, κ fixed. Therefore we have

‖U(τ, κ)− Un(τ, κ)‖ = lim
m→+∞

‖Um(τ, κ)− Un(τ, κ)‖ ≤ lim
m→+∞

exp(µτ)ε = exp(µτ)ε,

then

exp(−µτ) ‖U(τ, κ)− Un(τ, κ)‖ < ε,

so

sup
τ∈R+

0

exp(−µτ) ‖U(τ, κ)− Un(τ, κ)‖ ≤ ε.

Thus, ‖U(κ)‖A ≤ ‖U(κ)− Un(κ)‖A + ‖Un(κ)‖A <∞ for big n ∈ N and U is continuous due to

the continuity of Uk, then U ∈ C, so (C, ‖·‖A) is a Banach space.

Now we will prove by induction that ϕj ∈ C for any j ∈ N ∪ {0}. Indeed, if ϕj ∈ C, we

estimate ‖ϕj+1(κ)‖A

‖ϕj+1(t, κ)‖ ≤
∫ t

0
K exp(−α(t− τ) + µτ)(LF exp(−2µτ) ‖ϕj(τ, κ)‖+K0),

from which it follows that if Kj = ‖ϕj(κ)‖A, then

exp(−µt) ‖ϕj+1(t, κ)‖ ≤
∫ t

0
K exp(−α(t− τ))(LFKj + exp(µτ)K0)dτ,

<
KKjLF

α
+
KK0

µ
< +∞

and we obtain

‖ϕj+1(κ)‖A = sup
t∈R+

0

exp(−µt) ‖ϕj+1(t, κ)‖ ≤ KKjLF
α

+
KK0

µ
< +∞.

From the above, we can consider a map T : C → C given by

T (Z(t, κ)) =

∫ t

0
Φ(t, τ)F(τ, Z(τ, κ), κ)dτ,

which is well defined. Since we have that KLF < α, we have that T is a contraction, indeed

‖T (Z1(t, κ))− T (Z2(t, κ))‖ ≤
∫ t

0
KLF exp(−α(t− τ) + µτ − 2µτ) ‖Z1(τ, κ)− Z2(τ, κ)‖ dτ,

‖T (Z1(κ))− T (Z2(κ))‖A ≤
KLF
α
‖Z1(κ)− Z2(κ)‖A ,

which implies that {ϕj} is the unique sequences in C satisfying the recursivity stated above.

Now we will prove that {ϕj} is a Cauchy sequence in the Banach space (C, ‖·‖A). We proceed
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inductively. We observe that, firstly

‖ϕ1(t, κ)− ϕ0(t, κ)‖ ≤
∫ t

0
K exp(−α(t− τ) + µτ)LF exp(−2µτ) ‖ϕ0(τ, κ)‖ dτ,

≤ KLF
KK0

α

∫ t

0
exp(−α(t− τ))dτ ≤ K̄KLF

α
,

which implies that

‖ϕ1(κ)− ϕ0(κ)‖A ≤ K̄
KLF
α

with K̄ =
KK0

α
.

As inductive hypothesis, we have that ‖ϕj(κ)− ϕj−1(κ)‖A ≤ K̄
(
KLF
α

)j
, and therefore

‖ϕj+1(t, κ)− ϕj(t, κ)‖ ≤
∫ t

0
K exp(−α(t− τ) + µτ)LF exp(−2µτ) ‖ϕj(τ, κ)− ϕj−1(τ, κ)‖ dτ,

≤ K̄KLF

(
KLF
α

)j ∫ t

0
exp(−α(t− τ))dτ ≤ K̄

(
KLF
α

)j+1

,

‖ϕj+1(κ)− ϕj(κ)‖A ≤ K̄

(
KLF
α

)
.

Finally, for all ε > 0 there exists N(ε) ∈ N such that for any n,m ≥ N we have

‖ϕn(κ)− ϕm(κ)‖A ≤ K̄
(
KLF
α

)m+1
(

1 + KLF
α + · · ·+

(
KLF
α

)n−(m−1)
)

≤ K̄
(
KLF
α

)N 1−
(
KLF
α

)n−m
1

− KLF
α

 ,

≤ K̄
(
KLF
α

)N ( 1

1− KLF
α

)
< ε.

which proves that {ϕj} is a Cauchy sequence in the Banach space C convergent to the fixed point

Z(t, κ) defined by (3.26).

Considering a fixed κ ∈ B we have that ‖Z(κ)‖A < C(κ). That is, Z(·, κ) ∈ C but its

bound C(κ) could be dependent of κ. However, we will prove that C(κ) has an upper bounded

independent of κ. Indeed, combining the properties (ii), (iii) with the nonuniform exponential
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dichotomy of (3.4a), we have that

‖Z(t, κ)‖ ≤ KLF

∫ t

0
exp(−α(t− τ) + µτ) exp(−2µτ) ‖Z(τ, κ)‖ dτ

+KK0

∫ t

0
exp(−α(t− τ) + µτ)dτ,

which implies that

exp(−µt) ‖Z(t, κ)‖ ≤ KLF
∫ t

0
exp(−α(t− τ)) exp(−µτ) ‖Z(κ)‖A dτ

+KK0

∫ t

0
exp(−α(t− τ))dτ.

Thus,

exp(−µt) ‖Z(t, κ)‖ ≤ KLFC(κ)

α
+
KK0

α
,

and taking supremum over t ∈ R+
0 , we obtain

C(κ) ≤ KK0

α

(
1− KLF

α

)−1

3.6 Proof of Theorem 3.2

We will follow the lines of proof of the Lemma of the Palmer’s article [35, p. 11] in order to obtain

(1) and (2) of our Theorem. We point out that in the calculations of the derivative of V with

respect t evaluated at the origin, we are considering only the right side derivative.

Let x(t) = X(t, τ, ξ) be the solution of (3.5a) such that x(τ) = ξ 6= 0 and y(t) = Y (t, s, ω) be

the solution of (3.5b) such that y(s) = ω 6= 0.

As the system (3.5a) has nonuniform contraction (by Remark 3.2), we have that its evolution

operator satisfies (3.13), we can use Proposition 3.2 to obtain a symmetric positive definite operator

S(t) which define a strict Lyapunov function V (t) associated to the system (3.5a). Thus, by using

the construction of V (t), (3.14), Remark 3.2 and the Lipschitz constant Lg of function g, we obtain

that:
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dV (t, y(t))

dt
=
〈
S ′(t)y(t), y(t)

〉
+ 〈S(t)[A(t)y(t) + g(t, y(t))], y(t)〉

+ 〈S(t)y(t), A(t)y(t) + g(t, y(t))〉 ,

= 〈S(t)y(t) + S(t)A(t)y(t) +A∗(t)S(t)y(t), y(t)〉

+ 〈S(t)g(t, y(t)), y(t)〉+ 〈S(t)y(t), g(t, y(t))〉 ,

≤〈−[Id+ 2(α1 − µ1)S(t)y(t), y(t)]〉+ 2 〈S(t)g(t, y(t)), y(t)〉 ,

≤〈−2(α1 − µ1)S(t)y(t), y(t)〉+ 2 〈S(t)Lgy(t), y(t)〉 ,

=− 2(α1 − µ1)V (t, y(t)) + 2LgV (t, y(t)),

≤− 2[α1 − µ1 − Lg]V (t, y(t)),

and the part (1) of our result follows.

Notice that if we consider x(t), then in the previous inequality we have

dV (t, x(t))

dt
≤ −2[α1 − µ1]V (t, x(t)) ≤ −2[α1 − µ1 − Lg]V (t, x(t)). (3.27)

Now we will prove that second statement our result. From Lemma 3.2 and considering

γ = α1 − µ1 − Lg > 0, we have that

V (t, x(t)) ≤ V (s, x(s)) exp(−γ̄(t− s)), t ≥ s

with γ̄ = 2γ, then V (t, x(t)) is strictly decreasing and converges to 0 as t tends to infinity. Now

given ε > 0, let ` = `(ε) > 0 such that there exists a unique T = T (τ, ξ) that satisfies

V (T, x(T )) =
`

2
.

It is easy to see that T (τ, ε) is a continuous function of (τ, ξ) for ξ 6= 0. Now we define

H(τ, ξ) =


Y (τ, T (τ, ξ), X(T (τ, ξ), τ, ξ)) if ξ 6= 0,

0 if ξ = 0.

(3.28)

Clearly, H(τ, ξ) is continuous for ξ 6= 0. With the purpose to discuss its continuity at ξ = 0,
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we analyze the behaviour of |T (τ, ξ)− τ | as ξ tends to 0. By (V1) and Proposition 3.3 we have

`

2
= V (T (τ, ξ), X(T (τ, ξ), τ, ξ)),

≤ K2 exp(2υT (τ, ξ)) ‖X(T (τ, ξ), τ, ξ)‖2 ,

= K2 exp(2υT (τ, ξ)) exp(2LF |T (τ, ξ)− τ |) ‖ξ‖2 .

Then

exp(−|T (τ, ξ)− τ |) ≤

(
2K exp(2υT (τ, ξ)) ‖ξ‖2

`

) 1
2LF

, (3.29)

where LF = |ā1| + δKδ,ε. Notice that the system (3.5a) has nonuniform contraction with its

evolution operator with nonuniformly bounded growth (see Remark 2.1) which imply that the

spectrum Σ(C(t) +B(t)) =
⋃m
i=1[āi, b̄i] ⊂ (−∞, 0).

Now by Lemma 3.1, there exists η > 0 such that

η ‖H(τ, ξ)‖2 ≤ V (τ,H(τ, ξ)),

≤ V (τ, Y (τ, T,X(T, τ, ξ))).

However, we have

‖ξ‖ ≤
(
` exp(−2υτ)

2K2

) 1
2

⇒ V (τ, ξ) ≤ K2 exp(2υτ) ‖ξ‖2 ≤ `

2
⇒ T (τ, ξ) ≤ τ.

It follows by Lemma 3.2 and (3.29) that

‖H(τ, ξ)‖2 ≤ η−1 exp(−γ̄(τ − T ))V (T, Y (T, T,X(T, τ, ξ))),

=
η−1` exp(−γ̄(τ − T ))

2
,

≤
(
η−1`

2

)(
2K exp(2υT (τ, ξ)) ‖ξ‖2

`

) γ̄
2LF

.

Hence, if ‖ξ‖ ≤
(
` exp(−2υτ)

2K2

) 1
2

we obtain

‖H(τ, ξ)‖ ≤
(
η−1`

2

) 1
2

(
2K exp(2υT (τ, ξ)) ‖ξ‖2

`

) γ̄
4LF

.

On the other hand, by Lemma 3.1 and Proposition 3.3 we have that
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`

2
= V (T (τ, ξ), X(T (τ, ξ), τ, ξ)),

≥ η ‖X(T (τ, ξ), τ, ξ)‖2 ,
≥ η ‖ξ‖2 exp(−2LF |T (τ, ξ)− τ |).

Thus,

exp(|T (τ, ξ)− τ |) ≥

(
2η ‖ξ‖2

`

) 1
2LF

. (3.30)

Notice that

‖ξ‖ ≥
(
`

2η

) 1
2

⇒ `

2
≤ η ‖ξ‖2 ≤ V (τ, ξ)⇒ T (τ, ξ) ≥ τ.

Then if ‖ξ‖ ≥
(
`

2η

) 1
2
, by (3.30) and (V3), we have

‖H(τ, ξ)‖2 ≥ exp(−2υτ)

K2
V (τ,H(τ, ξ)),

=
exp(−2υτ)

K2
V (τ, Y (τ, T,X(T, τ, ξ))),

≥ exp(−2υτ + γ̄(T − τ))

K2
V (T, Y (T, T,X(T, τ, ξ))),

=
` exp(−2υτ)

2K2
exp(γ̄(T − τ)),

≥ ` exp(−2υτ)

2K2

(
2η ‖ξ‖2

`

) γ̄
2LF

Therefore

‖H(τ, ξ)‖ ≥
(
` exp(−2υτ)

2K2

) 1
2

(
2η ‖ξ‖2

`

) γ̄
4LF

.

Now we proof that if x(t) is a solution of (3.5a), H(t, x(t)) is a solution of (3.5b).

If ξ = 0,

H(t,X(t, τ, ξ)) = H(t, 0) = 0.

In the case when ξ 6= 0, we have that

H(t,X(t, τ, ξ)) =Y (t, T (t,X(t, τ, ξ)), X(T (t,X(t, τ, ξ)), t,X(t, τ, ξ))),

=Y (t, T (t,X(t, τ, ξ)), X(T (t,X(t, τ, ξ)), τ, ξ)).

On the one hand we have

`

2
= H(T (τ, ξ), X(T (τ, ξ), τ, ξ)) = H(T (τ, ξ), X(T (τ, ξ), t,X(t, τ, ξ))), (3.31)



3.6. Proof of Theorem 3.2 64

and on the other hand

`

2
=H(T (t,X(t, τ, ξ)), X(T (t,X(t, τ, ξ)), t,X(t, τ, ξ))), (3.32)

and by the equations (3.31) and (3.32), we deduce that T (t,X(t, τ, ξ)) = T (τ, ξ). Hence, for all

t, τ ≥ 0, and ξ 6= 0,

H(t,X(t, τ, ξ)) = Y (t, T (τ, ξ), X(T (τ, ξ), τ, ξ)), (3.33)

which is a solution of (3.5b).

Similarly, we define a mapping

G(τ, ξ) =


X(τ, S(τ, ξ), Y (S(τ, ξ), τ, ξ)) if ξ 6= 0,

0 if ξ = 0,

(3.34)

where S = S(τ, ξ) is the unique time s such that

V (S, y(S)) =
`

2
.

We can deduce similar properties to those of the function H for G and, moreover we have

G(t, Y (t, τ, ξ)) = X(t, S(τ, ξ), Y (S(τ, ξ), τ, ξ)), ξ 6= 0,

which is obtained in a similar way to (3.33).

To prove that H(τ,G(τ, ξ)) = ξ, if S = S(τ, y) we note that
`

2
can be written as

`

2
= V (T (S, Y (S, τ, y)), X(T (S, Y (S, τ, y)), S, Y (S, τ, y))), (3.35)

and as
`

2
= V (S, Y (S, τ, y)) = V (S,X(S, S, Y (S, τ, y))). (3.36)

From the equations (3.35) and (3.36) we can assure that

T (S(τ, y), Y (S(τ, y), τ, y)) = S(τ, y). (3.37)

Therefore we have

H(τ,G(τ, ξ)) =H(τ,X(τ, S(τ, ξ), Y (S(τ, ξ), τ, ξ))),

=Y (τ, T (S, Y (S, τ, ξ)), X(T (S, Y (S, τ, ξ)), S, Y (S, τ, ξ))),

and from (3.37), then we obtain

H(τ,G(τ, ξ)) =Y (τ, S,X(S, S, Y (S, τ, ξ))),

=Y (τ, S, Y (S, τ, ξ)) = ξ.
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In a similar way, we can obtain that

G(τ,H(τ, ξ)) = ξ,

for all τ ∈ R+
0 , ξ ∈ Rn.

3.7 Proof Theorem 3.3

This result is a consequence of the Theorem 3.2. Indeed, we have that (3.4a) and (3.5a) are topolog-

ically equivalent through of the matrix S(δ, t). Then the systems (3.5a) and (3.11) are topologically

equivalent through of the matrix S(δ, t) also. If we denote g(t, y) = S−1(δ, t)f(t, S(δ, t)y), then

g ∈ A2 with Lg = M2
1Lf . In fact,

‖g(t, y1)− g(t, y2)‖ =
∥∥S−1(δ, t)f(t, S(δ, t)y1)− S−1(δ, t)f(t, S(δ, t)y2)

∥∥ ,
≤M1 exp(βt) ‖f(t, S(δ, t)y1)− f(t, S(δ, t)y2)‖ ,

≤M1Lf exp(βt) exp(−2βt) ‖S(δ, t)y1 − S(δ, t)y2‖ ,

≤M2
1Lf ‖y1 − y2‖ .

Since Lg ≤ δ < α − µ, by combining Theorem 3.2 and the fact that topological equivalence is a

equivalence relation, the systems (3.4a) and (3.4b) are topologically equivalent.

3.8 Proof of Theorem 3.4.

We take the function f0(t, x) = f(t, x)− f(t, 0), then f ∈ A1 implies f0 ∈ A2. Indeed, f0(t, 0) = 0

and

‖f0(t, x1)− f0(t, x2)‖ = ‖f(t, x1)− f(t, x2)‖ ≤ Lf exp(−2βt) ‖x1 − x2‖),

for any t ∈ R+
0 , x1, x2 ∈ Rn and some β ≥ 0. As f and f0 have the same Lipschitz constant, by

Theorem 3.3 and inequality (3.23) it is sufficient to prove that the systems (3.4b) and

ẋ = A(t)x+ f0(t, x) (3.38)

are topologically equivalent. By the condition (P3) there exist constants K ≥ 1, α > 0 and µ ≥ 0

satisfying (3.6). For the unique solution X(t, τ, ξ) of (3.38) passing through ξ at t = τ , we define

the function F : R+
0 × Rn ×B → Rn, with B = R+

0 × Rn, as

F (t, y, (τ, ξ)) = f(t, y +X(t, τ, ξ))− f0(t,X(t, τ, ξ)),

= f(t, y +X(t, τ, ξ))− f(t,X(t, τ, ξ)) + f(t, 0).
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If K0 = sup
{
t ∈ R+

0 : ‖f(t, 0)‖
}

then
‖F (t, y, (τ, ξ))‖ ≤ Lf exp(−2βt) ‖y‖+K0,

‖F (t, y1, (τ, ξ))− F (t, y2, (τ, ξ))‖ ≤ Lf exp(−2βt) ‖y1 − y2‖ .

We note that F verifies the hypothesis of Proposition 3.4, which implies that the system

ż = A(t)z + F (t, z, (τ, ξ)) (3.39)

has a unique bounded and continues solution Z(t, (τ, ξ)) defined by

Z(t, (τ, ξ)) =

∫ t

0
Φ(t, s)[f(s, Z(s, (τ, ξ)) +X(s, τ, ξ))− f0(s,X(s, τ, ξ))]ds

with the norm

‖Z‖ = sup
t∈R+

0 ,(τ,ξ)∈R
+
0 ×Rn

exp(−βt) ‖Z(t, (τ, ξ))‖ = M0 < +∞.

Now, let us construct the map H : R+
0 × Rn → Rn as

H(τ, ξ) = ξ + Z(τ, (τ, ξ)). (3.40)

Lemma 3.3. For any (r, t) ∈ R+
0 × R+

0 and (τ, ξ) ∈ R+
0 × Rn we have that

Z(r, (t,X(t, τ, ξ))) = Z(r, (τ, ξ)). (3.41)

Proof. Firstly, we note that

Z(r, (t,X(t, τ, ξ)) =

∫ r

0
Φ(r, s)[f(s, Z(s, (t,X(t, τ, ξ))) +X(s, t,X(t, τ, ξ)))

− f0(s,X(s, t,X(t, τ, ξ)))]ds,

=

∫ r

0
Φ(r, s)[f(s, Z(s, (t,X(t, τ, ξ))) +X(s, τ, ξ))]

− f0(s,X(s, τ, ξ))]ds

and

Z(r, (τ, ξ)) =

∫ r

0
Φ(r, s)[f(s, Z(s, (τ, ξ)) +X(s, τ, ξ))− f0(s,X(t, τ, ξ))]ds.

Secondly, we have the following estimate
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‖Z(r, (t,X(t, τ, ξ)))− Z(r, (τ, ξ))‖ =

∥∥∥∥∫ r

0
Φ(r, s)[f(s, Z(s, (t,X(t, τ, ξ))) +X(s, τ, ξ))− f(s, Z(s, (τ, ξ)) +X(s, τ, ξ))]ds

∥∥∥∥
≤
∫ r

0
KLf exp(−α(r − s) + µs) exp(−2µs) ‖Z(s, (t,X(t, τ, ξ)))− Z(s, (τ, ξ))‖ ds,

≤
KLf
α

sup
r∈R+

0

exp(−µr) ‖Z(r, (t,X(t, τ, ξ)))− Z(r, (τ, ξ))‖

and the Lemma follows.

Lemma 3.4. If t 7→ X(t, τ, ξ) is solution of (3.38) such that X(τ, τ, ξ) = ξ, then t 7→ H(t,X(t, τ, ξ))

is solution of (3.4b).

Proof. Combining the equations (3.40) and (3.41), we have that

H(t,X(t, τ, ξ)) = X(t, τ, ξ) + Z(t, (τ, ξ)),

and a simple computation allows us to verify the statement.

Lemma 3.5. The map ξ 7→ H(τ, ξ) is continuous for any fixed τ ∈ R+
0 .

Proof. By (3.40), the only thing that we should prove is that the map ξ 7→ Z(τ, (τ0, ξ)) is continuous

for any fixed τ . Indeed, let us recall τ 7→ Z(τ, (τ, ξ)) is the unique bounded solution in C of (3.39),

which was constructed by successive approximations in Proposition 3.4. That is

lim
j→+∞

Zj(τ, (τ0, ξ)) = Z(τ, (τ0, ξ)),

where

Zj+1(τ, (τ0, ξ)) =

∫ τ

0
Φ(τ, s)F (s, Zj(s, (τ0, ξ)), (τ0, ξ))ds.

Moreover we know that for any ε > 0, there exists J = J(ε) > 0 such that for any j > J it

follows that ∥∥Z(τ, (τ0, ξ))− Z(τ, (τ0, ξ
′))
∥∥ ≤ ‖Z(τ, (τ0, ξ))− Zj(τ, (τ0, ξ))‖

+
∥∥Zj(τ, (τ0, ξ))− Zj(τ, (τ0, ξ

′))
∥∥

+
∥∥Zj(τ, (τ0, ξ

′))− Z(τ, (τ0, ξ
′))
∥∥

<
2

3
ε+

∥∥Zj(τ, (τ0, ξ))− Zj(τ, (τ0, ξ
′))
∥∥ .
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We will prove by induction that for any j ∈ N, there exists δj > 0 such that∥∥Zj(τ, (τ0, ξ))− Zj(τ, (τ0, ξ
′))
∥∥ < ε

3
if

∥∥ξ − ξ′∥∥ < δj . (3.42)

Indeed, we cosider an initial term

Z0(τ, (τ, ξ)) = Z0(τ, (τ, ξ′)) = φ0 ∈ C

and suppose that (3.42) is verified for some j as inductive hypothesis. Now, we have that∥∥Zj+1(τ, (τ0, ξ))− Zj+1(τ, (τ0, ξ
′))
∥∥ ≤ ∆

where

∆ =

∥∥∥∥∫ τ

0
Φ(τ, s)[F (s, Zj(s, (τ0, ξ)), (τ0, ξ))− F (s, Zj(s, (τ0, ξ

′)), (τ0, ξ
′))]ds

∥∥∥∥
From the definition and properties of F , by Gronwall’s Lemma and inductive hypothesis, we

have that

∆ ≤
∥∥∥∥∫ τ

0
Φ(τ, s)[f(s, Zj(s, (τ0, ξ)) +X(s, τ0, ξ))− f(s, Zj(s, (τ0, ξ

′)) +X(s, τ0, ξ
′))]ds

∥∥∥∥
+

∥∥∥∥∫ τ

0
Φ(τ, s)[f0(s,X(s, τ0, ξ))− f0(s,X(s, τ0, ξ

′))]ds

∥∥∥∥ ,
≤
∫ τ

0
KLf exp(−α(τ − s)− µs)[

∥∥Zj(s, (τ0, ξ))− Zj(s, (τ0, ξ
′))
∥∥+

∥∥X(s, τ0, ξ)−X(s, τ0, ξ
′)
∥∥]ds

+

∫ τ

0
KLf0 exp(−α(τ − s)− µs)[

∥∥X(s, τ0, ξ)−X(s, τ0, ξ
′)
∥∥]ds,

≤ ε

3
KLf

∫ τ

0
exp(−α(τ − s)− µs+ µs)ds

+K(2Lf )

∫ τ

0
exp(−α(τ − s))

∥∥ξ − ξ′∥∥ exp(LF (τ − s))ds,

≤ ε

3

KLf
α

+
K(2Lf )

α
exp(Lfτ)

∥∥ξ − ξ′∥∥
and (3.42) is satisfied for j + 1 when we choose

δj+1 = min

{
δj ,

(
1−

KLf
α

)
exp(−Lfτ)

α

K(2Lf )

ε

3

}
and we can prove the continuity of ξ 7→ Z(τ, (τ0, ξ)). All of the above allows us to conclude that

H is continuous for any fixed τ .



3.8. Proof of Theorem 3.4. 69

Remark 3.6. We note that if Y (t, τ, ξ) is the unique solution of (3.4b) passing through ξ at t = τ ,

we can define the function F̃ : R+
0 × Rn ×B → Rn as

F̃ (t, ỹ, (τ, ξ)) = f0(t, ỹ + Y (t, τ, ξ))− f(t, Y (t, τ, ξ)),

= f(t, ỹ + Y (t, τ, ξ))− f(t, 0)− f(t, Y (t, τ, ξ)).

and obtain 
∥∥∥F̃ (t, ỹ, (τ, ξ))

∥∥∥ ≤ Lf exp(−2βt) ‖ỹ‖+K0,

∥∥∥F̃ (t, ỹ1, (τ, ξ))− F̃ (t, ỹ2, (τ, ξ))
∥∥∥ ≤ Lf exp(−2βt) ‖ỹ1 − ỹ2‖ .

In the same way F̃ satisfies the hypothesis of Proposition 3.4, which implies that the system

ż = A(t)z + F̃ (t, z, (τ, ξ))

has a unique bounded solution Z̃(t, (τ, ξ)) defined by

Z̃(t, (τ, ξ)) =

∫ t

0
Φ(t, s)[f0(s, Z̃(s, (τ, ξ)) + Y (s, τ, ξ))− f(s, Y (s, τ, ξ))]ds.

As a consequence of the previous remark, we can construct the map

G : R+
0 × Rn → Rn as

G(τ, ξ) = ξ + Z̃(τ, (τ, ξ)).

and we prove the following results that are similar to the previous one.

Lemma 3.6. For any (r, t) ∈ R+
0 × R+

0 and (τ, ξ) ∈ R+
0 × Rn we have that

Z̃(r, (t, Y (t, τ, ξ))) = Z̃(r, (τ, ξ)).

Lemma 3.7. If t 7→ Y (t, τ, ξ) is solution of (3.4a) such that Y (τ, τ, ξ) = ξ, then t 7→ G(t, Y (t, τ, ξ))

is solution of (3.38).

Lemma 3.8. The map ξ 7→ G(τ, ξ) is continuous for any fixed τ ∈ R+
0 .

Finally, from all these Lemmas, we can conclude that the systems (3.4b) and (3.38) are topo-

logically equivalent, which is enough to prove the result.

It is important to mention that although a homeomorphism was constructed between (3.4a)

and (3.4b), one of the objectives of this thesis was to achieve some kind of regularity for this

homeomorphism. In that line, in the article [20] is used the spectral theory to prove that the

linearization is simultaneously differentiable in the origin and Hölder continuous in an neighborhood

of the origin by using a different approach to this thesis .
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[44] H. Wu, W. Li. Poincaré type theorems for non–autonomous systems. J. Differential Equations,

245 (2008),2958–2978.



Bibliography 73

[45] Y. Xia, Y. Bai, D. O’Regan. A new method to prove the nonuniform dichotomy spectrum

theorem in Rn, Proc. Amer. Math. Soc. DOI: https://doi.org/10.1090/proc/14535.
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