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Abstract

In this work we study some dynamical properties of symbolic dynamical systems, with particular em-

phasis on the rol played by the invariant probability measures of such systems. We approach the study

of the set of invariant measures from a topological, combinatorial and geometrical point of view.

From a topological point of view, we focus on the problem of orbit equivalence and strong orbit equi-

valence between dynamical systems given by minimal actions of Z, through the study of an algebraic

invariant, namely the dynamical dimension group. Our work presents a description of the dynamical

dimension group for two particular classes of subshifts: S-adic subshifts and dendric subshifts.

From a combinatorial point of view, we are interested in the problem of balance in minimal uniquely

ergodic systems given by actions of Z. We investigate the behavior regarding balance for substitutive,

S-adic and dendric subshifts. We give necessary conditions for a minimal substitutive system with

rational frequencies to be balanced on its factors, obtaining as a corollary the unbalance in the factors

of length at least 2 in the subshift generated by the Thue–Morse sequence.

Finally, from the geometrical point of view, we investigate the problem of realization of Choquet

simplices as sets of invariant probability measures associated to systems given by minimal actions

of amenable groups on the Cantor set. We introduce the notion of congruent monotileable amenable

group, we prove that every virtually nilpotent amenable group is congruent monotileable, and we show

that for a discrete infinite group G with this property, every Choquet simplex can be obtained as the

set of invariant measures of a minimal G-subshift.

Key words: subshift, invariant probability measure, orbit equivalence, dimension group, balance,

Choquet simplex, amenable group.



Resumé

Dans ce travail nous étudions quelques propriétés des systèmes symboliques, avec un accent particulier

mis sur le rôle joué par les mesures invariantes de tels systèmes. Nous nous attachons à l’étude des

mesures invariantes d’un point de vue topologique, combinatoire et géométrique.

Du point de vue topologique, nous nous concentrons sur le problème de l’équivalence orbitale et

l’équivalence orbitale forte entre des système dynamiques donnés par des actions minimales de Z, par

l’étude d’un invariant algébrique, à savoir, le groupe de dimension dynamique. Notre travail donne

une description du groupe de dimension dynamique pour deux classes particulières de sous-shifts : les

sous-shifts S-adiques et les sous-shifts dendriques.

Du point de vue combinatoire, nous nous intéressons au problème de l’équilibre des sous-shifts mi-

nimaux et uniquement ergodiques donnés par des actions de Z. Nous étudions le comportement

concernant l’équilibre pour des sous-shifts substitutifs, S-adiques et dendriques. Nous établissons

des conditions nécessaires pour qu’un sous-shift substitutif minimal avec des fréquences rationnelles

soit équilibré par rapport à ses facteurs, en obtenant comme corollaire le déséquilibre des facteurs de

longueur supérieure à 2 dans le sous-shift engendré par la substitution de Thue–Morse.

Enfin, du point de vue géométrique, nous étudions le problème de réalisation des simplexes de Choquet

comme des ensembles de mesures de probabilité invariantes associés à des systèmes donnés par des

actions minimales des groupes moyennables sur l’ensemble de Cantor. Nous introduisons la notion

de groupe moyennable congruent-monopavable, nous montrons que tout groupe moyennable virtuelle-

ment nilpotent est congruent-monopavable, et que pour un group discret infini G avec cette propriété,

tout simplexe de Choquet peut s’obtenir comme l’ensemble des mesures invariantes d’un G-sous-shift

minimal.

Mots clés : sous-shift, mesure de probabilité invariante, équivalence orbitale, groupe de dimension,

équilibre, simplexe de Choquet, groupe moyennable.



Resumen

En este trabajo estudiamos algunas propiedades dinámicas de sistemas simbólicos, con especial énfasis

en el rol que juegan las medidas de probabilidad invariantes de tales sistemas. Nuestra aproximación al

estudio de las medidas invariantes se realiza desde tres ángulos: topológico, combinatorio y geométrico.

Desde el punto de vista topológico, nos enfocamos en el problema de la equivalencia orbital y equiva-

lencia orbital fuerte entre sistemas dinámicos dados por acciones minimales de Z, a través del estudio

de un invariante algebraico, a saber, el grupo de dimensión dinámico. Nuestro trabajo presenta una

descripción del grupo de dimensión dinámico para dos clases particulares de subshifts minimales: los

subshifts S-ádicos y los subshifts déndricos.

Desde el punto de vista combinatorio, nos interesamos en el problema del equilibrio en subshifts min-

imales y únicamente ergódicos dados por acciones de Z. Investigamos el comportamiento en relación

al equilibrio para subshifts substitutivos, S-ádicos y déndricos. Establecemos condiciones necesarias

para que un subshift substitutivo minimal con frecuencias racionales sea equilibrado en sus factores,

obteniendo como corolario el desequilibrio en los factores de largo mayor o igual a 2 en el subshift

generado por la substitución de Thue–Morse.

Finalmente, desde el punto de vista geométrico, investigamos la posibilidad de realizar śımplices de

Choquet como conjuntos de medidas de probabilidad invariantes asociados a sistemas dados por ac-

ciones minimales de grupos promediables sobre el Cantor. Introducimos la noción de grupo prome-

diable congruente-monoembaldosable, probamos que todo grupo promediable virtualmente nilpotente

es congruente-monoembaldosable, y mostramos que para un grupo discreto e infinito G con esta

propiedad, todo śımplice de Choquet puede obtenerse como el conjunto de medidas invariantes de un

G-subshift minimal.

Palabras clave: subshift, medida de probabilidad invariante, equivalencia orbital, grupo de di-

mensión, equilibrio, śımplex de Choquet, grupo promediable.



Résumé étendu

Le but de cette thèse de doctorat est d’étudier plusieurs propriétés dynamiques des systèmes symbol-

iques, avec un accent particulier mis sur le rôle joué par les mesures invariantes de ces systèmes. Nous

abordons l’étude de l’ensemble des mesures invariantes d’un point de vue topologique, combinatoire

et géométrique, en fonction de la nature du système symbolique sous-jacent.

Dans cette introduction, nous rappelons brièvement les principales notions liées à la dynamique sym-

bolique, aux mesures invariantes et aux propriétés dans lesquelles elles entrent en jeu. Nous résumons

également les résultats obtenus dans la thèse et présentons l’organisation du texte. Les systèmes

dynamiques symboliques sont à l’origine un outil pour étudier les systèmes dynamiques généraux par

la discrétisation de l’espace et du temps. En gros, l’idée est de discrétiser le temps et de coder les

trajectoires continues d’un système continu donné, en utilisant différents symboles, pour obtenir un

nouveau système discret fait de trajectoires symboliques. Ensuite, on récupère des informations per-

tinentes sur le système original en regardant le second, qui est la plupart du temps plus simple. Le

début de cette approche remonte aux premiers travaux de Hadamard ([Ha98]), Thue ([Th12]) et Morse

([Mor21]), entre autres, bien que l’étude de la dynamique symbolique de manière systématique n’ait

pas été initiée avant les travaux fondateurs de Morse et Hedlund [HM38], [HM40] dans les années

1940. En termes précis, étant donné un ensemble fini de symboles A, appelé un alphabet, un système

dynamique symbolique ou simplement un système symbolique avec des symboles dans A est un système

dynamique topologique (X,S,G) où G est un groupe localement compact infini, X est un subspace de

AG et S est une action continue gauche de G sur X. Nous utilisons la notation Sg pour faire référence

à l’action de l’élément g ∈ G sur X. Ici, l’espace AG est muni de la topologie produit de la topologie

discrète sur A. C’est un espace de Cantor. La dynamique symbolique ne concernait à l’origine que les

Z-actions sur l’espace de Cantor, les éléments des systèmes symboliques classiques étant des séquences

de symboles ou des mots infinis ; c’est pourquoi la dynamique symbolique est étroitement liée à l’étude

de la combinatoire des mots, des langages formels et du codage. Voir par exemple [LM95] pour une



exposition détaillée sur le sujet. Plus récemment, le champ s’est étendu à des actions de groupes plus

générales sur les espaces topologiques, en particulier sur l’espace de Cantor.

Les sous-shifts forment une classe importante de systèmes symboliques. Étant donné l’alphabet A et

le groupe G, considérons X = AG et l’action de G sur X donnée par Sg((xh)h∈G) = ((g.x)h)h∈G =

(xg−1h)h∈G. Le triplet (X,S,G) est appelé dans ce cas le G-shift sur A. Si Y ⊆ X est un sous-espace

fermé S-invariant de X, (Y, S|Y , G) s’appelle un sous-shift sur A. Quand G = Z, on appelle le Z-shift

ou simplement le shift sur A le triple (AZ, T,Z), où T = S−1, soit l’application du shift classique. Un

Z-sous-shift est un sous-espace fermé T invariant de AZ.

Les mesures invariantes jouent un rôle important dans l’étude de plusieurs propriétés des systèmes

topologiques dynamiques en général et des systèmes symboliques en particulier. Nous les utilisons

dans ce travail comme fil conducteur pour l’étude des propriétés liées à l’équilibre, à la réalisation

de simplexes de Choquet et aux groupes de dimension, ces deux derniers en rapport avec la notion

d’équivalence orbitale. Nous décrivons chacun de ces sujets plus loin dans cette introduction.

Rappelons que, étant donné un système dynamique topologique (X,S,G), une mesure invariante de

(X,S,G) est une mesure borélienne de probabilité µ sur X telle que pour tout g ∈ G, µ(Sg(A)) = µ(A),

pour chaque sous-ensemble borélien A ⊆ X. L’ensemble de toutes les mesures invariantes de (X,S,G)

est désigné parM(X,S,G). Un élément µ ∈M(X,S,G) est dit ergodique si chaque fois que Sg(A) = A

pour tout g ∈ G pour un ensemble de Borel A ⊆ X, soit µ(A) = 0 ou µ(A) = 1. Le système (X,S,G)

est dit uniquement ergodique si M(X,S,G) est un singleton. Ce sont des notions classiques qui ap-

partiennent au domaine de la Théorie Ergodique (voir par exemple [W82] pour plus de détails sur ce

sujet). Selon le théorème de Bogolyubov [Bog39], un groupe est moyennable (voir Chapitre 5 pour

une définition) si et seulement si pour toute action continue de G sur un espace métrique compact X,

il existe une mesure de probabilité sur X qui est invariante sous l’action de G. Cela a été prouvé à

l’origine pour G = R dans [BogK37] et ensuite pour les groupes moyennables en général dans [Bog39].

Plus tard, Giordano et de la Harpe ont montré dans [GdH97] qu’un groupe G est moyennable si et

seulement si une action continue de G sur l’ensemble Cantor a au moins une mesure de probabilité

invariante. Ainsi, en particulier, lorsque G est un groupe moyennable, M(X,S,G) n’est pas vide.

Pour plus de détails historiques sur le sujet de la moyenabilité, voir par exemple [CSS17, Chapitre 9]

ou [Ju15, Chapitre 1].

Mesures invariantes et fréquences. Dans les systèmes symboliques donnés par des actions de



Z, les mesures invariantes sont liées à la notion de fréquence d’une lettre ou d’un mot fini avec des

lettres dans A. Étant donné un système symbolique (X,S,Z), notons LX le langage de X, c’est-à-dire

l’ensemble de tous les mots finis ou facteurs dans le monoide libre A∗ apparaissant dans des éléments

de X. La fréquence fw(x) d’un facteur w ∈ LX dans un mot infini x est définie comme la limite

suivante, quand elle existe,

fw(x) = lim
n→∞

|x−n · · ·x0 · · ·xn|w
2n+ 1

.

Un mot infini x ∈ AZ est dit avoir des fréquences uniformes si pour chaque facteur w ∈ LX , le rapport
|xk···xk+2n|w

2n+1 converge vers fw(x) quand n tend vers l’infini, de façon uniforme en k. Si µ ∈M(X,S,Z)

est une mesure ergodique, le quadruple (X,S,B, µ) où B est la tribu de Borel sur X, est un système

dynamique mesuré ergodique. Pour tous les facteurs w ∈ LX on définit le cylindre de w par

[w] = {x ∈ AZ : x0 · · ·x|w|−1 = w},

et on peut appliquer le théorème ergodique [W82, Section 1.6] à la fonction indicatrice χ[w] pour

obtenir que pour µ-presque chaque point x ∈ X et pour tout facteur w, la fréquence fw(x) existe.

De même, l’unique ergodicité de (X,S,Z) est équivalente au fait que chaque x ∈ X a des fréquences

uniformes. Dans le cas de systèmes symboliques minimaux, l’unique ergodicité est équivalent en effet

à l’existence de fréquences pour tous les facteurs (voir section 1.4.2 pour plus de détails).

Étant donné un système symbolique uniquement ergodique (X,S,Z) on peut s’interroger sur la vitesse

de convergence des sommes de Birkhoff vers les fréquences des mots finis. Si la convergence est assez

rapide, on dit que le mot infini x ∈ X est équilibré sur un facteur donné. Nous détaillons cette notion

dans le paragraphe suivant.

Équilibre. En termes combinatoires, x ∈ X est équilibré sur le facteur w ∈ LX s’il existe une con-

stante Cw telle que pour chaque paire (u, v) de facteurs de x de même longueur, la différence entre le

nombre d’occurrences de w dans u et v diffère d’au plus Cw, c’est-à-dire ||u|w − |v|w| ≤ Cw lorsque

|u| = |v|, où |u|w représente le nombre d’occurrences de w dans v et |u| la longueur de u. Si (X,S,Z)

est un système minimal, chaque mot infini a le même langage et donc l’équilibre sur un facteur donné

est une propriété du système entier.

L’étude de l’équilibre est d’abord apparue dans les travaux de Morse et Hedlund ([HM38], [HM40])

sous la forme de 1-équilibre pour les lettres des mots infinis définis sur un alphabet de deux lettres,



c’est-à-dire, quand w est une lettre et Cw = 1. Il a été montré que les mots infinis qui sont 1-équilibrés

sur un alphabet de deux lettres sont exactement les mots sturmiens, c’est-à-dire les codages binaires

des trajectoires de rotations irrationnelles sur le cercle unitaire (voir Exemple 1.5). Plus tard, le con-

cept a été étendu aux facteurs et au Cw-équilibre dans des mots infinis avec des symboles dans des

alphabets plus grands.

Les mots définis sur un alphabet plus grand qui sont 1-équilibrés ont été caractérisés dans [Hu00]. Il

a été prouvé dans [FV02] que les mots sturmiens sont équilibrés sur tous leurs facteurs : les auteurs

ont montré que la constante Cw ci-dessus correspond exactement à |w|, c’est-à-dire, chaque fois que

|u| = |v|, ||u|w − |v|w| ≤ |w|, ce qui généralise leur comportement sur l’équilibre des lettres.

Comme indiqué dans la proposition 1.27, lorsqu’un système symbolique minimal uniquement ergodique

avec une mesure unique µ est équilibré sur un facteur donné w, la mesure µ([w]) est une valeur propre

topologique additive du système. Cette connexion a été exploitée en Théorie Ergodique pour prouver

le déséquilibre (voir par exemple [CFM08]).

Nous consacrons une partie de cette thèse de doctorat à l’étude du comportement de l’équilibre dans les

sous-shifts dendriques et ultimement dendriques (voir Chapitre 4, Section 4.4). Ce type de sous-shifts

est précisément défini dans la Section 4.1. Pour la classe des sous-shifts ultimement dendriques nous

prouvons que deux mesures invariantes µ et µ′ sont égales si et seulement si elles coincident sur les

cylindres de facteurs de longueur n, pour tout n avec n ≤ m+ 1 (Théorème 4.12), où m est le seuil du

système. Nous prouvons également qu’un sous-shift ultimement dendrique avec seuil m est équilibré

sur les facteurs de longueur m + 1 si et seulement s’il est équilibré sur tous ses facteurs (Théorème

4.19). Ce n’est pas le cas des systèmes symboliques arbitraires. En effet, nous donnons également des

conditions nécessaires pour l’équilibre dans les systèmes substitutifs à fréquences rationnelles dans le

Chapitre 3, Section 3.5 (Théorème 3.50) et utilisons ceci pour prouver le déséquilibre pour tous les

facteurs de longueur d’au moins 2 dans la séquence Thue–Morse (Corollaire 3.53), qui est équilibrée

sur les lettres.

La plupart des résultats précédents sur l’équilibre sont publiés dans [BCB18].

Si nous sortons du cas uniquement ergodique, il est intéressant d’étudier l’ensemble de toutes les

mesures invariantes d’un point de vue géométrique. Nous introduisons ce sujet dans le paragraphe

suivant.



Le simplexe de Choquet des mesures invariantes. D’un point de vue géométrique, on sait

que l’ensemble des mesures de probabilité invariantes d’une action continue d’un groupe moyennable

sur un espace métrique compact est un simplexe de Choquet, c’est-à-dire, un sous-ensemble compact

convexe métrizable K d’un espace vectoriel réel localement convexe tel que pour chaque v ∈ K il

existe une unique mesure de probabilité m supporté sur ext(K) avec
∫
ext(K) xdm(x) = v, dont les

points extrémaux sont les mesures ergodiques (voir par exemple [Gl03], ou [BR10, Chapitre 7] pour

une preuve dans le cas des Z-actions). Ici, nous considérons M(X,T,G) comme un sous-espace du

dual C(X,R) muni de la topologie faible∗, où C(X,Z) désigne le groupe additif des fonctions continues

à valeurs réelles définies sur X. Une question naturelle est donc de savoir si l’inverse est vrai, c’est-

à-dire, que si l’on donne un simplexe de Choquet K et un groupe moyennable G, il est possible de

réaliser K comme l’ensemble des mesures de probabilité invariantes d’une action continue de G sur un

espace métrique compact. Dans [Do91] Downarowicz a répondu pour la première fois à cette question

dans le cas G = Z, montrant que chaque simplexe de Choquet peut être réalisé comme l’ensemble des

mesures de probabilité invariantes d’un Z-sous-shift de Toeplitz (voir Exemple 1.6). L’extension de

ce résultat à tout groupe moyennable résiduellement fini (voir Exemple 1.9 pour la définition) a été

montrée dans [CP14].

En général, il se trouve que les propriétés de G en tant que groupe imposent certaines restrictions à

la possibilité de réalisation de tout simplexe de Choquet comme l’ensemble des mesures invariantes

d’une action continue de G sur un espace métrique compact. Par exemple, on sait que le simplexe

de Poulsen est le simplexe des mesures invariantes associées à l’action du G-shift pour n’importe quel

groupe dénombrable moyennable G sur l’espace de Cantor {0, 1}G, et que si G a la Propriété T , alors

pour chaque action continue de G sur un espace métrique compact X, M(X,S,G) est soit vide, soit

un simplexe de Bauer, c’est-à-dire un simplexe dans lequel l’ensemble des points extrémaux est fermé

(voir [GW97]).

Dans cette thèse de doctorat, nous abordons le problème de réalisation des simplexes de Choquet dans

le contexte d’actions de groupes moyennables (voir Chapitre 5). Dans [W01], Weiss a introduit le con-

cept de groupe moyennable monopavable, qui est une généralisation de la notion de groupe moyennable

résiduellement fini, au sens que les monotuiles utilisées pour paver un groupe monopavable jouent le

rôle des domaines fondamentaux des sous-groupes d’indices finis dans les groupes résiduellement fi-

nis (voir Section 5.1.2 pour plus de détails). On ne sait pas s’il existe des groupes qui ne sont pas

monopavables. Nous introduisons ici le concept de groupe moyennable congruent-monopavable (voir



Section 5.2), qui comprend tous les groupes moyennables résiduellement finis. Nous montrons que

la classe des groupes moyennables congruent-monopavables est plus grande que la classe des groupes

moyennables résiduellement finis en prouvant que chaque groupe moyennable virtuellement nilpo-

tent est congruent-monopavable (Théorème 5.23), et que tout simplexe de Choquet peut être réalisé

comme l’ensemble des mesures invariantes d’une action minimale de n’importe quel groupe moyennable

congruent-monopavable G. Cette action est libre si G est virtuellement abélien (Theorem 5.34). En

conséquence directe, nous obtenons que pour tout simplexe de Choquet K, il existe un Q-sous-shift

libre et minimal (X,T,Q) tel que M(X,T,Q) est affine homéomorphe à K (Corollaire 5.39).

Les résultats précédents sur les groupes moyennables congruent-monopavables et la réalisation de sim-

plexes de Choquet sont inclus dans [CC18].

Le problème de réalisation de simplexes de Choquet en tant qu’ensembles de mesures invariantes décrit

ci-dessus est lié à la notion d’équivalence orbitale topologique entre des systèmes de Cantor minimaux.

Dans le paragraphe suivant, nous rappelons cette notion d’équivalence entre des systèmes dynamiques

et introduisons les groupes de dimensions qui leur sont associés, qui correspondent à des invariants

algébriques pour l’équivalence orbitale.

Équivalence orbitale et groupes de dimension. Deux systèmes dynamiques minimaux (X1, S1, G1)

et (X2, S2, G2) sont dits topologiquement orbitalement équivalents s’il existe un homéomorphisme

φ : X1 → X2 qui envoie les orbites de l’action de G1 sur les orbites de l’action de G2. Dans le

cas de deux actions minimales de Z, l’équivalence orbitale implique l’existence de deux applications

n1 : X1 → Z et n2 : X2 → Z (uniquement définies par minimalité) de sorte que, pour tout x ∈ X1,

φ ◦ S1(x) = S
n1(x)
2 ◦ φ(x) et φ ◦ Sn2(x)

1 (x) = S2 ◦ φ(x).

Les applications n1 et n2 sont appelées les cocycles de S1 et S2 respectivement.

Deux systèmes dynamiques minimaux (X1, S1,Z) et (X2, S2,Z) sont dits (topologiquement) fortement

orbitalement équivalents si n1 et n2 ont au plus un point de discontinuité. L’équivalence orbitale et

l’équivalent orbitale forte sont des notions a priori plus faibles que la conjugaison qui ont été intro-

duites dans [GPS95] afin d’obtenir des résultats similaires à ceux obtenus dans le cadre des systèmes

dynamiques mesurés. Deux systèmes dynamiques mesurés (X1, S1,B1, µ1, G1) et (X2,B2, µ2, G2) sont

orbitalement équivalents s’il existe une bijection bimesurable φ : X1 → X2 qui envoie les orbites de



l’action de G1 sur les orbites de l’action de G2. C’est un théorème de Dye [Dye59] que deux ac-

tions ergodiques de Z sur des espaces de probabilité non-atomiques sont orbitalement équivalentes

(en mesure). Ce résultat a par la suite été étendu aux actions ergodiques de groupes moyennables

dans [OW80] : deux actions ergodiques de groupes moyennables sur des espaces de probabilité non

atomiques sont orbitalement équivalentes (en mesure). (Voir [Ga10] pour une étude complète sur

l’équivalence orbitale en mesure).

Dans le cadre topologique, la situation est très différente : parmi les actions minimales de Z sur

l’ensemble Cantor, il existe d’innombrables classes d’équivalence orbitale. Ceci peut être vu comme

une conséquence du fait que l’équivalence orbitale topologique et l’équivalence orbitale forte sont car-

actérisées ([GPS95]) dans le cas d’actions minimales de Z sur l’espace de Cantor, en utilisant ce qui

est appelé le groupe de dimension dynamique associé au système : (X1, S1,Z) et (X2, S2,Z) sont

fortement orbitalement équivalents si et seulement si leurs groupes de dimensions dynamiques sont

isomorphes comme groupes ordonnés avec unité ; ils sont orbitalement équivalents si et seulement

si leurs groupes de dimensions dynamiques réduits sont isomorphes comme groupes ordonnés avec

unité. En gros, le groupe de dimension dynamique d’un système (X,S,Z) est un groupe ordonné avec

unité dont la partie groupe est donnée par H(X,S,Z) = C(X,Z)/βC(X,Z), où C(X,Z) est le groupe

additif de fonctions continues de X dans Z et βC(X,Z) est l’image de C(X,Z) sous l’application de

cobord β : C(X,Z) → C(X,Z), définie par βf(x) = f ◦ S(x) − f(x) pour tout x ∈ X. Le groupe

de dimension dynamique réduit de (X,S,Z) est un autre groupe ordonné avec une unité dont la

partie groupe est le quotient H(X,S,Z)/{[f ] ∈ H(X,S,Z) :
∫
X fdµ = 0 for all µ ∈ M(X,S,Z)}

(voir Section 1.5.3 pour plus d’information sur les groupes ordonnés avec unité et groupes de dimen-

sion). Un résultat similaire a été prouvé pour les actions de Zd dans [GPMS10] : deux systèmes

dynamiques (X1, S1,Zd1) et (X2, S2,Zd2) sur l’espace de Cantor sont orbitalement équivalents si et

seulement si leurs groupes de dimensions dynamiques réduits sont isomorphes comme groupes or-

donnés avec unité, où le groupe de dimension dynamique réduit correspond par définition au quotient

C(X,Z)/{f ∈ C(X,Z) :
∫
X fdµ = 0 for all µ ∈M(X,S,Zd)}.

Ainsi, le groupe de dimension dynamique réduit est un invariant total pour l’équivalence orbitale

topologique parmi les actions minimales de Zd sur l’espace Cantor. C’est aussi un invariant (pas

nécessairement total) por l’équivalence orbitale entre les actions minimales de groupes moyennables

sur l’espace de Cantor. D’autre part, l’espace de traces de ce groupe (voir Section 1.5.2 pour la

définition) est affine homéomorphe à l’ensemble des mesures invariantesM(X,S,G). Ainsi, un groupe

moyennable G avec la propriété que chaque simplexe de Choquet métrisable peut être réalisé comme



l’ensemble des mesures de probabilité invariantes d’une action minimale libre de G sur l’ensemble de

Cantor, admet au moins autant de classes d’équivalence orbitale topologique qu’il existe de simplexes

métrisables de Choquet.

Il n’est pas difficile de voir que lorsque X1 ou X2 sont connexes, l’équivalence orbitale topologique

implique l’existence d’un isomorphisme de groupe ϕ : G1 → G2 tel que pour tout g ∈ G1, φ ◦ Sg1 =

S
ϕ(g)
2 ◦ φ, soit les deux systèmes sont conjugués. C’est une des raisons pour lesquelles, dans l’étude

de l’équivalence orbitale topologique, il est intéressant d’examiner des espaces de phase totalement

déconnectés, comme l’espace de Cantor.

La notion d’équivalence orbitale forte est en quelque sorte naturelle puisqu’il a été montré dans [Bo83]

que si n1 (et donc n2) ou n2 (et donc n1) ci-dessus sont continues, alors les deux systèmes sont flip

conjugués, c’est-à-dire que (X1, S1,Z) est conjugué soit à (X2, S2,Z) ou à (X2, S
−1
2 ,Z).

Une partie de ce travail de doctorat est consacrée à la description du groupe de dimension dynamique,

et donc à létude des classes d’équivalence orbitale, des sous-shifts dendriques et d’un type particulier

de sous-shifts ultimement dendriques, appelés sous-shifts spéculaires (voir Section 4.1.1 pour plus de

détails). Ceci est présenté au Chapitre 4, Section 4.5 et a été partiellement réalisé dans le cadre d’un

travail en collaboration avec F. Dolce, F. Durand, J. Leroy, D. Perrin et S. Petite ([BCD+18]). Les

principaux résultats sur ce sujet sont le Théorème 4.24 (groupe de dimension des sous-shifts dendriques)

et le Théorème 4.25 (groupe de dimension des sous-shifts spéculaires). En utilisant ces deux résultats,

nous obtenons le Corollaire 4.26, qui dit que deux sous-shifts dendriques (resp. spéculaires) minimaux

sont fortement orbitalement équivalents si et seulement s’ils ont le même simplexe de fréquences des

lettres (resp. le même simplexe engendré par les fréquences de facteurs de longueur 2), et deux sous-

shifts dendriques (resp. spéculaires) minimaux et uniquement ergodiques sont fortement orbitalement

équivalents si et seulement s’ils ont le même groupe additif de fréquences de lettres (resp. le même

groupe additif engendré par les fréquences de facteurs de longueur 2). Nous établissons également une

relation entre l’équilibre et le groupe de dimension dynamique dans le cas de systèmes uniquement

ergodiques ayant des fréquences de lettres rationnellement indépendantes (Théorème 3.42), qui indique

que si la partie groupe dans le groupe de dimension dynamique est abélien libre de rang d, où d est

la cardinalité de l’alphabet, l’équilibre des lettres passe à l’équilibre sur les facteurs de longueur arbi-

traire. Enfin, nous décrivons le groupe de dimension dynamique pour certains sous-shifts S-adiques

(voir Section 3.1 pour plus de détails), qui sont une généralisation des systèmes substitutifs, obtenus

à partir d’une composition infinie de substitutions (Théorème 3.39).



Ce texte est organisé en cinq chapitres. Le premièr est consacré aux définitions générales, à l’historique

et à fixer les notations que nous utilisons dans le texte. Dans le second, nous présentons en détail

les concepts liés aux partitions en tours pour des actions minimales de Z sur l’espace de Cantor ;

nous donnons quelques résultats sur le rapport entre certaines suites bien choisies de partitions en

tours et le sous-groupe image, le groupe des infinitésimaux et le groupe de dimension dynamique

d’un sous-shift minimal de Z. Au Chapitre 3, nous appliquons les résultats du Chapitre 2 à l’étude

de certaines propriétés des systèmes substitutifs et S-adiques, à savoir les groupes de dimensions et

l’équilibre, et au Chapitre 4, nous faisons de même pour les sous-shifts dendriques et ultimement den-

driques. Au Chapitre 5, nous étudions le problème de la réalisation des simplexes de Choquet en tant

qu’ensembles de mesures invariantes des actions de groupes moyennables congruent-monopavables ;

nous introduisons la notion de groupe moyennable congruent-monopavable, nous prouvons que cette

classe de groupes est plus grande que celle des groupes moyennables résiduellement finis et que pour

tout simplexe de Choquet K et tout groupe moyennable congruent-monopavable G, il existe un G-

sous-shift minimal (X,S,G) tel que M(X,S,G) soit affine homéomorphe à K.
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Introduction

The aim of this PhD thesis is to study several dynamical properties of symbolic systems, with partic-

ular emphasis on the role played by invariant measures of such systems. We approach the study of the

set of invariant measures from a topological, combinatorial and geometrical point of view, depending

on the nature of the underlying symbolic system.

In this introduction we briefly recall the main notions related to symbolic dynamics, invariant mea-

sures and properties in which they come into play. We also sumarize the results we have obtained and

present the organization of the text.

Symbolic dynamical systems are originally a tool to study general dynamical systems by the discretiza-

tion of the space and time. Roughly speaking, the idea is to discretize the time and code continuous

trajectories of a given continuous system by using different symbols, to obtain a new discrete system

made of symbolic trajectories. Then, one recovers relevant information about the original system by

looking at the second one, which most of the time is simpler. The begining of this approach goes

back to the early works of Hadamard ([Ha98]), Thue ([Th12]) and Morse ([Mor21]), among others,

although the study of symbolic dynamics in a systematic way was not initiated until the seminal works

of Morse and Hedlund [HM38], [HM40] in the 1940’s. In precise words, given a finite set of symbols

A, called an alphabet, a symbolic dynamical system or simply a symbolic system with symbols in A

is a topological dynamical system (X,S,G) where G is an infinite locally compact group, X is some

subspace of AG and S is a continuous left action of G on X. We use the notation Sg to refer the

action of the element g ∈ G on X. Here, the space AG is endowed with the product topology of the

discrete topology on A. It is a Cantor space. Symbolic dynamics were originally concerned only with

Z-actions on the Cantor space, the elements in classical symbolic systems being sequences of symbols

or infinite words; this is the reason why symbolic dynamics is closely related to the study of combi-

natorics on words, formal languages and coding. See for example [LM95] for a detailed exposition of
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the subject. More recently, the field has been extended to consider more general group actions on

topological spaces, particularly in the Cantor space. An important class of symbolic systems are the

subshifts. Given the alphabet A and the group G, consider X = AG and the action of G on X given

by Sg((xh)h∈G) = ((g.x)h)h∈G = (xg−1h)h∈G. The triple (X,S,G) is called in this case the G-fullshift

on A. If Y ⊆ X is any closed S-invariant subspace of X, (Y, S|Y , G) is called a subshift on A. When

G = Z, we call the Z-fullshift or simply the fullshift on A the triple (AZ, T,Z), where T = S−1, that

is, the classical shift map. A Z-subshift is any closed T -invariant subspace of AZ.

Invariant measures play an important role in the study of several properties of topological dynamical

systems in general and symbolic systems in particular. We use them in this work as a guiding thread to

study properties related to balance, realization of Choquet simplices and dimension groups, the latter

two in connection with the notion of orbit equivalence. We describe each of these topics later in this

introduction.

Recall that, given a topological dynamical system (X,S,G), an invariant measure of (X,S,G) is a pro-

bability Borel measure µ on X such that for all g ∈ G, µ(Sg(A)) = µ(A), for every Borel subset A ⊆ X.

The set of all invariant measures of (X,S,G) is denoted M(X,S,G). An element µ ∈ M(X,S,G) is

said to be ergodic if whenever Sg(A) = A for all g ∈ G for some Borel set A ⊆ X, either µ(A) = 0

or µ(A) = 1. The system (X,S,G) is said to be uniquely ergodic if M(X,S,G) is a singleton. These

are classical notions which belong to the field of Ergodic Theory (see for example [W82] for details

in this subject). It is a theorem by Bogolyubov [Bog39] that a group is amenable (see Chapter 5 for

a definition) if and only if for all continuous action of G on a compact metric space X, there exists

a probability masure on X which is invariant under the action of G. This was originally proved for

G = R in [BogK37] and then for amenable groups in general in [Bog39]. Later, Giordano and de la

Harpe showed in [GdH97] that a group G is amenable if and only if any continuous action on the

Cantor set has an invariant probability measure. Thus, in particular, whenever G is an amenable

group, M(X,S,G) is non-empty. For more historical details in the subject of amenability, see for

example [CSS17, Chapter 9] or [Ju15, Chapter 1].

Invariant measures and frequencies. In symbolic systems given by Z-actions, invariant measures

are related to the notion of frequency of a letter or a finite word with letters in A. Given a symbolic

system (X,S,Z), let LX denote the language of X, that is, the set of all finite words or factors in the

free monoid A∗ appearing in the elements of X. The frequency fw(x) of a factor w ∈ LX in an infinite
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word x is defined as the following limit, when it exists,

fw(x) = lim
n→∞

|x−n · · ·x0 · · ·xn|w
2n+ 1

.

An infinite word x ∈ AZ is said to have uniform frequencies if for every factor w ∈ LX , the ratio
|xk···xk+2n|w

2n+1 converges to fw(x) when n tends to infinity, uniformly in k. If µ ∈ M(X,S,Z) is an

ergodic measure, the quadruple (X,S,B, µ) where B is the Borel σ-algebra on X, is an ergodic measure-

theoretic dynamical system. For all factor w ∈ LX one defines the cylinder of w by

[w] = {x ∈ AZ : x0 · · ·x|w|−1 = w},

and one can apply the Ergodic Theorem [W82, Section 1.6] to the characteristic function χ[w] to ob-

tain that for µ-almost every point x ∈ X and for any factor w, the frequency fw(x) exists. Similarly,

the unique ergodicity of (X,S,Z) is equivalent to the fact that every x ∈ X has uniform frequencies.

In the case of minimal symbolic systems, unique ergodicity is indeed equivalent to the existence of

frequencies for all factors (see Section 1.4.2 for details).

Given a uniquely ergodic symbolic system (X,S,Z) one can ask about the speed of convergence of

Birkhoff sums toward frequencies of finite words. If the convergence is fast enough, one says that the

infinite word x ∈ X is balanced on a given factor. We detail this notion in the following paragraph.

Balance. In combinatorial terms, x ∈ X is balanced on the factor w ∈ LX if there exists a constant

Cw such that for every pair (u, v) of factors of x with the same length, the difference between the

number of occurrences of w in u and v differs by at most Cw, that is, ||u|w − |v|w| ≤ Cw whenever

|u| = |v|, where the notation |u|w stands for the number of occurrences of w in v and |u|, for its length.

If (X,S,Z) is a minimal system, every infinite word has the same language and thus balance on a

given factor is a property of the whole system.

The study of balance first occurred in the works of Morse and Hedlund ([HM38], [HM40]) in the form

of 1-balance for letters in infinite words defined over a two-letter alphabet, that is, when w is a letter

and Cw = 1. It was shown that infinite words that are 1-balanced over a two-letter alphabet are

exactly the Sturmian words, that is, the binary codings of trajectories of irrational rotations on the

unit circle (see Example 1.5). Later, the concept was extended to factors and Cw-balance in infinite

words with symbols in larger alphabets.
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Words over a larger alphabet that are 1-balanced have been characterized in [Hu00]. Sturmian words

have been proved to be balanced on all their factors in [FV02]: the authors have shown that the

constant Cw above corresponds exactly to |w|, that is, whenever |u| = |v|, ||u|w − |v|w| ≤ |w|, which

generalizes their behavior on letter balance.

The notion of C-balance for letters was extended to the multidimensional framework in [BT02]: given

a configuration of Zn with symbols in an alphabet A, x ∈ AZn , x is said to be balanced on the letter

i ∈ A if there exists a constant C such that the difference between the number of positions z ∈ Zn

verifying x(z) = i in two any sub-blocks of Zn of the same size is bounded by C. In this article, the

authors characterize 1-balanced multidimensional words in Zn and study conditions of unbalance for

some 2-dimensional words, like Sturmian 2-dimensional words.

This notion is also related to properties of tilings. We refer to [Sol97] or [Sad07] for details on this

subject. Roughly speaking, a tiling of the space Rn, or an n-dimensional tiling is a covering of Rn by

tiles, such that tiles only intersect on their boundaries. A tile is a translation of a prototile, which is

a subset of Rn homeomorphic to the closed unit ball. The tiling is thus the union of tiles obtained by

translating a finite number of prototiles, and each tile is labeled according to the prototile it comes

from. One then considers the space of all tilings obtained from a given set of prototiles (or a spe-

cific subspace of this), and the natural action of Rn by translations on it. This construction gives

immediately an analogy between infinite sequences on a finite alphabet A and tilings of the real line

constructed from a finite set of prototiles: given a sequence, one can construct a tiling by associating

to each letter a ∈ A a prototile defined as an interval of some length `a and then translating the

prototiles in the order given by the sequence. Conversely, given a tiling of the line, one can associate a

letter to each prototile and then construct a sequence by concatenating the letters in the order given by

the tiling. This extends in a natural way to multidimensional sequences and multidimensional tilings,

and suggests that it could be a relation between some properties of a subshift (X,T,Zn) and the

associated tiling space together with the Rn-action. Balance properties have been studied from this

viewpoint in [Sad15], where C-balance on infinite sequences for letters and words have been related

to what is called plasticity and total plasticity of the associated tilings. Since there is a vast theory

developed for multidimensional tilings, this gives the idea of studying the relation between balance of

multidimensional words and cohomological properties of the associated tilings.

As is stated in Proposition 1.27, when a minimal uniquely ergodic symbolic system with unique mea-

sure µ is balanced on a given factor w, the measure µ([w]) is an additive topological eigenvalue of

the system. This connection has been exploited in Ergodic Theory to prove unbalance (see for ex-
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ample [CFM08]). The example of Arnoux-Rauzy sequences is of particular interest on this matter.

Arnoux-Rauzy sequences are infinite sequences defined over a d-letter alphabet, d ≥ 2, which general-

ize combinatorial properties of Sturmian sequences. In combinatorial terms, Sturmian sequences are

defined as aperiodic sequences of minimal complexity: they are the binary sequences having n+ 1 fac-

tors of length n for all n ∈ N. They were proved to be exactly the codings of irrational rotations on the

circle in [CH73]. Arnoux-Rauzy sequences were thus introduced in [AR91] as sequences over a three-

letter alphabet having 2n+1 factors of length n for all n ∈ N, with exactly one right special factor and

one left special factor of each length (see Section 4.1 for the definitions), and then generalized to larger

size alphabets as the sequences having (d − 1)n + 1 factors of length n for all n ∈ N (d = |A|), with

exactly one right special factor and one left special factor of each length. Arnoux-Rauzy sequences

were conjectured to correspond exactly to the codings of rotations on the torus of higer dimensions,

as well as Sturmian sequences correspond to rotations on the circle, but this conjecture was disproved

in [CFZ00] by exhibiting an unbalanced Arnoux-Rauzy sequence. We refer to [CFZ00] and [CFM08]

for more on this subject.

It is interesting to note that balance has been used to very concrete applications like in the field of

optimal routing (see for example [AGH00]).

We devote a part of this PhD thesis to the study of balance behavior in dendric and eventually dendric

subshifts (see Chapter 4, Section 4.4). This kind of subshifts is precisely defined in Section 4.1. We

briefly recall the definition here: given a minimal subshift (X,T,Z) on the alphabet A and a factor

w ∈ LX , the extensions of w are

L(w) = {a ∈ A | aw ∈ LX}

R(w) = {a ∈ A | wa ∈ LX}

B(w) = {(a, b) ∈ A×A | awb ∈ L}.

The extension graph E(w) of w is the undirected bipartite graph whose set of vertices is the disjoint

union of L(w) and R(w) and whose edges are the pairs (a, b) ∈ B(w). The subshift is said to be

eventually dendric if there exists m ∈ N such that for all w ∈ LX with |w| ≥ m the extension graph of

w is a tree, that is, connected and without cycles. In this case, m is called the threshold of (X,T,Z).

If one can choose m = 0, (X,T,Z) is called a dendric subshift.

For the class of eventually dendric subshifts we prove that two invariant measures µ and µ′ are equal if

and only if they coincide on the cylinders of factors of length n, for all n ≤ m+ 1 (Theorem 4.12). We
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also prove that an eventually dendric subshift with threshold m is balanced on the factors of length

m + 1 if and only if it is balanced on all factors (Theorem 4.19). This is not the case of arbitrary

symbolic systems. Indeed, we also give necessary conditions for balance in substitutive systems with

rational frequencies in Chapter 3, Section 3.5 (Theorem 3.50) and use this to prove unbalance for all

factors of length at least 2 in the Thue–Morse sequence (Corollary 3.53), which is known to be balance

on letters.

Most of the previous results about balance are published in [BCB18].

If we go out of the uniquely ergodic case, it is interesting to study the set of all invariant measures

from a geometric point of view. We introduce this subject in the following paragraph.

The Choquet simplex of invariant measures. Geometrically speaking, it is known that the set

of invariant probability measures of a continuous action of an amenable group on a compact metric

space is a Choquet simplex, that is, a compact convex metrizable subset K of a locally convex real

vector space such that for each v ∈ K there is a unique probability measure m supported on ext(K)

with
∫
ext(K) xdm(x) = v, whose extreme points are the ergodic measures (see for example [Gl03], or

[BR10, Chapter 7] for a proof in the case of Z-actions). Here, we consider M(X,T,G) as a subspace

of the dual C(X,R) endowed with the weak∗ topology, where C(X,Z) denotes the additive group

of continued real-valued functions defined on X. A natural question is thus whether the converse

is true, i.e, if given a Choquet simplex K and an amenable group G, it is possible to realize K as

the set of invariant probability measures of a continuous action of G on a compact metric space. In

[Do91] Downarowicz answered for the first time this question in the case G = Z, showing that every

Choquet simplex can be realized as the set of invariant probability measures of a Toeplitz Z-subshift

(see Example 1.6). The extension of this result to any amenable residually finite group (see Example

1.9 for the definition) was shown in [CP14]. In the recent work [FH16], the authors show that every

face in the simplex of invariant measures of a zero-dimensional free dynamical system given by an

action of an amenable group, can be realized as the entire simplex of invariant measures on some other

zero-dimensional dynamical system with a free action of the same group. Thus, if the Poulsen simplex

(see Section 1.4.1 for the definition) could be obtained as the set of invariant measures of a free action

of some prescribed amenable group G, the same would hold for any Choquet simplex.

In general, it turns out that the properties of G as a group impose some restrictions to the possibility

of realization of any Choquet simplex as the set of invariant measures of a continuous action of G on
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a compact metric space. For example, it is known that the Poulsen simplex is the simplex of invariant

measures associated to the full G-shift action of any countable amenable group G on the Cantor space

{0, 1}G, and that if G has Property T , then for every continuous action of G on a compact metric

space X,M(X,S,G) is either empty or a Bauer simplex, that is, a simplex in which the set of extreme

points is closed (see [GW97]).

In this PhD thesis we tackle the problem of realization of Choquet simplices in the context of actions of

amenable monotileable groups (see Chapter 5). In [W01] Weiss introduced the concept of monotileable

amenable group, which is a generalization of the notion of residually finite amenable group, in the

sense that the monotiles used to tile a monotileable group play the role of the fundamental domains

of the finite index subgroups in residually finite groups (see Section 5.1.2 for details). It is still un-

known if there are amenable groups which are not monotileable. We introduce here the concept of

congruent monotileable amenable group (see Section 5.2), which includes all the amenable residually

finite groups. We show that the class of congruent monotileable amenable groups is larger than the

class of amenable residually finite groups by proving that every virtually nilpotent group is amenable

congruent monotileable (Theorem 5.23), and that any Choquet simplex can be realized as the set

of invariant measures of a minimal action of any congruent monotileable amenable group G. This

action is free if G is virtually abelian (Theorem 5.34). As a direct consequence we obtain that for any

Choquet simplex K there exists a minimal free Q-subshift (X,T,Q) such that M(X,T,Q) is affine

homeomorphic to K (Corollary 5.39).

All previous results about congruent monotileable amenable groups and realization of Choquet sim-

plices are included in [CC18].

The problem of realization of Choquet simplices as sets of invariant measures described above is related

to the notion of topological orbit equivalence between minimal Cantor systems. In the next paragraph

we recall this notion of equivalence between dynamical systems and introduce the dimension groups

associated to them, which are algebraic invariants of orbit equivalence.

Orbit equivalence and dimension groups. Two minimal dynamical systems (X1, S1, G1) and

(X2, S2, G2) are said to be (topological) orbit equivalent if there exists a homeomorphism φ : X1 → X2

sending orbits of the G1-action onto orbits of the G2-action. In the case of two minimal Z-actions,

orbit equivalence implies the existence of two maps n1 : X1 → Z and n2 : X2 → Z (uniquely defined
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by minimality) such that, for all x ∈ X1,

φ ◦ S1(x) = S
n1(x)
2 ◦ φ(x) and φ ◦ Sn2(x)

1 (x) = S2 ◦ φ(x).

The maps n1 and n2 are called the cocycles of S1 and S2 respectively.

The two minimal dynamical systems (X1, S1,Z) and (X2, S2,Z) are said to be (topological) strong orbit

equivalent if n1 and n2 both have at most one point of discontinuity. Orbit equivalence and Strong

orbit equivalent are notions weaker than conjugacy (a priori) which have been introduced in [GPS95]

in an attempt to obtain similar results as those obtained in the measure-theoretic framework. Two

measure-theoretic dynamical systems (X1, S1,B1, µ1, G1) and (X2, S2,B2, µ2, G2) are orbit equivalent

if there exists a bimeasurable bijection φ : X1 → X2 sending orbits of the G1-action onto orbits of

the G2-action. It is a theorem by Dye [Dye59] that any two ergodic measure-theoretic actions of Z on

non-atomic probability spaces are (measure-theoretic) orbit equivalent. This result was later extended

to ergodic actions of amenable groups in [OW80]: two ergodic measure-theoretic actions of amenable

groups on non-atomic probability spaces are (measure-theoretic) orbit equivalent. (See [Ga10] for a

complete survey on the subject of measure-theoretic orbit equivalence).

In the topological framework the situation is very different: among the minimal Z-actions on the

Cantor set there are uncountable many orbit equivalence classes. This can be easily seen as a conse-

quence of the fact that (topological) orbit equivalence and strong orbit equivalence are characterized

([GPS95]) in the case of minimal Z-actions on the Cantor space, by using what is called the dynamical

dimension group associated to the system: (X1, S1,Z) and (X2, S2,Z) are strong orbit equivalent if

and only if their dynamical dimension groups are isomorphic as ordered groups with unit; they are

orbit equivalent if and only if their reduced dynamical dimension groups are isomorphic as ordered

groups with unit. Roughly speaking, the dynamical dimension group of a system (X,S,Z) is an or-

dered group with unit whose group part is given by H(X,S,Z) = C(X,Z)/βC(X,Z), where C(X,Z)

is the additive group of continuous functions from X to Z and βC(X,Z) is the image of C(X,Z) under

the coboundary map β : C(X,Z) → C(X,Z), defined by βf(x) = f ◦ S(x) − f(x) for all x ∈ X. The

reduced dynamical dimension group of (X,S,Z) is another ordered group with unit whose group part

is the quotient H(X,S,Z)/{[f ] ∈ H(X,S,Z) :
∫
X fdµ = 0 for all µ ∈ M(X,S,Z)} (see Section 1.5.3

for details on ordered groups with unit and dimension groups). Consider for instance two Sturmian

subshifts which code irrational rotations on the circle of angles α and β, with α 6= β. The positive

cone of the reduced dynamical dimension group associated to the first system is isomorphic to P 1−α
α

,
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where for any angle γ, Pγ = {x ∈ Z2 : x1γ + x2 ≥ 0}, while that associated to the second one is

isomorphic to Pβ (see [DDM00]). This shows that there exist uncountably many minimal Z-actions

on the Cantor space which are not orbit equivalent.

A similar result was proved for Zd-actions in [GPMS10]: two dynamical systems (X1, S1,Zd1) and

(X2, S2,Zd2) on the Cantor space are orbit equivalent if and only if their reduced dynamical dimension

groups are isomorphic as ordered groups with unit, where the reduced dynamical dimension group cor-

responds by definition to the quotient C(X,Z)/{f ∈ C(X,Z) :
∫
X fdµ = 0 for all µ ∈M(X,S,Zd)}.

Thus, the reduced dynamical dimension group is a total invariant for topological orbit equivalence

among minimal actions of Zd on the Cantor space. It is also an invariant (not necessarily total) of

orbit equivalence among minimal actions of amenable groups on the Cantor space. On the other hand,

the space of traces of this group (see Section 1.5.2 for the definition) is affine homeomorphic to the set

of invariant measures M(X,S,G). Thus, an amenable group G with the property that every metriz-

able Choquet simplex can be realized as the set of invariant probability measures of a minimal free

G-action on the Cantor set, admits at least as many topological orbit equivalence classes as metrizable

Choquet simplices there are.

It is not difficult to see that when X1 or X2 are connected, topological orbit equivalence implies the

existence of a group isomorphism ϕ : G1 → G2 such that for all g ∈ G1, φ ◦ Sg1 = S
ϕ(g)
2 ◦ φ, that is,

both systems are conjugate. This is one reason why in the study of topological orbit equivalence it is

intereseting to look at totally disconnected phase spaces, like the Cantor space.

The notion of strong orbit equivalence is somehow natural since it was shown in [Bo83] that if n1 (and

thus n2) or n2 (and thus n1) above are continuous, then the two systems are flip conjugate, that is,

(X1, S1,Z) is conjugate to either (X2, S2,Z) or to (X2, S
−1
2 ,Z).

The set of invariant measures, the dynamical dimension group and the reduced dynamical dimension

group are not the only algebraic invariants used to study orbit equivalence. Let (X,S,G) be a topo-

logical dynamical system, and consider the group of homeomorphisms of X with the composition,

(Hom(X), ◦). The full group of S is defined by

[S] = {φ ∈ Hom(X) : ∀x ∈ X∃g ∈ G : φ(x) = Sg(x)},

that is, the subgroup of homeomorphisms of X which locally coincide with the action of G. Note that

[S] trivially contains an isomorphic copy of the group G via the injection g 7→ Sg. If the action of G on
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X is minimal and aperiodic, each φ ∈ [S] defines a map nφ : X → G by the relation φ(x) = Sng(x)(x).

The topological full group of S is the subgroup of [S] defined by

[[S]] = {φ ∈ [S] : ng is continuous}.

Note that [[S]] also contains an isomorphic copy of G. Indeed, for all g ∈ G, nSg : X → G is the

constant function with value g. We thus have G ⊆ [[S]] ⊆ [S].

It was shown in [GPS99] that two minimal Z-actions (X1, S1,Z) and (X2, S2,Z) on the Cantor space

have isomorphic full groups if and only if they are orbit equivalent. Later, Medynets extended this

result in 2011 ([Med11]) by showing that two aperiodic minimal systems (X1, S1, G1) and (X2, S2, G2)

are orbit equivalent if and only if [S1] ∼= [S2]. Full groups and topological full groups of Cantor minimal

systems are very interesting objects from the point of view of Group Theory. They provide examples

of non-elementaary amenable groups when the group acting is amenable. We do not work with this

kind of groups in this PhD thesis. We recommend [Ju15, Chapter 4] for a survey on this subject.

It is a part of this PhD work to describe the dynamical dimension group, and thus to study orbit

equivalence classes, of dendric subshifts and a special kind of eventually dendric subshifts, called spec-

ular subshifts (see Section 4.1.1 for details). This is presented on Chapter 4, Section 4.5 and was

partially done in the context of a joint work with F. Dolce, F. Durand, J. Leroy, D. Perrin and S.

Petite ([BCD+18]). The main results on this subject are Theorem 4.24 (dimension group of den-

dric subshifts) and Theorem 4.25 (dimension group of specular subshifts). Using these two results

we obtain Corollary 4.26, which says that two minimal dendric (resp. specular) subshifts are strong

orbit equivalent if and only they have the same simplex of letter frequencies (resp. the same simplex

generated by frequencies of factors of length 2), and two minimal and uniquely ergodic dendric (resp.

specular) subshifts are strong orbit equivalent if and only if they have the same additive group of letter

frequencies (resp. the same additive group generated by the frequencies of factors of length 2). We also

state a relation between balance and the dynamical dimension group in the case of uniquely ergodic

systems having rationally idependent letter frequencies (Theorem 3.42), which states that if the group

part in the dynamimcal dimension group is free abelian of rank d, where d is the cardinality of the al-

phabet, then balance on letters pass to balance on factors of arbitrary length. Finally, we describe the

dynamical dimension group for some S-adic subshifts (see Section 3.1 for details), which are a gener-

alization of substitutive systems, obtained from an infinte composition of substitutions (Theorem 3.39).
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Given a topological dynamical system (X,S,G), there exists a way to decompose the space X into

towers, which is extremely useful when dealing with invariant measures and continuous functions de-

fined on X. This decomposition is originally attributed to Kakutani and Rokhlin in the case G = Z.

It is the fundamental tool we use in this work to approach both the study of dimension groups in the

case of minimal Z-actions and the problem of realization of Choquet simplex as the set of invariant

measures of congruent monotileable amenable groups. We briefly describe the subject in the next

paragraph.

Tower partitions. A tower partition of the system (X,S,G) is a partition of X of the form

P = {T u−1
(Bk) : u ∈ Fk, 1 ≤ k ≤ d},

where d ∈ N, Fk ⊂ G are finite subsets, and Bk ⊆ X are clopen for all 1 ≤ k ≤ d. The sets of the form

T u
−1

(Bk) are calle the atoms of P. For a given 1 ≤ k ≤ d, the set
⋃
u∈Fk T

u−1
(Bk) is called the kth

tower of P, Bk is its base and |Fk| its height. In the case of Z-actions, tower partitions have the form

P = {T jBi : 1 ≤ i ≤ d, 0 ≤ j < hi}.

It is classical (see for instance [Ver81],[Pu89, Section 3],[DHP18, Section 2.9], [BR10, Section 6.4.1])

that tower partitions always exist for Cantor minimal systems given by Z-actions. Moreover, given a

Cantor minimal system (X,S,Z) and a point x0 ∈ X, there always exists a sequence of tower partitions

(Pn)n∈N = {T jBi,n : 1 ≤ i ≤ dn, 0 ≤ j < hi,n}

verifying the following conditions,

(KR1)
⋂

1≥i≥dn Bi,n = {x0},

(KR2) Pn+1 is finer than Pn for all n ∈ N.

(KR3)
⋃
n∈N Pn generates the topology of X.

Given a sequence of tower partitions (Pn)n∈N of X, the nth-incidence matrix of (Pn)n∈N is the following
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dn+1 × dn-integer matrix,

Qn(i, j) = |{0 ≤ ` < hi,n+1 : T `Bi,n+1 ⊆ Bj,n}| ∀1 ≤ i ≤ dn+1, ∀1 ≤ j ≤ dn.

The existence of appropriate tower partition sequences (satisfying conditions similar to (KR1)-(KR3))

is also true for actions of congruent monotileable amenable groups, as it is proved in Proposition 5.27,

and we use it in Chapter 5 to, given any Choquet simplex K and any congruent monotileable group

G, construct a minimal G-subshift whose set of invariant measures is affine homeomorphic to K.

In the case of Z-actions, we have carefully analyzed the relevance of conditions (KR1)-(KR3) in the

computations related to the dynamical dimension group and we have replaced (KR3) for a weaker

condition which we show sufficient to almost every computations (see Proposition 2.3 for details).

As we will see in Chapter 2, the dynamical dimension group of a system (X,T ) corresponds to an

inductive limit of a suitable sequence of tower partitions, also called Kakutani-Rokhlin partitions. We

point out the article [KW04], where the authors develope an algorithm, called TA (tower algorithm),

to compute the dynamical dimension group and the infnitesimal subgroup of Cantor minimal systems,

given an appropriate sequence of tower partitions.

Tower partitions are also useful in the study of the full group and topological full group of a system.

See for instance [BK00], where the authors show how to completely describe the topological full group

of a Cantor minimal system by looking at some convinient sequence of tower partitions (see [BK00,

Theorem 2.2]).

The notion of tower partition is closely related to that of a Bratteli diagram. A Bratteli diagram is

a special kind of infinite graph introduced by Bratteli in [Br72]. It is a pair (V,E) where the set of

vertices V and the set of edges E can be written as a countable union of non-empty finite sets,

V = V0 ∪ V1 ∪ V2 ∪ · · · and E = E1 ∪ E2 ∪ · · · ,

with the property that V0 is a single point x0 and there exists a range map r : E → V and a source

map s : E → V so that r(En) ⊆ Vn and s(En) ⊆ Vn−1. Also, we assume that s−1(v) 6= ∅ for all v ∈ V

and r−1(v) 6= ∅ for all v ∈ V \ V0. An ordered Bratteli diagram (V,E,≥) is a Bratteli diagram (V,E)

together with a partial order ≥ on E such that e, e′ ∈ E are ≥-comparable if and only if r(e) = r(e′).

An ordered Bratteli diagram determines a sequence of incidence matrices, (Mn), where each Mn has

|Vn| rows and |Vn−1| columns, and Mn(i, j) is the number of edges of En going from vj ıVn−1 to vi ∈ Vn.
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The diagram is called stationary if all Vn’s have a constant cardinality k and the incidence matrices

are the same k×k matrix for all levels. A diagram which has a uniformly bounded number of vertices

at each level is called a diagram of finite rank.

Given an ordered Bratteli diagram B = (V,E,≥), it is possible to put a dynamic on it in the following

way (this is an original idea of Versik, [Ver85]): Let XB denote the space of infinite paths on E, that

is,

XB = {(e1, e2, · · · ) : ei ∈ Ei, r(ei) = s(ei+1) ∀i ∈ N}.

(We assume that XB is infinite). We endow XB with a topology by giving a basis of open sets, namely

the family of cylinder sets,

[e1, e2, · · · , ek]B = {(f1, f2, · · · ) ∈ XB : fi = ei for all 1 ≤ i ≤ k}.

The cylinder sets are also closed. The space XB endowed with this topology is called the Bratteli

compactum associated to B. A minimal path of B is an element x = (e1, e2, · · · ) of XB such that for

all n ∈ N, en is minimal according to ≥. We define analogously a maximal path of B. Under certain

conditions (we refer [GPS95, Section 3] for details), the compactum associated to an ordered Bratteli

diagram is a Cantor space and it contains exactly one minimal path and one maximal path. In this

case, we denote xmin and xmax the minimal and maximal paths respectively, and we can define the

Versik map VB on XB as follows: VB(xmax) = xmin; if x = (e1, e2, · · · ) is not the maximal path, let

k be the smallest integer such that ek is not a maximal edge, let fk be the sucesor of ek on Ek, and

define VB(x) = (f1, f2, · · · , fk−1, fk, ek+1, ek+2, · · · ), where (f1, · · · , fk−1) is the minimal finite path on

E1 ◦E2 ◦ · · · with range equal to s(fk). The system (XB, VB,Z) is called a Bratteli-Vershik dynamical

system.

The key tool to prove the characterization of orbit equivalence and strong orbit equivalence on [GPS95]

is what is known as the Bratteli-Vershik Model Theorem: every Cantor minimal system given by an

action of Z is conjugate to a Bratteli-Vershik dynamical system, that is, for every Cantor minimal sys-

tem (X,S,Z) there exists a (simple) ordered Bratteli diagram B such that (XB, VB,Z) is conjugate to

(X,S,Z). This was proved in [HPS92]. Given a Cantor minimal system (X,S,Z), the idea is to obtain

the Bratteli-Vershik system conjugate to it by constructing a sequence of tower partitions (Pn)n∈N

where, at each level, the number of vertices of the diagram corresponds to the number of towers of Pn,

and the edges between succesive levels are determined and ordered according to the incidence matrices

of (Pn)n∈N.
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It is shown in [DHS99, Theorem 1] that the family of Bratteli-Vershik dynamical systems associated

to stationary, prperly ordered Bratteli diagrams is the disjoint union of the family of substitution

minimal systems and the family of stationary odometer systems.

Bratteli diagrams are also a useful tool to describe the invariant measures of dynamical systems. See

for example [BR10, Section 6.8], and the articles [BKMS10] and [BKMS12], where the authors study

the set of invarant measures on stationary and finite rank Bratteli diagrams.

When dealing with minimal Z-actions on the Cantor space one can decide to work directly with tower

partitions or to pass to Bratteli-Vershik models. We do not adopt the approach of Bratteli diagrams

in this work. We refer to [HPS92],[GPS95],[BR10, Chapter 6] or [DHS99] for details on this interesting

subject and on the interaction between tower partitions and Bratteli diagrams. We also recommend

the survey [BKa15] for more on Bratteli diagrams and invariant measures.

This text is organized in five chapters. The first one is devoted to general definitions and background

and to fix the notation we use through the text. In the second one we present in detail the concepts

related to tower partitions for minimal Z-actions on the Cantor space; we give some results about

the relation between certain well-chosen sequences of tower partitions and the image subgroup, the

group of infinitesimals and the dynamical dimension group of a minimal Z-subshift. In Chapter 3 we

apply results of Chapter 2 to the study of some properties of substitutive and S-adic systems, namely

dimension groups and balance, and in Chapter 4 we do the same for dendric and eventually dendric

subshifts. In Chapter 5 we study the problem of realization of Choquet simplices as sets of invariant

measures of actions of congruent monotileable amenable groups; we introduce the notion of congruent

monotileable amenable group, we prove that this class of groups is larger than that of residually fi-

nite amenable groups and that for any Choquet simplex K and any congruent monotileable amenable

groupG there exists a minimalG-subshift (X,S,G) such thatM(X,S,G) is affine homeomorphic toK.

The work presented in this PhD thesis is partially included in the following three articles,

� Berthé, V., Cecchi Bernales, P., Balancedness and coboundaries in symbolic systems; Theoretical

Computer Science, 2018, https://doi.org/10.1016/j.tcs.2018.09.012.

� Cecchi Bernales, P., Cortez, M.I.; Invariant measures for actions of congruent monotileable

amenable groups; Groups, geometry and dynamics, 2019, DOI 10.4171/GGD/506.

� Berthé, V., Cecchi Bernales, P., Dolce, F., Durand, F. Leroy, J., Perrin, D., Petite, S., Dimension
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group of dendric subshifts; Preprint.
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Chapter 1

Definitions and background.

In this introductory chapter, we give all basic notions and background required to understand the

results and examples presented in Chapters 2, 3, 4 and 5.

A topological dynamical system or simply a dynamical system is a triple (X,S,G) where X is a compact

metric space, G is an infinite countable group and S : X × G → X is a continuous left action of G

on X. For all g ∈ G, Sg denotes the homeomorphism induced by the action of g on X. If we refer to

a dynamical system as a pair (X,T ), that means that G = Z and the action of an element n ∈ Z is

given by S(x, n) = Tn(x).

Through all the text, G will be an infinite countable group.

A dynamical system (X,S,G) is said to be minimal if X admits no non-trivial closed and G-invariant

subset, that is, if Y ⊆ X is a closed subset such that Sg(Y ) ⊆ Y for all g ∈ G, then either Y = ∅ or

Y = X. Note that (X,T ) is minimal if and only if the only closed T -invariant subsets of X are ∅ and

X itself. Minimality is equivalent to the fact that for all x ∈ X, the orbit of x under the action of G

is dense in X. We say that (X,S,G) is free or aperiodic on Y ⊆ X if Sg(x) = x implies g = 1G, for

every x ∈ Y . If Y = X we just say that the subshift is free. We say that (X,S,G) is equiconinuous if

for every ε > 0 there exists δ > 0 such that whenever x, y ∈ X satisfy d(x, y) < δ, d(Sg(x), Sg(y)) < ε

for all g ∈ G.

Let (X1, S1, G) and (X2, S2, G) be two dynamical systems given by two actions of the same group

G. We say that (X2, S2, G) is a factor of (X1, S1, G) if there exists a continuous surjective function

φ : X1 → X2 which commutes with the actions of G, that is, for all x ∈ X, for all g ∈ G, one has

φ(Sg1(x)) = Sg2(φ(x)). If φ is also injective, the two systems are said to be conjugate.
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CHAPTER 1. DEFINITIONS AND BACKGROUND. 2

1.1 Coboundaries.

Given a dynamical system (X,T ), the coboundary map β : C(X,R)→ C(X,R) is defined by

βf = f ◦ T − f.

Elements on the image of β are called coboundaries. If f, g ∈ C(X,R) satisfy f − g ∈ βC(X,R), we

say that f and g are cohomologous. Note that β maps C(X,Z) to C(X,Z). For any f ∈ C(X,R),

x ∈ X and n ∈ N, define

f (n)(x) = f(x) + f(Tx) + · · ·+ f(Tn−1x).

The family (f (n))n∈N is called the cocycle of f . The following classical result is a characterization of

coboundaries.

Theorem 1.1 (Gotshalk-Hedlund [GH55]). Let (X,T ) be a minimal topological dynamical system.

The map f ∈ C(X,R) is a coboundary if and only in there exists x0 ∈ X such that the sequence

(f (n)(x0))n∈N is bounded.

Corollary 1.2. Let (X,T ) be a minimal dynamical system. If f ∈ C(X,R) is a non-negative coboun-

dary, then it is identically zero.

Proof. By Theorem 1.1, there exists x0 ∈ X such that (f (n)(x0))n∈N is bounded, but by minimality,

f(Tnx0) > 1
2 sup f for infinitely many values of n, so that limn→∞ f

(n)(x) → ∞ unless sup f is

identically zero.

Proposition 1.3. ([DHP18, Proposition 4.2]) Let (X,T ) be a minimal dynamical system. If f ∈

C(X,Z) is a coboundary, then it is the coboundary of some integer-valued function.

Proof. Let T = R/Z be the one-dimensional torus and π : R → T the canonical projection. Let β̃

denote the coboundary map defined on C(X,T) in the same way as on C(X,R). Note first that if

γ ∈ C(X,T) and β̃γ = 0, then γ is constant. Indeed, let c̃ ∈ T and set Y = γ−1({c̃}). The subset Y

is closed since γ is continuous and it is T−invariant since β̃γ = 0. The system being minimal, if Y is

nonempty, it is necessarily the whole space X.

Suppose f ∈ C(X,Z) is the coboundary of g ∈ C(X,R). Then, g ◦ T (x) − g(x) ∈ Z for all x ∈ X.

This implies that β̃(π ◦ g) = 0 and then there exists c̃ ∈ T such that π ◦ g(x) = c̃ for all x ∈ X. Let c

be any element in π−1({c̃}) and define h(x) := g(x)− c. Since π ◦ h = 0, h ∈ C(X,Z), and it is clear

that β(h) = β(g) = f .
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1.2 Z-subshifts.

Let A be a finite non-empty set of cardinality d, which we call an alphabet. The sets AZ and AN

endowed with the product topology of the discrete topology on each copy of A are compact metric

spaces. We refer to the elements on AZ as infinite words and to those on AN as one-sided infinite

words.

The free monoid A∗ is the set of all words with symbols in A, including the empty word, which we

denote ε. For a ∈ A and for w ∈ A∗, the non-negative integer |w|a stands for the number of occurrences

of the letter a in the word w, and |w| stands for the length of w, that is, the total number of letters

appearing on w. We use the convention |ε| = 0. The ith letter of w is denoted wi by labelling indices

from 0, i.e., w = w0 · · ·w|w|−1. A factor of a finite word w ∈ A∗ is defined as a finite concatenation

of some consecutive letters occurring in w. A factor of an infinite word or a one-sided infinite word

is defined in the same way. For v, w ∈ A∗ such that v is a factor of w, the non-negative integer |w|v
stands for the number of occurrences of v in w. We use the notation u ≺ w (resp. u ≺ x ∈ AZ or AN)

for u a factor of w (resp. of x). The set of factors Lx of x ∈ AZ or AN is called its language. More

generally, any set of finite words with symbols in an alphabet A is called a language on A. For an

infinte word x ∈ AZ or a one-sided infinite word x ∈ AN, for n ≥ 1, we use the notation x[0,n) to refer

to the word x0 · · ·xn−1, and x(−n,n) to refer to x−n+1 · · ·xn−1, when x ∈ AZ.

Recall that a non-empty compact metric space X is a Cantor space if it is totally disconnected (it has

no non-trivial connected subsets) and has no isolated points. Equivalently, X is a Cantor space if it has

no isolated points and a countable basis of clopen (closed and open) subsets. Up to homeomorphism,

there exists only one Cantor space. If #A ≥ 2, the space AZ has no isolated points and it is a Cantor

space, whose countable basis of clopen subsets is given by the family of all cylinder sets: given any

word w ∈ A∗ and an integer n, the cylinder of w of index n is the following set,

[w]n = {x ∈ AZ : xn · · ·xn+|w|−1 = w}.

For all w ∈ A∗, we denote [w] the cylinder of w of index 0 and we call it the cylinder of w.

Let T denote the shift transformation acting on AZ, defined by T ((un)n∈Z) = (un+1)n∈Z. A Z-subshift

on A or simply a subshift on A is the dynamical system given by the pair (X,T |X), where X is a

closed shift-invariant subset of AZ, endowed with the induced topology. We usually denote (X,T ) the

system (X,T |X) to avoid an overcharged notation. We use the word subshift indistinguishly to refer

to both the space X ⊆ AZ or the dynamical system (X,T ). When X = AZ, we refer to (X,T ) as the
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Z-fullshift on A or the fullshift on A. From the previous discussion, every subshift on A is a Cantor

system. An element x ∈ X is said to be eventually periodic if there exist N, k ∈ N such that for all

n ≥ N , xn+k = xn.

Given any infinite word x in AZ (or infinite word in AN), we define the subshift generated by x, (Xx, T ),

where

Xx = {y ∈ AZ : ∀w,w ≺ y ⇒ w ≺ x}.

Equivalently, Xx is the closure of the orbit of x under the action of the shift T . If (X,T ) is a subshift

on A, then its language LX is defined as the set of factors of elements of X. For any n ≥ 1, Ln(X)

denotes the set of factors of length n of elements in X.

An infinite word x = (xn)n∈Z ∈ AZ is said to be uniformly recurrent if every factor occurring in x

occurs infinitely often and with bounded gaps, that is, for every w ≺ x, there exists s such that, for

every n, w is a factor of the finite word xn . . . xn+s−1. It is well known that the subshift (X,T ) is

minimal if and only if for all x ∈ X, x is uniformly recurrent (see for example [Que10, Proposition

4.7] or [BR10, Proposition 7.1.5]).

Example 1.4. Substitution subshifts.

As a first example we introduce substitution subshifts. We give here just basic definitions and prop-

erties, since they will be treated on detail in Chapter 3.

Let A be a finite alphabets with |A| ≥ 2. A substitution on A is a non-erasing morphism on the free

monoid A∗, that is, a map σ : A∗ → A∗ satisfying σ(ab) = σ(a)σ(b) for all letters a, b ∈ A, and such

that there is no letter in A whose image under σ is empty. A substitution σ extends to a map from

AZ to AZ by concatenation. The subhift generated by a substitution σ is the pair (Xσ, T ), where

Xσ := {x ∈ AZ : ∀w,w ≺ x⇒ ∃a ∈ A, ∃n ∈ N : w ≺ σn(a)}.

Let A,B be two finite alphabets. Given a non-erasing morphism σ : A → B∗, the incidence matrix Mσ

of σ is the |B|×|A|-matrix whose coefficients are Mσ(b, a) = |σ(a)|b, for all a ∈ A, b ∈ B. A substitution

σ onA is said to be primitive if there exists a power of Mσ which is positive. Equivalently, σ is primitive

if there exists a positive ineger n such that for all a, b ∈ A, b occurs in σn(a). The incidence matrix

of a substitution does not contain all the information about it, since the order of letter occurrences

is missing, but we will see thet properties of Mσ determine some of those of (Xσ, T ), for example,

frequencies (see Chapter 3, Section 3.3.1). It is well known that subshifts generated by primitive
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substitutions are minimal (see for example [Que10]).

Example 1.5. Sturmian subshifts.

Sturmian sequences were for the first time introduced with this name in [HM40]. A fundamental

work on Sturmian sequences is [CH73]. There are many equivalent ways to define Sturmian subshifts

(see for example [BR10], Chapter 1, for a combinatorial definition in terms of language complexity).

We will explain in Chapter 3 their S-adic characterization. Here we present their characterization as

codings of irrational rotations on the circle.

Let α ∈ (0, 1) be an irrational value, and consider the rotation by angle α defined on the one-

dimensional torus T = R/Z by

Rα(x) = x+ α mod 1.

The itinerary of a point x ∈ R/Z under Rα is the following sequence in {0, 1}Z

Iα(x)n =

 0 if Rnα(x) ∈ [0, 1− α)

1 if Rnα(x) ∈ [1− α, 1).

Such an itinerary is called a Sturmian sequence or Sturmian word.

Given any α ∈ (0, 1) irrational, the closure of the set of all itineraries of points in R/Z under Rα, de-

noted Xα, is a subshift on A = {0, 1} and it is called a Sturmian subshift. Indeed, since α is irrational,

Xα corresponds to the orbit closure of any itinerary associated to the rotation Rα, so it is the subshift

generated by any itinerary. It is known that Sturmian subshifts are minimal. As dynamical systems

given by actions of Z, (T, Rα) is a topological factor of (Xα, T ), where T is the shift. Two Sturmian

subshifts (Xα, T ) and (Xβ, T ) are conjugated if and only if α = β (see for example [BS94] or [HM40]).

All previous results and their respective proofs can be found in the surveys on Sturmian words pre-

sented on [PF02, Chapter 6] or [Lo02, Chapter 2]. A typical example of a Sturmian sequence is the

Fibonacci word: it is defined by the Fibonacci morphism σF : {0, 1} → {0, 1} given by σF (0) = 01 and

σF (1) = 0. If we iteratively apply σF we obtain the one-sided infinite sequence

σωF (0) = 01001010010010100101001001010010 · · · ,

which is called the Fibonacci word. Thus, the subshift generated by the Fibonacci word is a Sturmian

subshift. This coincide with the substitutive subshift (XσF , T ).

Example 1.6. Toeplitz Z-subshifts.
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Toeplitz Z-subshifts (or simply Toeplitz subshifts) were originally introduced in [JK69]. Since then,

they have seen extensively studied and generalized to other group actions. We present the example of

Toeplitz G-subshifts in Section 1.3. For more details in the subject of Toeplitz Z-subshifts we refer to

[Do95].

An infinite word (xn)n∈Z with symbols in the alphabet A is said to be a Toeplitz word if for all n ∈ N

there exists p ∈ N such that for all k ∈ Z, xn = xn+kp.

A Z-subshift (X,T ) is said to be a Toeplitz subshift if X is the orbit closure under the shift of some

Toeplitz word. Toeplitz subshifts are known to be minimal, since Toeplitz sequences are uniformly

recurrent (indeed, they are regularly recurrent, see [Do95, Section 5 and 7] for details).

1.2.1 Return words.

Given a minimal symbolic system (X,T ), on the alphabet A and a letter a ∈ A, a word w with

wa ∈ LX is said to be a left return word to a if a is a prefix of wa. It is said to be a first left return

word to a if a is a prefix of wa and there are exactly two occurrences of a in wa. Similarly, a word w

with aw ∈ LX is said to be a right return word to a if a is a suffix of aw. It is said to be a first right

return word to a if a is a suffix of aw and there are exactly two occurrences of a in aw. Right and left

return words to a factor are defined analogously.

Since (X,T ) is minimal, the language LX is uniformly recurrent, which implies that for every word

w ∈ LX , there exists a positive integer Nw such that every word of length grater than Nw contains at

least two occurrences of w. Thus, for all w ∈ Lw, the length of the first return words to w is bounded,

and therefore the number of first return words to w is finite.

1.2.2 Cylinder functions

Let (X,T ) be a Z-subshift. A function f ∈ C(X,R) is called a cylinder function if there exists n > 0

such that for all x ∈ X, f(x) depends only on x[0,n).

Proposition 1.7. ([DHP18, Proposition 4.13]) Let (X,T ) be a dynamical system. Every function

belonging to C(X,Z) is cohomologous to some cylinder function in C(X,Z).

Proof. Let f ∈ C(X,Z). Since f is integer-valued, it is locally constant, and then there exists k ∈ N

such that for all x ∈ X, f(x) depends only on x(−k,k). Therefore, g(x) := f ◦ T k(x) belongs to

C(X,Z) and depends only on x[0,2k) for all x ∈ X, i.e., it is a cylinder function in C(X,Z). Finally,

f − g = f − f ◦ T k(x) is a coboundary because it is a sum of coboundaries.
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Proposition 1.8. ([DHP18]) Let (X,T ) ne a dynamical system. If f ∈ C(X,Z) is a cylinder function

and a coboundary, then it is the coboundary of some cylinder function.

Proof. Let f ∈ C(X,Z) be a cylinder function and a coboundary, then there exists g ∈ C(X,R) such

that f = β(g). Since g is locally constant and f is a cylinder function, we can choose k ∈ N large

enough so that for all x ∈ X, f depends only on x[0,k) and g depends only on x(−k,k). We claim

that for all x ∈ X, g depends only on x[0,2k). Indeed, suppose that y, z ∈ X satisfy y[0,2k) = z[0,2k).

Since f(x) depends only on x[0,k), f
(k)(x) depends only on x[0,2k) and thus f (k)(y) = f (k)(z). Since

(T ky)(−k,k) = (T kz)(−k,k), one has g(T ky) = g(T kz). Finally, recall that since f = β(g), then for all

s ∈ N and for all x ∈ X, f (s)(x) = g(T sx)− g(x), so we obtain that

g(y) = g(T ky)− f (s)(y) = g(T kz)− f (s)(z) = g(z).

Therefore, g is a cylinder function depending on the first 2k coordinates.

Let (X,T ) be a subshift. For n ≥ 0, let Rn(X) denote the set of continuous functions from Ln(X) to

R. The symbolic coboundary map βn : Rn(X)→ Rn+1(X) is given by

φ 7→ (βnφ)(a0a1 · · · an) = φ(a1 · · · an)− φ(a0 · · · an−1) ∀a0a1 · · · an ∈ Ln+1(X). (1.1)

We say that ψ ∈ Rn+1(X) is a symbolic coboundary if there exists φ ∈ Rn(X) such that ψ = βnφ.

If f ∈ C(X,R) is a cylinder function depending on the first n coordinates, it has an associated function

φf : Ln(X) → R which is defined by φf (a0a1 · · · an−1) = f(x) for any x ∈ [a0a1 · · · an−1]. It is called

the symbolic map associated to f .

1.3 G-symbolic systems.

For any infinite countable group G and any finite alphabet A, the set AG endowed with the product

topology of the discrete topology on each copy of A is again a compact metric space. The elements

of AG will be refered as configurations. In this context, the analogue of a word in the context of

Z-actions, is what we call a pattern, or a finite configuration: an element P ∈ AF where F is a finite

subset of G. For every pattern P ∈ AF , we define the cylinder of P in the same way as in the context

of Z-actions, that is,

[P ] = {x ∈ AG : x|F = P}.
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The set of all cylinders associated to patterns in AF forms a countable basis of clopen sets of AG, and

AG is again a Cantor space whenever |A| ≥ 2.

Let TG denote the G-shift action of G on AG, defined by T gG(x)(h) = x(g−1h), for every g, h ∈ G and

x ∈ AG. We say that a pattern P has an occurrence on the element x ∈ AG if there exists g ∈ G

such that T gG(x)|F = P . A G-subshift of A is the dynamical system given by the triple (X,TG|X , G),

where X is a closed subset of AG which is invariant by the G-shift action. When X = AG, we refer

to (X,T,G) as the G-fullshift.

To present the following examples of G-symbolic systems we introduce a notion which will be crucial

in Chapter 5, namely, the notion of residually finite group. We refer to [CC10, Chapter 2] or Section

5.1.2 for details. A group G is said to be residually finite if for each element g ∈ G with g 6= 1G there

exists a finite group F and a homomorphism φg : G → F such that φg(g) 6= 1F . Equivalently, there

exists a sequence of finite index normal subgroups of G, {Gn}n∈N, such that
⋂
n∈NGn is trivial.

Example 1.9. Toeplitz G-subshifts.

In an analogous way as in Example 1.6, we say that a configuration x ∈ AG is a Toeplitz configuration

if for every g ∈ G there exists a finite index subgroup Γ of G such that for all γ ∈ Γ, x(γ−1g) = x(g).

A G-subshift (X,T,G) is said to be a Toeplitz subshift if X is the orbit closure under the shift of some

Toeplitz configuration. Toeplitz G-subshifts are known to be minimal. We refer to [Co06], [CP08] and

[CP14] for details on the dynamical properties of Toeplitz G-subshifts.

Note that if x ∈ AG is an aperiodic Toeplitz configuration, then G is residually finite. Indeed, since

for all g ∈ G there exists a finite index subgroup Γg such that x(γ−1g) = x(g) for all γ ∈ Γg, there

exists a subgroup of G defined by

Γ =
⋂
g∈G

Γg.

Note that this intersection is trivial: if there exists γ ∈ Γ such that γ 6= 1G, then x(γ−1g) = x(g) for

all g ∈ G, since γ ∈ Γg for all g ∈ G. This implies that T γ(x) = x, that is, x is periodic, which is a

contradiction. For each g ∈ G we can assume that Γg is normal in G: if it is not, there exists a normal

finite index subgroup Hg which is contained in Γg. Finally, since G is countable, (Γg)g∈G defines a

sequence of finite index normal subgroups of G with trivial intersection, thus G is residually finite.

Residually finite groups are thus the only groups that admit aperiodic Toeplitz configurations.

The next one is an example of a G-action on the Cantor space which is not a subshift.
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Example 1.10. Odometers.

Let G be a residually finite group and let (Gn)n∈N be a decreasing sequence of finite index normal

subgroups of G. For all n ∈ N, the map πn : G/Gn+1 → G/Gn given by πn(gGn+1) = gGn is a well

defined epimorphism. We define the following inverse limit

X = lim←−
n

(Gn, πn) = {(xn)n∈N ∈
∏
n≥0

G/Gn : πn(xn+1) = xn for all n ≥ 0} ⊆
∏
n≥0

G/Gn.

The space
∏
n≥0G/Gn endowed with the product topology of the discrete topology on each G/Gn is

compact and X is a closed subspace of it. We define the following action of G on X,

Sg((xn)n∈N) = (gxn)n∈N.

The system (X,S,G) is called a G-odometer. G-odometers are free minimal eqiucontinuous systems

and free Teoplitz G-subshifts are characterized as the minimal almost one-to-one extensions of G-

odometers (see [Co06] and [CP08] for details).

1.4 Invariant measures.

Given a topological dynamical system (X,T,G), an invariant measure of (X,T,G) is a probability

Borel measure µ such that for all g ∈ G, µ(T g(A)) = µ(A), for every Borel subset A ⊆ X. We denote

M(X,T,G) the set of all invariant measures of (X,T,G). An element µ ∈ M(X,T, µ) is said to be

an ergodic measure if whenever T g(A) = A for all g ∈ G for some Borel set A ⊆ X, either µ(A) = 0

or µ(A) = 1. The system (X,T,G) is said to be uniquely ergodic if M(X,T,G) is a singleton.

Recall that a group G is amenable if it admits a Følner sequence of finite subsets (Fn)n≥0, that is, a

sequence verifying

lim
n→∞

|Fng \ Fn|
|Fn|

= 0 ∀g ∈ G.

(See Chapter 5 or [CC10, Chapter 4] for details). There are many characterizations of amenable groups.

It is a theorem by Bogolyubov [Bog39] that a group is amenable if and only if for all continuous action

of G on a compact metric space X, there exists a probability masure on X which is invariant under the

action of G. Later, Giordano and de la Harpe showed in [GdH97] that for a group G to be amenable

it is necessary and sufficient that any continuous action on the Cantor set has an invariant probability

measure. So in particular when we deal with amenable groups we always have that M(X,T,G) is
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non-empty.

Free groups are not amenable (see Chapter 5 for a proof).

From now on we assume that every group we work with is infinite, countable and amenable.

1.4.1 The Choquet simplex of invariant measures.

A compact convex metrizable subset K of a locally convex real vector space is said to be a Choquet

simplex or just a simplex if for each v ∈ K there is a unique probability measure m supported on

ext(K) such that
∫
ext(K) xdm(x) = v. This is a generalization of the unitary simplex in Rn, that

is, the convex hull of the canonical basis {e1, · · · , en}, whose extreme points are exactly e1, · · · , en.

There exists a Choquet simplex whose set of extreme points is dense, this simplex is unique up to affine

homeomorphism and it is called the Poulsen Simplex. It has the surprising property of universality:

every Choquet simplex is affinely homeomorphic to a face of the Poulsen simplex. We refer to [P61],

[LOS78] and [FLP] for more on the Poulsen simplex.

The set of probability measures on a compact metric space X can be identified with a convex subspace

of the dual C(X,R)∗ endowed with the weak∗ topology (this is a consequence of the Riesz Represen-

tation Theorem). For a dynamical system (X,T,G), it is well known that the set M(X,T,G) is a

Choquet simplex whose extreme points are the ergodic measures. This is a consequence of the Ergodic

Decomposition Theorem (see for example [Gl03]). This implies in particular that if G is amenable,

then every dynamical system (X,T,G) admits an ergodic invariant probabilty measure. We denote

E(X,T,G) the set of ergodic invariant probability measures on X.

If (X,T,G) has a finite number of ergodic measures,M(X,T,G) is affine homeomorphic to the unitary

simplex of Rn, for some n ∈ N. It is known (see [GW97]) that the Poulsen simplex is the simplex

of invariant measures associated to the G-fullshift action of any countable amenable group G on the

Cantor space {0, 1}G.

1.4.2 Invariant measures and frequencies in symbolic systems.

Let (X,T ) be a dynamical system given by an action of Z. For all invariant measure µ ∈M(X,T ), the

quadruple (X,T,B, µ), where B is the Borel σ-algebra on X, is a measure-theoretic dynamical system

(we refer to [W82] for details): B is a σ-algebra on X, µ is a probability measure defined on B, T

is µ-measurable and µ(A) = µ(T−1A) for all Borel subset A. In this context we have the following

classical result.
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Theorem 1.11 (Birkhoff Ergodic Theorem). Let (X,T,B, µ) a measure-theoretic dynamical sys-

tem. Let f ∈ L1(X,R). The sequence (
1

n

n−1∑
k=0

f ◦ T k
)
n≥0

converges µ-a.e. to a function f∗ ∈ L1(X,R) which verifies f∗ ◦T = f∗ µ-a.e. and
∫
X f
∗dµ =

∫
X fdµ.

If µ is ergodic, for all f ∈ L1(X,R), the above sequence converges µ-a.e. to
∫
X fdµ.

If the system (X,T ) is uniquely ergodic, then we have the following stronger result (see for example

[W82] for a proof).

Theorem 1.12. Let (X,T ) be a dynamical system. Then (X,T ) is uniquely ergodic with measure µ

if and only if for all continuous function f : X → R, the sequence(
1

n

n−1∑
k=0

f ◦ T k
)
n≥0

converges uniformly to the constant value
∫
X fdµ.

Suppose now that (X,T ) is a subshift on the alphabet A. Let x ∈ X. The frequency fw(x) of a factor

w ∈ LX is defined as the following limit, when it exists,

fw(x) = lim
n→∞

|x−n · · ·x0 · · ·xn|w
2n+ 1

.

Note that this quantity does not always exist. Consider for example the following one-sided infinite

word on the alphabet A = {a, b},

x0 = abaabbaaabbbaaaabbbb · · ·

and take any x ∈ Xx0 . It is clear that neither fa(x) nor fb(x) exists. The word x is said to have

uniform frequencies if for every factor w ∈ LX , the ratio
|xk···xk+2n|w

2n+1 converges to fw(x) when n tends

to infinity, uniformly in k. This means that the frequency of w does not depend on the place of x we

look at.

We know that E(X,T ) is non-empty and for all µ ∈ E(X,T ), (X,T,B, µ) is a measure-theoretic

dynamical system. We thus can apply Theorem 1.11 to characteristic functions of cylinders (see
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Section 1.2). Note that if w is any word in LX and x any point in X, then the number of times that

w occurs in x[−n,n+1) is

|x−n · · ·xn−|w|−1|w =

n−|w|−1∑
i=−n

χ[w] ◦ T i(x),

where χ[w] is the characteristic function of [w]. So we obtain that

lim
n→∞

|x−n · · ·x0 · · ·xn|w
2n+ 1

= lim
n→∞

1

2n+ 1

n−1∑
i=0

χ[w] ◦ T−i(Tx) +

n−1−|w|∑
i=0

χ[w] ◦ T i(x)

 .

By applying Theorem 1.11 we know that 1
n

∑n−1
i=0 χ[w]◦T−i+1 and 1

n

∑n−1−|w|
i=0 χ[w]◦T i converges µ-a.e.

to µ([w]), so we get the following result.

Theorem 1.13. Let (X,T ) a subshift and µ ∈ E(X,T ). Then, for µ-almost every infinite word x ∈ X

and for any factor w ∈ LX , the frequency fw(x) exists and equals µ([w]).

Similarly, if we apply Theorem 1.12 to a minimal subshift, we obtain the following result.

Theorem 1.14. Let (X,T ) be a minimal subshift. Then (X,T ) is uniquely ergodic if and only if for

all x ∈ X, x has uniform frequencies. In this case, for all x ∈ X and for all w ∈ LX , the frequency

fw(x) is equal to µ([w]), where µ is the unique invariant measure of (X,T ).

The two previous results give us the idea that there could exist minimal non-uniquely ergodic systems

in which every point has frequencies in any factor but not uniform frequencies. We know that this is

not the case thanks to the following result by Oxtoby [Ox52]. See [BR10, Proposition 7.2.11] for an

elegant proof.

Theorem 1.15 ([Ox52]). If (X,T ) is a minimal non-uniquely ergodic subshift, then there exists an

infinite word x ∈ X and a factor w ∈ LX such that fw(x) is not defined.

So in the case of minimal subshifts, unique ergodicity is equivalent to the existence of frequencies, and

if (X,T ) is uniquely ergodic, then for all x ∈ X the frequency of the factor w in x is equal to µ([w]).

In the latter case, we denote by µw the frequency of w (in any point x).

Substitution subshifts arising from primitive substitutions are known to be uniquely ergodic (see for

example [Chapter 5][Que10]). In Chapter 3, Section 3.3.1, we summarize some results about how to

compute frequencies in this case.
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1.4.3 Balance in symbolic systems.

We now introduce the notion of balance for Z-subshifts and relate it with frequencies studied in section

1.4.2.

Let (X,T ) be a subshift. For an infinite word x ∈ X and a factor v ∈ LX , we say that x is balanced

on v if there exists a constant Cv such that for all w,w′ ∈ LX with |w| = |w′|, one has

||w|v − |w′|v| ≤ Cv.

We say that x is balanced on letters if it is balanced on all letters in A, and that it is balanced on

factors (resp. balanced on the factors of length n) if it is balanced on all factors of X (resp. on all

factors of X of length n).

If (X,T ) is a minimal subshift, then since all elements have the same language, balance is a property

of the language LX and does not depend on the choice of a particular point. Thus, in the case of

minimal systems, we will say that the system or the language is (or is not) balanced in some factor.

The following proposition (which is a rephrasing of [Adam03, Lemma 23]) states that balance is

preserved when decreasing the length of factors. It is thus sufficient to prove that balance does not

hold for some length to obtain that it does not hold for all larger lengths.

Proposition 1.16. [Adam03, Lemma 23] If an infinite word x is balanced on a factor v, then it is

balanced on the prefix of length |v| − 1 of v. If a minimal subshift (X,T ) is balanced on factors of

length n+ 1, then it is balanced on factors of length n.

Proof. Let x ∈ AZ. For every n, we consider an alphabet An and a bijection θn : An → Ln(x). The

word x(n) := θn(x), defined over the alphabet An, codes factors of length n according to the bijection

θn in the same order as in x with overlaps and without repetition. The map θn◦πn◦θ−1
n+1 is a morphism

from the monoid A∗n+1 to A∗n+1 that maps letters to letters: it maps the coding of a block of length

n + 1 to the coding of its prefix of length n. The word x(n) is thus the image by a letter-to-letter

substitution of the word x(n+1). Indeed x(n) = θn ◦ πn ◦ θ−1
n+1(x(n+1)).

We conclude by noticing that the action of a letter-to-letter substitution preserves balance.

The following proposition states a relation between balance and frequencies. Its proof can be found

in [BD14, Proposition 2.4] for factors of length 1. It extends easily to factors of arbitrary length.

Proposition 1.17. Let (X,T ) be a minimal subshift. The language LX is balanced in the factor v if

and only if v has a frequency µv and there exists a constant Bv such that for any factor w ∈ LX , we
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have

||w|v − µv|w|| ≤ Bv

Equivalently, LX is balanced in the factor v if and only if v has a frequency µv and there exists Bv

such that for all x ∈ X and for all n ≥ 1,

||x[0,n)|v − µvn| ≤ Bv.

The previuos result tells us that in particular balanced minimal systems are forced to be uniquely

ergodic. Balance is indeed a property which is stronger than unique ergodicity and that measures the

quality of the convergence of 1
n |x[0,n)|v towards µv.

Example 1.18. Balance in Sturmian subshifts.

Sturmian sequences were characterized in [HM40] as binary aperiodic sequences which are 1-balanced

on letters, that is, aperiodic sequences on A = {0, 1} such that given two factors of the sequence, w and

w′, having the same length, the difference between the number of 0’s (or 1’s) in w and the number of

0’s (or 1’s) in w′ is at most 1. This behavior was observed to extend to factors in [FV02], where it was

shown that every Sturmian sequence is balanced on every factor. More precisely, the authors proved

that if x ∈ {0, 1}Z is a Sturmian word, then for all factors u, v, w of x, ||u|w − |v|w| ≤ |w| whenever

|u| = |v|. However, this is not a complete characterization: not all such sequences are Sturmian.

Proposition 1.19. Let (X,T ) be a minimal and uniquely ergodic subshift and let µ denote its unique

invariant measure. Given a factor v ∈ LX , define

fv = χ[v] − µv ∈ C(X,R).

Then, (X,T ) is balanced on the factor v if and only if the map fv is a coboundary.

Proof. It is a direct consequence of Proposition 1.17 and Theorem 1.1.

1.5 Orbit equivalence and dimension groups.

Orbit equivalence and strong orbit equivalence are notions of equivalence between dynamical systems,

which are weaker than conjugacy. Strong orbit equivalence is characterized by a total invariant called

the dynamical dimension group of the system. We devote this section to recall some basic notions and

results regarding orbit/strong orbit equivalence and dimension groups.
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1.5.1 Orbit equivalence.

Two minimal dynamical systems (X1, T1, G1) and (X2, T2, G2) are said to be orbit equivalent if there

exists a homeomorphism φ : X1 → X2 sending orbits of the G1-action onto orbits of the G2-action,

that is, for all x ∈ X1, one has

φ({T g1 (x) : g ∈ G1}) = {T h2 φ(x) : h ∈ G2}.

When the group acting on X is Z, orbit equivalence implies the existence of two maps n1 : X1 → Z

and n2 : X2 → Z (uniquely defined by minimality) such that, for all x ∈ X1,

φ ◦ T1(x) = T
n1(x)
2 ◦ φ(x) and φ ◦ Tn2(x)

1 (x) = T2 ◦ φ(x).

The two minimal dynamical systems (X1, T1) and (X2, T2) are said to be strong orbit equivalent if n1

and n2 both have at most one point of discontinuity. Such notion is natural since it was shown in

[Bo83] that if n1 (or n2) is continuous, then the two systems are flip conjugated, that is, (X1, T1) is

either congujated to (X2, T2) or to its inverse (X2, T
−1
2 ).

1.5.2 Dimension groups.

An ordered group is a pair (G,G+) where G is a countable abelian group G and G+ is a subset of G,

called the positive cone, satisfying

G+ +G+ ⊂ G+, G+ ∩ (−G+) = {0}, G+ −G+ = G.

We write a ≤ b if b − a ∈ G+, and a < b if b − a ∈ G+ and b 6= a. An order unit for (G,G+) is an

element u in G+ such that, for all a in G, there exists some non-negative integer n with a ≤ nu. We

say that an ordered group is unperforated if a ∈ G and na ∈ G+ for some a ∈ G and n ∈ N implies

that a ∈ G+.

A dimension group (G,G+, u) with order unit u is an unperforated ordered group (G,G+) satisfying

the Riesz interpolation property: given a1, a2, b1, b2 ∈ G with ai ≤ bj (i, j = 1, 2), there exists c ∈ G

with ai ≤ c ≤ bj . Two dimension groups with units (G1, G
+
1 , u1) and (G2, G

+
2 , u2) are isomorphic

if there exists a group isomorphism φ : G1 → G2 such that φ(G+
1 ) = G+

2 and φ(u1) = u2. Given a

dimension group with unit (G,G+, u), a trace of (G,G+, u) is a group homomorphism p : G→ R such
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that p is non-negative (p(G+) ≥ 0) and p(u) = 1. The collection of all traces of (G,G+, 1) is denoted

by S(G,G+, u). It is known [Eff81] that S(G,G+, u) completely determines the order on G. In fact,

G+ = {a ∈ G : p(a) > 0, ∀p ∈ S(G,G+, u)} ∪ {0}.

An order ideal of (G,G+, u) is a subgroup J of G such that J = J+ − J+ (where J+ = G+ ∩ J) and

such that whenever 0 ≤ a ≤ b ∈ J , a ∈ J . A dimension group (G,G+, u) is said to be simple if it

contains no non-trivial order ideals.

The image subgroup of an ordered group with unit is defined as the following subgroup of R,

I(G,G+, u) =
⋂

τ∈S(G,G+,u)

τ(G).

Given a dimension group with unit (G,G+, u), an element a ∈ G is said to be infinitesimal if p(a) = 0

for every trace p ∈ S(G,G+, u). The collection of all infinitesimals of G form a subgroup, called the

infinitesimal subgroup of G and denoted Inf(G,G+, u). Note that G/ Inf(G,G+, u) is also a dimension

group for the induced order.

1.5.3 Dimension group associated to subshifts and G-subshifts.

Let (X,T ) be a dynamical system given by a Z-action. The dynamical dimension group of (X,T ) or

simply the dimension group of (X,T ) is the following triple,

K0(X,T ) = (H(X,T ), H+(X,T ), [1]),

where H(X,T ) = C(X,Z)/βC(X,Z), [·] denote the class modulo βC(X,Z) of an element in H(X,T ),

H+(X,T ) is the set of classes of non-negative functions and 1 is the constant function equal to 1.

Theorem 1.20. ([HPS92]) If (X,T ) is a Cantor minimal system, the triple K0(X,T ) is a simple

dimension group. Futhermore, if (G,G+, u) is a simple dimension group, then there exists a Cantor

minimal system (X,T ) such that K0(X,T ) is isomorphic to (G,G+, u) as ordered group with unit.

The following result gives a connection between the dynamical dimension group of minimal Cantor

systems given by Z-actions and orbit equivalence.

Theorem 1.21. ([GPS95]) Let (X1, T1) and (X2, T2) two minimal Cantor systems. Then the following

are equivalent.
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1. (X1, T1) and (X2, T2) are strong orbit equivalent if and only if K0(X1, T1) and K0(X2, T2) are

isomorphic as ordered groups with unit.

2. (X1, T1) and (X2, T2) are orbit equivalent if and only if K0(X1, T1)/ Inf(K0(X1, T1)) and K0(X2, T2)/ Inf(K0(X2, T2))

are isomorphic as ordered group with unit.

Given an invariant measure µ ∈ M(X,T ), we define the trace τµ on K0(X,T ) by τµ([f ]) :=
∫
fdµ.

It is shown in [HPS92] that the correspondence µ 7→ τµ is an affine isomorphism from M(X,T ) to

S(K0(X,T )), so that traces of the dynamical dimension group K0(X,T ) are the invariant measures

of the system (X,T ) (see also [Ho95, Section 3]). This implies that the image subgroup of K0(X,T ),

which is denoted I(X,T ), is given by

I(X,T ) =
⋂

µ∈M(X,T )

{∫
fdµ : f ∈ C(X,Z)

}
,

and the infinitesimals of K0(X,T ), denoted Inf(X,T ), are given by

Inf(X,T ) =

{
[f ] ∈ H(X,T ) :

∫
fdµ = 0∀µ ∈M(X,T )

}
.

Remark 1.22. Note that the image subgroup I(X,T ) coincides with the additive group generated by

invariant measures of cylinders, that is

I(X,T ) =
⋂

µ∈M(X,T )

〈{µ([w]) : w ∈ LX}〉 .

Indeed, the inclusion
⋂
µ∈M(X,T ) 〈{µ([w]) : w ∈ LX}〉 ⊆ I(X,T ) is obvious. For the converse inclusion,

let α ∈ I(X,T ). By definition, for all µ ∈ M(X,T ) there exists a function f ∈ C(X,Z) such that

α =
∫
fdµ. Since f ∈ C(X,Z), f is cohomologous to a cylinder function g ∈ C(X,Z) by Proposition

1.7. One has α =
∫
fdµ =

∫
gdµ. Since g is a cylinder function, there exists a positive integer n such

that g can be written as the sum

g =
∑

u∈Ln(X)

`(u)χ[u],

where Ln(X) denote the set of factors of length n in LX , `(u) ∈ Z for all u, and χ[u] denotes the

characteristic function of the cylinder [u]. Thus,

α =

∫
gdµ =

∑
u∈Ln(X)

`(u)µ([u]) ∈ 〈{µ([w]) : w ∈ LX}〉 .



CHAPTER 1. DEFINITIONS AND BACKGROUND. 18

Since this is true for all µ ∈M(X,T ), we conclude that α ∈
⋂
µ∈M(X,T ) 〈{µ([w]) : w ∈ LX}〉.

If (X,T ) is uniquely ergodic with unique T -invariant measure µ, then H(X,T )/ Inf(X,T ) is isomorphic

to (I(X,T ), I(X,T ) ∩ R+, 1), via the correspondence

[f ] + Inf(X,T ) 7→
∫
fdµ.

Note that since the projection of a coboundary on H(X,T ) always belongs to Inf(X,T ), the groups

H(X,T )/ Inf(X,T ) and C(X,Z)/ Inf(X,T ) coincide. This motivate the definition of another dimen-

sion group associated to any dynamical system (X,T,G), called its reduced dynamical dimension group

and denoted G(X,T,G), as follows,

G(X,T,G) = C(X,Z)/

{
f ∈ C(X,Z) :

∫
fdµ = 0 ∀µ ∈M(X,T,G)

}
.

From Theorem 1.21, we know that in the case of a Z-action, the reduced dimension group completely

characterizes the orbit equivalence classes. This result was extended to Zd-actions in [GPMS10] with

the following theorem.

Theorem 1.23. ([GPMS10]) Let (X,T,Zd) and (X ′, T ′,Zm) be two minimal dynamical systems on the

Cantor set. Then they are orbit equivalent if and only if G(X,T,Zd) and G(X ′, T ′,Zm) are isomorphic

as ordered groups with unit.

Note that the simplex M(X,T,G) corresponds in the general case to the set of traces of G. Indeed,

given an invariant measure µ ∈M(X,T ), we define the trace τµ on G(X,T,G) by τµ([f ]Inf) :=
∫
fdµ.

Conversely, given a trace τ on G(X,T,G) and a clopen U ⊆ X, define φτ (U) = τ(χU ). Since X is a

Cantor space, there exists a unique measure µ on X such that µ(U) = φ(U) for all U . By construction,

τµ = τ and µ is T -invariant. It is not difficult to see that this defines an affine isomorphism from

M(X,T ) to S(G(X,T,G)), so that traces of the reduced dynamical dimension group G(X,T,G) are the

invariant measures of the system (X,T,G) and againM(X,T,G) is an invariant of orbit equivalence.

1.5.4 Dynamical dimension group and balance.

The following result states that when a subshift is balanced on the factors, Inf(X,T ) is trivial.

Proposition 1.24. Let (X,T ) be a minimal and uniquely ergodic subshift. If (X,T ) is balanced on

its factors, then the infinitesimal subgroup Inf(X,T ) is trivial.
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Proof. Let µ denote the unique invariant probability measure of (X,T ). Thanks to Proposition 1.19,

since (X,T ) is balanced on the factors, for any v ∈ LX the function fv := χ[v] − µv is a coboundary.

Let f ∈ C(X,Z) such that [f ] is an infinitesimal of K0(X,T ). By Proposition 1.7, f is cohomologous

to a cylinder function g ∈ C(X,Z). Let k be a positive integer such that g depends only on the first

k coordinates. One has

g =
∑

u∈Lk(X)

`(u)χ[u]

for some `(u) ∈ Z. So we obtain∫
fdµ =

∫
gdµ =

∑
u∈Lk(X)

`(u)µun = 0.

Therefore,

f(x) =
∑

u∈Lk(X)

`(u)(χ[u] − µu) +
∑

u∈Lk(X)

`(u)µu︸ ︷︷ ︸
=0

.

Since χ[u] − µu is a coboundary for all u ∈ Lk(X), f is an integer linear combination of coboundaries,

and thus a coboundary.

Remark 1.25. A Cantor minimal system (X,T ) is called saturated if for any two clopen sets, A,B ⊆

X with µ(A) = µ(B) for all µ ∈M(X,T ) there exists a homeomorphism γ belonging to the topological

full group of T (see Introduction for the definition) such that γ(A) = B. In [BK00] the authors show

that a Cantor minimal system (X,T ) is saturated if and only if every element on the inifnitesimal

subgroup of the dynamical dimension group is a coboundary. Thus, we have proved in the above

proposition that if (X,T ) is balanced on the factors, then the system is saturated.

1.6 Tower partitions.

Let (X,T,G) a dynamical system. A partition in towers of X is a clopen partition P of the form

P = {T u−1
(Bk) : u ∈ Fk, 1 ≤ k ≤ d},

where d ∈ N, Fk ⊂ G are finite subsets, and Bk ⊆ X are clopen for all 1 ≤ k ≤ d. The sets of the

form T u
−1

(Bk) are the atoms of P. For a given 1 ≤ k ≤ d, the set
⋃
u∈Fk T

u−1
(Bk) is called the kth

tower of P, Bk is its base and |Fk| its height. The positive integer d is the number of towers of P.
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The terminology tower partition comes from the case of Z-actions: in this case, P has indeed the

form of a finite number of towers, each with a finite number of floors, and each floor is sended by the

homeomorphism T to the next one. See Figure 1.1 for an illustration. This way of decomposing X

is attributed to Kakutani and Rokhlin in the case of Z-actions. The following result guarantees the

existence of sequences of tower partitions with nice properties. It is attributed originally to Vershik

([Ver81]).

Proposition 1.26. [BR10, Chapter 6] Let (X,T ) be a minimal Cantor dynamical system, let x ∈ X.

There exists a sequence of tower partitions (Pn)n∈N verifying the following conditions,

(KR1)
⋂

1≥i≥dn Bi,n = {x0},

(KR2) Pn+1 is finer than Pn for all n ∈ N.

(KR3)
⋃
n∈N Pn generates the topology of X.

Given a sequence of tower partitions (Pn)n∈N of X of the form

Pn = {T u−1
(Bk,n) : u ∈ Fk,n, 1 ≤ k ≤ dn},

let Bn denote the union of the tower basis {Bk,n}dnk=1. We say that Pn+1 is finer than Pn if each atom

of Pn+1 is contained in an atom of Pn and the sequence of bases (Bn)n∈N is decreasing, that is, for all

n ∈ N, Bn+1 ⊆ Bn.

1.7 Topological eigenvalues.

We consider here dynamical systems given by an action of Z and recall some notions and results related

to their topological eigenvalues.

Let (X,T ) be a topological dynamical system given by an action of Z. A non-zero complex-value λ

is said to be a continuous eigenvalue or a topological eigenvalue of (X,T ) if there exists a non-zero

complex-valued continuous function f ∈ C(X,C) such that ∀x ∈ X, f(Tx) = λf(x). In this case, λ is

said to be a continuous eigenvalue associated to the continuous (or topological) eigenfunction f .

If there exists a non-zero complex-valued function f ∈ C(X,C) which is integrable with respect to

some measure µ ∈M(X,T ), such that f(Tx) = λf(x) µ-a.e., λ is called a measurable eigenvalue.

Given µ ∈ M(X,T ), the Koopman operator UT defined by UT f = T ◦ f is a unitary operator on
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Figure 1.1: A partition in towers.

L2(µ) (see for example [W82] for details), and since every topological eigenvalue is a measurable one

for any given measure µ ∈M(X,T ), every topological eigenvalue belongs to the unitary circle S1 ⊆ C.

If α is such that e2iπα is an eigenvalue of (X,T ), α is said to be an additive topological eigenvalue.

We denote by E(X,T ) the set of all additive topological eigenvalues of (X,T ). The set E(X,T ) is an

additive subgroup of R which contains Z (every integer corresponds to the topological eigenvalue 1

which is associated to any constant function). We now give a relation between balance and topological

eigenvalues of minimal, uniquely ergodic subshifts.

Proposition 1.27. Let (X,T ) be a minimal and uniquely ergodic subshift and let µ denote its unique

invariant measure. If σ is balanced on the factor v, then µv is an additive topological eigenvalue of

(X,T ).

Proof. Suppose that X is balanced on the factor v. By Proposition 1.19, there exists g ∈ C(X,R)

such that fv = g ◦T − g. Note that e2iπχ[v](x) = 1 for any x ∈ X, since χ[v] takes values in {0, 1}. This

yields

exp2iπg◦T = exp−2iπµv exp2iπg .

Hence, exp−2iπg is a topological eigenfunction associated to the additive topological eigenvalue µv.

The previous results shows in particular that when the minimal uniquely ergodic subshift (X,T ) is
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balanced on factors, the image subgroup I(X,T ) is included in E(X,T ) (see Section 1.5.2). It is also

known that E(X,T ) is an additive subgroup of I(X,T ) ([IO07]), so we conclude that when a minimal

subshift is balanced on factors, E(X,T ) = I(X,T ).

Recall that for a given ergodic measure-theoretic dynamical system (X,T,B, µ), it is weakly mixing if

and only if it admits no non-trivial measurable eigenvalue (see for example [W82, Section 1.7]). Thus,

a minimal uniquely ergodic system (X,T ) with unique measure µ which is balanced on any factor v

with frequency 0 < µv < 1, defines a measure-theoretic dynamical system (X,T,B, µ) which cannot

be weakly mixing. The absence of weak mixing is indeed a property which has been already used to

prove unbalance (see for example [CFM08]).



Chapter 2

Some results on the dynamical

dimension group using tower

partitions.

In this chapter we describe the relation between some well-chosen sequences of tower partitions and

the image subgroup, the group of infinitesimals and the dynamical dimension group of a minimal Z-

subshift. We will use the results presented here to explore some dynamical properties (image subgroup,

infinitesimals, dynamical dimension group and balance) in the examples treated in Chapters 3 and 4.

Our main results in this regard are Propositions 2.10, 2.11 and 2.17.

2.1 Tower partitions and inductive limits.

Let (X,T ) be a minimal subshift and

(Pn = {T jBi,n : 1 ≤ i ≤ dn, 0 ≤ j < hi,n})n≥0 (2.1)

a sequence of tower partitions of X, such that for all n ∈ N, Pn+1 is finer than Pn. Let Bn =
⋃dn
i=1Bi,n.

Let C(Pn) denote the subgroup of C(X,Z) consisting of the set of functions which are constant on the

atoms of Pn, and G(Pn) the subgroup of C(Bn,Z) consisting of the set of functions which are constant

on each base Bi,n. Let G+(Pn) denote the subset of G(Pn) consisting of non-negative functions and

define 1(Pn) ∈ G+(Pn) by 1(Pn)(x) = hi,n for all x ∈ Bi,n.

23
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Consider the group homomorphisms IPn : C(Pn) → G(Pn) and RPn : G(Pn) → R(Pn) defined as

follows,

(IPnf)(x) = f (hi,n)(x) for x ∈ Bi,n

(RPng)(x) =

 g(x) if x ∈ Bn
0 else.

It is not difficult to see that IPn ◦RPn is the identity on C(Bn,Z). By Theorem 1.1, ker(IPn) consists

of coboundaries, and then there exists a group homomorphism πPn : G(Pn) → H(X,T ) such that

πPn ◦ IPn = π, where π is the canonical projection from C(X,Z) to H(X,T ).

Proposition 2.1 ([DHP18]). The map πPn defined above is a morphism of ordered groups with unit

between (G(Pn), G+(Pn), 1(Pn)) and (H(X,T ), H+(X,T ), 1X).

Since Pn+1 is finer than Pn,

IPn+1,Pn := IPn+1 ◦RPn

is a well-defined group homomorphism which maps G(Pn) to G(Pn+1). If we identify G(Pn) with Zdn

and G(Pn+1) with Zdn+1 , the matrix associated to the morphism IPn+1,Pn is given by

Qn(i, j) = |{0 ≤ l < hi,n+1 : T lBi,n+1 ⊆ Bj,n}| ∀1 ≤ i ≤ dn+1, ∀1 ≤ j ≤ dn (2.2)

Let (G(S), G+(S), 1(S)) be the inductive limit of the sequence (G(Pn)), G+(Pn), 1(Pn))n∈N with

the homomorphisms IPn+1,Pn , where we identify G(Pn) with Zdn for all n ≥ 0, that is, the triple

(∆/∆0, (∆/∆0)+, u), where

∆ = {(xn)n≥0 ∈
∏
n≥0

Zdn | ∃k ≥ 0 : Qn(xn) = xn+1 ∀n ≥ k},

∆0 = {(xn)n≥0 ∈ ∆ | ∃k ≥ 0 : xn = 0 ∀n ≥ k},

∆+ = {(xn)n≥0 ∈ ∆ | ∃k ≥ 0 : xn ∈ Zdn+ ∀n ≥ k},

(∆/∆0)+ is the set of classes modulo ∆0 of elements in ∆+, and u is the class modulo ∆0 of the

sequence (un)n≥0, where

un = (h1,n, · · · , hdn,n).

Let iPn : G(Pn) → G(S) denote the projection on the inductive limit defined as follows: for every
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f ∈ G(Pn), iPn(f) is the class of the sequence

yk =


0 if k < n

f if k = n

Qk · · ·Qn−1f if k > n

Proposition 2.2 ([DHP18]). There exists a unique morphism of ordered groups with unit πS : G(S)→

H(X,T ) satisfying πS ◦ iPn = πPn.

(See Figure 2.1).

Proposition 2.3. Let (Pn)n∈N defined as in (2.1), let C(S) :=
⋃
n≥0C(Pn). The morphism πS :

G(S)→ H(X,T ) defined in Proposition 2.2 is surjective if and only if every f ∈ C(X,Z) is cohomol-

ogous to a function which belongs to C(S).

Remark 2.4. To prove this proposition we use a crucial idea presented in [Ho95, Section 4, Remark

5.b)].

Proof. Suppose πS : G(S) → H(X,T ) is surjective. Let f ∈ C(X,Z) and consider [f ] ∈ H(X,T ).

Since πS is surjective, there exists φ ∈ G(S) such that πS(φ) = [f ]. By definition, φ is the class of

some sequence (φn)n∈N ∈
∏
n∈NG(Pn) satisfying that there exists k ∈ N such that φn+1 = Qn(φn)

for all n ≥ k. It is clear that RPk(φk) ∈ C(Pk) and iPk(φk) = φ. Let g = RPk(φk). By construction,

g ∈ C(S). We have that

[f ] = πS(φ) = πS(iPk(φk)) = πS ◦ iPk(IPk(g)) = π(g) = [g].

We conclude that f is cohomologous to g.

Conversely, suppose that every f ∈ C(X,Z) is cohomologous to some function g ∈ C(S). The mor-

phism π(S) will be surjective if H(X,T ) =
⋃
n≥0 πPn(G(Pn)). Since the inclusion

⋃
n≥0 πPn(G(Pn)) ⊆

H(X,T ) follows from the definition, it is enough to show that for any [f ] ∈ H(X,T ), [f ] belongs to⋃
n≥0 πPn(G(Pn)).

Let [f ] ∈ H(X,T ) and take any representative f . By hyphotesis, f is cohomologous to a function

g ∈ C(S), then, f − g ∈ βC(X,Z) and there exists n ∈ N such that g is constant on the atoms of Pn.

Since g ∈ C(Pn), [g] = πPn ◦ IPn(g) ∈ πPn(G(Pn)). But [f ] = [g], and then

[f ] ∈ πPn(G(Pn)) ⊆
⋃
n≥0

πPn(G(Pn))
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G(Pn)

C(Pn)

H(X,T )

GS

IPn

iPn πS

π

Figure 2.1: The isomorphism πS, where GS denotes the inductive limit of the system
(G(Pn), G+(Pn),1Pn)n≥0 with morphisms IPn+1,Pn and iPn : G(Pn) → GS is the natural projection
on the inductive limit.

Remark 2.5. Note that the equivalent conditions of Proposition 2.3 are satisfied as soon as the

sequence (Pn)n≥0 is such that for all n ∈ N, Pn is finer than the partition in n-cylinders Qn = {[w] :

w ∈ Ln(X)}. Indeed, if every Pn is finer than Qn, every cylinder function is constant in the atoms of

Pn for n large enough, and we know from Proposition 1.7 that every f ∈ C(X,Z) is cohomologous to

some cylinder function.

Proposition 2.6. Let (Pn)n∈N defined as in (2.1), let Y =
⋂
n∈NBn. If Y consists of only one point,

the morphism πS : G(S)→ H(X,T ) defined above is injective.

Proof. Suppose α ∈ G(S) belongs to ker(πS). There exists n ∈ N and g ∈ C(Pn) such that α =

iPn ◦ IPng. Indeed, α is the class modulo ∆0 of a sequence (xi)i∈N which verifies xi ∈ Zdi and there

exists k ∈ N such that for all i ≥ k, xi+1 = Qkxi. Let n ≥ k and define g ∈ C(Pn) by

g(z) =

 xn(j) if ∃j : z ∈ σ[0,n)([aj ])

0 otherwise

Note that (IPng)(y) = xn(j) if y ∈ σ[0,n)([aj ]). Therefore, iPn ◦ IPng is the class modulo ∆0 of the

sequence

(0, · · · , 0, xn︸︷︷︸
nth

, Qnxn︸ ︷︷ ︸
(n+1)th

, Qn+1Qnxn︸ ︷︷ ︸
(n+2)th

, · · · ),
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which is equal to α. Since πS(α) = 0 and π(g) = πS(α), the function g is a coboundary. Let

h ∈ C(X,Z) such that g = βh. Let x0 be the unique element belonging to Y , then for all ` ∈ N,

B` is a clopen neighborhood of x0, and since h ∈ C(X,Z), it is locally constant, so for some m ≥ n

large enough, h is constant (with value h(x0)) in Bm (recall that bases Bn are nested). Since m ≥ n,

g ∈ C(Pm) and by definition iPn ◦ IPng = iPm ◦ IPmg, but since h is constant in Bm and g = βh,

IPmg = 0 and therefore

α = iPn ◦ IPng = iPm ◦ IPmg = 0G(S).

Let (Pn)n≥0 be a sequence of tower partitions of (X,T ) defined as in (2.1). Let C(S) be as defined in

Proposition 2.3 and Y as defined in Proposition 2.6. Consider the following conditions.

(C0) For all 1 ≤ i ≤ dn, the heigth hi,n tends to infinity when n tends to infinity.

(C1) Every f ∈ C(X,Z) is cohomologous to a function which belongs to C(S).

(C2) The set Y consists of only one point.

(C3) There exists m ∈ N such that for all n ≥ m, dn = d and matrices Qn belong to GLd(Z).

Note that condition (C1) is equivalent to the surjectivity of πS thanks to Proposition 2.3, and from

Remark 2.5 we know that it is satisfied if every Pn is finer than the partition in n-cylinders Qn. Note

also that, thanks to Proposition 2.6, (C2) is a sufficient condition to have the injectivity of πS.

Remark 2.7. Conditions (C1) and (C2) have to be compared with classical conditions (KR1) and

(KR3) for Kakutani-Rokhlin partitions. We follow here the notation used in [BR10, Chapter 6],

where these conditions are stated as follows

(KR1) The set Y consists of only one point.

(KR3) C(S) generates the topology of X.

Condition (KR1) is exactly the same as our condition (C2), but (KR3) is not the same as (C1).

It is not difficult to check that (KR3) ⇒ (C1), but there exist sequences of tower partitions which

satisfy (C1) and do not satisfy (KR3) (See Example 3.13 in Section 3.2). Proposition 2.3 shows that

(C1) is the optimal condition which guarantees the surjectivity of πS.
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Remark 2.8. If one thinks of the Bratteli diagram associated to a given sequence of tower partitions,

condition (C3) can be interpreted as a finite rank condtion. Actually condition (C3) isa bit stronger,

because we require the incidence matrices not only to be square, but also to be invertible in Z.

We now present a series of results which can be obtained if (X,T ) has a sequence of tower partitions

verifying some of conditions (C0)-(C3).

2.2 Image subgroup and infinitesimals.

Lemma 2.9. Let (X,T ) a minimal subshift and let µ ∈ M(X,T ). Let (Pn = {T jBi,n : 1 ≤ i ≤

dn, 0 ≤ j < hi,n})n≥0 be a sequence of tower partitions of (X,T ), (Qn)n≥0 the sequence of matrices

associated to (Pn)n≥0. For all n ∈ N define

~µn = (µ(B1,n), · · · , µ(Bdn,n)).

If (Pn)n≥0 satisfies condition (C3), then for all n ≥ m,

~µn = ((Qn · · ·Qm)t)−1 ~µm.

Proof. Let µ ∈M(X,T ), 1 ≤ i ≤ d and n ≥ m, then

µ(Bi,m) = µ(Bi,m ∩X)) =
d∑
j=1

hj,n−1∑
k=0

µ(Bi,m ∩ T kBj,n).

Since n ≥ m, Pn is finer than Pm and then Bi,m ∩ T kBj,n is either empty or the whole atom T kBj,n,

so we obtain

µ(Bi,m) =
d∑
j=1

µ(Bi,m) · |{0 ≤ k < hj,n : T kBj,n+1 ⊆ Bi,m}|.

If we rewrite this in terms of matrices,

µ(Bi,m) =
d∑
j=1

µ(Bj,n)(Qn · · ·Qm)t(i, j) = ((Qn · · ·Qm)t ~µn)i.
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Since this is true for all 1 ≤ i ≤ d, we obtain that ~µm = (Qn · · ·Qm)t ~µn and consequently

~µn = ((Qn · · ·Qm)t)−1 ~µm.

Proposition 2.10. Let (Pn)n∈N be a sequence of tower partitions of (X,T ) satisfying conditions (C1)

and (C3). Let d and m be defined as in condition (C3). Then, the image subgroup of (X,T ) is the

additive subgroup of R generated by the measures of basis Bi,m, 1 ≤ i ≤ d, that is

I(X,T ) =
⋂

µ∈M(X,T )

{
d∑
i=1

Zµ(Bi,m)

}
.

Proof. We show that the image subgroup I(X,T ) is included in
⋂
µ∈M(X,T )

{∑d
i=1 Zµ(Bi,m)

}
(the

other inclusion is obvious). Suppose α ∈ I(X,T ). By definition, for all µ ∈ M(X,T ), there exists

f ∈ C(X,Z) such that α =
∫
fdµ. Since (Pn)n≥0 satisfies condition (C1), f is cohomologous to a

function g ∈ C(X,Z) which is constant on the atoms of Pn for every n large enough. We have that,

∫
gdµ =

d∑
j=1

hj,n−1∑
i=0

µ(T iBj,n)g |T iBj,n .

Since µ is T−invariant, ∫
gdµ =

d∑
j=1

µ(Bj,n)

hj,n−1∑
i=0

g |T iBj,n .

Define kj =
∑hj,n−1

i=0 g |T iBj,n (the sum of the map g over the j − th tower of the partition Pn).

Applying Lemma 2.9, we obtain

∫
gdµ =

d∑
j=1

d∑
i=1

µ(Bi,m)(Qn · · ·Qm)−1(i, j)kj

=
d∑
i=1

µ(Bi,m)
d∑
j=1

(Qn · · ·Qm)−1(i, j)kj .

Since
∑d

j=1(Qn · · ·Qm)−1(i, j)kj belongs to Z for all 1 ≤ i ≤ d, α =
∫
fdµ =

∫
gdµ belongs to
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∑d
i=1 Zµ(Bi,m). Since µ ∈M(X,T ) was arbitrarily taken, we conclude that

α ∈
⋂

µ∈M(X,T )

{
d∑
i=1

Zµ(Bi,m)

}
,

which ends the proof.

In the particular case of a uniquely ergodic system with a sequence of tower partition satisfying

conditions (C1) and (C3), we know that I(X,T ) =
∑d

i=1 Zµ(Bi,m). We also have the following result

regarding the infinitesimal subgroup of K0(X,T ).

Proposition 2.11. Let (Pn)n∈N be a sequence of tower partitions of a minimal subshift (X,T ) sat-

isfying conditions (C1) and (C3). Let d and m be as defined in (C3). Suppose that there exists

an invariant measure µ ∈ M(X,T ) such that the coordinates µ(Bi,m) of the vector ~µm are ratio-

nally independent. Then, the infinitesimal subgroup Inf(X,T ) of K0(X,T ) is trivial, that is, (X,T )

is saturated.

Proof. Let f ∈ C(X,Z) and suppose that [f ] is an infinitesimal of K0(X,T ). Take a function g ∈

C(X,Z) which is cohomologous to f and constant on the atoms of Pn for n large enough. Such a

function always exists, because the sequence of tower partitions satisfies condition (C1). Let µ be an

invariant measure such that the coordinates of ~µm are rationally independent. By definition, [f ] = [g]

and
∫
fdµ =

∫
gdµ = 0. Since g is constant on each atom of Pn, we have

0 =

∫
gdµ =

d∑
j=1

hj,n−1∑
i=0

µ(T iBj,n)g |T iBj,n .

Since µ is T−invariant,

0 =

∫
gdµ =

d∑
j=1

µ(Bj,n)kj ,

where kj =
∑hj,n−1

i=0 g |T iBj,n . By Proposition 2.10, for all 1 ≤ j ≤ d, the measure µ(Bj,n) is an integer

linear combination of the measures {µ(B1,m), · · · , µ(Bd,m)} provided n ≥ m, and since this quantities

are rationally independent by hypothesis, then we obtain that for all n ≥ m, {µ(B1,n), · · · , µ(Bd,n)} are

rationally independent as well. This means that
∑d

j=1 µ(Bj,n)kj = 0 implies kj = 0 for all 1 ≤ j ≤ d.
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That is, for all 1 ≤ j ≤ d, for all n ≥ m,

hj,n−1∑
i=0

g |T iBj,n= 0.

Fix any n ≥ m and take any point x belonging to the basis of Pn. For any N ∈ N, the coclycle f (N)(x)

can be decomposed as a sum of k′js (for 1 ≤ j ≤ d) plus an error of the form

ε =

l∑
i=0

g |T iBj,n ,

for some 1 ≤ j ≤ d, some 0 ≤ l < hj,n. As we have seen before, every kj is zero, and the error ε is

bounded by sup |g| ·max1≤j≤d hj,n. Applying Theorem 1.1, we conclude that g is a coboundary, and

then so is f . Therefore, Inf(X,T ) consists only of coboundaries.

In [AR16], the authors prove that a system generated by a primitive aperiodic and irreducible sub-

stitution is saturated provided it satisfies an extra condition called the common prefix property. See

[AR16, Sections 1 and 3] for details.

Remark 2.12. There are examples of minimal systems having sequences of tower partitions satisfying

(C1) and (C3), and a measure vector ~µm with rationally dependent coordinates. See for instance

[BCD+18, Remark 6.4] where we present an example of an interval exchange transformation on a

three-letter alphabet (see Example 4.4) which generates a minimal uniquely ergodic dendric subshift

(see Chapter 4) having rational dependence on the letter cylinder measures. In this example, the

sequence of tower partitions is constructed using return words (see Section 4.2.1), m = 0 and the

atoms of P0 are the cylinder of letters. This example has indeed nontrivial infinitesimals.

2.3 The dynamical dimension group

The dynamical dimension group is related with the inductive limit of a suitable sequence of tower

partitions. This relation is described in detail in the following result.

Proposition 2.13. Let (Pn)n∈N be a sequence of tower partitions of (X,T ) satisfying (C1) and

(C2’): For every u ∈ C(Y,Z), there exists h ∈ C(X,Z) such that h|Y = u and βh ∈ C(S).
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Then, there exists a group homomorphism r : C(Y,Z)→ G(S) such that the sequence

0
0−→ Z i−→ C(Y,Z)

r−→ G(S)
πS−→ H(X,T )

0−→ 0,

where Z is identified with the subset of constant functions on Y and i denotes the inclusion, is exact.

Remark 2.14. Note that condition (C2) implies (C2’).

Proof. Let u ∈ C(Y,Z) and take h ∈ C(X,Z) as in condition (C2’). Since βh ∈ C(S), there

exists n ∈ N such that βh is constant in the atoms of Pn. Define r(u) := iPn ◦ IPn(βh). Note that

πS(r(u)) = π(βh) = 0, so that r is a well-defined homomorphism between C(Y,Z) and ker(πS). On the

other hand, if α ∈ G(S), there exists n ∈ N and g ∈ C(Pn) such that α = iPn ◦ IPng (see the first part

of the proof of Proposition 2.6). If α ∈ ker(πS), then π(g) = 0 and thus g is a coboundary, then there

exists g̃ ∈ C(X,Z) such that g = βg̃. Let u = g̃|Y . By definition, r(u) = iPn◦IPn(βg̃) = iPn◦IPng = α,

and we conclude that α ∈ Im(r). We have proved that ker(πS) = Im(r).

Since (C1) is satisfied, πS is surjective, which is equivalent to the fact that ker(0) = Im(πS).

Let us prove that r(u) = 0 if and only if u is constant, or equivalently, that ker(r) = Im(i). Suppose

that u ∈ C(Y,Z) verifies r(u) = 0. Let h ∈ C(X,Z) be as defined in condition (C2’) and n ∈ N such

that βh ∈ C(Pn). By hypothesis, iPn ◦ IPn(βh) = 0G(S), which means that there exists m0 ≥ n such

that for all m ≥ m0, IPm,PnIPn(βh) = 0 ∈ Zdm , that is, IPm(βh) = 0. This implies that h is constant

in Bm. Indeed, is suffices to note that for any 1 ≤ i ≤ dm and for all x ∈ Bi,m,

IPm(βh)(x) = h ◦ T hi,m(x)− h(x) = 0,

so that h(x) = h ◦ T hi,m(x). This implies that h|Y is constant, and then u is contant as well.

Conversely, suppose that u ∈ C(Y,Z) is constant. Then h|Y is constant, and since h is continuous, h

is constant in Bm for all m ≥ n large enough. This implies that iPm ◦ IPm(βh) = 0. By definition,

iPm ◦ IPm(βh) = iPn ◦ IPn(βh) and we conclude that r(u) = 0. This proves that ker(r) = Im(i) and

concludes the proof of the proposition.

Note that when (C1) and (C2) are satisfied, we recover Propositions 2.3 and 2.6 as immediate con-

sequences of Proposition 2.13.

Lemma 2.15. Let (Pn)n≥0 be a sequence of tower partitions of a uniquely ergodic minimal subshift

(X,T ) satisfying conditions (C0) and (C3), let (Qn)n≥0 be the sequence of matrices associated to
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(Pn)n≥0. Let µ be the unique T -invariant measure on X and d, m as defined in (C3). Then, for all

1 ≤ ` ≤ d, for all 1 ≤ j ≤ d,

lim
n→∞

(Qn · · ·Qm)(`, j)

h`,n
= µ(Bj,m).

Proof. Note that, if x ∈ B`,n,

|{0 ≤ k < h`,n : T kB`,n ⊆ Bj,m}| =
h`,n−1∑
k=0

χBj,m(T kx),

that is,

(Qn · · ·Qm)(`, j) =

h`,n−1∑
k=0

χBj,m(T kx).

Since the system is uniquely ergodic, Birkhoff’s Theorem (Theorem 1.12) implies that

lim
n→∞

1

n

n−1∑
k=0

χBj,m(T kx) = µ(Bj,m).

Since (Pn)n≥0 satisfies condition (C0), we obtain

lim
n→∞

1

h`,n

h`,n−1∑
k=0

χBj,m(T kx) = µ(Bj,m),

which is what we wanted to prove.

Proposition 2.16. Let (Pn)n∈N be a sequence of tower partitions of a minimal subshift (X,T ) satis-

fying conditions (C0), (C1) and (C3). Then, G(S) ∼= Zd and the isomorphism ϕ can be chosen so

that ϕ(1(S)) = u, where

u = (h1,m, · · · , hd,m) ∈ Zd.

If moreover (X,T ) is uniquely ergodic with unique invariant measure µ, then (G(S), G+(S), 1(S)) is

isomorphic as ordered group with unit to (Zd, A,u), where

A = {x ∈ Zd : 〈x, ~µm〉 > 0} ∪ {0},

and ~µm is as defined in Lemma 2.9.
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Proof of Proposition 2.16. Define ϕ : ∆→ Zd by

ϕ((xn)n≥0) 7−→ (Qk · · ·Qm)−1(xk+1)

where k is any index which satisfies k ≥ m and ∀n ≥ k, Qn(xn) = xn+1.

It is not difficult to see that ϕ is a well-defined group homomorphism whose kernel is exactly ∆0. This

homomorphism is also surjective: for any x ∈ Zd, consider the sequence

yn =


0 if n < m

x if n = m

Qn · · ·Qmx if n > m

then we have that ϕ((yn)n≥0) = x (choose k = m). We call ϕ the induced isomorphism between ∆/∆0

and Zd as well.

Note that ϕ(1(S)) = u. Indeed, for all 1 ≤ ` ≤ d and for all n ≥ 0, one has

h`,n+1 =

dn∑
i=1

|{0 ≤ k < h`,n+1 : T kB`,n+1 ⊆ Bi,n}| · hi,n,

which implies that for all n ≥ 0, Qn(un) = un+1, so we can choose k = m and we obtain

ϕ((un)n≥0) = Q−1
m (um+1) = Q−1

m Qm(um) = um = u.

Recall that the inductive limit (G(S), G+(S), 1(S)) is the triple (∆/∆0, (∆/∆0)+, u).

We now prove that if (X,T ) is uniquely ergodic, ϕ(G+(S)) ⊆ A. Let x = (xn)n≥0 a sequence belonging

to ∆+. We want to show that either ϕ(x) = 0 or 〈ϕ(x), ~µ〉 > 0 for all µ ∈M(X,T ). Suppose ϕ(x) 6= 0,

then, for all k ≥ m such that Qn(xn) = xn+1∀n ≥ k,

(Qk · · ·Qm)−1(xk+1) 6= 0.

This implies that xn 6= 0 for all n ≥ k. Since x ∈ ∆+, we conclude that for all n ≥ k there exists
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1 ≤ i ≤ d such that (xn)i > 0. Let µ ∈M(X,T ),

〈ϕ(x), ~µ〉 =

d∑
i=1

d∑
i=1

(Qk · · ·Qm)−1(xk+1)µ(Bi,m)

=
d∑
i=1

d∑
j=1

(Qk · · ·Qm)−1(i, j)(xk+1)jµ(Bi,m)

=
d∑
j=1

(xk+1)j

d∑
i=1

(Qk · · ·Qm)−1(i, j)µ(Bi,m).

From Lemma 2.9, we know that

d∑
i=1

(Qk · · ·Qm)−1(i, j)µ(Bi,m) = µ(Bj,k+1).

So we obtain that

〈ϕ(x), ~µ〉 =

d∑
j=1

(xk+1)jµ(Bj,k+1).

Since the system is uniquely ergodic, the support of µ is a closed T -invariant subset of X, so by

minimality every µ(Bj,k+1) is strictly positive. Since there exists 1 ≤ j ≤ d such that (xn)j > 0, we

conclude that
∑d

j=1(xk+1)jµ(Bj,k+1) > 0, which implies that ϕ(x) ∈ A.

We now prove the converse inclusion: ϕ−1(A) ⊆ G+(S). Let x ∈ A. Recall that the inverse image of x

under ϕ is the class modulo ∆0 of a sequence (yn)n≥0 verifying yn = (Qn · · ·Qm)(x) for all n > m. We

want to prove that there exists N ≥ m such that for all n ≥ N , yn = (Qn · · ·Qm)(x) ∈ Zd+. If x = 0,

then yn = 0 for all n ∈ N and consequently (yn)n≥0 ∈ ∆0 ⊆ ∆+. If x 6= 0, then
∑d

j=1 xjµ(Bj,m) > 0,

since x ∈ A. By Lemma 2.15, we know that for all 1 ≤ l ≤ d,

lim
n→∞

1

h`,n

d∑
j=1

(Qn · · ·Qm)(l, j)xj =
d∑
j=1

µ(Bj,m)xj > 0.

Since h`,n ≥ 0 for all 1 ≤ l ≤ d, the last inequality implies that there exists N ≥ m such that for all

n ≥ N , and for all 1 ≤ l ≤ d,
d∑
j=1

(Qn · · ·Qm)(l, j)xj ≥ 0,

that is, for all n ≥ N , (Qn · · ·Qm)(x) ∈ Zd+.
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From the previous proposition we know that if conditions (C0), (C1) and (C3) are satisfied, the

group H(X,T ) is a quotient of the additive group Zd. If moreover πS is injective, the inductive limit

(G(S), G+(S), 1(S)) is isomorphic to the dimension group K0(X,T ). We deduce the following result.

Proposition 2.17. Let (Pn)n∈N be a sequence of tower partitions of (X,T ) satisfying (C0)-(C3).

Let ~µ and u be as defined in Proposition 2.16. Let

Ã = {x ∈ Zd : 〈x, ~µm〉 > 0 ∀µ ∈M(X,T )} ∪ {0}.

Then, (H(X,T ), H+(X,T ), 1X) and (Zd, Ã,u) are isomorphic as ordered groups with unit.

Proof. Let ϕ the group isomorphism from G(S) to Zd defined in the proof of Proposition 2.16. We

already know that ϕ(1(S)) = u. The morphism πS ◦ ϕ−1 is then a group isomorphism satisfying

πS ◦ ϕ−1(u) = πS(1(S)) = [1X ]. Note that these properties do not need the system (X,T ) to be

uniquely ergodic.

We now show that πS ◦ ϕ−1(Ã) ⊆ H+(X,T ).

Recall from section 1.5.2 that traces completely determine the positive cone of a dimension group.

Since the traces of K0(X,T ) corresponds to invariant measures of (X,T ), the positive cone H+(X,T )

is characterized as follows,

H+(X,T ) =

{
[f ] ∈ H(X,T ) :

∫
fdµ > 0∀µ ∈M(X,T )

}
∪ {0H(X,T )}

Let x ∈ A, then ϕ−1(x) is the class modulo ∆0 of the sequence

yn =


0 if n < m

x if n = m

Qn · · ·Qmx if n > m

This corresponds to the image under iPm of the function fx ∈ G(Pm) given by fx(x) = xi if x ∈ Bi,m.

Therefore,

πS ◦ ϕ−1(x) = πS ◦ iPm(fx) = πS ◦ iPm ◦ IPm(gx) = π(gx),

where gx ∈ C(Pm) is given by gx(x) = xi if x ∈ Bi,m and gx(x) = 0 else. If x = 0, then xi = 0 for all

1 ≤ i ≤ d, so that gx = 0 and then π(gx) = 0 ∈ H+(X,T ).
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If x 6= 0, let µ ∈M(X,T ). Since x ∈ A,
∑d

i=1 xiµ(Bi,m) > 0. Note that

∫
gxdµ =

d∑
i=1

xiµ(Bi,m),

so we conclude that
∫
gxdµ > 0 for all µ ∈ M(X,T ), which implies that [gx] = π(gx) ∈ H+(X,T ).

This proves that πS ◦ ϕ−1(A) ⊆ H+(X,T ).

Finally, we show that ϕ ◦ π−1
S (H+(X,T )) ⊆ Ã. Let f ∈ C(X,Z) be a function such that [f ] ∈

H+(X,T ). Then either f is a coboundary or
∫
fdµ is strictly positive for every µ ∈ M(X,T ). If

f is a coboundary, then π−1
S (f) = (0, 0, · · · ) mod ∆0 and then ϕ ◦ π−1

S (f) = 0 ∈ Ã. If f is not a

coboundary, let n ≥ m be a positive integer such that f is cohomologous to a function g ∈ C(Pn).

We know that

πS(iPn ◦ IPn(g)) = π(h) = π(f) = [f ],

that is, π−1
S (π(f)) = iPn ◦ IPn(g). On the other hand, IPn(h) is the function with value

hi,n−1∑
k=0

g |TkBi,n

in the base Bi,n, for 1 ≤ i ≤ dn. Therefore, iPn ◦ IPn(g) is the class modulo ∆0 of the sequence

(0, · · · , 0, g︸︷︷︸
n-th

, Qng︸︷︷︸
n+1-th

, Qn+1Qng, · · · )

where g = (IPn(g)|B1,n , · · · , IPn(h)|Bdn,n). Then, ϕ(iPn ◦ IPn(g)) is the vector

(Qn · · ·Qm)−1(g).
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Let µ be any measure in M(X,T )

〈
ϕ ◦ π−1

S (π(f)), ~µm
〉

=

d∑
i=1

ϕ ◦ π−1
S (π(f))(i)µ(Bi,m)

=

d∑
i=1

µ(Bi,m)

d∑
j=1

(Qn · · ·Qm)−1(i, j)

hj,n−1∑
k=0

g |TkBj,n

=

d∑
j=1

(
d∑
i=1

µ(Bi,m)(Qn · · ·Qm)−1(i, j)

) hj,n−1∑
k=0

g |TkBj,n .

Finally, applying Lemma 2.9, we obtain

0 <

∫
gdµ =

d∑
j=1

µ(Bj,n)

hj,n−1∑
k=0

g |TkBj,n

=
d∑
j=1

(
d∑
i=1

µ(Bi,m)(Qn · · ·Qm)−1(i, j)

) hj,n−1∑
k=0

g |TkBj,n

=
〈
ϕ ◦ π−1

S (π(f)), ~µm
〉

and we conclude that ϕ ◦ π−1
S ([f ]) ∈ Ã. This proves the second inclusion and conclude the proof of

the theorem.

Remark 2.18. All previous results about image subgroup, infinitesimals and dimension group are based

on conditions (C0)-(C3), which are properties of tower partitions. We construct some appropriate

tower partitions in Chapters 3 and 4 to apply those results. See for example Proposition 3.31, Corollary

3.32, Theorem 3.39, Theorems 4.14, 4.15, 4.16 and 4.17, Theorems 4.24 and 4.25.



Chapter 3

Substitutive and S-adic systems

In this chapter we apply the results of Chapter 2 to substitution and S-adic subshifts. All the definitions

and many of the results related to substitution systems are well known. S-adic systems, which roughly

speaking are a generalization of substitutive ones, obtained by an infinite composition of different

substitutions, are a more recent subject of study and thus less understood; we present them in detail

and we treat substitutive systems as a particular case of S-adic systems (see Example 3.4 below). We

study the behavior of the image subgroup, infinitesimals, dynamical dimension group and balance for

this kind of subshifts.

3.1 Definitions and examples.

Let A be a finite alphabet with Card(A) ≥ 2. Recall from Example 1.4 that, given a substitution σ

on A, we can consider the substitutive subshift associated to σ, (Xσ, T ), with

Xσ = {x ∈ AZ : ∀w,w ≺ x⇒ ∃a ∈ A, ∃n ∈ N : w ≺ σn(a)},

and that if σ is primitive, (Xσ, T ) is minimal and uniquely ergodic. The language of σ is the language

of Xσ.

There is an equivalent definition of substitutive subshifts using fixed or periodic points. Given a

substitution σ on A, a fixed point of σ is an element x ∈ AZ satisfying σ(x) = x. A periodic point of

σ is an element x ∈ AZ such that there exists k > 0 with σk(x) = x.

Note that if there exist two letters a, b ∈ A with |σ(a)|, |σ(b)| ≥ 2 and such that σ(a) begins with

a, σ(b) ends with b, there exists a unique fixed point x ∈ AZ of σ satisfying x−1 = b and x0 = a.

39
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If ba ∈ Lσ, then x is called an admissible fixed point of σ and it is not difficult to check that Xσ

corresponds exactly to the orbit closure of x under the shift.

If σ is primitive, then there exists a positive integer p such that σp has an admissible fixed point,

denoted by y. In this case, Xσp corresponds to the orbit closure of y under the shift. Since σ and σp

define the same language, Xσp = Xσ, and then Xσ corresponds to the orbit closure of y under the

shift.

We say that a substitution σ : A → A∗ is aperiodic if (Xσ, T ) is aperiodic for the shift map, that

is,(Xσ, T ) is a free subshift. In general, when we say a periodic/aperiodic point on X we refer to a

periodic/aperiodic point for the shift map.

Let A,B be two finite alphabets. When we refer to a morphism σ : A → B∗ we always assume that σ

is non-erasing.

We say that a morphism σ : A → B∗ is left proper (resp. right proper) if there exists b ∈ B such that

for all a ∈ A, b is a prefix (resp. a sufix) of σ(a). We say that σ is proper if it is both left and right

proper. We will need the following lemma in Section 3.2.

Lemma 3.1. Let A be a finite alphabet. If σ : A → A∗ is a left proper substitution and θ : A → A∗

is any substitution, then the composition σθ : A → A∗ is left proper. If σ is left proper and θ is right

proper, then the composition σθ is proper.

Proof. Suppose that σ : A → A∗ is a left proper substitution and θ : A → A∗ is any substitution. Let

` ∈ A, u : A → A∗ such that σ(a) = `u(a) for all a ∈ A. Then, for all a ∈ A one has

σθ(a) = σ(θ(a)) = σ(θ(a)0) · · ·σ(θ(a)|θ(a)|−1) = `u(θ(a)0) · · · `u(θ(a)|θ(a)|−1).

Thus, for all a ∈ A, ` is a prefix of σθ(a) and σθ is left proper.

Suppose now that σ is left proper and θ is right proper. Let `, r ∈ A, u,w : A → A∗ be such that for

all a ∈ A, σ(a) = `u(a), θ(a) = w(a)r. Then, for all a ∈ A one has

σθ(a) = σ(w(a))σ(r) = σ(w(a))`u(r) = `u(w(a)0) · · · `u(w(a)|w(a)|−1)`u(r)0 · · ·u(r)|u(r)|−1.

Thus, for all a ∈ A, ` is a prefix of σθ(a), u(r)|u(r)|−1 is a suffix of σθ(a) and σθ is proper.

If σ : A → B∗ is a proper morphism with σ(a) = `u(a) for all a ∈ A, we define its right conjugate

τ : A → B∗ by

τ(a) = u(a)`.
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Note that the right conjugate of a left proper morphism is right proper. Given a right proper morphism,

we define analogously its left conjugate, which is left proper.

3.1.1 Recognizability

Let X ⊆ AZ be a subshift on A, we say that a substitution σ is recognizable in X if for all y ∈ BZ

there exists at most one pair (k, x) ∈ N ×X such that y = T kσ(x) and 0 ≤ k < |σ(x0)|. Such a pair

is called a centered σ-representation of y. We say that σ is recognizable in X for aperiodic points if

for all aperiodic y ∈ BZ there exists at most one centered σ-representation of y. We now present the

classical definition of recognizability, which is combinatorial and was first introduced in [Mo92] and

[Mo96].

Let X ⊆ AZ be a subshift on A and y = T kσ(x) for some x ∈ X, k ∈ Z. The set Cσ(k, x) of cutting

points of y is defined as follows,

Cσ(k, x) = {|σ(x[0,`))|+ k : ` > 0} ∪ {0} ∪ {−|σ(x[`,0))| − k : ` < 0}.

Given a morphism σ : A → B∗ and a point x ∈ AZ, we say that σ is recognizable in the sense of Mossé

for x if there exist ` ∈ N such that for all m ∈ Cσ(0, x), for all m′ ∈ Z,

σ(x)[m−`,m+`) = σ(x)[m′−`,m′+`) ⇒ m′ ∈ Cσ(0, x).

The constant ` aboved is called a constant of recognizability for σ. The constant of recognizability of σ

is the smallest one among all constants of recognizability for σ. This constant is computable when σ

is a primitive substitution (see [DL17]). In [BSTY18, Section 2] there is a complete analysis regarding

the relation between this two notions of recognizability. We present here an important one.

Theorem 3.2. [BSTY18, Theorem 2.5] Let σ : A → B+ a morphism, x ∈ AZ and let (X,T ) be the

subshift generated by x. Then the following holds

� If σ is recognizable in X, then σ is recognizable in the sense of Mossé for x.

� If (X,T ) is minimal, σ is injective on the letters and σ is recognizable in the sense of Mossé for

x, then σ is recognizable in X.

It is a theorem by B. Mossé that primitive aperiodic substitutions are recognizable for their fixed
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points ([Mo92], see also [Que10, Theorem 5.8]). As a consequence of this result and Theorem 3.2, if

σ : A → A is primitive and aperiodic, σ is recognizable in Xσ, since for any fixed point x of σ, Xx = Xσ.

3.1.2 Directive sequences

Let (An)n∈N be a sequence of finite alphabets and σn : An+1 → A∗n morphisms. We denote σ[n,N) the

composition σn ◦ σn+1 ◦ · · · ◦ σN−1. Let σ = (σn)n∈N be a sequence of morphisms. We say that σ

is everywhere growing if mina∈An{|σ[0,n)(a)|} tends to ∞ as n → ∞, that is, if the length |σ[0,n)(a)|

tends to ∞ when n → ∞ for all a ∈ An. We say that σ is primitive if for every n ≥ 0, there exists

N ≥ n such that σ[n,N) has a positive incidence matrix.

For n ≥ 0, the language of order n L
(n)
σ associated with σ is

L
(n)
σ = {w ∈ A∗n : ∃N > n,∃a ∈ AN , w ≺ σ[n,N)(a)}.

For each n ≥ 0, the set X
(n)
σ is the set of infinite words x ∈ AZ

n all whose factors belong to L
(n)
σ . We

set Xσ = X
(0)
σ , Lσ = L

(0)
σ and call (Xσ, T ) the S-adic system generated by the directive sequence σ,

where T is the shift transformation. For all ` ≥ 1, we denote by L
(n)
σ,` the subset of length ` factors of

L
(n)
σ .

Remark 3.3. Note that L`(X
(n)
σ ) ⊆ L

(n)
σ,` and that this inclusion is strict in general: consider for

instance a substitution σ : A → A∗ such that a letter a ∈ A only appears as a prefix of σ(a). This

is a non-primitive substitution where a has an occurrence in σ(a) but it appears in no infinite word

x ∈ AZ. If there were x ∈ AZ such that a ≺ x, then it would be a letter b ∈ A such that ba ≺ σn(c),

for some n ∈ N, some c ∈ A, which is not possible since a only appears as a prefix of σ(a). This is not

the case in the minimal framework: if σ is everywhere growing and primitive, then L`(X
(n)
σ ) = L

(n)
σ,`

for all ` ≥ 1.

Example 3.4. Substitutive subshifts

Substitutive subshifts are exactly the S-adic systems where An is equal to a constant alphabet A

for all n ∈ N and σn is the same substitution σ : A → A∗ for all n ∈ N. Therefore, properties

of substitutive subshifts can be directly recovered from more general properties o S-adic subshifts.

However, substitutive systems were historically studied earlier and some results in the substitutive
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case have been obtained using very specific properties which is not clear how to extend to the S-adic

case. Note that when the S-adic system is obtain from one single substitution σ : A → A, the directive

sequence σ is primitive if and only if σ is primitive as a substitution.

Example 3.5. Uniformly recurrent subshifts

Return words provide a way to represent minimal subshifts as S-adic systems. We quote here the

procedure given in [BDD+18, Section 3] to get this representation. Let (X,T ) a minimal subshift

defined on the alphabet A and let x be any element belonging to X. Recall from Section 1.2.1 that

for every a ∈ A, w ∈ LX is a first left return word to a if a is a prefix of wa and there are exactly

two occurrences of a in wa. Let R′(x0) be the (finite) set of first left return words to the first letter

of x, x0, and consider the factorization of x in words belonging to R′(x0). There exists a unique

sequence (wk)k∈Z ∈ R′(x0)Z such that x = · · ·w−2w−1w0w1w2 · · · . Now consider R the alphabet

{1, 2, · · · , |R′(x0)|} and let λ : R → A∗ be the morphism which maps every i ∈ R to the ith first left

return word w ∈ R′(x0) to appear in x[0,∞), and which extends to R∗ and RZ by concatenation. The

derived sequence of x is the unique sequence D(x) ∈ RZ such that λ(D(x)) = x. The morphism λ is

called the return morphism in [BDD+18]. Define D0(x) = x, R0 = A, R1 = R, λ1 = λ, and then

define inductively Dn(x) and λn as follows. Given Dn(x), Rn, Rn+1 and λn : Rn+1 → R∗n, Dn+1(x) is

the unique sequence in RZ
n+1 such that λn(Dn+1(x)) = Dn(x), then Rn+2 = {1, 2, · · · , |R′(Dn+1(x)0)|}

and finally λn+1 : Rn+1 → R∗n+1 the morphism which maps every i ∈ Rn+2 to the ith first left

return word w ∈ R′(Dn+1(x)0) to appear in Dn+1(x)[0,∞), and which extends to R∗n+1 and RZ
n+1 by

concatennation. It is not difficult to verify that the sequence of morphisms λ = (λn : Rn+1 → R∗n)n∈N

is a primitive directive sequence which satisfies Xλ = X.

Example 3.6. Sturmian subshifts

Sturmian subshifts (see Example 1.5) can be obtained using S-adic representations. Moreover, they

can be obtained by using a directive sequence where the σn’s belong to a finite set of morphisms.

Consider the morphisms τ0, τ1 : {0, 1} → {0, 1}∗ given by

τ0 =
0 7→ 0

1 7→ 10
τ1 =

0 7→ 01

1 7→ 1
.

It is known that, given any sequence (in)n∈N ∈ AN, the limit word

x = lim
n→∞

τ i10 τ
i2
1 τ

i3
0 τ

i4
1 · · · τ

in−1(0)
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exists, and that if (in)n∈N is not ultimately constant, then the directive sequence (τin)n∈N is primitive

and the subshift Xτ is Sturmian. Moreover, if α ∈ R \ Q, the Sturmian subshift associated to the

rotation of angle α is exactly the subshift generated by the limit word

x = lim
n→∞

τ j10 τ
j2
1 τ

j3
0 τ

j4
1 · · · τ

j2n−1

0 τ j2n1 (0),

where [0; j1 + 1, j2, j3, · · · ] is the continued fraction expansion of α (see [AR91, Section 1] for details).

S-adic systems are known to be minimal provided their directive sequences of morphisms are primitive

(see for example [BD14, Lemma 5.2]).

We say that the directive sequence σ is recognizable if for all n ≥ 0, σn is recognizable in X
(n+1)
σ . We

say that σ is eventually recognizable if there exists n ∈ N such that for all n ≥ N σn is recognizable in

X
(n+1)
σ . There exist directive sequences which are eventually recognizable but not recognizable, and

directive sequences which are not even eventually recognizable. Moreover, in both cases the directive

sequences can be choosen primitive (see [BSTY18, Section 4] for examples). This shows that Mossé’s

Theorem ([Mo92]) cannot be extended in a natural way from the substitutive to the S-adic framework.

We now list some results from [BSTY18, Section 4] which provide sufficient conditions to recognizability

and eventual recognizability for sequences of morphisms.

Recall that a morphism σ : A → B∗ is left (right) permutative if for all a 6= b in A, the first (last) letters

of σ(a) and σ(b) are different. Two morphisms σ, τ : A → B∗ are said to be rotationally conjugate if

there exists w ∈ B∗ such that σ(a)w = wτ(a) for all a ∈ A, or wσ(a) = τ(a)w for all a ∈ A.

Theorem 3.7. [BSTY18, Theorem 4.6] Let σ = (σn)n≥0 be a sequence of morphisms with σn :

An+1 → A∗n. For all n ∈ N, let Mσn denote the incidence matrix of σn. If

� rk(Mσn) = #An+1 for all n ∈ N, or

� #An+1 = 2 for all n ∈ N, or

� σn is rotationally conjugate to a left or right permutative morphism,

then σ is recognizable for aperiodic points.

Let d ≥ 2 be an integer and Ω ⊆ Rd+. Let (Ωi)i∈I be a finite or countable partition of Ω. Let (Mi)i∈I

a family of matrices such that MiΩi ⊆ Ωi. The d-dimensional continued fraction map associated to

(Mi)i∈I is the map F : Ω→ Ω defined by F (x) = M−1
i (x) if x ∈ Ωi. We define M(x) = Mi if x ∈ Ωi.
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The associated continued fraction algorithm is the iterative application of F to a given vector x ∈ Ω,

which produces the sequence (M(Fn(x)))n∈N, called the continued fraction expansion of x.

Given a continued fraction expansion (M(Fn(x)))n∈N, we can associate each matrix M(Fn(x)) to a

substitution σn (in a non-canonical way, since the same incidence matrix could correspond to different

substitutions). Then, to a continued fraction algorithm we associate a directive sequence of substitu-

tions and then an S-adic subshift.

Recall that a matrix M with integer coefficients is said to be unimodular if det(M) = ±1.

Theorem 3.8. [BSTY18, Proposition 4.9] Let σ be a directive sequence obtained from a unimodular

continued fraction expansion algorithm. Then σ is recognizable.

Theorem 3.9. [BSTY18, Theorem 5.2] Let σ = (σn)n≥0 be a sequence of morphisms with σn :

An+1 → A∗n such that lim infn→∞#An <∞. Then, σ is eventually recognizable for aperiodic points.

Through this chapter we will use the following equality

σ[0,n)T
j(x) = T |σ[0,n)(x[0,j))|σ[0,n)(x) ∀x ∈ X,∀j ≥ 1, (3.1)

which is a consequence of the fact that

σ[0,n)T
j(x) = · · ·σ[0,n)(xj−1) · σ[0,n)(xj)σ[0,n)(xj+1) · · · .

We assume henceforth that (Xσ, T ) is minimal. For w ∈ L`(X
(n)
σ ), the cylinder [w]n corresponds to

the following subset of X
(n)
σ

[w]n = {x ∈ X(n)
σ : x0 · · ·x|w|−1 = w}.

When the S-adic system is obtained from one single substitution σ : A → A, we omit the subindex n

in the above notation, since X
(n)
σ = Xσ for all n ∈ N.

In the next section we use the condition of recognizability to construct appropriate sequences of tower

partitions for S-adic systems.
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3.2 Tower partitions for S-adic systems.

Let σ = (σn)n≥0 be a recognizable sequence of morphisms with σn : An+1 → A∗n. For all ` ≥ 1, define

the sequence of partitions P(`)
n of Xσ as follows

P(`)
n = {T jσ[0,n)([a0 · · · a`−1]n) : a0a1 · · · a`−1 ∈ L

(n)
σ,`, 0 ≤ j < |σ[0,n)(a0)|} ∀n ≥ 1. (3.2)

Define also P(`)
0 = {[a0 · · · a`−1]0 : a0 · · · a`−1 ∈ L

(0)
σ,`}, that is, P(`)

0 is the partition whose towers

correspond to the cylinders [a0 · · · a`−1]0 and have just one floor.

Proposition 3.10. For all n ∈ N and for all ` ≥ 1, P(`)
n is a partition in towers of Xσ with P(`)

n+1

finer than P(`)
n , and (P(`)

n )n∈N satisfies condition (C0) of Section 2.1.

Proof. The heigth of the tower with base σ[0,n)([a0 · · · a`−1]) is |σ[0,n)(a0)|, which tends to infinity with

n, since σ is everywhere growing. This means that (P(`)
n )n∈N satisfies condition (C0).

Let x ∈ Xσ = X
(0)
σ and n ∈ N. We know from [BSTY18, Lemma 4.2], that x admits at least

one centered σ[0,n)-representation in X
(n)
σ . Since s is recognizable, then this is the only centered

σ[0,n)-representation in X
(n)
σ admitted by x. In other words, there exists a unique y ∈ X

(n)
σ and a

unique 0 ≤ k < |σ[0,n)(y0)| such that x = T kσ[0,n)(y). Let ai = yi for all 0 ≤ i < `. By definition,

y ∈ [a0a1 · · · a`−1]n and, since y ∈ X(n)
σ , a0 · · · a`−1 ∈ L`(X

(n)
s ) ⊆ L

(n)
σ,`. We conclude that there exists

a0 · · · a`−1 ∈ L
(n)
σ,` and 0 ≤ k < |σ[0,n)(a0)| such that x ∈ T kσ[0,n)([a0 · · · a`−1]n). This shows that for

all n ≥ 1 P`n covers Xσ. P(`)
0 trivially covers Xσ.

We now prove that P(`)
n is a partition. Suppose that there exist a0 · · · a`−1, b0 · · · b`−1 ∈ L

(n)
σ,`, 0 ≤ j ≤

|σ[0,n)(a0)|, 0 ≤ k ≤ |σ[0,n)(b0)| such that x ∈ T jσ[0,n)([a0 · · · a`−1]n) ∩ T kσ[0,n)([b0 · · · b`−1]n). This

means that there exist y1 ∈ [a0 · · · a`−1]n and y2 ∈ [b0 · · · b`−1]n such that

x = T jσ[0,n)(y1) = T kσ[0,n)(y2).

Since 0 ≤ j ≤ |σ[0,n)(a0)| = |σ[0,n)((y1)0)|, (y1, j) is a centered σ[0,n)-representation of x. Since

0 ≤ k ≤ |σ[0,n)(b0)| = |σ[0,n)((y2)0)|, (y2, k) is a centered σ[0,n)-representation of x as well. By

recognizability, y1 = y2 and j = k, so in fact T kσ[0,n)([a0 · · · a`−1]n) = T jσ[0,n)([b0 · · · b`−1]n). P(`)
0 is

trivially a partition.

Finally, let us show that for all n, P(`)
n+1 is finer that P(`)

n . Let T kσ[0,n+1)([a0 · · · a`−1]n) be an atom of

P(`)
n+1 and let x belong to it. This implies that a0 · · · a`−1 ∈ L`(X

(n+1)
σ ), 0 ≤ k < |σ[0,n+1)(a0)| and there

exists y ∈ [a0 · · · a`−1]n+1 such that x = T kσ[0,n+1)(y). Therefore, one has x = T kσ[0,n)(σn(y)). Note
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that since y ∈ X(n+1)
σ , σn(y) ∈ X(n)

σ : if w ≺ σn(y), then w ≺ σn(w′) for some w′ ≺ y and there exists

N > n + 1, a ∈ AN such that w′ ≺ σ[n+1,N)(a); we have that σn(w′) ≺ σn(σ[n+1,N)(a)) = σ[n,N)(a),

and therefore w ≺ σn(w′) ≺ σ[n,N)(a); since w was arbitrarily taken, we deduce that σn(y) ∈ X(n)
σ .

Define bi = σn(y)i, for all 0 ≤ i < `. Then b0 · · · b`−1 ∈ L`(X
(n)
s ) and x ∈ T kσ[0,n)([b0 · · · b`−1]n).

Suppose first that 0 ≤ k < |σ[0,n)((σn(a0)0)|. Note that σn(a0)0 = b0. In this case, 0 ≤ k < |σ[0,n)(b0)|

and then T kσ[0,n)([b0 · · · b`−1]n) is an atom of P(`)
n , so we conclude that T kσ[0,n+1)([a0 · · · a`−1]n+1) is

included in an atom of P(`)
n .

Suppose now that |σ[0,n)((σn(a0)0)| ≤ k < |σ[0,n+1)(a0)|. Then, there exists a unique 1 ≤ j < |σn(a0)|

such that

|σ[0,n)((σn(a0)[0,j))| ≤ k < |σ[0,n)(σn(a0)[0,j+1))|.

Define m = |σ[0,n)(σn(y)[0,j))|. By (3.1), we know that

x = T k−mσ[0,n)T
j(σn(y)) ∈ T k−mσ[0,n)([σn(y)j · · ·σn(y)j+`−1]n).

Note that 0 ≤ k − m < |σ[0,n)(σn(a0)j)| = |σ[0,n)(σn(y)j)|, since 1 ≤ j < |σn(a0)|. The word

σn(y)j · · ·σn(y)j+`−1 belongs to L`(X
(n)
σ ), then T k−mσ[0,n)([σn(y)j · · ·σn(y)j+`−1]n) is an atom of P(n)

` .

Thus, T kσ[0,n+1)([a0 · · · a`−1]n+1) is included in an atom of P(`)
n . We conclude by noticing that clearly

P(`)
1 is finer than P(`)

0 .

Proposition 3.11. The sequence (P(`)
n )n∈N of partitions defined in (3.2) satisfies condition (C1) for

all ` ≥ 2.

Proof. Let f ∈ C(Xσ,Z). From Lemma 1.7, we know that f is cohomologous to a cylinder function

g ∈ C(Xσ,Z). Let k be a positive integer such that for all x ∈ Xσ, g(x) depends only on x[0,k]. Take

n ≥ 1 large enough so that

|σ[0,n)(a)| > k ∀a ∈ An

We can choose such an n because σ is everywhere growing. Suppose x, y ∈ T jσ[0,n)([a0a1 · · · a`−1]n), for

some a0a1 · · · a`−1 ∈ L
(n)
σ,`, some 0 ≤ j < |σ[0,n)(a0)|. Since |σ[0,n)(a0)|+ |σ[0,n)(a1)|+ |σ[0,n)(a`−1)| > `k

and the heigth of the σ[0,n)([a0 · · · a`−1]n)-tower is equal to |σ[0,n)(a0)|, x and y coincide on at least

their (`− 1)k first coordinates, and then g(x) = g(y). We conclude that g is constant on the atoms of

P`n, and therefore g ∈ C(S).

Remark 3.12. Note that the sequence (3.2) does not necessarily generate the topology of Xσ. We
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illustrate this with the following example.

Example 3.13. Thue–Morse substitution.

Consider the Thue-Morse substitution σ : {0, 1} → {0, 1}+ given by 0 7→ 01, 1 7→ 10, and the directive

sequence σn = σn, with An = {0, 1} ∀n ∈ N. The sequence of partitions (3.2) for ` = 2 has in this

case the form

P(2)
n = {T jσn([ab]) : ab ∈ {00, 01, 10, 11}, 0 ≤ j < 2n − 1} (3.3)

Consider the map f : Xσ → Z defined by

f(x) =

 0 if x−1 = 0

1 if x−1 = 1

We claim that for any positive integer n ≥ 0 there are two different points x and y belonging to the

same atom of P(2)
n such that f(x) 6= f(y). Indeed, let n ≥ 0 and take x′ ∈ σn([001]), y′ ∈ σn([101]).

These two points belong to the base of the partition P(2)
n , since [001] ⊆ [00] and [101] ⊆ [10]. Therefore,

it is not difficult to check that T |σ
n(0)|(x′) and T |σ

n(1)|(y′) belong to σn([01]). Let x = T |σ
n(0)|(x′),

y = T |σ
n(1)|(y′). Finally, note that no matter the parity of n, the last letters in the words σn(0) and

σn(1) are always different. Therefore, x and y belong to the same atom of P(2)
n but f(x) 6= f(y).

An alterantive way to see that P(2)
n does not generate the topology of Xσ in this case, is to note that

there are two different points which belong to the same atom of P(2)
n for all n ≥ 0. Let x ∈ {0, 1}N the

infinite word having all powers σn(01) as prefixes; let y and z ∈ {0, 1}N be the infinite words having

respectively all powers σn(01) and σn(10) as suffixes; then, the bi-infinite words y · x and z · x are

different but both belong to σn([01]) for all n ≥ 0.

The previous one is an example of a sequence of tower partitions satisfying (C1) but not (KR3).

Note that the sequence does not satisfy (C2)=(KR1) either, since the two points y ·x and z ·x (where

the dot indicates the zero position) belong not only to the same atom of P(2)
n , but also to the base of

P(2)
n , for all n ≥ 0.

When ` = 1, Proposition 3.11 is no longer true. We ilustrate this fact with the following example.

Example 3.14.

Consider again the Thue-Morse substitution defined in the previous example. In this case, the sequence
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(P(1)
n ) is given by

P(1)
n = {T jσn([a]) : a ∈ {0, 1}, 0 ≤ j < 2n}. (3.4)

The groups G(S(1)) and H(Xσ, T ) are isomorphic to Z
[

1
2

]
and Z × Z

[
1
2

]
respectively, where Z

[
1
2

]
denotes the group of dyadic rationals (see [DHP18] for a computation). Suppose we have a homomor-

phism ϕ : Z
[

1
2

]
→ Z×Z

[
1
2

]
, and let ϕ(x) = (ϕ(x)1, ϕ(x)2). We claim that ϕ(x)1 = 0 for all x ∈ Z

[
1
2

]
.

Let k be a positive integer,

2kϕ

(
1

2k

)
= ϕ

(
1

2k

)
+ · · ·+ ϕ

(
1

2k

)
= ϕ

(
2k

1

2k

)
= ϕ(1)

Therefore,

2kϕ

(
1

2k

)
1

= ϕ(1)1

If ϕ
(
1/2k

)
6= 0, then |ϕ(1)1| ≥ 2k. Since k was arbitrarily taken, we conclude that |ϕ(1)1| ≥ 2k for

all k ∈ N, which is not possible. So we conclude that ϕ
(
1/2k

)
1

= 0 for all k ∈ N, which implies that

ϕ(1)1 = 0, which in turn implies that for any x ∈ Z
[

1
2

]
, ϕ(x)1 = 0.

Thus, ϕ cannot be surjective.

The previous example shows that the smallest ` for which we know P(`)
n satisfies condition (C1) is

` = 2. However, the sequence P(1)
n is simpler to handle and will be useful if we impose some additional

hypothesis to the sequence σ. We present these hypothesis in the following. We start by making a

connection between the inidence matrices of σn and the morphisms IPn+1,Pn defined in Chapter 2.

Recall from Example 1.4 that the incidence matrix of a substitution σ : A → A∗ is the |A| × |A|

integer matrix whose (i, j) coefficient is the number of occurrences of i in σ(j).

Proposition 3.15. Let P(1)
n be as defined in (3.2), and let (Q

(1)
n )n∈N be the sequence of matrices

associated to the homomorphism IP(1)
n+1,P

(1)
n

. Let (Mn)n∈N be the sequence of incidence matrices of the

substitutions σn. Then, for all n ∈ N, Q
(1)
n = MT

n .

Proof. Let a ∈ An+1 and b ∈ An. By definition,

MT
n (a, b) = |σ(n)a|b = #{0 ≤ j < |σn(a)| : σn(a)j = b}.

One easily checks that #{0 ≤ j < |σn(a)| : σn(a)j = b} = #{0 ≤ j < |σn(a)| : T jσn([a]n+1) ⊆ [b]n}.
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We thus want to show that

#{0 ≤ j < |σn(a)| : T jσn([a]n+1) ⊆ [b]n} = #{0 ≤ k < |σ[0,n+1)(a)| : T kσ[0,n+1)([a]n+1) ⊆ σ[0,n)([b]n)}.

Suppose there exists 0 ≤ j < |σn(a)| such that T jσn([a]n+1) ⊆ [b]n. If j = 0, σn([a]n+1) ⊆ [b]n,

which implies that σ[0,n+1)([a]n+1) ⊆ σ[0,n)([b]n), and then T kσ[0,n+1)([a]n+1) ⊆ σ[0,n)([b]n) for k = 0.

If 1 ≤ j < |σn(a)|, set k = |σ[0,n)(σn(a)[0,j))|. One has 0 < k < |σ[0,n+1)(a)|. Now take x ∈ [a]n+1. By

(3.1), we have

T kσ[0,n)(σn(x)) = σ[0,n)T
j(σn(x)).

By hypothesis, T j(σn(x)) ∈ [b]n, and then T kσ[0,n+1)(x) ∈ σ[0,n)([b]n). Note also that by definition the

k associated with a given j is unique, so we conclude that

#{0 ≤ j < |σn(a)| : T jσ([a]n+1) ⊆ [b]n} ≥ |{0 ≤ k < |σ[0,n+1)(a)| : T kσ[0,n+1)([a]n+1) ⊆ σ[0,n)([b]n)}.

Conversely, suppose that there exists 0 ≤ k < |σ[0,n+1)(a)| such that T kσ[0,n+1)([a]n+1) is included in

σ[0,n)([b]n). Let x ∈ [a]n+1 and let y = T kσ[0,n+1)(x).

We first assume 0 ≤ k < |σ[0,n)(σn(a)0)|. In this case, (k, σn(x)) is a centered σ[0,n)-representation

of y. By hypothesis, there exists z ∈ [b]n such that y = σ[0,n)(z), so that (0, z) is a centered σ[0,n)-

representation of y as well. By recognizability, k = 0 and σn(x) = z, and thus σn(x) ∈ [b]n. We

conclude that σn([a]n+1) ⊆ [b]n and then for j = 0 we obtain T jσn([a]n+1) ⊆ [b]n.

Now we assume that |σ[0,n)(σn(a)0)| ≤ k < |σ[0,n+1)(a)|. In this case, there exists a unique 1 ≤ j <

|σn(a)| such that

|σ[0,n)(σn(a)[0,j))| ≤ k < |σ[0,n)(σn(a)[0,j+1))|.

Let m = |σ[0,n)(σn(a)[0,j))|. Using (3.1), one has that

Tmσ[0,n)(σn(x)) = σ[0,n)T
j(σn(x)),

and thus y = T kσ[0,n)(σn(x)) = T k−mσ[0,n)T
j(σn(x)). On the other hand, y ∈ σ[0,n)([b]n), and then,

there exists z ∈ [b]n such that y = σ[0,n)(z). One has 0 ≤ k − m < |σ[0,n)(σn(a)j)|. Again, (k −

m,T j(σn(x))) and (0, z) are centered σ[0,n)-representations of y. By recognizability, k −m = 0 and

T jσn(x) = z ∈ [b]n. We conclude that T jσn([a]n+1) ⊆ [b]n. Since the j associated to a given k is
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unique, we conclude that

#{0 ≤ j < |σn(a)| : T jσn([a]n+1) ⊆ [b]n} ≤ #{0 ≤ k < |σ[0,n+1)(a)| : T kσ[0,n+1)([a]n+1) ⊆ σ[0,n)([b]n)}.

Let σ = (σn : An+1 → An)n∈N be a primitive recognizable everywhere growing sequence of morphisms.

For any n ≥ 0, we consider the finite set L
(n)
σ,2 as an alphabet, and we define the substitution σ′n on it

in the following way: for every u = u0u1 ∈ L(n+1)
s,2 , σ′n(u) consists of the |σn(u0)| first factors of lenght

2 of σn(u). For example, if σn(u0) = a0a1 · · · ar ∈ A∗n and σn(u1) = b0b1 · · · as ∈ A∗n, then

σ′n(u) = σ′n(u0u1) = (a0a1)(a1a2) · · · (ar−1ar)(arb0).

Note that σ′n : L
(n+1)
s,2 → L

(n)∗
s,2 and σ′n(L2(X

(n+1)
s )) ⊆ L2(X

(n)
s )∗. For any n < m ∈ N, we write σ′[n,m)

to refer the composition σ′n ◦ σ′n+1 ◦ · · · ◦ σ′m−1.

For one sinlge substitution, σ′ is defined on L2(Xσ) and it is called the two-block extension of σ (see

[DHP18, Section 9] or [Que10, Section 5.4.1] for more on the higer-block extensions of a substitution).

We will use it to make the computations of the dynamical dimension group of substitution systems in

Section 3.4.1.

The following result is analogous to Proposition 3.15. The proof is almost identical. We include it

here because we do not know alternative proofs in the literature.

Proposition 3.16. Let P(2)
n be as defined in (3.2), and let (Q

(2)
n )n∈N be the sequence of matrices

associated to the homomorphism IP(2)
n+1,P

(2)
n

. Let (M ′n)n∈N be the sequence of incidence matrices of the

substitutions σ′n. Then, for all n ∈ N, Q
(2)
n = M ′Tn .

Proof. Let ab ∈ L2(X
(n+1)
s ) and cd ∈ L2(X

(n)
s ). By definition,

MT
n (ab, cd) = #{0 ≤ j < |σn(a)| : σ′n(ab)j = cd}.

Note that #{0 ≤ j < |σn(a)| : σ′n(ab)j = cd} = #{0 ≤ j < |σn(a)| : T jσn([ab]) ⊆ [cd]}. We thus want

to show that

#{0 ≤ j < |σn(a)| : T jσn([ab]) ⊆ [cd] = #{0 ≤ k < |σ[0,n+1)(a)| : T kσ[0,n+1)([ab]) ⊆ σ[0,n)([cd])}
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Suppose there exists 0 ≤ j < |σ′n(ab)| = |σn(a)| such that T jσn([ab]) ⊆ [cd]. If j = 0, σn([ab]) ⊆ [cd],

which implies that σ[0,n+1)([ab]) ⊆ σ[0,n)([cd]), and then T kσ[0,n+1)([ab]) ⊆ σ[0,n)([cd]) for k = 0. If

1 ≤ j < |σn(a)|, set k = |σ[0,n)(σn(a)[0,j))|. One has 0 < k < |σ[0,n+1)(a)|. Now take x ∈ [ab].

By (3.1), we have T kσ[0,n)(σn(x)) = σ[0,n)T
j(σn(x)). By hypothesis, T j(σn(x)) ∈ [cd], and then

T kσ[0,n+1)(x) ∈ σ[0,n)([cd]). Note also that by definition the k associated to a given j is unique, so we

conclude that

#{0 ≤ j < |σn(a)| : T jσn([ab]) ⊆ [cd]} ≥ #{0 ≤ k < |σ[0,n+1)(a)| : T kσ[0,n+1)([ab]) ⊆ σ[0,n)([cd])}.

Conversely, suppose that there exists 0 ≤ k < |σ[0,n+1)(a)| such that T kσ[0,n+1)([ab]) is included in

σ[0,n)([cd]). Let x ∈ [ab] and let y = T kσ[0,n+1)(x).

We first assume 0 ≤ k < |σ[0,n)(σn(a)0)|. In this case, (k, σn(x)) is a centered σ[0,n)-representation

of y. By hypothesis, there exists z ∈ [cd] such that y = σ[0,n)(z), so that (0, z) is a centered σ[0,n)-

representation of y as well. By recognizability, k = 0 and σn(x) = z, and thus σn(x) ∈ [cd]. We

conclude that σn([ab]) ⊆ [cd] and then for j = 0 we obtain T jσn([ab]) ⊆ [cd].

Now we assume that |σ[0,n)(σn(a)0)| ≤ k < |σ[0,n+1)(a)|. In this case, there exists a unique 1 ≤ j <

|σn(a)| such that

|σ[0,n)(σn(a)[0,j))| ≤ k < |σ[0,n)(σn(a)[0,j+1))|.

Let m = |σ[0,n)(σn(a)[0,j))|. Using (3.1), one has that Tmσ[0,n)(σn(x)) = σ[0,n)T
j(σn(x)), and thus

y = T kσ[0,n)(σn(x)) = T k−mσ[0,n)T
j(σn(x)). On the other hand, y ∈ σ[0,n)([cd]), and then, there exists

z ∈ [cd] such that y = σ[0,n)(z). One has 0 ≤ k −m < |σ[0,n)(σn(a)j)|. Again, (k −m,T j(σn(x))) and

(0, z) are centered σ[0,n)-representations of y. By recognizability, k −m = 0 and T jσn(x) = z ∈ [cd].

We conclude that T jσn([ab]) ⊆ [cd]. Since the j associated to a given k is unique, we conclude that

#{0 ≤ j < |σn(a)| : T jσn([ab]) ⊆ [cd]} ≤ #{0 ≤ k < |σ[0,n+1)(a)| : T kσ[0,n+1)([ab]) ⊆ σ[0,n)([cd])}.

In the following we present a series of results which state that conditions (C1) and/or (C2) can

be satisfied by P(1)
n when regarding S-adic systems with an infinite number of left or right proper

substitutions. This strategy has been inspired in the ideas presented in [DL12].

Lemma 3.17. Let A be a finite alphabet, and let σ = (σn)n≥0 be a recognizable everywhere growing

sequence of morphisms such that σn : A → A∗ for all n ∈ N. Suppose there exists a subsequence
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(nk)k∈N such that for all k ∈ N, σnk is left proper with common prefix ` ∈ A. Then, the sequence of

tower partitions P(1)
n associated to σ satisfies conditions (C1).

Proof. By Proposition 1.7, it suffices to prove that for every cylinder function g ∈ C(X,Z), there

exists n ∈ N such that g is constant in the atoms of P(1)
n . For simplicity we denote Pn each partition

P(1)
n . Let g ∈ C(X,Z) be a cylinder function and m ∈ N such that g depends on the coordinates

[0,m). Let k ≥ 0 such that |σ[0,nk)(`)| ≥ m. We can always choose such a k since σ is everywhere

growing. Suppose that z ∈ [a]nk+1 for some a ∈ A. Since σnk is left proper with prefix `, σ[0,nk+1)(z)

begins with the prefix σ[0,nk+1)(a)σ[0,nk)(`), and thus every element in the atom T jσ[0,nk+1)([a]nk+1),

0 ≤ j < |σ[0,nk+1)(a)|, has a common prefix of length at least |σ[0,nk)(`)|. Since |σ[0,nk)(`)| ≥ m, g is

constant in every such an atom.

Remark 3.18. Note that the hypothesis of σnk having a common prefix ` for all k ≥ 0 can be replaced

by the following: for all k ≥ 0, σnk is left proper with prefix `k. Indeed, since A is finite and every `k

belongs to A, this condition implies that some prefix occurs infinitely often, and thus, up to consider

a subsequence of (nk)k∈N, we may assume that every σk has the same prefix.

Lemma 3.19. Let A be a finite alphabet, and let σ = (σn)n≥0 be a recognizable everywhere growing

sequence of morphisms such that σn : A → A∗ for all n ∈ N. Suppose there exists a subsequence

(nk)k∈N such that for all k ∈ N, σn2k
is left proper and σn2k+1

is right proper. Then, the sequence of

tower partitions P(1)
n associated to σ satisfies conditions (C1) and (C2).

Proof. All substitutions in the subsequence (σn2k
)k∈N are left proper, so by Lemma 3.17, the sequence

P(1)
n satisfies condition (C1). Let us prove that P(1)

n satisfies (C2). For any k ≥ 0, consider the

composition σ[n2k,n2k+1)σn2k+1
. By Lemma 3.1, σ[n2k,n2k+1) is left proper, and since σn2k+1

is right

proper, σ[n2k,n2k+1)σn2k+1
is proper. This means that for all k ≥ 0 there exist `k, rk ∈ A, vk : A → A

such that for all a ∈ A,

σ[n2k,n2k+1)σn2k+1
(a) = `kvk(a)rk.

Since A is finite, we can reason as in Remark 3.18 to conclude that, up to take a subsequence, there

exists `, r ∈ A such that for all k ≥ 0 and for all a ∈ A,

σ[n2k,n2k+1)σn2k+1
(a) = `vk(a)r.
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Suppose x ∈ Y =
⋂
n∈NBn. Then the central window of x has the form

· · ·σ[0,n2k)(r) · σ[0,n2k)(`) · · ·

Since |σ[0,n2k)(`)| and |σ[0,n2k)(r)| are arbirtarily large, we conclude that Y = {x}.

Lemma 3.20. Let A be a finite alphabet, and let σ = (σn)n≥0 be a recognizable everywhere growing

sequence of morphisms such that σn : An+1 → A∗n for all n ∈ N. For all n ≥ 0, let `n ∈ A∗n a (possibly

empty) word and un : An+1 → A∗n a substitution verifying σn(a) = `nun(a) for all a ∈ An+1. For all

n ∈ N, define τn(a) = un(a)`n for all a ∈ An+1. Then, the following assertions hold.

� For all n ≥ 2, for all a ∈ An, σ[0,n)(a) begins with the word

σ[0,n−1)(`n−1) · · ·σ[0,1)(`1)`0,

and τ[0,n)(a) ends with the word

`0τ[0,1)(`1) · · · τ[0,n−1)(`n−1).

� For all n ≥ 1, for all a ∈ An ∪ {ε} one has

σ[0,n)(a)σ[0,n−1)(`n−1) · · ·σ[0,1)(`1)`0 = `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(a).

Proof. We proceed by induction on n. For the first assertion, let n = 2, let a ∈ A2. One has

σ[0,2)(a) = σ[0,1)(σ1(a))

= σ[0,1)(`1u1(a))

= σ[0,1)(`1)σ[0,1)(u1(a))

= σ[0,1)(`1)σ0(u1(a)).

Since `0 is a prefix of σ0(u1(a)), then σ[0,1)(`1)`0 is a prerix of σ[0,2)(a).

Let n > 2 and suppose that for all a ∈ An, σ[0,n)(a) begins with σ[0,n−1)(`n−1) · · ·σ[0,1)(`1)`0. Let
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a ∈ An+1. Then one has

σ[0,n+1)(a) = σ[0,n)(σn(a))

= σ[0,n)(σn(a)0)σ[0,n)(σn(a)1) · · ·σ[0,n)(σn(a)|σn(a)|−1)

= σ[0,n)(`n)σ[0,n)(σn(a)1) · · ·σ[0,n)(σn(a)|σn(a)|−1).

By inductive hypothesis, σ[0,n)(σn(a)1) begins with σ[0,n−1)(`n−1) · · ·σ[0,1)(`1)`0, and therefore σ[0,n+1)(a)

begins with σ[0,n)(`n) · · ·σ[0,1)(`1)`0.

In a completely analogous way, we prove that every τ[0,n)(a) ends with the word `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1).

Let us prove the second assertion. Let n = 1. If a = ε, then

σ[0,1)(ε)`0 = ε`0

= `0

= `0ε

= `0τ[0,1)(ε).

If a ∈ A1 is not the empty word, one has

σ[0,1)(a)`0 = σ0(a)`0

= `0u0(a)`0

= `0τ0(a)

= `0τ[0,1)(a).

Let n > 1 and suppose that the assertion is true for all a ∈ An ∪ {ε}. If a = ε, then

σ[0,n+1)(ε)σ[0,n)(`n) · · ·σ[0,1)(`1)`0 = σ[0,n+1)(ε)`0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)

= ε`0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)

= `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)

= `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)ε

= `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)τ[0,n+1)(ε).
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If a 6= ε, for all 1 ≤ k ≤ n let Lk = |σ[1,n+1)(a)| − 1. One has

σ[0,n+1)(a)σ[0,n)(`n) · · ·σ[0,1)(`1)`0 = σ[0,n+1)(a)`0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)

= σ0(σ[1,n+1)(a))`0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)

= `0u0(σ[1,n+1)(a)0) · · · `0u0(σ[1,n+1)(a)L1)`0τ[0,1)(`1) · · · τ[0,n)(`n)

= `0τ[0,1)(σ[1,n+1)(a))τ[0,1)(`1) · · · τ[0,n)(`n)

= `0τ[0,1)(σ1(σ[2,n+1)(a)))τ[0,1)(`1) · · · τ[0,n)(`n)

= `0τ[0,1)(`1u1(σ[2,n+1)(a)0) · · · `1u1(σ[2,n+1)(a)L2)τ[0,2)(`2) · · · τ[0,n)(`n)

...

= `0τ[0,1)(`1)τ[0,2)(`2) · · · τ[0,n−1)(`n−1)τ[0,n)σ[n,n+1)(a)τ[0,n)(`n)

= `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(σn(a))τ[0,n)(`n)

= `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`nun(a))τ[0,n)(`n)

= `0τ[0,1)(`1) · · · τ[0,n−1)(`n−1)τ[0,n)(`n)τ[0,n+1)(a).

Proposition 3.21. Let A be a finite alphabet, and let σ = (σn)n≥0 be a recognizable sequence of

morphisms such that σn : A → A∗ for all n ∈ N. Suppose that there exists a subsequence (nk)k∈N such

that for all k ∈ N, σnk is left proper or right proper. Then, there exists a directive sequence σ̃ = (σ̃i)i≥0

of substitutions σ̃i : A → A∗, such that Xσ = Xσ̃ and the sequence of tower partitions P(1)
n associated

to σ̃ satisfies conditions (C1) and (C2).

Proof. If there are infinitely many σnk ’s which are left proper and infinitely many σnk ’s which are

right proper, then we can assume, modulo taking a subsequence, that for all k ≥ 0, σn2k
is left proper

and σn2k+1
is right proper. We thus define σ̃i = σni and we apply Lemma 3.19 to conclude.

Suppose that all σnk ’s are left proper. Define the new sequence (σ̃i)i∈N as follows,

σ̃i =

 σni if i is even

τni if i is odd.

where τni is the right conjugate of σni .

The sequence (σ̃i)i∈N verifies that σ̃i is left proper if i is even and right proper if i is odd, so by Lemma

3.19, the sequence of tower partitions P(1)
n associated to σ̃ satisfies conditions (C1) and (C2).
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Let us show that Xσ̃ = Xσ, for which is enough to show that LXσ̃
= LXσ . First, note that Xσ = Xτ .

Indeed, if `nk and unk are as in Lemma 3.20, we know that

� For all nk ≥ 2, for all a ∈ Ank , σ[0,nk)(a) begins with the word

σ[0,nk−1)(`nk−1) · · ·σ[0,n1)(`n1)`n0 ,

and τ[0,nk)(a) ends with the word

`n0τ[0,n1)(`n1) · · · τ[0,nk−1)(`nk−1).

� For all nk ≥ 1, for all a ∈ An ∪ {ε} one has

σ[0,nk)(a)σ[0,nk−1)(`nk−1) · · ·σ[0,n1)(`n1)`n0 = `n0τ[0,n1)(`n1) · · · τ[0,nk−1)(`nk−1)τ[0,nk)(a).

Let v belong to the language of Xσ. There exists some a, b ∈ A and k ≥ 0 such that ab ∈ L(X
(nk)
bs )

and v ≺ σ[0,nk)(ab), that is, v ≺ σ[0,nk)(a)σ[0,nk)(b). By Lemma 3.20, σ[0,nk)(b) begins with

σ[0,nk−1)(`nk−1) · · ·σ[0,n1)(`n1)`n0 ,

= `n0τ[0,n1)(`n1) · · · τ[0,nk−1)(`nk−1).

This implies that

v ≺ σ[0,nk)(a)σ[0,nk−1)(`nk−1) · · ·σ[0,n1)(`n1)`n0 = `n0τ[0,n1)(`n1) · · · τ[0,nk−1)(`nk−1)τ[0,nk)(a).

There exists also c ∈ A such that τ[0,nk)(ca) = τ[0,nk)(c)τ[0,nk)(a) ∈ LXτ . By Lemma 3.20, τ[0,nk)(c)

ends with the word

= `n0τ[0,n1)(`n1) · · · τ[0,nk−1)(`nk−1),

which implies that v ≺ τ[0,nk)(ca). If there exists d ∈ A such that τnk(d) begins with ca, then

v ≺ τ[0,nk+1)(d) and thus v ∈ LXτ . Analogously, one proves that every factor belonging to LXτ

belongs also to LXσ . This proves that Xσ = Xτ .
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Now, let σ̃i = ˜̀
iũi, where

˜̀
i =

 `ni if i is even

ε if i is odd.

and

ũi =

 uni if i is even

τni if i is odd.

For all i ≥ 0, let τ̃i be defined by τ̃i(a) = ũi ˜̀i. We may apply Lemma 3.20 in the same way as above

to obtain that Xσ̃ = Xτ̃ .

Finally, since for all i ≥ 0 τ̃i = τni , we have that Xτ = Xτ̃ . We conclude that Xσ = Xτ = Xτ̃ = Xσ̃.

If all σnk ’s are right proper, we define the new sequence (σ̃i)i∈N as follows,

σ̃i =

 σni if i is odd

τni if i is even.

where τni is the left conjugate of σni .

The sequence (σ̃i)i∈N verifies that σ̃i is left proper if i is even and right proper if i is odd, so by Lemma

3.19, the sequence of tower partitions P(1)
n associated to σ̃ satisfies conditions (C1) and (C2). To

show that Xσ̃ = Xσ, we proceed in a completely analogous way as in the case where all σnk ’s are left

proper.

3.3 Frequencies.

Recall from Chapter 1, Section 1.4.2, that in a minimal subshift (X,T ) every point has (uniform)

frequencies if and only if (X,T ) is uniquely ergodic, in which case the frequency µv of a factor w ∈ LX
is equal to µ([w]), where µ is the unique invariant measure of M(X,T ).

3.3.1 Frequencies for substitutive systems.

Substitutive systems arising from primitive substitutions are minimal and uniquely ergodic (see for

example [Que10, Sections 5.2 and 5.4]). This implies that frequencies do exist and are uniform. The

way to compute them is related to linear properties of the incidence matrix of the substitution. We

recall here a list of results which make explicit this relation and which are taken almost literally from
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[Que10, Chapter 5]. We start by recalling a classical theorem for primitive matrices, the Perron-

Frobenius’s Theorem.

Theorem 3.22 (Perron-Frobenius). Let M be a primitive real matrix. Then, the following asser-

tions hold,

(a) M admits a unique positive eigenvalue θ verifying θ > |λ| for all other eigenvalue λ of M .

(b) The eigenvector associated to θ can be chosen positive.

(c) The eigenvalue θ is simple.

The eigenvalue θ above is called the dominant eigenvalue or the Perron-Frobenius eigenvalue of M .

As a consequence of Theorem 3.22, there exists a unique right normalized eigenvector associated to

the dominant eigenvalue, normalized meaning that the sum of its components equals 1. It is called the

right normalized dominant eigenvector or the right normalized Perron-Frobenius eigenvector of M .

We define now an analogous to the 2-block extension substitution σ′ in higher dimensions.

Let σ : A → A a primitive substitution and ` ≥ 2. Consider the finite set L`(Xσ) as an alphabet,

and define the substitution σ` on it in the following way: for every u = u0u1 · · ·u`−1 ∈ L`(Xσ), σ`(u)

consists of the |σ(u0)| first factors of lenght ` of σ(u). We extend σ` to L`(Xσ)∗ and L`(Xσ)Z by

concatennation.

Lemma 3.23. [Que10, Lemma 5.3] If σ : A → A is a primitive substitution, then for all ` ≥ 2,

σ` : L`(Xσ)→ L`(Xσ)∗ is a primitive substitution as well.

The previous lemma ensures that we can apply Theorem 3.22 to the incidence matrix Mσ2 of the

substitution σ2. The following result states that frequencies of letters (resp. factors of length 2)

on primitive substitutive systems exist and are provided by the right normalized Perron-Frobenius

eigenvector of Mσ (resp. Mσ2). It is a restatement of Propositions 5.8 and 5.9 in [Que10].

Proposition 3.24. If σ : A → A is a primitive substitution, then for all ` ∈ {1, 2} the frequencies of

factors of length ` exists and the vector f` ∈ RL`(Xσ) whose coordinates are given by these frequencies

is equal to the normalized right Perron-Frobenius eigenvector of Mσ`, where σ1 = σ.

Example 3.25. Chacon substitution

The primitive Chacon substitution σC is defined over the alphabet {1, 2, 3} by σC : 1 7→ 1123, 2 7→

23, 3 7→ 123. The eigenvalues of MσC are 3, 1 and 0, so the dominant eigenvalue is 3 and the letter
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frequency vector is (1/3, 1/3, 1/3).

We refer to [Que10, Section 5.4.3] for a description of an algorithm allowing to compute the frequency

of any factor w ∈ L(Xσ) thanks to matrices Mσ and Mσ2 . The next result states that eigenvalues of

Mσ` are the same for all ` ≥ 1, except possibly for the aditional eigenvalue zero.

Proposition 3.26. [Que10, Corollary 5.5] Let σ : A → A be a primitive substitution. The eigenvalues

of Mσ` are those of Mσ2, with possibly the additional eigenvalue zero.

3.3.2 Frequencies for S-adic systems.

We have seen that substitutive systems are uniquely ergodic provided the underlying substitution is

primitive ([Que10]). The situation is different when dealing with S-adic systems: there exist uniformly

recurrent (and thus primitive S-adic) subshifts which are not uniquely ergodic. This is for instance

the case of the counterexample constructed in [Keane77], consisting of a regular interval exchange

transformation (see Example 4.4) of 4 intervals, which has exactly two invariant measures.

The following result gives sufficient conditions for unique ergodicity of S-adic systems.

Theorem 3.27. [BD14, Theorem 5.7] Let Xσ be an S-adic subshift with directive sequence σ =

(σn)n∈N, such that σn : An+1 → A∗n and A0 = {1, 2, · · · , d}. Suppose that σ is everywhere growing.

Let (Mn)n∈N be the sequence of incidence matrices of σn. Then, the limit cone

C(0) =
⋂
n→∞

M0 · · ·MnRd+

parametrizes the letter frequencies: the set of vectors f ∈ C(0) such that f1 +f2 + · · ·+fd = 1 coincides

with the image of the map which sends a shift-invariant measure µ on Xσ to the vector of letter

frequencies (µ([1]), µ([2]), · · · , µ([d])). In particular, Xσ has uniform letter frequencies if and only if

the cone C(0) is one-dimensional.

If furthermore, for each k, (σn+k)n∈N is an everywhere growing directive sequence, and the limit cone

C(k) =
⋂
n→∞

Mk · · ·MnRd+

is one-dimensional, then the system (Xσ, T ) is uniquely ergodic.

The above condition on the convergence of the cones C(k) can be interpreted as a Perron-Frobenius-
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like condition, like in the case of substitutive systems. The following theorem states then a sufficient

condtion on the incidence matrices for S-adic systems to have uniform letter frequencies.

Theorem 3.28. [Fur60] Let d ≥ 1, let (Mn)n∈N be a sequence of non-negative integer d× d matrices.

Suppose there exists a strictly positive matrix B and indices j1 ≤ k1 ≤ j2 ≤ k2 ≤ · · · such that

B = Mj1 · · ·Mk1−1 = Mj2 · · ·Mk2−1 = · · · (that is, the block B ocurrs infinitely often in the sequence

of composition matrices). Then, there exists a positive vector f ∈ Rd+ such that

⋂
n→∞

M0 · · ·MnRd+ = R+f.

The above condition is related with the notion of recurrence of a matrix sequence. A sequence of

square integer matrices (Mn)n∈N is said to be recurrent if for each m ∈ N there exists n ∈ N such that

M0 · · ·Mm = Mn · · ·Mn+m. This implies that every block occurs infinitely often in the sequence. A

particular case of Theorem 3.28 is thus the following result, which corresponds to [Thu17, Proposition

1.5.5].

Proposition 3.29. [Thu17, Proposition 1.5.5] Let (Mn)n be a recurrent sequence of non-negative

matrices belonging to GLd(Z). There is a vector u ∈ Rd+ satisfying

⋂
n→∞

M0 · · ·MnRd+ = R+u.

To ensure the existence of uniform word frequencies, that is, unique ergodicity, we have the following

result in the particular case we work with a constant alphabet for all σn’s. Its proof is a direct

consequence of [PF02, 5.1.21] and [Thu17, Lemma 1.5.9].

Theorem 3.30. [Thu17, Theorem 1.5.10] Let A be a finite alphabet. Let σ = (σn : A → A∗)n∈N be an

everywhere growing directive sequence of morphisms and (Mn)n∈N the associated sequence of incidence

matrices. If σ is primitive and (Mn)n∈N is unimodular and recurrent, then (Xσ, T ) is minimal and

uniquely ergodic.

Recall from Proposition 2.10 that if a subshift (X,T ) is uniquely ergodic, then whenever conditions

(C1) and (C3) are satisfied for some sequence of tower partitions (Pn)n∈N of (X,T ), the image

subgroup I(X,T ) is given by

I(X,T ) =

d∑
i=1

Zµ(Bi,m),
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where d and m are as defined in condition (C3). Recall also from Remark 1.22 that

I(X,T ) =
⋂

µ∈M(X,T )

〈{µ([w]) : w ∈ LX}〉 ,

so when (X,T ) is uniquely ergodic, every factor frequency µw is an integer linear combination of

{µ(B1,m), · · · , µ(Bd,m)}. Suppose that an S-adic system given by a recognizable primitive directive

sequence σ = (σn)n≥0 with σn : A → A∗, is uniquely ergodic. Under the hypothesis of Proposition

3.21, the sequence P(1)
n satisfies condition (C1), so we obtain the following result.

Proposition 3.31. Let A be a finite alphabet with #A = d ≥ 2, and σ = (σn)n≥0 be a primitive

recognizable directive sequence of morphisms with σn : A → A∗ for all n ∈ N. Let (Mn)n∈N be the

sequence of incidence matrices of σ. Suppose (Xσ, T ) is uniquely ergodic. If there exists a subsequence

(nk)k∈N such that for all k ∈ N, σnk is left or right proper, and there exists m ∈ N \ {0} such that for

all n ≥ m, Mn ∈ GLd(Z), then for all factor w ∈ L(Xσ), the frequency µw belongs to the following

additive subgroup of R, ∑
i∈A

Zµ(σ[0,m)([a])).

If there exists a subsequence (nk)k∈N such that for all k ∈ N, σnk is left or right proper, and for all

n ≥ 0, Mn ∈ GLd(Z), then for all factor w ∈ L(Xσ), the frequency µw belongs to

∑
i∈A

Zµ([a]).

Corollary 3.32. Let A be a finite alphabet with #A = d ≥ 2, and σ = (σn)n≥0 be a primitive directive

sequence of morphisms with σn : A → A∗ for all n ∈ N. Suppose that σ is obtained from a unimodular

continuous fraction algorithm and that the sequence of incidence matrices (Mn)n∈N is recurrent. If

there exists a subsequence (nk)k∈N such that for all k ∈ N, σnk is left or right proper, then for all

factor w ∈ L(Xσ), the frequency µw belongs to the following additive subgroup of R,

∑
i∈A

Zµ([a]).

Example 3.33. Poincaré algorithm.

Consider the classical Poincaré three-dimensional continued fractions algorithm defined on R3
+ (see



CHAPTER 3. SUBSTITUTIVE AND S-ADIC SYSTEMS 63

[No95] for details), whose associated matrices are

M123 =


1 0 0

1 1 0

1 1 1

 M132 =


1 0 0

1 1 1

1 0 1

 M213 =


1 1 0

0 1 0

1 1 1



M231 =


1 1 1

0 1 0

0 1 1

 M312 =


1 0 1

1 1 1

0 0 1

 M321 =


1 1 1

0 1 1

0 0 1

 .

The six associated substitutions are defined by

σ123 =

1 7→ 123

2 7→ 23

3 7→ 3

σ132 =

1 7→ 132

2 7→ 2

3 7→ 32

σ213 =

1 7→ 13

2 7→ 213

3 7→ 3

σ231 =

1 7→ 1

2 7→ 231

3 7→ 31

σ312 =

1 7→ 12

2 7→ 2

3 7→ 312

σ321 =

1 7→ 1

2 7→ 21

3 7→ 321

Note that every Mijk is unimodular and all substitutions σijk are right proper. If σ is a recurrent

directive sequence with all σn’s belonging to those substitutions, then by Corollary 3.32, for all factor

w ∈ L(Xσ), the frequency µw belongs to the following additive subgroup of R,

∑
i∈A

Zµ([a]).

3.4 Dynamical dimension group.

3.4.1 Dynamical dimension group for substitutive systems.

In this section we present some results allowing to explicitely compute the dynamical dimension group

of substitutive systems. We first introduce some definitions and notations to understand the statements

and proofs.
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Given a p× p-real matrix M , its eventual range RM and its eventual kernel KM are respectively

RM =
⋂
k≥1

MkRp, KM =
⋃
k≥1

ker(Mk).

We have the following chain of inclusions,

· · ·MkRp ⊆Mk−1Rp ⊆ · · · ⊆M2Rp ⊆MRp ⊆ Rp.

Since Mk+1Rp ⊆ MkRp, dim(Mk+1Rp) ≤ dim(Mk+1Rp), and since dim(Rp) = p, there are at most p

strict inclusions in the chain. Note that if Mk+1Rp = MkRp for some k, then M is invertible on MkRp,

and thus Mk+nRp = MkRp for all n ≥ 0. This implies that RM = MpRp and M is an automorphism

of RM .

Note also that a similar argument shows that KM = ker(Mp), and finally that Rp = RM ⊕ KM (see

for example [LM95, Section 7.4] for details).

Let

∆M = {v ∈ RM : ∃k ≥ 0,Mkv ∈ Zp},

∆+
M = {v ∈ RM : ∃k ≥ 0,Mkv ∈ Zp+},

and let 1M be the projection of the vector (1, · · · , 1) on RM . The triple (∆M ,∆
+
M ,1M ) is an ordered

group with unit. When we work with primitive proper substitutions, we have the following theorem,

which corresponds to [DHS99, Theorem 22, (i)].

Theorem 3.34. Let σ be a primitive aperiodic substitution defined on the alphabet A. Let M be the

incidence matrix of σ. If σ is proper, then K0(Xσ, T ) is isomorphic to (∆M ,∆
+
M ,1M ).

When the substitution is not proper, the situation is more complicated. One strategy to work with

non-proper substitutions is the one developed in [DHS99], where the authors associate to each prim-

itive aperiodic substitution, a proper primitive aperiodic substitution such that the two associated

subshifts are isomorphic (see [DHS99, Proposition 20]). Another strategy is the one presented in

[Ho95] and recently developed in [DHP18]. We explain this second strategy here.

We know thanks to Proposition 2.3 and Proposition 3.11 that for any primitive and recognizable S-

adic system, the group homomorphism πS : G(S)→ H(Xσ, T ) associated to the sequence of partitions

(3.2) for ` = 2 is surjective and consequentlyK0(X,T ) is isomorphic to (G(S)/ ker(πS), (G(S)/ ker(πS))+, [1(S)]),

where (G(S)/ ker(πS))+ is the projection on G(S)/ ker(πS) of G(S)+ and [1(S)] is the class modulo
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ker(πS) of 1(S). This is true in particular for primitive substitutions. The following series of results,

issued from [DHP18, Section 9], allows us to compute ker(πS), so that we can explicitely know the

dynamical dimension group K0(Xσ, T ).

The following proposition ([DHP18, Proposition 3.5]) gives us a convenient description of the inductive

limit lim−→(Zp,M). We include its proof because we will use the explicit form of the isomorphism in the

sequel.

Proposition 3.35. [DHP18, Proposition 3.5] Let M be a p×p real metrix. Then, the inductive limite

lim−→(Zp,M) is isomorphic to ∆M .

Proof. Let α ∈ lim−→(Zp,M). Recall that lim−→(Zp,M) is the quotient ∆/∆0, where

∆ = {(xn)n≥0 ∈
∏
n≥0

Zp | ∃k ≥ 0 : Mxn = xn+1 ∀n ≥ k},

∆0 = {(xn)n≥0 ∈ ∆ | ∃k ≥ 0 : xn = 0 ∀n ≥ k}.

Then, α is the class modulo ∆0 of a sequence x = (xn)n∈N which verifies xn ∈ Zp and there exists

k ∈ N such that for all n ≥ k, xn+1 = Mxn. Choosing k large enough, we may assume that xn ∈ RM .

Since M , and therefore Mk, defines an automorphism of RM , there exists a unique y ∈ RM such

that Mky = xk. Define θ : ∆ → ∆M by θ(x) = y. This map is a well defined group homomorphism

between ∆ and ∆M .

Suppose θ(x) = 0. This implies that Mk0 = xk, so that xk = 0 and then xn = 0 for all n ≥ k, that is,

x ∈ ∆0. Conversely, if x ∈ ∆0, then we can assume that xk = 0 and since Mk is an automorphism of

RM , y = 0 = θ(x). We conclude that ker(θ) = ∆0.

Finally, note that θ is surjective. Indeed, for a vector y ∈ ∆M , consider a positive integer k such that

Mky ∈ Zp. Consider the sequence

xn =

 0 if n < k

Mny if n ≥ k

Then it is clear that for all n ≥ k, xn+1 = Mxn, and xk = Mky, which implies that θ((xn)n∈N) = y.

We conclude that ∆M is isomorphic to ∆/∆0 = lim−→(Zp,M).

Remark 3.36. Let σ : A → A be a primitive substitution on the alphabet A, with |L2(Xσ)| =

d ≥ 2. The previous proposition tells us that when we take the matrix M2 = Mσ2, which is equal
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to the transpose of Q
(2)
n for all n ∈ N thanks to Proposition 3.16, the inductive limit lim−→n

(Zd,Mσ2)

corresponds to ∆Mσ2
.

If f ∈ C(Xσ,Z) and i is a positive integer such that f ∈ C(P(2)
i ), then the image of f in G(S) ∼=

lim−→(Zd,MT
2 ) is iP(2)

i

◦ IP(2)
i

f , which is the class modulo ∆0 of the sequence

xk =


0 if k < i

IP(2)
i

f if k = i

(MT
2 )k−iIP(2)

i

f if k > i

If k = i + d, then xk belongs to RMT
2

, and thus to ∆MT
2

. Since (MT
2 )k : (MT

2 )dRd → (MT
2 )k+dRd is

an automorphism and (MT
2 )dIP(2)

i

f belongs to (MT
2 )k+dRd, there exists a unique y ∈ (MT

2 )dRd such

that (MT
2 )ky = (MT

2 )dIP(2)
i

f . This implies that the image y of f in ∆MT
2

satisfies

(MT
2 )iy = IP(2)

i

f.

Lemma 3.37. [DHP18, Lemma 9.7] Let σ : A → A be a primitive substitution, and let P(2)
n be as

defined in (3.2). Let πS : G(S) → H(Xσ, T ) be the unique morphism of ordered groups with unit

associated to the sequence (P(2)
n ). Then, πS is surjective and ker(πS) (seen as a subset of ∆MT

2
) is

∆MT
2
∩ β1(R1(Xσ)).

As a corollary we obtain the following.

Theorem 3.38. Let σ : A → A∗ be a primitive substitution, and σ2 : L2(Xσ) → L2(Xσ)∗ its 2-block

extension. Let M2 be the incidence matrix of σ2. Then, the dynamical dimension group K0(Xσ, T )

is isomorphic to (∆MT
2
/∆MT

2
∩ β1(R1(Xσ)), (∆MT

2
/∆MT

2
∩ β1(R1(Xσ)))+,1), where (∆MT

2
/∆MT

2
∩

β1(R1(Xσ)))+ is the projection of ∆+
MT

2
on ∆MT

2
/∆MT

2
∩ β1(R1(Xσ)), 1 denotes the class modulo

∆MT
2
∩β1(R1(Xσ)) of the vector θ((1(Pn)m∈N)) ∈ ∆MT

2
and θ is the morphism defined on Proposition

3.35.

3.4.2 Dynamical dimension group for S-adic systems.

From Proposition 2.17 we know that if a sequence of tower partitions satisfies conditions (C0)-(C3),

then the dynamical dimension group can be explicitly computed. Let A be a finite alphabet with

|A| = d ≥ 2, and σ = (σn)n≥0 be a primitive recognizable directive sequence of morphisms with

σn : A → A∗ for all n ∈ N. Under the hypothesis of Proposition 3.21, the sequence (P(1)
n )n∈N satisfies
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conditions (C1) and (C2). We also know from Proposition 3.10 that this sequences satisfies always

condition (C0). Then, we obtain the following result.

Theorem 3.39. Let A be a finite alphabet with |A| = d ≥ 2, and σ = (σn)n≥0 be a primitive

recognizable directive sequence of morphisms with σn : A → A∗ for all n ∈ N. Let (Mn)n∈N be the

sequence of d × d integer matrices given by the incidence matrices of σ. Suppose that there exists a

subsequence (nk)k∈N such that for all k ∈ N, σnk is left or right proper, and that there exists m ∈ N

such that for all n ≥ m, Mn ∈ GLd(Z). Let ~µ and u be as defined in Proposition 2.16, and

Ã = {x ∈ Zd : 〈x, ~µm〉 > 0 ∀µ ∈M(Xσ, T )} ∪ {0}.

Then, (H(Xσ, T ), H+(Xσ, T ), 1Xσ) and (Zd, Ã,u) are isomorphic as ordered groups with unit.

Note that the sequences of matrices (Mσn)n∈N and (Mσ̃n)n∈N (where σ̃ is the directive sequence given

by Proposition 3.21) are identical, since the matrix of a left proper (resp. right proper) substitution

and that of its right conjugate (resp. left conjugate) are the same.

Example 3.40. Arnoux-Rauzy-Poincaré algorithm.

Consider the Arnoux-Rauzy-Poincaré three-dimensional continued fractions algorithm defined on R3
+

(see [BL15] for details), whose nine associated matrices are

M1 =


1 1 1

0 1 0

0 0 1

 M2 =


1 0 0

1 1 1

0 0 1

 M3 =


1 0 0

0 1 0

1 1 1



M123 =


1 0 0

1 1 0

1 1 1

 M132 =


1 0 0

1 1 1

1 0 1

 M213 =


1 1 0

0 1 0

1 1 1



M231 =


1 1 1

0 1 0

0 1 1

 M312 =


1 0 1

1 1 1

0 0 1

 M321 =


1 1 1

0 1 1

0 0 1

 .
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The nine associated substitutions are defined by

σ1 =

1 7→ 1

2 7→ 21

3 7→ 31

σ2 =

1 7→ 12

2 7→ 2

3 7→ 32

σ3 =

1 7→ 13

2 7→ 23

3 7→ 3

σ123 =

1 7→ 123

2 7→ 23

3 7→ 3

σ132 =

1 7→ 132

2 7→ 2

3 7→ 32

σ213 =

1 7→ 13

2 7→ 213

3 7→ 3

σ231 =

1 7→ 1

2 7→ 231

3 7→ 31

σ312 =

1 7→ 12

2 7→ 2

3 7→ 312

σ321 =

1 7→ 1

2 7→ 21

3 7→ 321

Note that every Mi and every Mijk is unimodular and all substitutions σi, σijk are right proper, so by

Theorem 3.39, the dynamical dimension group of any S-adic system obtained by a directive sequence

σ = (τi)i∈N, where τi ∈ {σ1, σ2, σ3, σ123, σ132, σ213, σ231, σ312, σ321}, is the triple

(Z3, Ã,u),

where Ã and u are defined as in Theorem 3.39.

Example 3.41. Fully subtractive algorithm.

Consider the Fully subtractive three-dimensional continued fractions algorithm defined on R3
+ (see

[Sch00] for details), whose three associated matrices are

M1 =


1 0 0

1 1 0

1 0 1

 M2 =


1 1 0

0 1 0

0 1 1

 M3 =


1 0 1

0 1 1

0 0 1


The three associated substitutions are defined by

σ1 =

1 7→ 123

2 7→ 2

3 7→ 3

σ2 =

1 7→ 1

2 7→ 231

3 7→ 3

σ3 =

1 7→ 1

2 7→ 2

3 7→ 312



CHAPTER 3. SUBSTITUTIVE AND S-ADIC SYSTEMS 69

The set of dual substitutions, which correspond to the substitutions associated to the transposed

matrices, is given by

σ̃1 =

1 7→ 1

2 7→ 21

3 7→ 31

σ̃2 =

1 7→ 12

2 7→ 2

3 7→ 32

σ̃3 =

1 7→ 13

2 7→ 23

3 7→ 3

Note that every MT
i is unimodular and all substitutions σ̃i are right proper, so by Theorem 3.39, the

dynamical dimension group of any S-adic system obtained by a directive sequence σ = (σ̃i)i∈N, where

i ∈ {1, 2, 3}, is the triple

(Z3, Ã,u),

where Ã and u are defined as in Theorem 3.39.

3.5 Balance in substitutive and S-adic systems.

We begin this section by stating a connection between the dynamical dimension group of a symbolic

system and their balance properties. The next theorem is the main result and states that if the group

part in the dynamimcal dimension group is free abelian of rank d, where d is the cardinality of the

alphabet, then balance on letters pass to balance on factors of arbitrary length.

Theorem 3.42. Let (X,T ) be a minimal uniquely ergodic symbolic system with unique invariant mea-

sure µ, defined over a finite alphabet A of cardinality d. Suppose that letter frequencies are rationally

independent and the group part of the dynamical dimension group of (X,T ) is isomorphic to Zd. Then

(X,T ) is balanced on factors if and only if it is balanced on letters. In particular, if (X,T ) is balanced

on letters, then all the frequencies of factors are additive topological eigenvalues and all cylinders are

bounded remainder sets.

Note that we stablish an analogous result for dendric and eventually dendric subshifts in Chapter

4, Section 4.4, but without requiring the letter frequencies to be rationally independent. To prove

Theorem 3.42, we use the following lemmas.

Lemma 3.43. Let (X,T ) be a minimal uniquely ergodic subshift on the alphabet A, with unique

invariant measure µ and for all f ∈ C(X,Z) let f denote the class of f in the dynamical dimension

group H(X,T ). For all a ∈ A, let χa denote the indicator function of [a]. Suppose that the measures
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{µ([a]) : a ∈ A} are rationally independent. Then, 〈{χa : a ∈ A}〉 is a free abelian subgroup of H(X,T )

of rank d.

Proof. We must show that {χa : a ∈ A} is free and has exactly d elements. Suppose that there exist

integers λa for all a ∈ A such that ∑
a∈A

λaχa = 0H(X,T ).

This means that there exists g ∈ βC(X,Z) such that for all x ∈ X,

∑
a∈A

λaχa(x) = g(x).

Therefore, for all n ∈ N and for all x ∈ X,

1

n

∑
a∈A
|x0 · · ·xn−1|a =

1

n

n−1∑
i=0

g ◦ T i(x).

Thanks to Theorem 1.1, the right part of the previous equation tends to 0 as n tends to ∞, since g

is a coboundary. On the other hand, limn→∞
|x0···xn−1|a

n = µ([a]) for all a ∈ A, since the system is

uniquely ergodic. We obtain that ∑
a∈A

λaµ([a]) = 0,

and by rationally independence, we conclude that λa = 0 for all a ∈ A. This proves that {χa : a ∈ A}

is free. In particular, if a, b ∈ A are different letters such that χa = χb, then χa−χb = 0H(X,T ), which

contradicts the fact that {χa : a ∈ A} is free.

Lemma 3.44. Let (X,T ) be a minimal subshift defined over a finite alphabet A of cardinality d and

let µ be an invariant measure of (X,T ). Suppose that letter frequencies are rationally independent and

the dynamical dimension group of (X,T ) is isomorphic to Zd. Then, for all f ∈ C(X,Z) there exists

F ∈ βC(X,R) and rational numbers pa
qa

for all a ∈ A such that

f(x) =
∑
a∈A

pa
qa
χa(x) + F (x) ∀x ∈ X.

Proof. By Lemma 3.43, 〈{χa : a ∈ A}〉 is a free abelian subgroup of H(X,T ) of rank d. We know

that there exists a basis {fa : a ∈ A} of H(X,T ) and positive integers {αa : a ∈ A} such that

{αafa : a ∈ A} is a basis if 〈{χa : a ∈ A}〉 (see [ST, Theorem 1.12]). Since {αafa : a ∈ A} and
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{χa : a ∈ A} are basis of 〈{χa : a ∈ A}〉, there exist integer matrices A,B such that for all a ∈ A,

χa =
∑
b∈A

A(a, b)αbfb,

αafa =
∑
b∈A

B(a, b)χb.

Let f ∈ C(X,Z). Since f ∈ H(X,T ) and {fa : a ∈ A} is a basis of H(X,T ), we know that there

exist unique integer coefficients {ka : a ∈ A} such that f =
∑

a∈A ka. This implies that there exists

g ∈ βC(X,Z) such that for all x ∈ X,

f(x)−
∑
a∈A

kafa(x) = g(x).

On the other hand, since αafa =
∑

b∈AB(a, b)χb, there exists h ∈ βC(X,Z) such that for all x ∈ X,

αafa(x)−
∑
b∈A

B(a, b)χb(x) = h(x).

This means that for all x ∈ X,

fa(x) =
∑
b∈A

∑
a∈A

ka
αa
B(a, b)χb(x) +

∑
a∈A

h(x)

αa
+ g(x).

The sum
∑

a∈A
ka
αa
B(a, b) is a rational number pb/qb which depends on b. Since h is an integer

coboundary, the sum
∑

a∈A
h(x)
αa

is a real coboundary, and then defining F =
∑

a∈A
h(x)
αa

+ g we obtain

that F ∈ βC(X,R) and for all x ∈ X,

f(x) =
∑
a∈A

pa
qa
χa(x) + F (x) ∀x ∈ X.

Proof of Theorem 3.42. If (X,T ) is balanced on factors, then it is balanced on letters thanks to Propo-

sition 1.16. Suppose (X,T ) is balanced on letters and let C be a constant of balancedness for all letters

a ∈ A. Let v ∈ LX . If |v| = 1, then v is a letter and (X,T ) is balanced on v by hypothesis. Suppose

|v| > 1 and let u,w ∈ LX of length n − 1 > |v|. Pick a bi-infinite word x ∈ X such that u = x[i,i+n)
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and w = x[j,j+n) for some indices i, j ∈ Z. We have

||u|v − |w|v| =

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

χ[v](T
`x)−

j+n−1−|v|∑
`=j

χ[v](T
`x)

∣∣∣∣∣∣ .
Now, according to Lemma 3.44, χ[v] can be written as

χ[v] =
∑
a∈A

pa
qa
χ[a] − Fv,

where Fv ∈ βC(X,R). This implies that

||u|v − |w|v| =

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

(∑
a∈A

pa
qa
χ[a](T

`x) + Fv(T `x)

)
−

j+n−1−|v|∑
`=j

(∑
a∈A

pa
qa
χ[a](T

`x) + Fv(T `x)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
a∈A

pa
qa

i+n−1−|v|∑
`=i

χ[a](T
`x)−

j+n−1−|v|∑
`=j

χ[a](T
`x)

+

i+n−1−|v|∑
`=i

Fv ◦ T `(x)−
j+n−1−|v|∑

`=j

Fv ◦ T `(x)

∣∣∣∣∣∣
≤

∑
a∈A

pa
qa
||xi · · ·xi+n−|v|−1|a − |xj · · ·xj+n−|v|−1|a|+

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

Fv ◦ T `(x)−
j+n−1−|v|∑

`=j

Fv ◦ T `(x)

∣∣∣∣∣∣
≤

∑
a∈A

pa
qa
· C +

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

Fv ◦ T `(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
j+n−1−|v|∑

`=j

Fv ◦ T `(x)

∣∣∣∣∣∣
≤ C

∑
a∈A

pa
qa

+

i+n−1−|v|∑
`=i

|Fv ◦ T `(x)|+
j+n−1−|v|∑

`=j

|Fv ◦ T `(x)|.

Since Fv ∈ βC(X,R), by Theorem 1.1, both
∑i+n−1−|v|

`=i |Fv ◦ T `(x)| and
∑j+n−1−|v|

`=j |Fv ◦ T `(x)| are

bounded, and we obtain that ||u|v − |w|v| ≤ KvC + Bv where Kv =
∑

a∈A
pa
qa

, and
∑i+n−1−|v|

`=i |Fv ◦

T `(x)|,
∑j+n−1−|v|

`=j |Fv ◦ T `(x)| ≤ Bv. This ends the proof of the balance on v. We conclude that

(X,T ) is balanced in every factor v ∈ LX .

Lastly, the result on additive topological eigenvalues comes from Proposition 1.27.

As a consequence of the previous results we can describe the balance behaviour of some substitutive

and S-adic systems, as it is stated in the following two corollaries.

Corollary 3.45. Let σ be a proper primitive aperiodic substitution on a d-letter alphabet A. Let M be

its incidence matrix. Suppose that the letter frequencies are rationally independent. If M ∈ GLd(Z),

then (Xσ, T ) is balanced on letters if and only if it is balanced on factors.
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Proof. When M ∈ GLd(Z), ∆M
∼= Zd, and then the result follows directly from Theorem 3.34 and

Theorem 3.42. It can be seen as a direct consequence of Theorem 3.39 and Theorem 3.42 as well.

Corollary 3.46. Let A be a finite alphabet with #A = d ≥ 2, and σ = (σn)n≥0 be a primitive

recognizable directive sequence of morphisms with σn : A → A∗ for all n ∈ N. Let (Mn)n∈N be the

sequence of d × d integer matrices given by the incidence matrices of σ. Suppose that σ satisfies the

hyphotesis of Proposition 3.21 and that there exists m ∈ N such that for all n ≥ m, Mn ∈ GLd(Z).

Suppose also that (Xσ, T ) is uniquely ergodic with rationally independent letter frequencies. Then,

(Xσ, T ) is balanced on letters if and only if it is balanced on factors.

Proof. It follows directly from Theorem 3.39 and 3.42.

We now work with the sequence of tower partitions given by (3.2) with ` = 2 to study balance

properties of substitutive systems where frequencies are known to be rational.

3.5.1 Balance in substitutions with rational frequencies.

Let σ : A → A be a primitive substitution, and let P(2)
n be as defined in (3.2). Let πS : G(S) →

H(Xσ, T ) be the unique morphism of ordered group with unit associated to the sequence (P(2)
n ). The

correspondence between G(S) and ∆M2 we explicitely presented after Proposition 3.35, together with

Lemma 3.37, implies the following result.

Proposition 3.47. Let σ be a primitive substitution. Let f ∈ C(Xσ,Z) such that there exists i ∈ N for

which f is constant in the atoms of P(2)
i . For all ` ≥ i, let φ` = IP(2)

`

f ∈ RL2(Xσ). Let d = |L2(Xσ)|.

If f is a coboundary, then φ` ∈ β(R1(Xσ)) for all ` ≥ i+ d.

Proof. For simplicity we note Pn the partition P(2)
n for all n ∈ N. Let k = i+ d. From Remark 3.36,

we know that the image of f in ∆MT
2

is the unique element y ∈ (MT
2 )dRd which verifies (MT

2 )ky =

(MT
2 )dφi. Since f is a coboundary, π(f) = πS(I

Pe
(2)
k

f) = 0H(Xσ ,T ), so from Lemma 3.37 we know

that the image of f in ∆MT
2

belongs to β1(R1(Xσ)), that is, y ∈ β(R1(Xσ)). Note that β1(R1(Xσ)) is

invariant under MT
2 . Indeed, let I : R1(Xσ)→ R1(Xσ) be given by

Iφ(a) = φ(σ(a)0) ∀a ∈ A.

Let φ ∈ R1(Xσ), let ab ∈ L2(Xσ). Then,

(β1 ◦ I)φ(ab) = (Iφ)(b)− (Iφ)(a) = φ(σ(b)0)− φ(σ(a)0).
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On the other hand,

MT
2 (β1φ)(ab) =

|σ2(ab)|−1∑
i=0

β1φ(σ2(ab)i),

which by definition corresponds to

β1φ(σ(a)0σ(a)1) + β1φ(σ(a)1σ(a)2) + · · ·+ β1φ(σ(b)0σ(a)|σ(a)|−1) = φ(σ(b)0)− φ(σ(a)0).

This proves that MT
2 ◦ β1 = β1 ◦ I, and thus β1(R1(Xσ)) is invariant under MT

2 .

This implies that (MT
2 )py ∈ β1(R1(Xσ)) for all p ≥ 0. In particular, if ` ≥ k,

φ` = (MT
2 )`−iφi = (MT

2 )`y ∈ β1(R1(Xσ)).

The previous proposition is a restatement of Proposition 4.6 in [BCB18]. An alternative proof can be

found there. We now explore some consequences that Proposition 3.47 has for balance in substitutiv

systems having rational frequencies. The next results are presented in [BCB18, Section 4], we include

the proofs for completeness.

Proposition 3.48. Let σ be a primitive substitution. Let v ∈ L(Xσ) having a rational frequency

µv and fv = χ[v] − µv ∈ C(Xσ,R). There exists k ∈ N be such that fv is constant in the atoms of

the partition P(2)
k . If (Xσ, T ) is balanced on v, then IP(2)

n
fv ∈ β(R1(X)) for all n ≥ k + d, where

d = |L2(Xσ)|.

Proof. For simplicity we note Pn the partition P(2)
n for all n ∈ N. We write µv = pv/qv in irreducible

form. For all n ≥ 0, the partition Pn verifies that all elements in any atom of Pn share at least

their Ln + 1 letters, where Ln = min{|σn(a)| : a ∈ A}. Therefore, for all k large enough, fv (and

consequently qv · fv) is constant in the atoms of Pk. By Proposition 1.19, since (Xσ, T ) is balanced

in v, fv is a coboundary, and then so is qv · fv. By Proposition 3.47, qv · IP(2)
n
fv ∈ β1(R1(Xσ)) for all

n ≥ k + d, and consequently IP(2)
n
fv ∈ β(R1(X)) for all n ≥ k + d.

Recall from Section 1.2.1 that, given a minimal symbolic system (X,T ) on the alphabet A and a letter

a ∈ A, a word w with wa ∈ LX is a left return word to the letter a if a is a prefix of wa. It is a first

left return word if wa contains exactly two occurrences of a. Recall also that the number of first left

return words to any letter is finite. In the sequel we refer to left return words as return words.
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Lemma 3.49. Let (X,T ) be a minimal symbolic system defined on the alphabet A, a ∈ A and

w = w0 · · ·w|w|−1 be a return word to a. If φ ∈ β1(R1(X)), then

φ(w|w|−1a) +

|w|−1∑
i=1

φ(wi−1wi) = 0.

Proof. One has w0w1, w1w2, · · · , w|w|−2w|w|−1, w|w|−1a ∈ L2(X). The result follows directly from the

definition of return words and from the fact that there exists ϕ ∈ R1(X) such that φ = βϕ.

We now deduce from Proposition 3.48 and Lemma 3.49 necessary conditions for balance. The following

theorem corresponds to Theorem 1.2 in [BCB18].

Theorem 3.50. Let σ be a primitive substitution over the alphabet A and let L(Xσ) denote the

language of σ. Let v be in L(Xσ), and suppose that it has a rational frequency µv = pv/qv written

in irreducible form. Suppose that the associated subshift (Xσ, T ) is balanced on v. Then, we have the

following.

1. For each a ∈ A and each return word w to a, qv divides |σn(w)| for all n large. In particular, if

aa ∈ L2(Xσ), then qv divides |σn(a)| for all n large.

2. Let a ∈ A and suppose that there exist b, c ∈ A such that bac ∈ L(Xσ) and bc ∈ L(Xσ). Then qv

divides |σn(a)| for all n large.

Proof. Let φv,n = IP(2)
n
fv. By Proposition 3.47, φv,n ∈ β1(R1(Xσ)) for all n large. For any ab ∈ L2(Xσ)

φv,n(ab) = αab

(
1− pv

qv

)
− (|σn(a)| − αab) ·

pv
qv
, (3.5)

where

αab = |{0 ≤ j < |σn(a)| : T jσn([ab]) ⊆ [v]}|,

that is, αab is the number of levels in the ab−tower of P(2)
n in which all elements begin with the word

v. Using Lemma 3.49 and (3.5), we obtain

0 = αw|w|−1a (qv − pv)− (|σn(w|w|−1)| − αw|w|−1a) · pv +

|w|−1∑
i=1

αwi−1wi (qv − pv)− (|σn(wi−1)| − αwi−1wi) · pv
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which implies

qv

αw|w|−1a +

|w|−1∑
i=1

αwi−1wi

 = pv

|σn(w|w|−1)|+
|w|−1∑
i=1

|σn(wi−1)|


= pv|σn(w)|.

The integers pv and qv being coprime, eitherαw|w|−1a +

|w|−1∑
i=1

αwi−1wi

 = 0

or qv divides |σn(w)|. Since |σn(w)| 6= 0, we conclude that qv divides |σn(w)|, which ends the proof of

the first assertion.

For the second assertion, let a ∈ A and assume that there exist b, c such that bac belongs to L3(Xσ)

and bc ∈ L2(Xσ). Since φv,n ∈ β1(R1(Xσ)) and ba, ac, bc ∈ L2(Xσ), one has φn(ba) +φn(ac) = φn(bc),

that is,

0 = αba(qv − pv)− pv(|σn(b)| − αba) + αac(qv − pv)− pv(|σn(a)| − αac)

−αbc(qv − pv) + pv(|σn(b)| − αbc)

= (αba + αac − αbc)qv − pv|σn(a)|.

The integers pv and qv being coprime, either αba + αac − αbc = 0 or qv divides |σn(a)|. Here again

αba + αac − αbc 6= 0, since |σn(a)| 6= 0, hence qv divides |σn(a)|.

Remark 3.51. Note that Proposition 3.47 gives us the smallest n for which the conclusions of both

parts of Theorem 3.50 are always true. It corresponds to n = i + d and thus it can be determined in

an effective way. We illustrate this through the following example.

Example 3.52. Consider the primitive Chacon substitution σC as defined in Example 3.25. We know

that the letter frequency vector is (1/3, 1/3, 1/3) and then q1 = q2 = q3 = 3. One has 11 ∈ L2(XσC ),

and then, for every a ∈ {1, 2, 3}, if the system is balanced on a, 3 divides |σnC(1)| for all n ≥ i+ d (see

Proposition 3.47 for notation). In this case, it is enough to take i = 1; moreover one has d = 5, so

that 3 divides |σ6
C(1)|. But |σ6

C(1)| = 1093, which is not divisible by 3. We conclude that (XσC , T ) is

neither balanced on letters, nor balanced on factors of any given size, by Proposition 1.16. In view of
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Proposition 1.27, this is consistent with the fact that (XσC , T ) is weakly mixing, that is, it admits no

non-trivial topological eigenvalue (see for example [PF02, Lemma 5.5.1]).

As a consequence of the previous theorem, we have the following corollary about the Thue–Morse

substitution.

Corollary 3.53 (Imbalance in Thue–Morse substitution). Let σTM be the Thue–Morse sub-

stitution on {0, 1} (see example 3.13). The subshift (XσTM , T ) is unbalanced on any factor of length

` ≥ 2.

Proof. From [Dekk77, Theorem 1], we know that the frequency µv of a factor v of length ` ≥ 2 verifies

µv = 1
62−m or µv = 1

32−m, where m is such that 2m < ` ≤ 2m+1. Frequencies are then rational,

pv = 1, and qv ∈ {3 · 2m+1, 3 · 2m}. Note that 00 belongs to L2(XσTM ). The result then follows from

the first assertion of Theorem 3.50.

Corollary 3.53 gives an answer to the question about balance in factors of length grater than 2 in

the Thue–Morse sequence which cannot be obtained by using the criteria presented in [Adam03] and

[Adam04], since the matrix Mσ2 admits a root of unity as eigenvalue, wchich corresponds to a critical

case where linear properties of Mσ2 give not enough information to decide if balance does or does not

hold (see for example the discussion in [Adam04, Section 5.3 and 5.4]). We also deduce from Theorem

3.50 the following.

Corollary 3.54. Let σ be primitive substitution of constant length ` over the alphabet A of cardinality

d such that its incidence matrix is symmetric and d is coprime with `, or does not divide `n, for all

n large. If there exists a letter a and a return word w to a such that d is coprime with |w|. Then,

(Xσ, T ) is not balanced on letters.

Proof. The substitution matrix Mσ admits as left eigenvector (and thus as right eigenvector) associated

with the eigenvalue ` the vector with coordinates all equal to 1. One thus has µa = 1/d for all a and

we apply the first part of Theorem 3.50.

3.6 Further work.

3.6.1 Dynamical dimension group in the general case.

We have constructed appropiate sequences of tower partitions (satisfying conditions (C0)-(C3)) which

allow us to compute the dynamical dimension group of S-adic systems. This has been possible only
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by asking the directive sequences to satisfy certain conditions, namely those related to properness

(see for instance Proposition 3.21), and the fact that the matrices of the partition are invertible.

However, there are many examples of S-adic systems in which the directive sequence is given only by

substitutions which are neither right proper nor left proper, and where the substitution matrices are

not invertible.

We would like to know how to compute the dynamical dimension group of any given S-adic system

only by knowing its primitive directive sequence. Since the sequence of partitions (P(`)
n )n∈N satisfies

conditions (C0) and (C1) for all ` ≥ 2, one possibility is to replicate the strategy used in Section

3.4.1 for substitutions. In the following we describe some progress we have in this direction in the

case of a recurrent directive sequence. Recall that if we take a random sequence σ ∈ SN, where S is a

finite set of substitutions, we will see almost always (with respect to any natural measure on SN) that

any finite pattern of σ occurs infinitely often, so recurrence is not a very expensive condition.

Suppose that every alphabet An is equal to a fixed finite alphabet A = {1, 2, · · · , d} and {σn}n∈N is

included in a finite set S of morphisms on A. Suppose that σ = (σn)n∈N is recurrent.

Each matrix Q
(2)
n (wich we will note Qn for simplicity) has |L2(X

(n+1)
s )| rows and |L2(X

(n)
s )| columns.

Suppose that every alphabet L2(X
(n)
s ) has constant cardinality `. Then every Qn is a square matrix.

For any n ≥ 0, consider the following linear transformation

Qn∣∣Qn−1···Q0R`
: Qn−1 · · ·Q0R` → QnQn−1 · · ·Q0R`

By the rank-nullity theorem, dim(Qn−1 · · ·Q0R`) ≥ dim(Qn · · ·Q0R`), as vector subspaces, and then

we have the following chain of inequalities

dim(R`) ≥ dim(Q0R`) ≥ dim(Q1Q0R`) ≥ · · · ≥ dim(QnQn−1 · · ·Q0R`) ≥ · · ·

Since dim(R`) = ` and for all n ≥ 0 dim(QnQn−1 · · ·Q0R`) ∈ {0, 1, · · · , `}, there are at most ` strict

inclusions in the previous chain, and then there exists an N ≥ 0 such that for all n ≥ N , for all j ≥ 0,

QnQn−1 · · ·Q0R` ∼= Qn+jQn+j−1 · · ·Q0R` (3.6)

and the product Qn+jQn+j−1 · · ·Qn+1 defines a bijection between the subspaces QnQn−1 · · ·Q0R` and

Qn+jQn+j−1 · · ·Q0R`. Note that, in contrast to the situation we have in Section 3.4.1, the integer N

is a priori not computable in an effective way in this case.
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Let m denote the dimension of QNQN−1 · · ·Q0R`, we claim that m ≥ 1. Indeed, if m = 0, then for

all n ≥ N

QnQn−1 · · ·Q0R` = {0},

that is, for any v ∈ R`, QnQn−1 · · ·Q0v = 0. In particular, for v = (1, · · · , 1), we obtain that for all

1 ≤ j ≤ ` ∑̀
i=1

QnQn−1 · · ·Q0(j, i) = 0,

which means that for all 1 ≤ j ≤ `, the sum of the j-th row of QnQn−1 · · ·Q0 is null, but then, since

each Qk has nonnegative entries, the whole matrix QnQn−1 · · ·Q0 is null itself, a contradiction.

Lemma 3.55. Suppose that the sequence of matrices Qn is recurrent, that is, for all m ∈ N there is

an n ∈ N such that

Qn+m · · ·Qn = Qm · · ·Q0

Let N be the positive integer defined in (3.6) and let (ik)k≥0 an increasing subsequence of indices

verifying

Qik+NQik+N−1 · · ·Qik = QNQN−1 · · ·Q0 ∀k ≥ 0.

Then, there exists a sequence of isomorphisms φk : Qik+NQik+N−1 · · ·QikR` → Rm which satisfies that

for all k ≥ 0

φk = φk+1 ◦ (Qik+1+N · · ·Qik+N+1). (3.7)

Proof. We know that Qik+NQik+N−1 · · ·Qik is isomorphic to Rm for all k ≥ 0. We can always assume

that (ik)k≥0 is strictly increasing and i0 > 0. Let f be any isomorphism between Qi0+N · · ·Qi0 and

Rm. We will define φk inductively. For k = 0, set φ0 = f . For k > 0, suppose we have already defined

the isomorphism φk. The linear transformation

Qik+1+N · · ·Qik+N+1
∣∣Qik+N ···QikR` : Qik+N · · ·QikR

` → Qik+1+N · · ·QikR
`

is surjective by definition. Its image verifies

Qik+1+N · · ·QikR
` ⊆ Qik+1+N · · ·Qik+1

R` ∼= Rm



CHAPTER 3. SUBSTITUTIVE AND S-ADIC SYSTEMS 80

On the other hand,

Qik+1+N · · ·Q0R` ⊆ Qik+1+N · · ·QikR
`,

and then

m = dim(Qik+1+N · · ·Q0R`) ≤ dim(Qik+1+N · · ·QikR
`).

This implies that dim(Qik+1+N · · ·QikR`) = m, and thereforeQik+1+N · · ·QikR` = Qik+1+N · · ·Qik+1
R`.

We conclude that Qik+1+N · · ·Qik+N+1 is a bijection between Qik+N · · ·Qik and Qik+1+N · · ·Qik+1
. Fi-

nally, we define

φk+1 = φk ◦ (Qik+1+N · · ·Qik+N+1)−1

Let (φk)k≥0 be the sequence of isomorphisms defined in lemma 3.55, and

∆Q := {v ∈ Rm : ∃k ≥ 0 s.t φ−1
k (v) ∈ Z`}.

This space is an analogous of ∆M of Section 3.4.1. The next proposition shows that under appropriate

hypothesis, ∆Q and the inductive limit lim−→(Z`, Qn) coincide. This result is analogous to Proposition

3.35.

Proposition 3.56. Let (Qn)n≥0 be the sequence of incidence matrices of the two-block extension

substitutions σ′n. Suppose that every alphabet L2(X
(n)
σ ) has constant cardinality `. Suppose moreover

that the sequence (Qn)n≥0 is recurrent. Then, lim−→(Z`, Qn) = ∆Q.

Proof. Let N be as defined in (3.6) and let (ik)k≥0 an increasing subsequence of indices such that

Qik+NQik+N−1 · · ·Qik = QNQN−1 · · ·Q0 ∀k ≥ 0.

Recall that the inductive limit lim−→(Z`, Qn) is the quotient ∆/∆0, where we use the notation introduced

in Section 2.1. Define the map τ : ∆ → ∆Q as follows: for x = (xn)n≥0 ∈ ∆, let k ≥ 0 such that

xn+1 = Qnxn for all n ≥ ik; τ(x) := φk(xN+ik+1), where (φk)k≥0 is the sequence of isomorphisms

defined in lemma 3.55.

1. τ is well defined. In the first place, xN+ik+1 = Qik+NQik+N−1 · · ·Qik(xik) and then φk(xN+ik+1) ∈

Rm. Moreover, φ−1
k (τ(x)) = xN+ik+1 ∈ Z`, thus τ(x) ∈ ∆Q Suppose k1 and k2 both verify that
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xn+1 = Qnxn for all n ≥ ikj , and suppose wlog that ik2 > ik1 . Then we have

xN+ik2+1 = Qik2+NQik2+N−1 · · ·Qik1+N+1(xN+ik1+1).

From (3.7), it follows easily by induction that

φk1 = φk2 ◦Qik2+NQik2+N−1 · · ·Qik1+N+1

and therefore

φk2(xN+ik2+1) = φk1(xN+ik1+1)

which shows that τ is well defined.

2. τ is surjective. Let v ∈ ∆Q. By definition this means that v ∈ Rm and there exists k ≥ 0 such

that φ−1(v) ∈ Z`. Take such a k and consider the sequence

x = (0, · · · , 0, φ−1
k (v)︸ ︷︷ ︸

(ik+N+1)−th

, Qik+N+1(φ−1
k (v)), Qik+N+2Qik+N+1(φ−1

k (v)), · · · )

Clearly x ∈ ∆ and τ(x) = φk(xik+N+1) = φk(φ
−1
k (v)) = v.

3. The kernel of τ is ∆0. Let x ∈ ∆ and suppose τ(x) = 0, then there exists k ≥ 0 such that

φk(xik+N+1) = 0 ∈ Rm, which implies that xik+N+1 = 0, since φk is an isomorphism, and then for all

n ≥ ik +N + 1, xn = 0, thus x ∈ ∆0. Conversely, if x ∈ ∆0, there exists n ∈ N such that xi = 0 for all

i ≥ n. Let K = min{k ≥ 0 : ik ≥ n}, then xiK+N+1 = 0 and consequently ψ(x) = φK(xiK+N+1) = 0.

The map τ is trivially a group homomorphism. We conclude that ∆Q
∼= ∆/∆0.

The previous proposition shows that H(Xσ, T ) is isomorphic to a quotient of ∆Q. Indeed, since the

sequence (P(2)
n ) satisfies (C1), H(Xσ, T ) is isomorphic to a quotient of G(S), by Corollary 2.3. By

definition, G(S) is equal to lim−→(Z`, Qn), which by Proposition 3.56 is isomorphic to ∆Q. Moreover,

we know that

H(Xσ, T ) ∼= ∆Q/ ker(πS),

so we would be able to compute the group part of the dynamical dimension group of (Xσ, T ) if we
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could explicitly determine the space ∆Q and the image of ker(πS) in ∆Q.

3.6.2 Balance in the general case.

We have stated in Theorem 3.42 a relation between balance and the group part of the dynamical di-

mension group in uniquely ergodic minimal systems having rationally independent letter frequencies.

Thus, if the previous strategy to compute H(Xσ, T ) worked, we could know which is the balance

behavior in some uniquely ergodic minimal S-adic systems having rationally independent letter fre-

quencies, without requiring properness of the substitutions.

In the case of S-adic systems having rational frequencies, which can occur, for instance, when all

subtstitutions in the directive sequence have the same constant length, we would like to used the same

strategy of Section 3.5.1 to extend Propositions 3.47-3.48 to the S-adic setting and then to obtain an

analogous to Theorem 3.50, giving necessary conditions for balance in S-adic systems having rational

frequencies.



Chapter 4

Dendric and eventually dendric

subshifts

In this chapter we apply the results of Chapter 2 to minimal dendric and eventually dendric subshifts.

These subshifts are defined in a purely combinatorial way, by looking at what is called their extension

graph (see the definition below). The class of dendric subshifts includes Sturmian subshifts, Arnoux-

Rauzy subshifts and subshifts generated by codings of regular (also called i.d.o.c) interval exchange

transformations (see Examples 4.2, 4.3 and 4.4). We study the behavior of the image subgroup,

infinitesimals, dynamical dimension group and balance for this kind of systems.

4.1 Definitions and examples.

Let L be a language on the finite alphabet A. We say that L is factorial if it contains the alphabet A

and the factors of all its elements. For any factor w ∈ L, the extensions of w are the following sets,

L(w) = {a ∈ A | aw ∈ L}

R(w) = {a ∈ A | wa ∈ L}

B(w) = {(a, b) ∈ A×A | awb ∈ L}.

We say that L is biextendable or simply extendable if for all w ∈ L, |L(w)| ≥ 1 and |R(w)| ≥ 1. It

is said to be recurrent if for every u, v ∈ L, there exists w ∈ L such that uwv ∈ L, and uniformly

recurrent if it is biextendable and for every w ∈ L there exists n ∈ N such that w is a factor of any

word of L of length n. Given an infinite word x ∈ AZ, it is not difficult to see that x is uniformly

83
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recurrent (in the sense of Section 1.2) if and only if its language Lx is uniformly recurrent.

A factor w ∈ L is said to be a left special factor if |L(w)| ≥ 2, a right special factor if |R(w)| ≥ 2,

and a bispecial factor |L(w)|, |R(w)| ≥ 2. The extension graph E(w) of w is the undirected bipartite

graph whose set of vertices is the disjoint union of L(w) and R(w) and whose edges are the pairs

(a, b) ∈ B(w).

A language L is said to be eventually dendric if there exists m ∈ N such that for all w ∈ L with

|w| ≥ m the extension graph of w is a tree, that is, connected and without cycles. In this case, m is

called the threshold of L. If one can choose m = 0, L is said to be a dendric set.

For an infinite word x ∈ AZ, the language Lx is clearly factorial and biextendable. The word x is said

to be eventually dendric with threshold m if there exists m ∈ N such that for all w ∈ Lx with |w| ≥ m

the extension graph of w is a tree. If one can choose m = 0, x is said to be a dendric word. Similarly,

for a minimal subshift (X,T ) on the alphabet A, if there exists m ∈ N such that for all w ∈ LX
with |w| ≥ m the extension graph of w is a tree, (X,T ) is called an eventually dendric subshift with

threshold m. If one can choose m = 0, (X,T ) is said to be a dendric subshift.

Dendric sets were introduced for the first time in [BDD+15] under the name of tree sets and have

been studied for instance in [BDD+15’], [BDD+15”],[DP17],[BDD+18]. The notion of eventually

dendric is more recent and has been introduced in [DP18]. The class of dendric subshifts is not closed

under conjugacy, while that of eventually dendric is (see)[DP18]. In [BDD+17] a very special kind of

eventually dendric languages, called specular sets, is studied (see also Section 4.1.1).

The language of a dendric subshift (X,T ) has the property that every word belonging to it is neutral,

that is, for all w ∈ LX , |B(w)| − |L(w)| − |R(w)|+ 1 = 0. Sets of words with this property are called

neutral sets. The characteristic of a language L is the integer χL = |L(ε)| + |R(ε)| − |B(ε)| and it

corresponds to the number of connected components in the extension graph of the empty word. An

eventually dendric set of characteristic c is an eventually dendric set L with threshold m = 1 and such

that χL = c, that is, the extension graph of the empty word is a union of c trees (see also [DP17]).

The following result shows that in neutral sets (and thus in languages of dendric subshifts), the notions

of recurrence and uniform recurrence coincide.

Proposition 4.1. [DP17, Corollary 5.3] A recurrent neutral set is uniformly recurrent.

Example 4.2. Sturmian subshifts.

Sturmian subshifts can be defined in strictly combinatorial terms as the subshifts generated by Stur-

mian words: aperiodic infinite words in which for all n ∈ N, the number of factors of length n
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corresponds exactly to n + 1. It is a theorem by Morse an Hedlund [HM38] that for an infinite

word x, either x is eventually periodic or pn(x) is strictly increasing, and therefore if it is the case

that pn(x) ≤ n for some n, then x is eventually periodic. Strumian words are then those of mi-

nimal complexity among aperiodic words. By definition, Sturmian words are always defined over a

binary alphabet since p1(x) = 2, and they satisfy that there exists exactly one left special factor

and one right special factor of each length. Any bispecial factor w ∈ Lx satisfies in this case that

E(w) = {a × A} ∪ {A × b} some a, b ∈ A, as depicted in Figure 4.1. Thus, Sturmian subshifts are

dendric. See [BDD+15, Example 3.2] for more details.

E(w)
0

1

0

1

Figure 4.1: The extension graph of any bispecial factor of a Sturmian word.

Example 4.3. Arnoux-Rauzy subshifts.

This corresponds to a generalization of Sturmian subshifts for larger size alphabets: given a finite

alphabet A with |A| = d ≥ 2, x ∈ AZ or x ∈ AN is said to be an Arnoux-Rauzy word if it is uniformly

recurrent and for each n ∈ N, it has (d − 1)n + 1 factors of length n, there exists exactly one left

special factor of length n with d left extensions and exactly one right special factor of length n with

d right extensions. Arnoux-Rauzy subshifts are those generated by Arnoux-Rauzy words, they were

introduced in [AR91] for d = 3. As in Sturmian words, for any bispecial factor w ∈ Lx, the extension

graph verifies E(w) = {a × A} ∪ {A × b}, as depicted in Figure 4.2 (see [BDD+15, Example 3.2] for

more details).

E(w)
a1

a2

ad

a1

a2

ad

...
...

...

...

Figure 4.2: The extension graph of a factor of an Arnoux-Rauzy word.
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Example 4.4. Interval exchange subshifts.

Consider a finite alphabet A and two orders <1 and <2 in the symbols of A. Let (Ia)a∈A a partition of

the interval [0, 1) in semi-intervals ordered by <1. See Figure 4.3 below for the example A = {a, b, c}

and a <1 b <1 c.

Let λa be the length of Ia, let

µa =
∑
b≤1a

λa νa =
∑
b≤2a

λb.

The interval exchange transformation relative to (Ia)a∈A is the map I : [0, 1)→ [0, 1) given by

I(z) = z + (νa − µa) if z ∈ Ia.

In the example of Figure 4.3, this corresponds to exchange the order of the pieces Ia, Ib and Ic on the

interval, to obtain the new order Jb, Jc, Ja, as depicted in Figure 4.4.

Ia Ib Ic

Figure 4.3: Partition of the interval according to <1.

Ia Ib Ic

Jb Jc Ja

I

Figure 4.4: An interval exchange transformation I.

The interval exchange tranformation I is said to be regular (also called i.d.o.c. in the literature) if the

orbits of nonzero separation points under I are infinite and disjoint, where separation points are the

starting points of each Ia. Now, take a point p in the interval and consider the orbit of p under I,

{In(p) : n ∈ Z}.

This gives an infinite sequence (xp(n))n∈Z on AZ satifying xp(n) = a if In(p) ∈ Ia. The subshift

generated by xp is called an interval exchange subshift. It is theorem by Keane [Keane75] that regular

interval exchanges transformations produce minimal interval exchange subshifts. In [BDD+15], the

authors prove that regular interval exchange subshifts are dendric (see [BDD+15, Proposition 4.2]).
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4.1.1 Specular subshifts.

We introduce here a special kind of eventually dendric subshifts called specular subshifts. They were

introduce in [BDD+17], where there is a complete description of their properties from several viewp-

points. We recall here some of those related to return words, which we use later in Section 4.2.

Recall that, given a finite alphabet A, the free group on A, FA, is the set of all reduced finite words in

A ∪A−1, that is, words on A ∪A−1 which do not have factors of the form aa−1 or a−1a for a ∈ A.

Let A be a finite alphabet and θ : A → A an involution. Consider the group Gθ 6 FA defined by

Gθ = 〈a ∈ A | aθ(a) = ε〉. The group Gθ is called a specular group. It is known that any specular

group is isomorphic to Z∗i ∗ (Z/2Z)∗j , where i is the number of orbits of θ with two elements and j

is the number of fixed points of θ. In this case, the pair (i, j) is called the type of Gθ. Two specular

groups are isomorphic if and only if they have the same type (see [BDD+17, Proposition 3.1]), so one

refers to Gθ as the specular group of type (i, j). In a specular group Gθ, a reduced word is a word with

no factors of the form θ(a)a or aθ(a) for a ∈ A.

Given an alphabet A, an involution θ and a the specular group Gθ, a laminary set on A relative to θ

is a symmetric (closed under taking inverses), biextendable subset of Gθ consisting of reduced words.

A specular set is a laminary set on A relative to θ which is a dendric set of characteristic 2, that is, a

set of words such that the extension graph of every non-empty word is a tree, and the extension graph

of the empty word is a union of two connected components. A specular subshift is a subshift in which

the language of every element is a specular set.

Example 4.5. [BDD+17, Example 4.2]

Consider the substitution σ : {a, b, c, d} → {a, b, c, d}∗ given by a 7→ ab, b 7→ cda, c 7→ cd and d 7→ abc.

The extension graph of the empty word is the depicted in Figure 4.5, so the threshold in this example

is m = 1. It is shown in [BDD+17] that Xσ is a specular subshift.

Example 4.6. [DP18, Example 3.6]

Consider the Tribonacci substitution ϕ : {a, b, c} → {a, b, c}∗ given by a 7→ ab, b 7→ ac, c 7→ a. The

substitutive subshift Xϕ is dendric. Consider the projection morphism α : {a, b, c} → {a, c} given by

a 7→ a, b 7→ a, c 7→ c. It is shown in [DP18, Example 3.6] that the image α(Xϕ) is an eventually

dendric subshift with threshold m = 4. Since there are non-empty words whose extension graph is not

a tree, α(Xϕ) is not a specular subshift.
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E(w)

a

b

b

c

c

d

d

a

Figure 4.5: The extension graph of ε in LXσ (Example 4.5).

We now state a combinatorial lemma which will be useful in Sections 4.3 and 4.4 to study the set of

invariant measures and balance properties in eventually dendric subshifts. It corresponds to Lemma

3.2 in [BCB18].

Lemma 4.7. Let T be a finite tree, with a bipartition X and Y of its set of vertices, with |X|, |Y | ≥ 2.

Let E stand for its set of edges. For all x ∈ X, y ∈ Y , define

Yx := {y ∈ Y : (x, y) ∈ E} Xy := {x ∈ X : (x, y) ∈ E}.

Let (G,+) be an abelian group and H a subgroup of G. Suppose that there exists a function g :

X ∪ Y ∪ E → G satisfying the following conditions:

(1) g(X ∪ Y ) ⊆ H;

(2) for all x ∈ X, g(x) =
∑

y∈Yx g(x, y), and for all y ∈ Y , g(y) =
∑

x∈Xy g(x, y).

Then, for all (x, y) ∈ E, g(x, y) ∈ H.

Proof. Observe first that Conditions (1) and (2) imply that the image under g of any edge connected

to a leaf belongs to H. We proceed by induction on k := max{|X|, |Y |}. First assume k = 2. Such

as illustrated in Figure 4.6, there is only one possibility for the graph T (modulo a relabeling of the

vertices), since T is connected and has no cycles, which is

X = {x1, x2}, Y = {y1, y2}, E = {(x1, y1), (x2, y1), (x2, y2)}.
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x1

x2

y1

y2

l

l

Figure 4.6: The tree T when k = 2.

Both g(x1, y1) and g(x2, y2) are in H because x1 and y2 are leaves. By Condition (2), one has

g(x2) = g(x2, y1) + g(x2, y2), and then g(x2, y1) = g(x2)− g(x2, y2). Since g(x2) ∈ H by Condition (1)

and H is a group, then g(x2, y1) ∈ H.

Now assume k > 2 and that the induction hypothesis holds for k−1. Suppose also wlog that |X| ≥ |Y |.

Note that in this case there exists a leaf in X. Indeed, if all vertices in X have degree at least 2, then

|E| =
∑
x∈X

deg(x) ≥ 2|X|

because T is a bipartite graph. On the other hand, since T is a tree,

|E| = |X|+ |Y | − 1 < |X|+ |Y | ≤ 2|X|

which is a contradiction. The same argument shows that if X and Y have the same cardinality, then

both X and Y have at least one leaf. We distinguish two cases, namely |X| > |Y | and |X| = |Y |.

First assume that |X| > |Y |. Take a leaf in X, and call it x0. Consider the graph T̃ obtained from

T by removing the vertex x0 and the edge (x0, y0), where y0 is the only vertex in Y connected with

x0. This new graph is also a tree, with bipartition of vertices X̃ = X −{x0}, Ỹ = Y , and set of edges

Ẽ = E − {(x0, y0)}. Since |X̃| = k − 1 and |Ỹ | = |Y |, then max{|X̃|, |Ỹ |} = k − 1.

We define g̃ in X̃∪Ỹ ∪Ẽ as follows. On (X̃∪Ỹ ∪Ẽ)−{y0}, g̃ = g; on y0, define g̃(y0) = g(y0)−g(x0, y0).

Let us verify that g̃ satisfies Conditions (1) and (2) with respect to T̃ .

(1) If x ∈ X̃, g̃(x) = g(x) ∈ H. If y ∈ Ỹ and y 6= y0, g̃(y) = g(y) ∈ H. If y = y0, then

g̃(y0) = g(y0)− g(x0, y0), but both g(y0) and g(x0, y0) are in H, since g satisfies Conditions (1)

and (2), and x0 is a leaf. Therefore, the image under g̃ of any vertex of T̃ is in H.

(2) We need a more precise notation here. For a vertex x ∈ X̃, we define Y Tx := {y ∈ Y : (x, y) ∈ E}

and Y T̃x := {y ∈ Ỹ : (x, y) ∈ Ẽ}. If x ∈ X̃, then Y Tx = Y T̃x , and for all y ∈ Y Tx , g̃(x, y) = g(x, y).
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Therefore,

g̃(x) = g(x) =
∑
y∈Y Tx

g(x, y) =
∑
y∈Y T̃x

g̃(x, y).

We use analogously the notation XTy and X T̃y for a vertex y ∈ Ỹ . Let be y ∈ Ỹ . If y 6= y0, then

XTy = X T̃y and for all x ∈ XT
y , g̃(x, y) = g(x, y). Hence,

g̃(y) = g(y) =
∑
x∈XTy

g(x, y) =
∑
x∈XT̃y

g̃(x, y).

Finally, if y ∈ Ỹ and y = y0, then XTy = X T̃y ∪ {x0}. We thus have

g̃(y) = g(y0)− g(x0, y0) = −g(x0, y0) +
∑

x∈XTy g(x, y)

= −g(x0, y0) + g(x0, y0) +
∑

x∈XT̃y
g̃(x, y) =

∑
x∈XT̃y

g̃(x, y),

which ends the proof of the fact that g̃ satisfies Conditions (1) and (2).

By induction, for all (x, y) ∈ Ẽ, g̃(x, y) ∈ H. But in Ẽ one has g̃ = g, which implies that for all

(x, y) ∈ Ẽ, g(x, y) ∈ H. Since x0 is a leaf in X, g(x0, y0) ∈ H, and then for all (x, y) ∈ E, g(x, y) ∈ H.

This ends the case |X| > |Y |.

Now assume that |X| = |Y |. Then, both X and Y have at least one leaf; let us call them x0 and y0,

respectively. Let xy0 and yx0 denote the only vertices connected with x0 and y0, respectively. It is not

difficult to see that y0 6= yx0 and x0 6= xy0 , since T is connected and has no cycles.

Consider the graph T̃ obtained from T by removing the vertices x0 and y0, and the edges (x0, yx0) and

(xy0 , y0). This new graph is again a tree, with bipartition of vertices X̃ = X−{x0}, Ỹ = Y −{y0}, and

set of edges Ẽ = E−{(x0, yx0), (xy0 , x0)}. Since |X̃| = k−1 and |Ỹ | = k−1, then max{|X̃|, |Ỹ |} = k−1.

On the new set X̃ ∪ Ỹ ∪ Ẽ, define the function g̃ as follows. On (X̃ ∪ Ỹ ∪ Ẽ)− {xy0 , yx0}, g̃ = g; on

xy0 , define g̃(xy0) = g(xy0)− g(xy0 , y0), and on yx0 , g̃(yx0) = g(yx0)− g(x0, yx0).

Following the same strategy as in the case |X| > |Y |, one can see that g̃ satisfies Conditions (1) and

(2) in T̃ , and since max{|X̃|, |Ỹ |} = k − 1, we conclude by induction that for any edge (x, y) ∈ Ẽ,

g̃(x, y) belongs to H, which implies that g(x, y) ∈ H. Since x0 and y0 are leaves in X and Y ,

g(x0, yx0), g(xy0 , y0) ∈ H. We conclude that for all (x, y) ∈ E, g(x, y) ∈ H.
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4.2 Return words in dendric and specular subshifts.

Recall that, given a minimal symbolic system (X,T ), on the alphabet A and a factor u ∈ A+, a word

w with wu ∈ LX is said to be a left return word to u if u is a prefix of wu. It is said to be a first left

return word to u if u is a prefix of wu and there are exactly two occurrences of u in wu. Similarly, a

word w with uw ∈ LX is said to be a right return word to u if u is a sufix of au. It is said to be a first

right return word to u if u is a sufix of uw and there are exactly two occurrences of u in aw. Dendric

and specular subshifts have interesting properties regarding the set of return words of their languages.

They have been mostly explored in [BDD+15] and [BDD+17]. We quote here two important results

we will use in Sections 4.3 and 4.5.

Let L be a specular set on the alphabet A, given by the involution θ. Since L is biextendable, every

letter a ∈ A appers exactly twice in E(ε), once as a vertex in L(ε) and once as a vertex in R(ε). A

letter is said to be even if these two occurrences are in the same tree of E(ε), it is said to be odd

otherwise. A word w ∈ L is said to be even if it has an even number of odd letters, it is said to be

odd otherwise. The even subgroup on FA is the subgroup of Gθ formed by the even words. It is a free

subgroup of index 2 and rank |A| − 1.

Theorem 4.8. [BDD+15, Theorem 4.5] Let S be a (uniformly) recurrent dendric set containing the

alphabet A. Then for any non-empty w ∈ S, the set of first right return words to w is a basis of the

free group FA. In particular, every non-empty word has |A| first right return words.

Theorem 4.9. [BDD+17, Theorem 6.15] Let S be a (uniformly) recurrent specular set. Then for any

non-empty w ∈ S, the set of first right return words to w is a basis of the even subgroup on FA. In

particular, every non-empty word has |A| − 1 first rigth return words.

The proofs of the previous results work exactly in the same way for left return words.

4.2.1 Tower partitions using return words.

Let (X,T ) be a minimal subshift over the alphabet A with cardinality d and take any x ∈ X. For

every n ≥ 1, let Wn(x) := {w1,n, · · · , wdn,n} be the set of first left return words to x[0,n), and define

Pn = {T j [wi,nx[0,n)] : 1 ≤ i ≤ dn, 0 ≤ j < |wi,n|}. (4.1)

Define also P0 = {[a] : a ∈ A}, that is, P0 is the partition whose towers correspond to the cylinders [a]

and have just one floor (it thus has d towers). The following proposition states that (Pn)n∈N above is
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a nested sequence of tower partitions of (X,T ). A proof can be found in [DHP18, Proposition 2.18].

Proposition 4.10. For all n ≥ 0, Pn is a tower partition of (X,T ) and Pn+1 is finer than Pn.

The matrices Qn associated to partitions Pn correspond by definition to

Qn(i, j) = |{0 ≤ j < |wi,n+1| : T j [wi,n+1x[0,n+1)] ⊆ [wj,nx[0,n)]}|.

The (i, j)th entry of Qn is exactly |wi,n+1|wj,n . That is, the number of occurrences of wj,n in wi,n+1.

This is consistent with the fact that, since x[0,n) is a prefix of x[0,n+1), any wi,n+1 ∈ Wn+1(x) has a

unique decomposition as a concatenation of elements wj,n ∈ Wn(x) (here we use the fact the wj,n’s

are first left return words). Note that in the case of dendric subshifts, every Wn(x) is a basis of the

free group FA, which implies that for all n ∈ N, for all w ∈ Wn(x), w is written in a unique way as a

concatenation of elements w′ ∈ Wn+1(x) and their inverses, which in turn implies that for all n ∈ N,

the matrix Qn belongs to GLd(Z) with

Q−1
n (j, i) = |wj,n|wi,n+1 ,

when now the occurrences have to be counted considering inverses. Similarly, in the case of specular

sets, Wn(x) is a basis of the even subgroup for all n ≥ 1, which implies that Qn is invertible in Z for

all n ≥ 1. So both dendric and specular subshifts are such that partitions Pn as defined in (4.1) satisfy

condition (C3), with m = 0, d = |A| in the case of dendric subshifts, m = 1, d = |A| − 1 in the case

of specular subshifts. More generally, if we have that for all n ≥ `, for some positive integer `, Wn(x)

generates the same subgroup of FA, then the matrix Qn is invertible for all n ≥ `.

4.2.2 S-adic representation of dendric systems using return words.

As explained in Example 3.5, return words provide S-adic representations of every minimal subshift.

Consider a minimal dendric subshift (X,T ) defined on the alphabet A and x ∈ X. The directive

sequence (λn : Rn+1 → R∗n)n∈N described in Example 3.5, obtained from the factorization of Dn(x)

in first left return words to Dn(x)0, is called the Λ-adic representation of X. Note that thanks to

Theorem 4.8, in the case of dendric minimal subshifts every Rn corresponds to A. Moreover, in this

particular case the Λ-adic representation has the property that every λn belongs to a precise set of

substitutions Se on A. We introduce these substitutions in the following.

An automorphism ϕ of the free group FA is said to be positive if for all a ∈ A, ϕ(a) belongs to the
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semigroup A+, that is, the set of non-empty words with symbols in A. A positive automorphism is

tame if it belongs to the submonoid generated by the permutations of A and the automorphisms αa,b,

α̃a,b, defined for all a, b ∈ A, a 6= b, by

αa,b(c) =

 ab if c = a

c else

α̃a,b(c) =

 ba if c = a

c else.

The automorphims αa,b and α̃a,b together with the permutations of A are called the elementary

positive automorphisms of A and we denote them by Se. A substitution on A which extends to a tame

automorphism on FA is called a tame substitution.

The following result corresponds to the second part of [BDD+18, Theorem 6].

Proposition 4.11. Let (X,T ) be a minimal subshift defined on the alphabet A, let (λn : Rn+1 →

R∗n)n∈N be the Λ-adic representation of X. For all n ∈ N, λn : A → A∗ is a tame substitution. In

other words, the Λ-adic representation of X provides a Se-adic representation of X.

4.3 Invariant measures, image subgroup and infinitesimals.

Most part of the results of this section are presented in [BCD+18] for dendric subshifts. We present

them here in its more general version, some of them for the class of all eventually dendric subshifts

and some others for dendric and specular subshifts.

Theorem 4.12. Let (X,T ) be a minimal eventually dendric subshift with threshold m on a d-letter

alphabet A, and let µ and µ′ be two T -invariant measures on X. If µ and µ′ coincide on factors of

length n for all n ≤ m+ 1, then they are equal.

Proof. Let µ and µ′ be two T -invariant measures such that µ[u] = µ′[u] for any word u ∈ LX with

|u| ≤ m+ 1 . Let us show that for any word w ∈ LX , µ([w]) = µ′([w]) by induction on the length of

w.

If |w| = m + 1, then the result follows immediately. Let n ≥ m + 1 and suppose that for all v ∈ LX
with |v| ≤ n, one has µ([v]) = µ′([v]). Let w be a word with length |w| = n+ 1. Write

w = w0 · · ·wn, and define w̃ := w1 · · ·wn, w′ := w0 · · ·wn−1, w̄ = w1 · · ·wn−1
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We analyze separately three cases depending on the right/left extensions of w̃ and w′, namely |L(w̃)| =

1, |R(w′)| = 1, and lastly |L(w̃)| ≥ 2 and |R(w′)| ≥ 2.

• We first assume |L(w̃)| = 1. The only left extension of w̃ is w0. By T -invariance of µ, one has

µ([w̃]) =
∑

a∈L(w̃) µ([aw̃]) = µ[w]. Similarly, µ′([w̃]) = µ′([w]). Since µ([w̃]) and µ′([w̃]) coincide

by induction hypothesis, we get µ([w]) = µ′([w]).

• We now assume |R(w′)| = 1. The only right extension of w′ is wn, which yields µ([w′]) =∑
b∈R(w′) µ([w′b]) = µ[w]. Similarly, µ′([w′]) = µ′([w]). Since µ(w′) and µ′(w′) coincide by

induction hypothesis, we get µ([w]) = µ′([w]).

• Finally, we assume |L(w̃)| ≥ 2 and |R(w′)| ≥ 2. Let E(w̄) be the extension graph of w̄. It is a

tree since |w̄| ≥ m, and each of the sets in its bipartition of vertices has cardinality at least two.

We thus can apply Lemma 4.7 with G = R, H = {0} and g : L(w̄) ∪R(w̄) ∪ E(w̄)→ R defined

as follows: 
g(a) = µ([aw̄])− µ′([aw̄]), for a ∈ L(w̄),

g(b) = µ([w̄b])− µ′([w̄b]), for b ∈ R(w̄),

g(a, b) = µ([aw̄b])− µ′([aw̄b]), for (a, b) ∈ E(w̄).

Conditions (C1) and (C2) of Lemma 4.7 hold, and then for any biextension aw̄b of w̄, µ([aw̄b])−

µ′([aw̄b]) = 0. In particular, since (w0, wn) ∈ E(w̄), µ([w]) = µ′([w]).

This proves that for any word w in the language of X, µ([w]) = µ′([w]). Since th family of cylinders

is a basis of the topology, we conclude that, for any clopen U ⊆ X, µ(U) = µ′(U).

We obtain the following corollary for dendric and specular subshifts.

Corollary 4.13. Let (X,T ) be a minimal dendric (resp. specular) subshift on a d-letter alphabet A,

and let µ and µ′ be two T -invariant measures on X. If µ and µ′ coincide on the letters (resp. on the

letters and the factors of length 2), then they are equal.

The previous result extends to the family of dendric subshifts a statement initially proved for interval

exchanges in [FZ08].

Theorem 4.14. Let (X,T ) be a minimal dendric subshift and let M(X,T ) stands for its set of
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T -invariant probability measures. Then, the image subgroup of (X,T ) is

I(X,T ) =
⋂

µ∈M(X,T )

{∑
a∈A

Zµ([a])

}
.

In particular, if (X,T ) is uniquely ergodic and µ is its unique T -invariant measure, then

I(X,T ) =
∑
a∈A

Zµ([a]).

Proof. This is an immediate consequence of Proposition 2.10, since the sequence of tower partitions

(Pn)n∈N defined in (4.1) satisfies conditions (C1) and (C3) with m = 0 and d = |A|. Since the bases

of P0 are the cylinders of letters {[1], [2], · · · , [d]}, the result follows.

Theorem 4.15. Let (X,T ) be a minimal specular subshift and let M(X,T ) stands for its set of

T -invariant probability measures. Then, the image subgroup of (X,T ) is

I(X,T ) =
⋂

µ∈M(X,T )

 ∑
w∈W1(x)

Zµ([wx0])

 ,

where x is any element of X. In particular, if (X,T ) is uniquely ergodic and µ is its unique T -invariant

measure, then

I(X,T ) =
∑

w∈W1(x)

Zµ([wx0]).

Proof. This is an immediate consequence of Proposition 2.10, since the sequence of tower partitions

(Pn)n∈N defined in (4.1) satisfies conditions (C1) and (C3) with m = 1 and d = |A| − 1, and this

is true for any x ∈ X. Since the bases of P1 are the cylinders {[w1,1x0], [w2,1x0], · · · , [wd−1,1x0]}, the

result follows.

Theorem 4.16. Let (X,T ) be a minimal dendric subshift on a d-letter alphabet A and suppose that

there exists a measure µ ∈M(X,T ), such that {µ([a]) : a ∈ A} are rationally independent. Then, the

infinitesimal subgroup Inf(X,T ) is trivial, that is, (X,T ) is saturated.

Proof. This is an immediate consequence of Proposition 2.11, since the sequence of tower partitions

(Pn)n∈N defined in (4.1) satisfies conditions (C1) and (C3) with m = 0 and d = |A|. Since the

bases of P0 are the cylinders of letters {[1], [2], · · · , [d]}, whose measures are suppose to be rationally

independent, the result follows.
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Theorem 4.17. Let (X,T ) be a minimal specular subshift on a d-letter alphabet A, let x ∈ X. Suppose

that there exists a measure µ ∈M(X,T ) such that {µ([wx0]) : w ∈W1(x)} are rationally independent.

Then, the infinitesimal subgroup Inf(X,T ) is trivial, that is, (X,T ) is saturated.

Proof. This is an immediate consequence of Proposition 2.11, since the sequence of tower partitions

(Pn)n∈N defined in (4.1) satisfies conditions (C1) and (C3) with m = 1 and d = |A|1 and this is true

for any x ∈ X. Since the bases of P0 are the cylinders of letters {[w1,0x0], [w2,0x0], · · · , [wd−1,0x0]},

whose measures are suppose to be rationally independent for µ, the result follows.

4.4 Balance in eventually dendric subshifts.

Lemma 4.18. Let (X,T ) be a minimal eventually dendric subshift with threshold m on the alphabet

A. Let H be the following subset of C(X,Z)

H =

 ∑
w∈Lm+1(X)

∑
k∈Kw

α(w, k)χTk([w]) : Kw ⊆ Z, |Kw| <∞, α(w, k) ∈ Z

 ,

where χA denotes the characteristic function of the set A, for all A ⊆ X. Then, for all v ∈ LX with

|v| ≥ m+ 1, the characteristic function χ[v] belongs to H.

Proof. One first easily checks that H is a subgroup. We now proceed by induction on the length of v.

The claim is clearly true if |v| = m+ 1, by setting Ka = {0} and α(w, k) = 1 if w = v, 0 otherwise.

Now let n ≥ m+ 1 and suppose that for all u ∈ LX with |u| ≤ n, one has χ[u] ∈ H. Let v be a word

of length n+ 1. We write

v = v0 · · · vn and define ṽ = v1 · · · vn, v′ = v0 · · · vn−1, v̄ = v1 · · · vn−1.

As in the proof of Theorem 4.12, we analyze separately three cases depending on the right/left exten-

sions of ṽ and v′, namely |L(ṽ)| = 1, |R(v′)| = 1, and lastly |L(ṽ)| ≥ 2 and |R(v′)| ≥ 2, the latter case

being handled thanks to Lemma 4.7.

� Suppose first that |L(ṽ)| = 1. The only left extension of ṽ is v0, and thus, for all x ∈ X,

χ[v](x) = χ[ṽ](Tx). By induction hypothesis we have that χ[ṽ] belongs to H, that is,

χ[ṽ] =
∑

w∈Lm+1(X)

∑
k∈Kw

α(w, k)χTk([w]),
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for some Kw ⊆ Z, |Kw| <∞, α(w, k) ∈ Z, so we obtain that for all x ∈ X,

χ[v](x) = χ[ṽ](Tx) =
∑

w∈Lm+1(X)

∑
k∈Kw

α(w, k)χTk−1([w])(x).

Defining K ′w := {k−1 : k ∈ Kw} for all w ∈ Lm+1(X), and β(w, k) = α(w, k+ 1) for all k ∈ K ′w,

we conclude that, for all x ∈ X,

χ[v](x) =
∑

w∈Lm+1

∑
k∈K′w

β(w, k)χTk([w]),

and then χ[v] belongs to H.

� Now suppose that |R(v′)| = 1. The only right extension of v′ is vn, and thus, for all x ∈ X,

χ[v](x) = χ[v′](x). We conclude by applying the induction hypothesis.

� Finally, we assume |L(ṽ)| ≥ 2 and |R(v′)| ≥ 2. Let E(v̄) be the extension graph of v̄. It is

a tree since |v̄| ≥ m, and each of the sets in its bipartition of vertices has cardinality at least

two. Define g : L(v̄) ∪ R(v̄) ∪ E(v̄) → G as follows. For a ∈ L(v̄), g(a) = χ[av̄], for b ∈ R(v̄),

g(b) = χT−1[v̄b], and for (a, b) ∈ E(v̄), g(a, b) = χ[av̄b].

Condition (1) of Lemma 4.7 holds by induction hypothesis. Let us check that (2) holds. Let

a ∈ L(v̄). For all x ∈ X, one has

χ[av̄] =
∑

b∈R(v̄),(a,b)∈E(v̄)

χ[av̄b](x) and thus g(a) =
∑

b∈R(v̄),(a,b)∈E(v̄)

g(a, b).

Similarly, let b ∈ R(v̄) and x ∈ X. One has

χT−1[v̄b](x) = χ[v̄b](Tx) =
∑

a∈L(v̄),(a,b)∈E(v̄)

χ[av̄b](x).

We conclude that for all b ∈ R(v̄), g(b) =
∑

a∈L(v̄),(a,b)∈E(v̄) g(a, b). We now can apply Lemma 4.7

which yields that χ[av̄b] ∈ H, for any biextension av̄b of v̄. In particular, since (v0, vn) ∈ E(v̄),

then χ[v] ∈ H.

The previous lemma allows us to prove the following theorem, which correponds to Theorem 1.1 in
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[BCB18] in the case of dendric subshifts. Note that it describes a balance behavior which contrasts

whit that of substitutive systems with rational frequencies (see Theorem 3.50).

Theorem 4.19. Let (X,T ) be a minimal eventually dendric subshift with threshold m. Then (X,T )

is balanced on factors of length m + 1 if and only if it is balanced on every factor. In particular, if

(X,T ) is balanced on factors of length m+1, then all the frequencies of factors are additive topological

eigenvalues and all cylinders are bounded remainder sets.

Proof. We assume that the eventually dendric subshift (X,T ) is balanced on the factors of length

m+ 1. Let C be a constant of balancedness for factors of length m+ 1. Let v ∈ LX . If |v| < m+ 1,

then (X,T ) is balanced on v thanks to Proposition 1.16. Suppose that |v| ≥ m + 1 and let n be a

positive integer, u,w be two factors belonging to LX of length n− 1 with n− 1 > |v|. Pick an infinite

word x ∈ X such that u = x[i,i+n) and w = x[j,j+n) for some indices i, j ∈ Z. We have

||u|v − |w|v| =

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

χ[v](T
`x)−

j+n−1−|v|∑
`=j

χ[v](T
`x)

∣∣∣∣∣∣ .
Now, according to Lemma 4.18, for all w ∈ Lm+1(X), let Kw be a finite subset of Z such that, for all

k ∈ Kw, there exists α(w, k) ∈ Z verifying

χ[v] =
∑

w∈Lm+1(X)

∑
k∈Kw

α(w, k)χTk([w]).

Then,

||u|v − |w|v| =

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

∑
w∈Lm+1(X)

∑
k∈Kw

α(w, k)χTk[w](T
`x)−

j+n−1−|v|∑
`=j

∑
w∈Lm+1(X)

∑
k∈Kw

α(w, k)χTk[w](T
`x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

w∈Lm+1

∑
k∈Kw

α(w, k)

i+n−1−|v|∑
`=i

χTk[w](T
`x)−

j+n−1−|v|∑
`=j

χTk[w](T
`x)

∣∣∣∣∣∣
≤

∑
w∈Lm+1(X)

∑
k∈Kw

|α(w, k)|

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

χTk[w](T
`x)−

j+n−1−|v|∑
`=j

χTk[w](T
`x)

∣∣∣∣∣∣
=

∑
w∈Lm+1

∑
k∈Kw

|α(w, k)|

∣∣∣∣∣∣
i+n−1−|v|∑

`=i

χ[w](T
`(T−kx))−

j+n−1−|v|∑
`=j

χ[w](T
`(T−kx))

∣∣∣∣∣∣
=

∑
w∈Lm+1(X)

∑
k∈Kw

|α(w, k)| · ||(T−kx)[i,i+n−|v|+|w|)|w − |(T−kx)[j,j+n−|v|+|w|)|w|.
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Note that (T−kx)[i,i+n−|v|+|w|) and (T−ky)[j,j+n−|v|+|w|) are two factors of length n − 1 − |v| + |w|

belonging to LX , and then by balance on the factors of length m+ 1, for all w ∈ Lm+1(X),

||(T−kx)[i,i+n−|v|+|w|)|w − |(T−ky)[j,j+n−|v|+|w|)|w| ≤ C.

We obtain that ||u|v − |w|v| ≤ |Lm+1(X)|KC, where K = maxw∈Lm+1(X)

{∑
k∈Kw |α(w, k)|

}
, which

ends the proof of the balance on v. We conclude that (X,T ) is balanced in every factor v ∈ LX .

Lastly, the result on additive topological eigenvalues comes from Proposition 1.27.

Corollary 4.20. Let (X,T ) be a minimal dendric (resp. specular) subshift. Then (X,T ) is balanced on

the letters (resp. on the factors of length 2) if and only if it is balanced on every factor. In particular,

if (X,T ) is balanced on the letters (resp. on the factors of length 2), then all the frequencies of factors

are additive topological eigenvalues and all cylinders are bounded remainder sets.

As a consequence of Theorem 4.19 and Proposition 1.24, we otain the following corollaries.

Corollary 4.21. Let (X,T ) be a minimal eventually dendric subshift with threshold m. If (X,T )

is balanced on factors os length m + 1, then the infinitesimal subgroup Inf(X,T ) is trivial, that is,

(X,T )is saturated.

Corollary 4.22. Let (X,T ) be a minimal dendric (resp. specular) subshift. If (X,T ) is balanced on

letters (resp. on factors of length 2), then the infinitesimal subgroup Inf(X,T ) is trivial, that is, (X,T )

is saturated.

Example 4.23. Balance in Arnoux-Rauzy words

Arnoux-Rauzy words (see Example 4.3) can also be expressed in S-adic terms as follows. Let

A = {1, 2, . . . , d}. We define the set SAR of substitutions as SAR = {σi : i ∈ A}, with σi : i 7→

i, j 7→ ji for j ∈ A \ {i} . An infinite word u ∈ AZ is an Arnoux-Rauzy word if and only if its lan-

guage coincides with the language of a word of the form limn→∞ σi0σi1 · · ·σin(1), where the sequence

i = (in)n≥0 ∈ AN is such that every letter in A occurs infinitely often in i = (in)n≥0.

In this latter case, the infinite word u is uniformly recurrent and we can associate with it the sub-

shift (Xi, T ) which contains all the bi-infinite words having the same language as u. For any given

Arnoux-Rauzy word, the sequence i = (in)n≥0 is called the SAR-directive word of u. All the Arnoux-

Rauzy words that belong to the dynamical system (Xi, T ) have the same SAR-directive word. An

Arnoux-Rauzy substitution is a finite product of substitutions in SAR. For more details on the S-adic



CHAPTER 4. DENDRIC AND EVENTUALLY DENDRIC SUBSHIFTS 100

representation of Arnou-Rauzy words, see [BCS13, Section 2].

Let σ be a primitive Arnoux-Rauzy substitution. Then, (Xσ, T ) is balanced on factors. Indeed,

Arnoux-Rauzy substitutions are known to be Pisot (see [AI01] or [AD15]): primitive substitutions

such that the dominant eigenvalue of their substitution matrix is a Pisot number, that is, an algebraic

integer whose conjugates lie strictly inside the unit disk. Thus, they generate words that are balanced

on letters (see [Adam03, Section 6] for details), and consequently on factors by Theorem 4.19.

Let (Xi, T ) be an Arnoux-Rauzy subshift on a three-letter alphabet with SAR-directive sequence

i = (in)n≥0. If there exists some constant h such that we do not have in = in+1 = · · · = in+h

for any n ≥ 0, then (Xi, T ) is balanced on factors. Indeed, it is shown in [BCS13] that (Xi, T ) is

(2h+1)-balanced on letters. We again conclude thanks to Theorem 4.19.

4.5 Dimension group of dendric and specular subshifts.

The following result is presented in [BCD+18] for minimal dendric subshifts.

Theorem 4.24. Let (X,T ) be a minimal dendric subshift on a r-letter alphabet. Let M(X,T ) stand

for its set of invariant measures. Then, its dimension group K0(X,T ) is isomorphic to

(Zr, {x ∈ Zr | 〈x, fµ〉 > 0 for all µ ∈M(X,T )} ∪ {0}, 1) ,

where fµ = (µ([1]), · · · , µ([r])) and 1 = (1, 1, · · · , 1) ∈ Zd.

Proof. This is a consequence of Proposition 2.17, since the sequence (Pn)n∈N defined in (4.1) satisfies

(C0)-(C3) for m = 0, d = r, and all heigths in P0 are equal to 1.

Theorem 4.25. Let (X,T ) be a minimal specular subshift on a r-letter alphabet. Let M(X,T ) stand

for its set of invariant measures. Then, its dimension group K0(X,T ) is isomorphic to

(Zr, {x ∈ Zr | 〈x, fµ〉 > 0 for all µ ∈M(X,T )} ∪ {0}, u) ,

where fµ = (µ([w1,1x0]), · · · , µ([wd−1,1x0])) and u = (|w1,1|, · · · , |wd−1,1|) ∈ Zr.

Proof. This is a consequence of Proposition 2.17, since the sequence (Pn)n∈N defined in (4.1) satisfies

(C0)-(C3) for m = 1, d = r− 1, and this is true for all x ∈ Xσ. The tower heigths in P1 corresponds

to the lengths of return words to x0.
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Corollary 4.26. Two minimal dendric (resp. specular) subshifts are strong orbit equivalent if and

only they have the same simplex of letter frequencies (resp. the same simplex generated by frequencies

of factors of length 2). Two minimal and uniquely ergodic dendric (resp. specular) subshifts are strong

orbit equivalent if and only if they have the same additive group of letter frequencies (resp. the same

additive group generated by the frequencies of factors of length 2).

Since on a three-letter alphabet, all dendric subshifts are uniquely ergodic, we deduce from Corollary

4.26 the following.

Corollary 4.27. All minimal dendric subshifts on a three-letter alphabet with the same group of letter

frequencies are strong orbit equivalent.

4.6 Further work.

Some of the results we have proved for dendric and specular subshifts rely on the fact that the set

of return words associated to every word (or every non-empty word) is a basis of the same subgroup

of FA (for instance, Theorems 4.14 and 4.15, Theorems 4.16 and 4.17, and Theorems 4.24 and 4.25).

This crucial fact is a sufficient condition for the matrices of the sequence of tower partitions (Pn)n∈N

defined in (4.1) to be invertible, and thus for (Pn)n∈N to satisfy condition (C3) of Chapter 2.

Note that the important thing here is not which subgroup of FA all these sets generate, but just the

fact that it is the same subgroup for all (non-empty) word.

It is not the case that in an eventually dendric subshift with threshold m, the set of return words of

any factor of length at least m generates the same subgroup of the free group FA. This is the case

of specular subshifts, where supplementary conditions have been added, apart from being eventually

dendric with threshold 1.

It is thus an interesting question to know under which conditions we have that in an eventually dendric

language with threshold m, the set of return words of any factor of length greater than some N (which

N?) generates the same subgroup of the free group FA.



Chapter 5

Subshifts of congruent monotileable

amenable groups.

In this chapter we study the set of invariant measures on subshifts of a special kind of groups, namely

congruent monotileable amenable groups. We recall the notions of amenability and monotileable

amenable groups. We introduce the concept of congruent in this context, and show that any Cho-

quet simplex can be obtained as a set of invariant measures of a minimal subshift of any congruent

monotileable amenable group. We also show that this class of groups includes all virtually nilpotent

groups.

5.1 Amenable groups.

We give here a brief introduction on amenable groups. We refer to [CC10, Chapter 4] for a complete

survey of most important results in this topic.

5.1.1 Invariant measures on groups.

Let S be any set and denote P(S) the power set of S. We say that a map µ : P(S)→ [0, 1] is a finitely

additive probability measure on S if µ(S) = 1 and µ(B1 ∪ B2) = µ(B1) + µ(B2) whenever B1, B2 are

subsets of S with B1∩B2 = ∅. For any given set S, we denote by PM(S) the set of all finitely additive

probability measures on S. Let G be a group, and consider the following left and right actions of G

on PM(G)

(g.µ)(A) = µ(g−1A), (µ.g)(A) = µ(Ag−1), ∀A ⊆ G,

102
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where gA = {ga : a ∈ A} and Ag = {ag : a ∈ A} for all A ⊆ G, for all g ∈ G. A measure µ ∈ PM(G)

is said to be left-invariant (resp. right-invariant) if g.µ = µ (resp. µ.g = µ) for all g ∈ G, that is, is µ

is invariant under the left (resp. right) action of G described above.

Proposition 5.1. The group G admits a left-invariant finitely additive probability measure if and only

if it admits a right-invariant probability measure.

Proof. Suppose G admits a left-invariant finitely additive probability measure µ. Define µ̄ : P(G) →

[0, 1] by µ̄(A) := µ(A−1) for all A ⊆ G, where

A−1 = {a−1 : a ∈ A}.

Note that µ̄ is a right-invariant finitely additive probability measure on G. Indeed, µ̄(G) = µ(G−1) =

µ(G) = 1; if A, B are subsets of G with A ∩B = ∅, then

µ̄(A ∪B) = µ((A ∪B)−1) = µ(A−1 ∪B−1)

and since A ∩ B = ∅, A−1 ∩ B−1 = ∅. We get µ(A−1 ∪ B−1) = µ(A−1) + µ(B−1) = µ̄(A) + µ̄(B).

Finally, since µ is left-invariant, for all g ∈ G and for all A ⊆ G,

µ̄.g(A) = µ̄(Ag−1) = µ(gA−1) = µ(A−1) = µ̄(A),

so µ̄ is right-invariant and G admits a right-invariant finitely additive probability measure.

The converse implication is completely analogous.

A group G is called amenable if it admits a left- (or right-) invariant finitely additive probability

measure. Note that finite groups are trivially amenable: let N be the cardinality of a finite group G

and define

µ(A) =
|A|
N

∀A ⊆ G.

The map µ is a left- and right-invariant finitely additive probability measure on G.

Remark 5.2. The equivalent conditions of Proposition 5.1 are also equivalent to the existence of a

left- (or right-) invariant mean on G: a map m : `∞(G) → R verifying m(1) = 1 and m(x) ≥ 0

whenever x ≥ 0, where `∞(G) is the set of all bounded real sequences indexed by G endowed with the
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order x ≤ y ⇔ x(g) ≤ y(g) for all g ∈ G, and 1 is the sequence 1(g) = 1G for all g ∈ G (see [CC10,

Proposition 4.4.4]). The set M(G) of invariant means on G is a convex compact subset of the dual

space (`∞(G))∗ with respect to the weak-∗ topology (see [CC10, Theorem 4.2.1]). The group G acts

continuously on M(G) in the following way: consider the left and right actions of G on RG given by

(g.x)(h) = x(g−1h), (x.g)(h) = x(hg−1), ∀h ∈ G.

The space `∞(G) is a vector subspace of R which is invariant under these actions. It is not difficult to

show that both actions of G on `∞(G) are isometric, and therefore continuous. The left (resp. right)

action of G restricted toM(G) is affine and continuous with respect to the weak-∗ topology (see [CC10,

Proposition 4.3.1]).

Example 5.3. (The free group in two generators.)

Let us show that the free group in two generators F2 is not amenable. Write F2 in its canonical form,

F2 = 〈a, b〉. Suppose there exists a left-invariant finitely additive probability measure µ on F2. Denote

by A the subset of F2 consisting of all reduced words starting with a non-zero power of a. Note that

F2 = A ∪ aA and therefore

µ(F2) ≤ µ(A) + µ(aA).

Since µ is left-invariant, µ(aA) = µ(A), which implies that 2µ(A) ≥ µ(F2) = 1, and therefore,

µ(A) ≥ 1/2. On the other hand, note that for all ` > 2, the subsets A, bA, b2A,· · · , b`A are pairwise

disjoints, so that

µ(A) + µ(bA) + · · ·+ µ(b`A) = µ(A ∪ bA ∪ b`A) ≤ µ(F2) = 1.

Since µ is left-invariant, µ(A) + µ(bA) + · · ·+ µ(b`A) = (`+ 1)µ(A), which implies that µ(A) ≤ 1/`, a

contradiction.

Proposition 5.4. Every subgroup of an amenable group is amenable.

Proof. Let G be an amenable group with a left-invariant finitely additive probability measure µ, and

let H 6 G. Let R be a set of representatives of right cosets of H in G, that is, a subset R ⊆ G such

that G is the disjoint union of the cosets {Hr : r ∈ R},

G =
⋃
r∈R

Hr.
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Define µ̃ : P(H)→ [0, 1] by

µ̃(A) = µ

(⋃
r∈R

Ar

)
.

We claim that µ̃ belongs to PM(G). First, µ̃(H) equals 1 by construction. If A, B are two disjoint

subsets of H, then for all r ∈ R, Ar ∩Br = ∅, from which we deduce

µ̃(A∪B) = mu

(⋃
r∈R

(A ∪B)r

)
= mu

(⋃
r∈R

Ar ∪
⋃
r∈R

Br

)
= mu

(⋃
r∈R

Ar

)
+µ

(⋃
r∈R

Br

)
= µ̃(A)+µ̃(B).

Finally, since µ is left-invariant, for all h ∈ H and for all A ⊆ H,

µ̃.h(A) = µ̃(hA) = µ

(⋃
r∈R

hAr

)
= µ

(
h
⋃
r∈R

Ar

)
= µ

(⋃
r∈R

Ar

)
= µ̃(A),

and we conclude that µ̃ is invariant. Therefore, H admits a left-invariant finitely additive probability

measure and thus it is amenable.

Corollary 5.5. Free groups are not amenable.

Proof. Let Fn the free group on n generators,

Fn = 〈a0, · · · , an−1〉.

Suppose Fn is amenable. Proposition 5.4 implies that every subgroup of Fn is amenable. Consider the

subgroup H of Fn generated by a0 and a1. H is isomorphic to F2, but we know by 5.3 that F2 is not

amenable, which is a contradiction.

The proofs of the following two results are based on the properties of the setM(G) (see Remark 5.2).

Details can be found in [CC10, Sections 4.5 and 4.6].

Proposition 5.6. [CC10, Proposition 4.5.5] Let G be a group and H C G. If both H and G/H are

amenable, then G is amenable.

Theorem 5.7. [CC10, Theorem 4.6.1] Abelian groups are amenable.

Recall that, given a groupG, the commutator of two elements g, h ∈ G is the element [h, g] = hgh−1g−1.

If H,K are two subgroups of G, the commutator of H and K is the subgroup of G generated by all

commutators [h, k] where h ∈ H and k ∈ K. Note that [H,K] is a normal subgroup of G and G/[G,G]
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is abelian. The derived series of G is a decreasing series of normal subgroups of G defined inductively

as follows: D0(G) = G, D1(G) = [G,G] and for all n ≥ 1, Dn+1(G) = D(Dn(G)). For all n ≥ 0,

Dn+1(G) C Dn(G) and Dn+1(G)/Dn(G) is an abelian group. The group G is said to be solvable if

there exists a positive integer N such that DN (G) is trivial. In this case, N is called the class or the

degree of solvability of G.

Theorem 5.8. Solvable groups are amenable.

Proof. We proceed by induction on the solvability class n. If n = 0 and G is a solvable group of class

n, then G is trivial and thus amenable as any finite group. Suppose every solvable group of solvability

class n is amenable, and let G be a solvable group with solvability class n + 1. The group D(G) is

solvable of class n, thus amenable by inductive hypothesis. The quotient group G/D(G) is abelian,

thus amenable by Theorem 5.7. By Proposition 5.6, G is amenable.

Given a group G, the lower central series of G is a decreasing sequence of normal subgroups defined

inductively as follows: C0(G) = G, and for all n ≥ 0, Cn+1(G) = [Cn(G), G]. The group is said to

be nilpotent if there exists a positive integer N such that CN (G) is trivial. In this case, N is called

the class or the degree of nilpotency of G. Every nilpotent group is easily shown to be solvable, so we

obtain the following result.

Corollary 5.9. Nilpotent groups are amenable.

5.1.2 Residually finiteness and amenability.

Recall from Section 1.3 that a countable group G is residually finite if for every element g ∈ G with

g 6= 1G there exists a finite group F and a homomorphism φg : G→ F such that φg(g) 6= 1F .

Proposition 5.10. Let G be a countable group. Then, G is residually finite if and only if there exists

a sequence of finite index normal subgroups of G, say {Gn}n∈N, such that
⋂
n∈NGn is trivial.

Residually finite groups are thus those groups for which we can define odometers (see Section 1.3).

Finite groups are trivially residually finite: if g ∈ G verifies g 6= 1G, define φg = IdG : G → G. Let

p ∈ N be a prime number. The sequence Gn = pnZ is a decreasing sequence of finite index normal

subgroups of Z whose intersection is trivial, so by Proposition 5.10, Z is residually finite. Since every

direct product of a family of residually finite groups is residually finite (see [CC10, Proposition 2.2.2]),

Zd is residually finite for every d ≥ 1.
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Example 5.11. (The group GLn(Z))

Let us prove that the linear group GLn(Z) is residually finite for all n ≥ 1. Let A ∈ GLn(Z) such

that A 6= In×n. Choose a positive integer ` ∈ Z such that |A(i, j)| < ` for all 1 ≤ i, j ≤ n, and define

φA : GLn(Z)→ GLn(Z/`Z) by

φA(M)(i, j) = M(i, j) mod `.

Then, φA is a group homomorphism satisfying φA(A) 6= 1GLn(Z/`Z).

Finitely generated nilpotent groups are residually finite, so finitely generated nilpotent groups are

examples of amenable residually finite groups. Classical examples of non-residually finite groups are

divisible groups: a group is said to be divisible if for all g ∈ G and all n ≥ 1, there exists h ∈ G such

that hn = g.

Example 5.12. (The additive group of rationals)

The additive group Q is clearly divisible: let g ∈ Q and n ≥ 1, take h = g
n ∈ Q. We have that

hn =
g

n
+ · · ·+ g

n︸ ︷︷ ︸
n−times

= n
g

n
= g.

Example 5.13. (The Prüfer group)

Given a prime number p, the Prüfer group Z(p∞) is defined as the following subgroup of the unit

circle,

Z(p∞) = {exp(i2πm/pn) : 0 ≤ m < pn, n ∈ N},

that is, the set of all pn-th roots of unity, when n runs over N. Equivalently, Z(p∞) can be represented

as the inverse limit

Z(p∞) = lim−→(Z/pnZ, in),

where in : Z/pnZ → Z/pn+1Z is the multiplication by p. By definition, Prüfer groups are p-groups,

and they are divisible. They are also infinite countable abelian groups (see [Fu15] for more details).

Theorem 5.14. A non-trivial divisible group is not residually finite.

Proof. Suppose G is a non-trivial divisible group and let F any finite group. Let n = |F |. Since G is

divisible, for all g ∈ G, there exists h ∈ G such that hn = g. Let φ : G→ F a group homomorphism,
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then φ(g) = φ(hn) = φ(h)n. Since F has n elements, fn = 1F for all f ∈ F , and thus φ(g) = 1F .

Since this is true for all g ∈ G, we conclude that φ is trivial, and since G is non-trivial, it cannot be

residually finite.

The previous theorem shows that Q and the Prüfer group are examples of countable infinite abelian

non-residually finite groups. They are not finitely generated. There also exist finitely generated groups

which are not residually finite (see [CC10, Section 2.6]).

5.1.3 The Følner conditions.

We now recall an equivalent definition of amenability which is the one we use in this chapter for all

proofs. Given a countable group, a sequence (Fn)n≥0 of finite subsets of G is called a right Følner

sequence if for every g ∈ G,

lim
n→∞

|Fng \ Fn|
|Fn|

= 0.

A left Følner sequence of G is defined analogously.

Proposition 5.15. The countable group G admits a right Følner sequence if and only if it admits a

left Følner sequence.

Proof. Suppose (Fn)n≥0 is a right Følner sequence of G. For all n ≥ 0, define F̃n = F−1
n . Observe

that (F̃n)n≥0 is a left Følner sequence of G. Indeed, for any g ∈ G,

lim
n→∞

|gF̃n \ F̃n|
|F̃n|

= lim
n→∞

|gF−1
n \ F−1

n |
|Fn|

= lim
n→∞

|(Fng−1 \ F−1
n )−1|

|Fn|
= lim

n→∞

|Fng−1 \ Fn|
|Fn|

.

Since (Fn)n≥0 is a right Følner sequence, the previous limit equals zero and we get that (F̃n)n≥0 is a

left Følner sequence.

The converse implication is completely analogous.

Given finite subsets K,F of G and ε > 0, we say that F is right (K, ε)-invariant if

|{g ∈ F : gK ⊂ F}|
|F |

≥ (1− ε).

The concept of left (K, ε)-invariance is defined in the same way: for finite subsets F,K ⊆ G and ε > 0,
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we say that F is left (K, ε)-invariant if

|{g ∈ F : Kg ⊂ F}|
|F |

≥ (1− ε).

Note that if F is right (K, ε)-invariant, then F−1 is left (K−1, ε)-invariant.

The following lemma shows that right Følner sequences are those which become more and more

invariant.

Lemma 5.16. Let G be a countable group. A sequence (Fn)n≥0 is a right Følner sequence of G if and

only if for every finite subset K of G and for every ε > 0, there exists N ≥ 0 such that for all n ≥ N ,

Fn is right (K, ε)-invariant.

Proof. First note that

{g ∈ Fn : gK ⊂ Fn} =
⋂
k∈K

Fn ∩ Fnk−1.

Suppose (Fn)n≥0 is a right Følner sequence, and take any finite K ⊆ G, ε > 0. Since for all k ∈ K,

limn→∞
|Fn\Fnk−1|
|Fn| = 0, then for all k ∈ K, ∃ Nk ∈ N such that for all n ≥ Nk,

|Fn \ Fnk−1|
|Fn|

<
ε

|K|
.

Since K is finte, there is a N ∈ N such that for all n ≥ N and for all k ∈ K, the above inequality

holds. Now,

Fn \
⋂
k∈K

Fn ∩ Fnk−1 =
⋃
k∈K

Fn \ Fnk−1,

then,

|Fn| − |
⋂
k∈K

Fn ∩ Fnk−1| =|Fn \
⋂
k∈K

Fn ∩ Fnk−1|

=|
⋃
k∈K

Fn \ Fnk−1|

≤
∑
k∈K
|Fn \ Fnk−1| < |Fn|ε,

and therefore,

|Fn| − |{g ∈ Fn : gK ⊂ Fn}| < ε|Fn|.

Conversely, suppose that for any ε > 0 and any finite K ⊆ G, there is an N ∈ N such that for all
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n ≥ N , Fn is right (K, ε)-invariant. Take g ∈ G and consider K = {g}. Let ε > 0. Then, there is a

N ∈ N such that for all n ≥ N ,

|Fn ∩ Fng−1| > (1− ε)|Fn|

⇔ ∀n ≥ N, |Fn \ Fn ∩ Fng−1|
|Fn|

< ε

But Fn \ Fn ∩ Fng−1 = Fn \ Fng−1, and therefore, for all n ≥ N ,

|Fn \ Fng−1|
|Fn|

< ε.

This implies that limn→∞
|Fng\Fn|
|Fn| ≤ ε. Since ε was arbitrarily taken, we conclude that

lim
n→∞

|Fng \ Fn|
|Fn|

= 0.

The equivalent conditions of Proposition 5.15 are known as the Følner conditions. The following

theorem due to Følner states the equivalence between the Følner conditions and the amenability of a

group. See [CC10, Theorem 4.9.1] for a proof.

Theorem 5.17. Let G be a countable group. Then, G is amenable if and only if G satisfies the Følner

conditions.

In the case of abelian groups, it is clear that every right Følner sequence is a left Følner sequence and

vice versa, and the notions of right and left (K, ε)−invariance coincide.

5.2 Monotileable amenable groups.

Let G be a countable infinite group. A left monotile of G is a finite subset F of G for which there exists

a subset C of G such that the collection T = {cF : c ∈ C} is a partition of G, that is, G =
⋃
c∈C cF

and c1F ∩ c2F = ∅ if c1, c2 ∈ C are distinct elements. In this case we say that T is a left monotiling.

A right monotile of G is a finite subset F of G for which there exists a subset C of G such that the

collection T = {Fc : c ∈ C} is a partition of G. In this case we say that T is a right monotiling.

We say that G is monotileable amenable if there exists a right Følner sequence (Fn)n≥0 of G such that

every Fn is a left monotile of G. Note that if G is monotilable amenable, then (F−1
n )n≥0 is a left Følner
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sequence whose elements are right monotiles of G.

Given a sequence (Fn)n≥0 of finite subsets of G, we say that the sequence is congruent if 1G ∈ F0 and

for every n ≥ 0 the exists a set Jn ⊆ G such that 1G ∈ Jn and such that {cFn : c ∈ Jn} is a partition

of Fn+1.

We say that G is congruent monotileable if it admits a congruent right Følner sequence made of left

monotiles, which is also exhaustive, that is, G =
⋃
n≥0 Fn.

Lemma 5.18. Let G be a congruent monotilable amenable group with a right Følner sequence (Fn)n≥0

made of congruent left monotiles. Then, for every m > n ≥ 0, the collection

{cm−1 · · · cnFn : ci ∈ Ji, for every n ≤ i < m}

is a partition of Fm.

Proof. The proof follows directly from the definition of congruent monotileable amenable groups by

using induction.

The next lemma is the key tool to show that countable abelian and nilpotent groups are congruent

monotilable. If M is any set, ∼ is an equivalence relation on M , π : M → M/ ∼ is the canonical

projection and H ⊆ M/ ∼, we say that Ĥ ⊆ M is a lifting of H if π(Ĥ) = H and π is one-to-one in

Ĥ.

Lemma 5.19. Let L, G and Q be countable discrete amenable groups such that 1→ L→ G→ Q→ 1

is an exact sequence. Suppose L and Q have congruent and exhaustive right Følner sequences made of

left monotiles, (Us)s≥0 and (Ts)s≥0 respectively. Then, G has an exhaustive right Følner sequence made

of left monotiles. More precisely, there exists a sequence (T̂s)s≥0, such that each T̂s ⊆ G is a lifting of

Ts, and an increasing sequence of indices, (ms)s≥0, such that Fs = Ums T̂s defines an exhaustive right

Følner sequence made of letf monotiles of G. If in adittion L ⊆ Z(G), then (Fs)s≥0 is also congruent.

Proof. Let (Ks)s≥0 be an increasing sequence of finite subsets of G such that G =
⋃
s≥0Ks. Let

(εs)s≥0 be a decreasing to zero sequence of positive reals. Let π : G→ G/L ∼= Q be the projection of

G on G/L. Since (Ts)s≥0 is a right Følner sequence, Lemma 5.16 tells us that, up to take an increasing

subsequence, we can assume that for all s ≥ 0, Ts is right (π(Ks), εs/2)-invariant.

We define inductively (T̂s)s≥0 and (ms)s≥0. For s = 0, define T̂0 = 1G and m0 = 0, so that 1G ∈ F0 =

U0.



CHAPTER 5. SUBSHIFTS OF CONG. MONOTILEABLE AMENABLE GROUPS 112

If s > 0, suppose we have defined T̂s−1 and ms−1. By hypothesis, there exists a finite subset D ⊆ Q

containing 1Q such that

Ts =
⋃
d∈D

dTs−1

Take any lifting D̂ of D, and define T̂s =
⋃
d̂∈D̂ d̂T̂s−1. It is straightforward to show that T̂s is a lifting

of Ts and that T̂s =
⋃
d̂∈D̂ d̂T̂s−1.

Note that T−1
s is a left (π(K−1

s ), εs/2)-invariant right monotile of Q and that T̂−1
s is a lifting of T−1

s .

Then, by [W01, Theorem 2], there exists a subset J ⊆ L such that, if U ⊆ L is a left (J, εs/2)-invariant

right monotile of L, then T̂−1
s U is a left (K−1

s , εs)-invariant right monotile of G.

Now, every Us is a left monotile of L and therefore every U−1
s is a right monotile of L. Since (U−1

s )s≥0

is a letf Følner sequence, the U−1
s ’s are as much left invariant as we want. Pick an index ms > ms−1

such that U−1
ms is left (J, εs/2)-invariant. By [W01, Theorem 2], T̂−1

s U−1
ms is a left (K−1

s , εs)-invariant

right monotile of G, and therefore Fs := Ums T̂s is a right (Ks, εs)-invariant left monotile of G. This

shows that (Fs)s≥0 is a right Følner sequence made of left monotiles of G.

Let us show that (Fs)s≥0 is exhaustive. Let g ∈ G, then there is a s0 such that π(g) ∈ Ts0 , since

(Ts)s≥0 is exhaustive. Then, there exist l ∈ L and t̂ ∈ T̂s0 such that g = lt̂. For s ≥ 0 big enough,

l ∈ Ums and t̂ ∈ T̂s, therefore g ∈ Fs.

Finally, let us see that, if L ⊆ Z(G), (Fs)s≥0 is congruent. Let s ∈ N. Since (ms)s≥0 is increasing and

(Us)s≥0 is congruent, Lemma 5.18 tells us that there exists a finite subset of L, C, such that

Ums+1 =
⋃
c∈C

cUms

On the other hand, by construction, there is a set Ê ⊆ G such that

T̂s+1 =
⋃
ê∈Ê

êT̂s
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Therefore,

Fs+1 =
⋃
c∈C

cUms
⋃
ê∈Ê

êT̂s

=
⋃
c∈C

⋃
ê∈Ê

cUms êT̂s

=
⋃
c∈C

⋃
ê∈Ê

cê Ums T̂s︸ ︷︷ ︸
=Fs

Remark 5.20. If G is a countable amenable group having a finite index subgroup which is congruent

monotilable, then so is G. Indeed, it is not difficult to see that, if L is a congruent monotilable

finite index subgroup of G, R is a subset of right coset representatives, and (Un)n≥0 is a congruent

right Følner sequence made of left monotiles of L, then the sequence Fn := UnR defines a congruent

right Følner sequence of G. This implies that any virtually congruent monotilable group is congruent

monotilable as well.

Proposition 5.21. Every countable abelian group is congruent monotilable.

Note that if G is finitely generated, then it is a direct product of Zd and a finite abelian group, for

some positive integer d, so it is trivially residually finite. Any such a group (provided it is amenable)

is congruent monotilable, as it is stated in the following result.

Proposition 5.22. [CP14, Lemma 5] Let G be an amenable residually finite group and let (Γn)n≥0 be

a decreasing sequence of finite index normal subgroups of G such that
⋂
n≥0 Γn = {1G}. There exists

an increasing sequence (ni)i≥0 and a Følner sequence (Fi)i≥0 of G such that

� {1G} ⊆ Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γni for all i ≥ 0,

� G =
⋃
i≥0 Fi, and

� Fj =
⋃
v∈Fj∩Γni

vFi for every 0 ≤ i < j.

A fundamental domain D of a quotient groupG/Γ is a subset ofG containing exactly one representative

element of each class in G/Γ. The sequence (Fi)i≥0 is exhaustive and in this case Ji = Fi+1 ∩ Γni .

Since each Fi is a fundamental domain of Γni , for all distinct elements v1, v2 ∈ Ji, v1Fi ∩ v2Fi = ∅, so

that (Fi)i≥0 is an exhaustive congruent Følner sequence made of left monotiles.
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Proof. (proof of Proposition 5.21) Let G be a non-finitely generated abelian group, and let us enu-

merate its elements as G = {1G = g0, g1, · · · }. Since G is non-finitely generated we can define an

increasing sequence (kn)n≥0 as follows: let k0 = 0 and for n > 0 let define

kn = min{l > kn−1 : gkn /∈ 〈{g0, · · · , gkn−1}〉}.

For every n ≥ 0 we set

Kn = {g0, g1, · · · , gkn} and Gn = 〈Kn〉,

where 〈·〉 denotes the generated subgroup in G.

Since G is abelian, Gn−1 C Gn and Gn/Gn−1 is an abelian group. Moreover, this is a non trivial

cyclic group. Indeed, any class gGn−1 has the form

gGn−1 = gl00 · · · g
lkn−1

kn−1 g
lkn
kn
Gn−1 where li ∈ Z.

Since gl00 · · · g
lkn−1

kn−1 ∈ Gn−1 and Gn is abelian, gGn−1 = g
lkn
n Gn−1 6= Gn−1, so that

Gn/Gn−1 = {gkknGn−1 : k ∈ Z}.

If for all k 6= 0 gkkn /∈ Gn−1, then Gn/Gn−1
∼= Z. If there is some k 6= 0 such that gkkn ∈ Gn−1, then

Gn/Gn−1
∼= Z/lZ, where

l := min{k ∈ Z+ : gkn ∈ Gn−1}.

The rest of the proof is organized as follows:

� For every n ≥ 0, we will inductively define (Fns )s≥0 an exhaustive and congruent right Følner

sequence made of left monotiles of Gn, a positive integer mn−1 and a finite subset Fn−1 ⊆ G.

� We will show that (Fnmn)n≥0 is an exhaustive and congruent right Følner sequence of left

monotiles of G.

For n = 0, define F 0
s = {1G}, for every s ≥ 0. This is an exhaustive and congruent right Følner

sequence of left monotiles of G0, because this group is trivial. We also put m−1 = 0 and F−1 = {1G}.

Let n > 0. Suppose we have defined an exhaustive and congruent right Følner sequence (Fn−1
s )s≥0 of

left monotiles of Gn−1, the positive integer mn−2 and the subset Fn−2. Because (Fn−1
s )s≥0 is exhaus-
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tive and Kn−1 does not depend on the parameter s, we can assume that Kn−1 ⊆ Fn−1
s and Fn−1

s is

right (Kn−1, εn−1)-invariant, for every s ≥ 0.

Since Gn/Gn−1 is cyclic (and then residually finite), it admits an exhaustive and congruent right

Følner sequence of left monotiles. Let us denote this sequence as (Tn−1
s )s≥0.

From Lemma 5.19, there exist a sequence of liftings, (T̂n−1
s ) and an increasing sequence of indices,

(mn−1,s)s≥0, such that (Fn−1
mn−1,s

T̂n−1
s )s≥0 is an exhaustive congruent right Følner sequence made of

left monotiles of Gn. We define

Fns = Fn−1
mn−1,s

T̂n−1
s for every s ≥ 0.

We can assume that for every s ≥ 0, mn−1,s > mn−2, Kn ⊆ Fns and that Fns is right (Kn, εn)-invariant.

We define mn−1 = mn−1,0, and

Fn−1 = Fn−1
mn−1

.

Claim: (Fn)n≥0 is an exhaustive congruent right Følner sequence of G made of left monotiles.

This sequence is right Følner because for all n ≥ 0, Fn = Fnmn,0 is right (Kn, εn)-invariant. Since

Fn = Fnmn,0 is a left monotile of Gn, we have that Fn is a left monotile of G. Indeed, if Cn ⊆ Gn is such

that {cFn : c ∈ Cn} is a partition of Gn, and Λn ⊆ G is a lifting of G/Gn, then {gcFn : g ∈ Λn, c ∈ Cn}

is a partition of G. We have that Fn = Fnmn = Fnmn−1,mn
. Since (mn−1,s)s≥0 is increasing, and (Fns )s≥0

is congruent, every Fn−1
mn−1,s

is a disjoint union of translated copies of Fn−1
mn−1,0

= Fn−1. This together

with the fact that all the elements in T̂n−1
mn are in diferent classes of Gn/Gn−1, imply that Fn is a

disjoint union of translated copies of Fn−1.

Theorem 5.23. Every countable virtually nilpotent group is congruent monotileable.

Proof. Suppose G is a countable nilpotent group. Again recall that if G is finitely generated, it is

residually finite and then congruent monotilable by the results in [CP14]. If G is not finitely generated,

we use induction on the nilpotency class of the group. If G is of class 1, then G is abelian and the

result follows from Proposition 5.21. If its nilpotency class is 2, then consider the exact sequence

1→ [G,G]→ G→ G/[G,G]→ 1

where [G,G] denotes the commutator subgroup of G. Since both [G,G] and G/[G,G] are abelian,
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each has a congruent right Følner sequence made of left monotiles. Since [G,G] 6 Z(G), we deduce

from Lemma 5.19 that G is congruent monotilable.

If G has nilpotency class n grater than 2, consider the exact sequence

1→ Gn−1 → G→ G/Gn−1 → 1

where Gi denotes the i-th subgroup in the lower central series of G. Since Gn−1 6 Z(G), it is abelian,

and therefore it follows from Proposition 5.21 that Gn−1 is congruent monotilable. On the other hand,

G/Gn−1 is a group of nilpotency class n − 1 (this follows from the fact that for all 0 ≤ i ≤ n − 1,

(G/Gn−1)i = Gi/Gn−1), and then by inductive hypothesis it is congruent monotilable as well. Since

Gn−1 6 Z(G), we deduce from Lemma 5.19 that G is congruent monotilable. This proves that any

countable nilpotent group is congruent monotilable.

From the argument above and Remark 5.20, we deduce that every countable virtually nilpotent group

is congruent monotilable.

5.3 Tower partitions using a congruent Følner sequence made of

monotiles.

We assume henceforward that G is an infinite countable congruent monotileable amenable group.

Given G and (Fn)n≥0 a Følner sequence made of congruent monotiles of G, we construct a minimal

G-subshift in several steps as follows.

Let d0 ≥ 3 be an integer and let A = {0, · · · , d0}. For every 1 ≤ i ≤ d0 let define B0,i ∈ AF0 as

B0,i(v) =

 i if v = 1G

0 if v ∈ F0 \ {1G}.

For n ≥ 0, let dn+1 ≥ 3 be an integer and let Bn+1,1, · · · , Bn+1,dn+1 be different elements in AFn+1

verifying the following conditions

(B1) Bn+1,i(Fn) = Bn,1, for every 1 ≤ i ≤ kn+1.

(B2) Bn+1,i(cFn) ∈ {Bn,2, · · · , Bn,dn} for every c ∈ Jn \ {1G}.

Lemma 5.24. Let (Bn,1, · · · , Bn,dn)n≥0 be the sequence defined above. Then for every n ≥ 0,

Bn,1, · · · , Bn,dn satisfy the following condition
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(B3) If g ∈ Fn and 1 ≤ i, i′ ≤ dn are such that Bn,i(gv) = Bn,i′(v) for every v ∈ Fn ∩ g−1Fn, then

g = 1G and i = i′.

Proof. The case n = 0 is clear: since g ∈ Fn, 1g ∈ g−1Fn and then in particular B0,i(g) = B0,i′(1G) = i′,

which implies that g = 1G and i = i′.

Suppose the assertion is true for n ≥ 0. Let g ∈ Fn+1 and 1 ≤ i, i′ ≤ kn+1 be such that

Bn+1,k(gv) = Bn+1,k′(v) for every v ∈ Fn+1 ∩ g−1Fn+1.

Let cn ∈ Jn and s ∈ Fn be such that g = cns. Since cnFn ⊆ Fn+1, conditions (B1) and (B2) imply

Bn,`(su) = Bn,1(u) for every u ∈ Fn ∩ s−1Fn,

where 1 ≤ ` ≤ dn is an index such that Bn+1,i(cnFn) = Bn,`. By inductive hypothesis we get s = 1

and ` = 1. Conditions (B1) and (B2) imply cn = 1G, and therefore g = 1G and i = i′.

Lemma 5.25. Let (Bn,1, · · · , Bn,dn)n≥0 be a sequence satisfying conditions (B1), (B2) and (B3)

defined above. Then there exists x0 ∈ AG such that

⋂
n≥0

{x ∈ AG : x(Fn) = Bn,1} = {x0}.

Proof. By Condition (B1) and because every set {x ∈ X : x(Fn) = Bn,1} is compact, we have

⋂
n≥0

{x ∈ AG : x(Fn) = Bn,1} 6= ∅.

Since the Følner sequence (Fn)n≥0 is exhaustive, we deduce there exists only one element x0 in this

intersection.

Let T denote the shift action on AG, and x0 ∈ AG be the unique element on the interesection⋂
n≥0{x ∈ AG : x(Fn) = Bn,1}. Consider the subspace X = {T g(x0) : g ∈ G}. For every n ≥ 0 and

1 ≤ i ≤ dn we define

Cn,i = {x ∈ X : x(Fn) = Bn,i} and Cn =

dn⋃
i=1

Cn,i. (5.1)

Lemma 5.26. Let v ∈ G. Then the following are equivalent:
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1. T v
−1

(x0) ∈ Cn.

2. There exist m > n and ck ∈ Jk for every n ≤ k < m such that v = cm−1 · · · cn.

Proof. Suppose that v ∈ G is such that T v
−1

(x0) ∈ Cn. If v = 1G then for m = n + 1 and cn = 1G

we get the desired property. Suppose now that v 6= 1G. let m ≥ 0 be the smallest integer such that

vFn ⊆ Fm. Because |vFn| = |Fn|, it is necessary that m ≥ n. Suppose that m = n. Since 1G ∈ Fn
this implies that v ∈ Fn. By hypothesis we have

x0(vs) = Bn,l(s) for every s ∈ Fn.

On the other hand,

x0(vs) = Bn,1(vs) for every s ∈ v−1Fn.

Lemma 5.24 implies that v = 1G, which is a contradiction. Thus we have m > n.

Since vFn ⊆ Fm and 1G ∈ Fm, we have v ∈ Fm. Lemma 5.18 implies that for every n ≤ k ≤ m − 1

there exist ck ∈ Jk such that v ∈ cm−1 · · · cnFn. Let s ∈ Fn such that v = cm−1 · · · cns. By definition

of x0, we have

x0(cm−1 · · · cnFn) = Bn,k, for some 1 ≤ k ≤ kn,

which implies that for every g ∈ s−1Fn,

x0(vg) = x0(cm−1 · · · cnsg) = Bn,k(sg).

On the other hand, for every g ∈ Fn we have

x0(vg) = Bn,l(g).

Thus

Bn,l(g) = Bn,k(sg) for every g ∈ Fn ∩ s−1Fn.

From Lemma 5.24, s = 1G and then v = cm−1 · · · cn. By applying inductively Lemma 5.18, we get

that v = cm−1 · · · cn is a return time of x0 to Cn.

Let (Bn,1, · · · , Bn,dn)n≥0 be a sequence satisfying conditions (B1), (B2) and (B3). For every n ≥ 0,
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consider the collection of sets

Pn = {T v−1
(Cn,i) : v ∈ Fn, 1 ≤ i ≤ dn}, (5.2)

where Cn,i is defined as in (5.1). For all n ≥ 0, Pn defines a tower partition of X = {T g(x0) : g ∈ G}

and Pn+1 is finer than Pn. We prove this in the following proposition.

Proposition 5.27. For every n ≥ 0, Pn as defined in (5.2) is a clopen partition of X and Pn+1 is

finer than Pn.

Proof. Suppose that v, u ∈ Fn and 1 ≤ i, j ≤ dn are such that

T v
−1

(Cn,k) ∩ T u
−1

(Cn,l) 6= ∅,

then there exists x ∈ X such that

x ∈ T uv−1
(Cn,i) ∩ Cn,j .

Since x ∈ X, there exists a sequence (gi)i≥0 of elements in G such that

lim
i→∞

T gi(x0) = x and then lim
i→∞

T vu
−1gi(x0) = T vu

−1
(x).

Lemma 5.26 implies that for a large enough ` there exist cp ∈ Jp for every n ≤ p ≤ m− 1, and c̃p ∈ Jp
for every n ≤ p ≤ r − 1, such that

g−1
` = cm−1 · · · cn and g−1

` vu−1 = c̃r−1 · · · c̃n,

where m ≥ n+ 1 and r ≥ n+ 1 are the smallest integers such that g−1
` Fn ⊆ Fm and g−1

` vu−1Fn ⊆ Fr
respectively. Then,

cm−1 · · · cnv = c̃r−1 · · · c̃nu.

Suppose that r ≥ m. From Lemma 5.18, this implies that

c̃r = · · · c̃m = 1G and c̃` = c` for every n ≤ ` ≤ m− 1.

We get that u = v and then the sets in Pn are disjoint.

Let g ∈ G \ Fn. Let m > n be such that g ∈ Fm. Then the congruency of (Fn)n≥0 implies there exist
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ci ∈ Ji for every n ≤ i < m such that g = cm−1 · · · cnu, for some u ∈ Fn. Then from Lemma 5.18 we

get

T g
−1

(x0) = T u
−1

(T (cm−1···cn)−1
(x0)) ∈ T u−1

(Cn,`), for some 1 ≤ ` ≤ dn.

This shows that Pn is a covering of X.

Finally, condition (B1) and (B2) imply that Pn+1 is finer that Pn. Indeed, let z ∈ T u−1
(Cn+1,j) for

some u ∈ Fn+1, 1 ≤ j ≤ dn+1. There exists y ∈ Cn+1,j such that z = T u
−1

(y). Since y ∈ Cn+1,j ,

y(Fn+1) = Bn+1,j(Fn+1) and by condition (B1) y(Fn) = Bn,1, so that y ∈ Cn,1.

If u ∈ Fn, then it is clear that z = T u
−1

(y) belongs to an atom of Pn. If u /∈ Fn, then by congruency,

there exist unique c ∈ Jn \ 1G and v ∈ Fn such that u = cv. By condition (B2), y(cFn) = Bn,i, some

1 ≤ i ≤ dn. Since y ∈ Cn,1, T c
−1

(y) ∈ Cn,i, and we get

z = T u
−1

(y) = T v
−1
T c
−1

(y) ∈ T v−1
(Cn,i),

which concludes the proof.

Note that the sequence (Pn)n≥0 does not necessarily generate the topology of X. There could be

points belonging to the partition boundary ∂X (see the definition below), that is, points which are not

separated by (Pn)n≥0. Let ∂X be defined as

∂X =
⋃
g∈G

⋂
n≥0

kn⋃
k=1

⋃
v∈Fn\Fng

T v
−1

(Cn,k).

Proposition 5.28. The system (X,T,G) is minimal and free on X \ ∂X. If G is virtually abelian,

the system is free.

Proof. Let F ⊆ G a finite set, and let P ∈ AF such that

C = {x ∈ X : x(F ) = P} 6= ∅.

We will show that RC(x0) := {g ∈ G : T g
−1

(x0) ∈ C} is syndetic, which is enough to conclude that

the subshift is minimal (see for example [Aus88, Chapter 1]). Let g ∈ G such that T g(x0) ∈ C. Since

the orbit of x0 is dense in X such a g always exists. We have x0(g−1F ) = P . Let n > 0 such that

g−1F ⊆ Fn−1. Then

x0(g−1F ) = Bn−1,1(g−1F ) = P.
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Condition (B1) and Lemma 5.26 imply that for every cm−1 ∈ Jm−1, · · · , cn ∈ Jn, with m > n, we have

T (cm−1···cn)−1
(x0) ∈ Cn ⊆ Cn−1,1.

Thus we get

T (cm−1···cn)−1
(x0)(g−1F ) = Bn−1,1(g−1F ) = P.

This shows that cm−1 · · · cng−1 ∈ RC(x0).

Now let h ∈ G and m > n be such that g ∈ Fm. Lemma 5.18 implies that there exist cm−1 ∈

Jm−1, · · · , cn ∈ Jn such that h ∈ cm−1 · · · cnFn. Then we obtain that h ∈ RC(x0)gFn, which implies

that RC(x0) is syndetic.

Let x ∈ X and g ∈ G be such that T g(x) = x. For every n ≥ 0, let vn ∈ Fn be such that x ∈ T v
−1
n (Cn).

We have x = T g(x) ∈ T gv
−1
n (Cn). Since Pn is a partition, if there exists n ≥ 0 such that vng

−1 ∈ Fn,

then g = 1G. Thus if there exists g ∈ G \ {1G} such that T g(x) = x, then vn ∈ Fn \ Fng for every

n ≥ 0. This shows that the subshift is free on X \ ∂X.

Suppose that G is virtually abelian. Let Γ be a finite index abelian subgroup of G. Since G/Γ is

finite, there exist ` > k ≥ 1 such that g`Γ = gkΓ, which implies g`−k ∈ Γ. Thus we can assume that

g ∈ Γ. On the other hand, there exist a subsequence (vnk)k≥0 and v ∈ G such that vnk ∈ vΓ, for

every k ≥ 0. Let γk ∈ Γ be such that vnk = vγk, for every k ≥ 0. Since T vnk (x) ∈ Cnk , we have that

limk→∞ T
v−1vnk (x) = limk→∞ T

γk(x) = T v
−1

(x0). This implies that limk→∞ T
gγk(x) = T gv

−1
(x0) and

since T gγk(x) = T γkg(x) = T γk(x), we conclude that T gv
−1

(x0) = T v
−1

(x0). Since x0 ∈ X \ ∂X, we

deduce gv−1 = v−1 and then the system is free.

We now work with the incidence matrices associated to the sequence of tower partitions Pn. For every

n ≥ 0 and 1 ≤ i ≤ dn, define

Jn,k,i = {c ∈ Jn : Bn+1,k(cFn) = Bn,i},

and the matrix Qn ∈Mdn×dn+1(Z+) as

Qn(i, j) = |Jn,j,i|, for every 1 ≤ i ≤ dn, 1 ≤ j ≤ dn+1.

Proposition 5.29. The sequence (Qn)n≥0 corresponds to the sequence of incidence matrices associated
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to the sequence of tower partitions (Pn)n≥0, that is, for all 1 ≤ i ≤ dn, 1 ≤ j ≤ dn+1,

Qn(i, j) = |{v ∈ Fn+1 : T v
−1

(Cn+1,j) ⊆ Cn,i}|.

Observe that
dn∑
i=1

Qn(i, j) = |Jn| =
|Fn+1|
|Fn|

, for every 1 ≤ j ≤ dn+1.

This means that the sequence (Qn)n≥0 is managed by (|Fn|)n≥0, that is:

1. Qn has dn ≥ 2 rows and dn+1 ≥ 2 columns;

2.
∑dn

i=1Qn(i, k) = |Fn+1|
|Fn| , for every 1 ≤ k ≤ dn+1.

It is easy to check that Qn(4(dn+1, |Fn+1|)) ⊆ 4(dn, |Fn|), where

4(k, p) =

{
(x1, · · · , xk) ∈ (R+)k :

k∑
i=1

xi =
1

p

}
.

Thus the following inverse limit is well defined.

lim←−
n

(4(dn, |Fn|), Qn) =

(zn)n≥0 ∈
∏
n≥0

4(dn, |Fn|) : zn = Qnzn+1∀n ≥ 0

 .

Remark 5.30. We can assume that the matrices Qn are positive. Indeed, if there exists Bn,i such

that for every m > n it does not appear in Bm,1, then the clopen set {x ∈ X : x(Fn) = Bn,k} is empty.

Thus we can assume that for every n ≥ 0 and 1 ≤ i ≤ kn there exists mn,i such that Bn,i appears (as

a translated copy) in Bmn,i,1. By condition (B1) we can assume that mn,i = mn is independent on i.

By (B1) again, the product Qn · · ·Qmn+1 is positive.

5.3.1 Invariant measures for (X,T,G).

We denote M(X,T,G) the space of all invariant probability measures of (X,T,G). Recall that, since

G is amenable, this is a non-empty Choquet simplex (see Section 1.4). We say that A ⊆ X is a full

measure set of X if Ac is negligible with respect to any invariant measure of (X,T,G).

The next Lemma will allow us to show thatM(X,T,G) is affine homeomorphic to lim←−n(4(kn, |Fn|),Mn).

Lemma 5.31. The set X \ ∂X has full measure.
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Proof. Let µ ∈M(X,T,G), g ∈ G and n ≥ 0. We have

µ

 dn⋃
i=1

⋃
v∈Fn\Fng

T v
−1

(Cn,k)

 = |Fn \ Fng|
dn∑
i=1

µ(Cn,k)

=
|Fn \ Fng|
|Fn|

.

Then

µ

⋂
n≥0

dn⋃
i=1

⋃
v∈Fn\Fng

T v
−1

(Cn,i)

 ≤ lim
m→∞

|Fm \ Fmg|
|Fm|

= 0,

which implies that ∂X has zero measure with respect to any invariant measure of (X,T,G).

From Proposition 5.28 and Lemma 5.31 we obtain:

Corollary 5.32. (X,T,G) is free on a full measure set.

Proposition 5.33. There is an affine homeomorphism between M(X,T,G) and the inverse limit

lim←−n(4(dn, |Fn|),Mn).

Proof. From Lemma 5.31, the invariant measures of (X,T,G) are supported on X \ ∂X, and every

point in this set is separated by the atoms of the partitions Pn. Thus every open set U ⊆ X is a

(countable) union of elements of the atoms of the partitions Pn’s and a set in ∂X. This implies that

the measure of U is completely determined by the measures of the atoms in Pn’s. The rest of the

proof follows according to [CP14, Proposition 2].

5.4 Invariant measures, a realization theorem.

In this section we prove that every Choquet simplex can be obtained as the set of invariant measures

of a minimal G-subshift, where G is any congruent monotileable group G. More precisely, we prove

the following theorem.

Theorem 5.34. Let G be an infinite congruent monotileable amenable group. For every Choquet

simplex K, there exists a minimal G-subshift, which is free on a full measure set, whose set of invariant

probability measures is affine homeomorphic to K. If G is virtually abelian, the subshift is free.

One of the key elements to prove the above theorem is the fact that, given a sequence of positive

integers (pn)n∈N such that pn divides pn+1 for all n, every Choquet simplex can be represented as an
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inverse limit related to that sequence. This is stated in the two following results, whose proof can be

found in [CP14].

Lemma 5.35. ([CP14, Lemma 9]) Let K be a finite dimensional metrizable Choquet simplex with

exactly d ≥ 1 extreme points. Let (pn)n≥0 be an increasing sequence of positive integers such that for

every n ≥ 0 the integer pn divides pn+1, and let k ≥ max{2, d}. Then, there exist an increasing subse-

quence (ni)i≥0 of indices and a sequence (Mi)i≥0 of square k-dimensional matrices which is managed

by (pni)i≥0 such that K is affine homeomorphic to lim←−i(4(k, pni),Mi)

Lemma 5.36. ([CP14, Lemma 12]) Let K be an ifinite dimensional metrizable Choquet simplex with

exactly d ≥ 1 extreme points. Let (pn)n≥0 be an increasing sequence of positive integers such that for

every n ≥ 0 the integer pn divides pn+1. Then, there exist an increasing subsequence (ni)i≥0 of indices

and a sequence (Mi)i≥0 of matrices which is managed by (pni)i≥0 such that for every i ≥ 0,

ki+1 ≤ min{Mi(`, k) : 1 ≤ ` ≤ ki, 1 ≤ k ≤ ki+1},

and such that K is affine homeomorphic to the inverse limit lim←−i(4(kni , pni),Mi), where Mi has ki

rows and ki+1 columns, for every i ≥ 0.

Since we work with amenable groups which are monotileable in a congruent fashion, we will use the

above results setting (pn)n∈N = (|Fn|)n∈N for a given group G, where (Fn)n∈N is a congruent right

Følner sequence made of left monotiles of G. The other element to prove Theorem 5.34 is the following

result, which corresponds to Proposition 22 in [CC18].

Proposition 5.37. Let (Fn)n≥0 be a congruent Følner sequence made of monotiles of a congruent

monotileable amenable group G. Let (Mn)n≥0 be a sequence of matrices which is managed by (|Fn|)n≥0.

For every n ≥ 0, we denote by kn the number of rows of Mn. Suppose there exists K > 0 such that

kn+1 ≤ K |Fn+1|
|Fn| , for every n ≥ 0. Then there exists a minimal free G-subshift (X,T,G) such that

M(X,T,G) is affine homeomorphic to the inverse limit lim←−n(4(kn, |Fn|),Mn).

Proof. We will use the following lemma.

Lemma 5.38. ([CP14, Lemma 8, part (iii)]) Let (Mn)n≥0 be a sequence of matrices which is managed

by (|Fn|)n≥0. For every n ≥ 0, let kn be the number of rows of Mn. Suppose there exists a constant

K > 0 such that

kn+1 ≤ K
|Fn+1|
|Fn|

, for every n ≥ 0.
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Then there exists an increasing sequence (ni)i≥0 in Z+ such that for every i ≥ 0 and for every

1 ≤ k ≤ kni+1,

kni+1 < Mni · · ·Mni+1−1(`, k) for every 1 ≤ ` ≤ kni .

Thanks to the above lemma, we can assume that for every n ≥ 0,

kn+1 < min{Mn(i, j) : 1 ≤ i ≤ kn, 1 ≤ j ≤ kn+1}.

For every n ≥ 0, let M̃n the (kn + 1)× (kn+1 + 1)-dimensional matrix defined as follows

M̃n(·, 1) = M̃n(·, 2) =



1

Mn(1, 1)− 1

Mn(2, 1)
...

Mn(kn, 1)


,

and

M̃n(·, k + 1) =



1

Mn(1, k)− 1

Mn(2, k)
...

Mn(kn, k)


, for every 2 ≤ k ≤ kn+1.

From [CP14, Lemma 1] and [CP14, Lemma 2] we have that the inverse limits lim←−n(4(kn, |Fn|),Mn)

and lim←−n(4(kn+1, |Fn|), M̃n) are affine homeomorphic. Observe that (M̃n)≥0 is managed by (|Fn|)n≥0

and verifies that, for every n ≥ 0,

3 ≤ kn+1 + 1 ≤ min{M̃n(i, j) : 2 ≤ i ≤ kn + 1, 1 ≤ j ≤ kn+1 + 1}. (5.3)

Let `n and `n+1 denote the number of rows and columns of M̃n respectively. Let A = {0, · · · , `0}. For

every 1 ≤ ` ≤ `0, define B0,` ∈ AF0 by

B0,`(v) =

 ` if v = 1G

0 if v ∈ F0 \ {1G}.
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For n ≥ 0, suppose that we have defined Bn,1, · · · , Bn,`n different elements in AFn . We define

Bn+1,1, · · · , Bn+1,`n+1 in AFn+1 as follows: for every 1 ≤ ` ≤ `n+1

Bn+1,`(Fn) = Bn,1,

and for every c ∈ Jn \ {1G},

Bn+1,`(cFn) ∈ {Bn,2, · · · , Bn,`n}

in a way such that

|{v ∈ Jn : Bn+1,`(cFn) = Bn,i}| = M̃n(i, `),

for every 2 ≤ i ≤ `n.

Condition (5.3) ensures that it is possible to make this procedure in order that Bn+1,k 6= Bn+1,s if

k 6= s, since there are more possibilities to define each pattern Bn+1,` than patterns to be defined (see

[CP14, Remark 2]). By construction, Bn,1, · · · , Bn,`n satisfy conditions (B1), (B2) and (B3), so that

we can construct a minimal subshift (X,T,G) as we make right after Lemma 5.25, which is free in

X \ ∂X and free if G is virtually abelian, thanks to Proposition 5.28. Finally, thanks to Proposition

5.33,M(X,T,G) is affine homeomorphic to lim←−n(4(kn+1, |Fn|), M̃n), which is in turns homeomorphic

to lim←−n(4(kn, |Fn|),Mn).

Now he have all the elements to prove Theorem 5.34.

Proof of Theorem 5.34. Let K be any Choquet simplex, and for all n ≥ 0 define pn = |Fn|. From Lem-

mas 5.35 and 5.36, we know that there exists an increasing subsequence (ni)i≥0 and matrices (Mi)i≥0

managed by |Fni | such that K is affine homeomorphic to the inverse limit lim←−i(4(kni , |Fni |),Mi),

where Mi has ki rows and ki+1 columns, for every i ≥ 0 (kni is constant and equal to max{2, d} when

K is finite dimensional and has exactly d extreme points). Then, we apply Proposition 5.37 to get

that there exists a minimal free G-subshift (X,T,G) such that M(X,T,G) is affine homeomorphic

to the inverse limit lim←−i(4(kni , |Fni |),Mi). We conclude that M(X,T,G) is affine homeomorphic to

K.

Combining Theorem 5.23 and Theorem 5.34, we get that for any countable abelian group G (even

those which are not residually finite), any Choquet simplex K can be seen as the simplex of invariant

measures associated to a minimal free G-subshift. In particular, we obtain the following corollary.
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Corollary 5.39. For any Choquet simplex K there exists a minimal free Q-subshift (X,T,Q) such

that M(X,T,Q) is affine homeomorphic to K.

5.5 Further work.

We have proved that any Choquet simplex K can be seen as the set of invariant probability measures

of a minimal subshift of any congruent monotileable amenable group G. In other words, if G is a

congruent monotileable amenable group, then for any Choquet simplex K there exists a minimal G-

subshift (X,T,G), such that K ∼= M(X,T,G). It is not known if there are monotileable amenable

groups which are not congruent monotileable. This question is interesting from the viewpoint of the

problem of realization of simplices as sets of invariant measures, since there is an important class of

groups which are known to be monotileable amenable, but a priori not necessarily in a congruent

fashion, namely the class of solvable groups (see [W01, Theorem 2]). Thus, if we could show that

every monotileable amenable group is congruent monotileable, we would be able to extend Theorem

5.34 to solvable groups.

Another interesting question is whether Theorem 5.34 can be extended to the larger class of (countable)

amenable groups, that is, whether any Choquet simplex K can be seen as the set of invariant measures

of a minimal subshift of any amenable group G on the Cantor set. While it is not known if there

are amenable groups which are not monotileable or congruent monotileable, it is known that every

amenable group can be tiled using a finite set of prototiles [DHZ]. Thus, if we could use a similar

strategy to that of Section 5.3 to construct a minimal G-subshift with a given Choquet simplex, using

not one but a finite number of prototiles, we could extend Theorem 5.34 to amenable groups.

It is also possible that the previous question has a negative answer, that is, that there exists amenable

groups for which there is some Choquet simplex K such that for any minimal G-subshift (X,T,G), K

is not homeomorphic to M(X,T,G) (it would be of course a group which cannot be monotiled in a

congruent fashion). More generally, we are interested in the question of, given an amenable group G,

to determine which are the simplices that can be realized as the set of invariant measures of a minimal

G-subshift, or, given a Choquet simplex K, which are the groups that admit K as the set of invariant

measures of some minimal G-subshift.
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[AGH00] Altman, E., Gaujal, B., Hordijk, A.; Balanced sequences and optimal routing; Journal of the

Association for Computing Machinery (47 N.4), 2000.
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