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Abstract

In this work we study some dynamical properties of symbolic dynamical systems, with particular em-
phasis on the rol played by the invariant probability measures of such systems. We approach the study
of the set of invariant measures from a topological, combinatorial and geometrical point of view.
From a topological point of view, we focus on the problem of orbit equivalence and strong orbit equi-
valence between dynamical systems given by minimal actions of Z, through the study of an algebraic
invariant, namely the dynamical dimension group. Our work presents a description of the dynamical
dimension group for two particular classes of subshifts: S-adic subshifts and dendric subshifts.

From a combinatorial point of view, we are interested in the problem of balance in minimal uniquely
ergodic systems given by actions of Z. We investigate the behavior regarding balance for substitutive,
S-adic and dendric subshifts. We give necessary conditions for a minimal substitutive system with
rational frequencies to be balanced on its factors, obtaining as a corollary the unbalance in the factors
of length at least 2 in the subshift generated by the Thue—Morse sequence.

Finally, from the geometrical point of view, we investigate the problem of realization of Choquet
simplices as sets of invariant probability measures associated to systems given by minimal actions
of amenable groups on the Cantor set. We introduce the notion of congruent monotileable amenable
group, we prove that every virtually nilpotent amenable group is congruent monotileable, and we show
that for a discrete infinite group G with this property, every Choquet simplex can be obtained as the

set of invariant measures of a minimal G-subshift.

Key words: subshift, invariant probability measure, orbit equivalence, dimension group, balance,

Choquet simplex, amenable group.



Resumeé

Dans ce travail nous étudions quelques propriétés des systemes symboliques, avec un accent particulier
mis sur le réle joué par les mesures invariantes de tels systemes. Nous nous attachons a I’étude des
mesures invariantes d’un point de vue topologique, combinatoire et géométrique.

Du point de vue topologique, nous nous concentrons sur le probleme de [’équivalence orbitale et
[’équivalence orbitale forte entre des systeme dynamiques donnés par des actions minimales de Z, par
I’étude d’un invariant algébrique, a savoir, le groupe de dimension dynamique. Notre travail donne
une description du groupe de dimension dynamique pour deux classes particulieres de sous-shifts : les
sous-shifts S-adiques et les sous-shifts dendriques.

Du point de vue combinatoire, nous nous intéressons au probleme de [’équilibre des sous-shifts mi-
nimaux et uniquement ergodiques donnés par des actions de Z. Nous étudions le comportement
concernant 1’équilibre pour des sous-shifts substitutifs, S-adiques et dendriques. Nous établissons
des conditions nécessaires pour qu’un sous-shift substitutif minimal avec des fréquences rationnelles
soit équilibré par rapport a ses facteurs, en obtenant comme corollaire le déséquilibre des facteurs de
longueur supérieure a 2 dans le sous-shift engendré par la substitution de Thue-Morse.

Enfin, du point de vue géométrique, nous étudions le probleme de réalisation des simplexes de Choquet
comme des ensembles de mesures de probabilité invariantes associés a des systéemes donnés par des
actions minimales des groupes moyennables sur ’ensemble de Cantor. Nous introduisons la notion
de groupe moyennable congruent-monopavable, nous montrons que tout groupe moyennable virtuelle-
ment nilpotent est congruent-monopavable, et que pour un group discret infini G avec cette propriété,
tout simplexe de Choquet peut s’obtenir comme ’ensemble des mesures invariantes d’un G-sous-shift

minimal.

Mots clés : sous-shift, mesure de probabilité invariante, équivalence orbitale, groupe de dimension,

équilibre, simplexe de Choquet, groupe moyennable.



Resumen

En este trabajo estudiamos algunas propiedades dinamicas de sistemas simbdlicos, con especial énfasis
en el rol que juegan las medidas de probabilidad invariantes de tales sistemas. Nuestra aproximacion al
estudio de las medidas invariantes se realiza desde tres angulos: topoldgico, combinatorio y geométrico.
Desde el punto de vista topoldgico, nos enfocamos en el problema de la equivalencia orbital y equiva-
lencia orbital fuerte entre sistemas dindmicos dados por acciones minimales de Z, a través del estudio
de un invariante algebraico, a saber, el grupo de dimension dindmico. Nuestro trabajo presenta una
descripcién del grupo de dimension dindmico para dos clases particulares de subshifts minimales: los
subshifts S-ddicos y los subshifts déndricos.

Desde el punto de vista combinatorio, nos interesamos en el problema del equilibrio en subshifts min-
imales y tnicamente ergédicos dados por acciones de Z. Investigamos el comportamiento en relacion
al equilibrio para subshifts substitutivos, S-adicos y déndricos. Establecemos condiciones necesarias
para que un subshift substitutivo minimal con frecuencias racionales sea equilibrado en sus factores,
obteniendo como corolario el desequilibrio en los factores de largo mayor o igual a 2 en el subshift
generado por la substitucién de Thue-Morse.

Finalmente, desde el punto de vista geométrico, investigamos la posibilidad de realizar simplices de
Choquet como conjuntos de medidas de probabilidad invariantes asociados a sistemas dados por ac-
ciones minimales de grupos promediables sobre el Cantor. Introducimos la nocién de grupo prome-
diable congruente-monoembaldosable, probamos que todo grupo promediable virtualmente nilpotente
es congruente-monoembaldosable, y mostramos que para un grupo discreto e infinito G con esta
propiedad, todo simplice de Choquet puede obtenerse como el conjunto de medidas invariantes de un

G-subshift minimal.

Palabras clave: subshift, medida de probabilidad invariante, equivalencia orbital, grupo de di-

mensién, equilibrio, simplex de Choquet, grupo promediable.



Résumé étendu

Le but de cette these de doctorat est d’étudier plusieurs propriétés dynamiques des systemes symbol-
iques, avec un accent particulier mis sur le réle joué par les mesures invariantes de ces systemes. Nous
abordons I’étude de ’ensemble des mesures invariantes d’un point de vue topologique, combinatoire
et géométrique, en fonction de la nature du systeme symbolique sous-jacent.

Dans cette introduction, nous rappelons brievement les principales notions liées a la dynamique sym-
bolique, aux mesures invariantes et aux propriétés dans lesquelles elles entrent en jeu. Nous résumons
également les résultats obtenus dans la these et présentons l'organisation du texte. Les systéemes
dynamiques symboliques sont a l’origine un outil pour étudier les systemes dynamiques généraux par
la discrétisation de l'espace et du temps. En gros, I'idée est de discrétiser le temps et de coder les
trajectoires continues d’un systeéme continu donné, en utilisant différents symboles, pour obtenir un
nouveau systeme discret fait de trajectoires symboliques. Ensuite, on récupére des informations per-
tinentes sur le systeme original en regardant le second, qui est la plupart du temps plus simple. Le
début de cette approche remonte aux premiers travaux de Hadamard ([Ha98]), Thue ([Th12]) et Morse
([Mor21]), entre autres, bien que 1’étude de la dynamique symbolique de maniére systématique n’ait
pas été initiée avant les travaux fondateurs de Morse et Hedlund [HM38], [HM40] dans les années
1940. En termes précis, étant donné un ensemble fini de symboles A, appelé un alphabet, un systéme
dynamique symbolique ou simplement un systéme symbolique avec des symboles dans A est un systéme
dynamique topologique (X, S,G) ou G est un groupe localement compact infini, X est un subspace de
AC et S est une action continue gauche de G sur X. Nous utilisons la notation S9 pour faire référence
a Paction de I’élément g € G sur X. Ici, I'espace A est muni de la topologie produit de la topologie
discrete sur A. C’est un espace de Cantor. La dynamique symbolique ne concernait a ’origine que les
Z-actions sur l'espace de Cantor, les éléments des systemes symboliques classiques étant des séquences
de symboles ou des mots infinis ; c’est pourquoi la dynamique symbolique est étroitement liée a I’étude

de la combinatoire des mots, des langages formels et du codage. Voir par exemple [LM95] pour une



exposition détaillée sur le sujet. Plus récemment, le champ s’est étendu a des actions de groupes plus
générales sur les espaces topologiques, en particulier sur ’espace de Cantor.

Les sous-shifts forment une classe importante de systémes symboliques. Etant donné I’alphabet A et
le groupe G, considérons X = A% et 'action de G sur X donnée par S?((xp)neq) = ((9.2)n)neq =
(rg-1p)neq- Le triplet (X, S, G) est appelé dans ce cas le G-shift sur A. SiY C X est un sous-espace
fermé S-invariant de X, (Y, S|y, G) s’appelle un sous-shift sur A. Quand G = Z, on appelle le Z-shift
ou simplement le shift sur A le triple (A%, T,7Z), on T = S~1, soit I'application du shift classique. Un

7Z-sous-shift est un sous-espace fermé T invariant de A%Z.

Les mesures invariantes jouent un role important dans ’étude de plusieurs propriétés des systemes
topologiques dynamiques en général et des systemes symboliques en particulier. Nous les utilisons
dans ce travail comme fil conducteur pour I’étude des propriétés liées a 1’équilibre, a la réalisation
de simplexes de Choquet et aux groupes de dimension, ces deux derniers en rapport avec la notion
d’équivalence orbitale. Nous décrivons chacun de ces sujets plus loin dans cette introduction.

Rappelons que, étant donné un systeme dynamique topologique (X, S,G), une mesure invariante de
(X, S, G) est une mesure borélienne de probabilité u sur X telle que pour tout g € G, u(S9(A4)) = u(A),
pour chaque sous-ensemble borélien A C X. L’ensemble de toutes les mesures invariantes de (X, S, G)
est désigné par M(X, S, G). Un élément u € M(X, S, G) est dit ergodique si chaque fois que S9(A) = A
pour tout g € G pour un ensemble de Borel A C X, soit u(A) =0 ou u(A) = 1. Le systeme (X, S, G)
est dit uniquement ergodique si M(X,S,G) est un singleton. Ce sont des notions classiques qui ap-
partiennent au domaine de la Théorie Ergodique (voir par exemple [W82] pour plus de détails sur ce
sujet). Selon le théoreme de Bogolyubov [Bog39], un groupe est moyennable (voir Chapitre |5 pour
une définition) si et seulement si pour toute action continue de G sur un espace métrique compact X,
il existe une mesure de probabilité sur X qui est invariante sous I'action de G. Cela a été prouvé a
Porigine pour G = R dans [BogK37] et ensuite pour les groupes moyennables en général dans [Bog39].
Plus tard, Giordano et de la Harpe ont montré dans |[GdH97] qu’un groupe G est moyennable si et
seulement si une action continue de G sur ’ensemble Cantor a au moins une mesure de probabilité
invariante. Ainsi, en particulier, lorsque G est un groupe moyennable, M(X, S, G) n’est pas vide.
Pour plus de détails historiques sur le sujet de la moyenabilité, voir par exemple [CSS17, Chapitre 9]

ou [Julbl Chapitre 1].

Mesures invariantes et fréquences. Dans les systemes symboliques donnés par des actions de



7, les mesures invariantes sont liées a la notion de fréquence d’une lettre ou d’un mot fini avec des
lettres dans A. Etant donné un systeme symbolique (X, S,Z), notons Lx le langage de X, c’est-a-dire
I’ensemble de tous les mots finis ou facteurs dans le monoide libre A* apparaissant dans des éléments
de X. La fréquence f,(x) d'un facteur w € Lx dans un mot infini x est définie comme la limite

suivante, quand elle existe,

fuw(@) = lim —— =~

Un mot infini z € AZ est dit avoir des fréquences uniformes si pour chaque facteur w € Ly, le rapport

|Tg T hp o |w

st converge vers fy,(z) quand n tend vers l'infini, de fagon uniforme en k. Si p € M(X, S,Z)

est une mesure ergodique, le quadruple (X, S, B, ) ou B est la tribu de Borel sur X, est un systeme

dynamique mesuré ergodique. Pour tous les facteurs w € Lx on définit le cylindre de w par
(w) = {x e A% : z¢- S Tfy—1 = W

et on peut appliquer le théoreme ergodique [W82, Section 1.6] & la fonction indicatrice X[w] Pour
obtenir que pour p-presque chaque point x € X et pour tout facteur w, la fréquence f, () existe.
De méme, 'unique ergodicité de (X, S,Z) est équivalente au fait que chaque = € X a des fréquences
uniformes. Dans le cas de systémes symboliques minimaux, 'unique ergodicité est équivalent en effet

a lexistence de fréquences pour tous les facteurs (voir section pour plus de détails).

Etant donné un systéme symbolique uniquement ergodique (X, .S,Z) on peut s’interroger sur la vitesse
de convergence des sommes de Birkhoff vers les fréquences des mots finis. Si la convergence est assez
rapide, on dit que le mot infini x € X est équilibré sur un facteur donné. Nous détaillons cette notion

dans le paragraphe suivant.

Equilibre. En termes combinatoires, z € X est équilibré sur le facteur w € Lx s’il existe une con-
stante C,, telle que pour chaque paire (u,v) de facteurs de = de méme longueur, la différence entre le
nombre d’occurrences de w dans u et v differe d’au plus Cy,, c’est-a-dire ||ufy, — |v|| < Cy lorsque
|u| = |vl], out |ul, représente le nombre d’occurrences de w dans v et |u| la longueur de u. Si (X, S,Z)
est un systéme minimal, chaque mot infini a le méme langage et donc ’équilibre sur un facteur donné
est une propriété du systeme entier.

L’étude de I'équilibre est d’abord apparue dans les travaux de Morse et Hedlund ([HM3S§], [HM40])

sous la forme de 1-équilibre pour les lettres des mots infinis définis sur un alphabet de deux lettres,



c’est-a-dire, quand w est une lettre et C', = 1. Il a été montré que les mots infinis qui sont 1-équilibrés
sur un alphabet de deux lettres sont exactement les mots sturmiens, c’est-a-dire les codages binaires
des trajectoires de rotations irrationnelles sur le cercle unitaire (voir Exemple . Plus tard, le con-
cept a été étendu aux facteurs et au Cy-équilibre dans des mots infinis avec des symboles dans des
alphabets plus grands.

Les mots définis sur un alphabet plus grand qui sont 1-équilibrés ont été caractérisés dans [Hu00]. 11
a été prouvé dans [FV02] que les mots sturmiens sont équilibrés sur tous leurs facteurs : les auteurs
ont montré que la constante C, ci-dessus correspond exactement a |w|, c’est-a-dire, chaque fois que
lu| = |v], ||u]w — |v|w| < |w]|, ce qui généralise leur comportement sur I’équilibre des lettres.

Comme indiqué dans la proposition [I.27} lorsqu’un systéme symbolique minimal uniquement ergodique
avec une mesure unique p est équilibré sur un facteur donné w, la mesure p([w]) est une valeur propre
topologique additive du systéme. Cette connexion a été exploitée en Théorie Ergodique pour prouver

le déséquilibre (voir par exemple [CFMOS]).

Nous consacrons une partie de cette these de doctorat a I’étude du comportement de ’équilibre dans les
sous-shifts dendriques et ultimement dendriques (voir Chapitre |4 Section . Ce type de sous-shifts
est précisément défini dans la Section Pour la classe des sous-shifts ultimement dendriques nous
prouvons que deux mesures invariantes p et p' sont égales si et seulement si elles coincident sur les
cylindres de facteurs de longueur n, pour tout n avec n < m+ 1 (Théoréme , ou m est le seuil du
systeme. Nous prouvons également qu’un sous-shift ultimement dendrique avec seuil m est équilibré
sur les facteurs de longueur m + 1 si et seulement s’il est équilibré sur tous ses facteurs (Théoreme
. Ce n’est pas le cas des systemes symboliques arbitraires. En effet, nous donnons également des
conditions nécessaires pour 1’équilibre dans les systemes substitutifs & fréquences rationnelles dans le
Chapitre |3 Section (Théoreme et utilisons ceci pour prouver le déséquilibre pour tous les
facteurs de longueur d’au moins 2 dans la séquence Thue-Morse (Corollaire , qui est équilibrée
sur les lettres.

La plupart des résultats précédents sur I’équilibre sont publiés dans [BCB1S].

Si nous sortons du cas uniquement ergodique, il est intéressant d’étudier ’ensemble de toutes les
mesures invariantes d’un point de vue géométrique. Nous introduisons ce sujet dans le paragraphe

suivant.



Le simplexe de Choquet des mesures invariantes. D’un point de vue géométrique, on sait
que I'ensemble des mesures de probabilité invariantes d’une action continue d’un groupe moyennable
sur un espace métrique compact est un simplexe de Choquet, c’est-a-dire, un sous-ensemble compact
convexe métrizable K d’un espace vectoriel réel localement convexe tel que pour chaque v € K il

existe une unique mesure de probabilité m supporté sur ext(K) avec (K) xdm(z) = v, dont les

ext
points extrémaux sont les mesures ergodiques (voir par exemple [GI03], ou [BR10, Chapitre 7] pour
une preuve dans le cas des Z-actions). Ici, nous considérons M(X,T,G) comme un sous-espace du
dual C(X,R) muni de la topologie faible*, ou C'(X, Z) désigne le groupe additif des fonctions continues
a valeurs réelles définies sur X. Une question naturelle est donc de savoir si I'inverse est vrai, c¢’est-
a-dire, que si 'on donne un simplexe de Choquet K et un groupe moyennable G, il est possible de
réaliser K comme ’ensemble des mesures de probabilité invariantes d’une action continue de GG sur un
espace métrique compact. Dans [Do91] Downarowicz a répondu pour la premieére fois & cette question
dans le cas G = Z, montrant que chaque simplexe de Choquet peut étre réalisé comme ’ensemble des
mesures de probabilité invariantes d’un Z-sous-shift de Toeplitz (voir Exemple . L’extension de
ce résultat & tout groupe moyennable résiduellement fini (voir Exemple pour la définition) a été
montrée dans [CP14].

En général, il se trouve que les propriétés de G en tant que groupe imposent certaines restrictions a
la possibilité de réalisation de tout simplexe de Choquet comme 1’ensemble des mesures invariantes
d’une action continue de G sur un espace métrique compact. Par exemple, on sait que le simplexe
de Poulsen est le simplexe des mesures invariantes associées a l'action du G-shift pour n’importe quel
groupe dénombrable moyennable G sur 1’espace de Cantor {0,1}%, et que si G a la Propriété T, alors
pour chaque action continue de G sur un espace métrique compact X, M(X, S, G) est soit vide, soit
un simplexe de Bauer, c’est-a-dire un simplexe dans lequel ’ensemble des points extrémaux est fermé

(voir [GWIT]).

Dans cette these de doctorat, nous abordons le probleme de réalisation des simplexes de Choquet dans
le contexte d’actions de groupes moyennables (voir Chapitre |5)). Dans [W01], Weiss a introduit le con-
cept de groupe moyennable monopavable, qui est une généralisation de la notion de groupe moyennable
résiduellement fini, au sens que les monotuiles utilisées pour paver un groupe monopavable jouent le
role des domaines fondamentaux des sous-groupes d’indices finis dans les groupes résiduellement fi-
nis (voir Section pour plus de détails). On ne sait pas s’il existe des groupes qui ne sont pas

monopavables. Nous introduisons ici le concept de groupe moyennable congruent-monopavable (voir



Section [5.2), qui comprend tous les groupes moyennables résiduellement finis. Nous montrons que
la classe des groupes moyennables congruent-monopavables est plus grande que la classe des groupes
moyennables résiduellement finis en prouvant que chaque groupe moyennable virtuellement nilpo-
tent est congruent-monopavable (Théoreme , et que tout simplexe de Choquet peut étre réalisé
comme ’ensemble des mesures invariantes d’une action minimale de n’importe quel groupe moyennable
congruent-monopavable G. Cette action est libre si G est virtuellement abélien (Theorem [5.34). En
conséquence directe, nous obtenons que pour tout simplexe de Choquet K, il existe un Q-sous-shift
libre et minimal (X, T, Q) tel que M(X,T,Q) est affine homéomorphe & K (Corollaire [5.39).

Les résultats précédents sur les groupes moyennables congruent-monopavables et la réalisation de sim-

plexes de Choquet sont inclus dans [CC1§].

Le probleme de réalisation de simplexes de Choquet en tant qu’ensembles de mesures invariantes décrit
ci-dessus est lié a la notion d’équivalence orbitale topologique entre des systémes de Cantor minimaux.
Dans le paragraphe suivant, nous rappelons cette notion d’équivalence entre des systemes dynamiques
et introduisons les groupes de dimensions qui leur sont associés, qui correspondent & des invariants

algébriques pour ’équivalence orbitale.

Equivalence orbitale et groupes de dimension. Deux systéemes dynamiques minimaux (X1, 51, G1)
et (Xo,S52,G2) sont dits topologiquement orbitalement équivalents s’il existe un homéomorphisme
¢ : X1 — Xgo qui envoie les orbites de 'action de Gy sur les orbites de 'action de Go. Dans le
cas de deux actions minimales de Z, ’équivalence orbitale implique ’existence de deux applications

ny : X1 — 7Z et ng : Xo — Z (uniquement définies par minimalité) de sorte que, pour tout = € X,
b0 Si(x) = 557 0 6(x) et g0 12 (2) = 5 0 9(a).

Les applications ny et ng sont appelées les cocycles de S et So respectivement.

Deux systemes dynamiques minimaux (X1, S1,7Z) et (X2, S2,Z) sont dits (topologiquement) fortement
orbitalement équivalents si ny et no ont au plus un point de discontinuité. L’équivalence orbitale et
I’équivalent orbitale forte sont des notions a priori plus faibles que la conjugaison qui ont été intro-
duites dans |[GPS95] afin d’obtenir des résultats similaires a ceux obtenus dans le cadre des systémes
dynamiques mesurés. Deux systémes dynamiques mesurés (X1, S1, B, u1, G1) et (X, Ba, 2, G2) sont

orbitalement équivalents s’il existe une bijection bimesurable ¢ : X7 — Xo qui envoie les orbites de



Paction de G; sur les orbites de l'action de G3. C’est un théoréme de Dye [Dye59] que deux ac-
tions ergodiques de Z sur des espaces de probabilité non-atomiques sont orbitalement équivalentes
(en mesure). Ce résultat a par la suite été étendu aux actions ergodiques de groupes moyennables
dans [OWR80Q] : deux actions ergodiques de groupes moyennables sur des espaces de probabilité non
atomiques sont orbitalement équivalentes (en mesure). (Voir [GalO] pour une étude complete sur
Péquivalence orbitale en mesure).

Dans le cadre topologique, la situation est tres différente : parmi les actions minimales de Z sur
I’ensemble Cantor, il existe d’innombrables classes d’équivalence orbitale. Ceci peut étre vu comme
une conséquence du fait que 1’équivalence orbitale topologique et I’équivalence orbitale forte sont car-
actérisées ([GPS95]) dans le cas d’actions minimales de Z sur l’espace de Cantor, en utilisant ce qui
est appelé le groupe de dimension dynamique associé au systeme : (X1,51,Z) et (X2, S2,Z) sont
fortement orbitalement équivalents si et seulement si leurs groupes de dimensions dynamiques sont
isomorphes comme groupes ordonnés avec unité ; ils sont orbitalement équivalents si et seulement
si leurs groupes de dimensions dynamiques réduits sont isomorphes comme groupes ordonnés avec
unité. En gros, le groupe de dimension dynamique d’un systeme (X, S, Z) est un groupe ordonné avec
unité dont la partie groupe est donnée par H(X, S,Z) = C(X,Z)/BC(X,Z), ou C(X,Z) est le groupe
additif de fonctions continues de X dans Z et SC(X,Z) est I'image de C(X,Z) sous l’application de
cobord f : C(X,Z) — C(X,Z), définie par ff(x) = f o S(x) — f(z) pour tout z € X. Le groupe
de dimension dynamique réduit de (X,S,Z) est un autre groupe ordonné avec une unité dont la
partie groupe est le quotient H(X,S,Z)/{[f] € H(X,S,Z) : [y fdu = 0forall p € M(X,S,Z)}
(voir Section m pour plus d’information sur les groupes ordonnés avec unité et groupes de dimen-
sion). Un résultat similaire a été prouvé pour les actions de Z? dans [GPMSI(] : deux systémes
dynamiques (X1, S1,Z%) et (X3, S2,Z%) sur I'espace de Cantor sont orbitalement équivalents si et
seulement si leurs groupes de dimensions dynamiques réduits sont isomorphes comme groupes or-
donnés avec unité, ou le groupe de dimension dynamique réduit correspond par définition au quotient
C(X,2)/{f € C(X,Z) : [ fdu=0for all p € M(X,S,Z%)}.

Ainsi, le groupe de dimension dynamique réduit est un invariant total pour I’équivalence orbitale
topologique parmi les actions minimales de Z?¢ sur I'espace Cantor. C’est aussi un invariant (pas
nécessairement total) por I’équivalence orbitale entre les actions minimales de groupes moyennables
sur l'espace de Cantor. D’autre part, lespace de traces de ce groupe (voir Section pour la
définition) est affine homéomorphe a I’ensemble des mesures invariantes M (X, S, G). Ainsi, un groupe

moyennable G avec la propriété que chaque simplexe de Choquet métrisable peut étre réalisé comme



I’ensemble des mesures de probabilité invariantes d’une action minimale libre de G sur I’ensemble de
Cantor, admet au moins autant de classes d’équivalence orbitale topologique qu’il existe de simplexes
métrisables de Choquet.

Il n’est pas difficile de voir que lorsque X; ou X» sont connexes, I’équivalence orbitale topologique
implique 'existence d’un isomorphisme de groupe ¢ : G — G2 tel que pour tout g € Gy, ¢po S} =
Sy @ 4 ¢, soit les deux systemes sont conjugués. C’est une des raisons pour lesquelles, dans 1’étude
de I'équivalence orbitale topologique, il est intéressant d’examiner des espaces de phase totalement
déconnectés, comme 'espace de Cantor.

La notion d’équivalence orbitale forte est en quelque sorte naturelle puisqu’il a été montré dans [Bo83]
que si ny (et donc ny) ou ng (et donc ny) ci-dessus sont continues, alors les deux systeémes sont flip

conjugués, c’est-a-dire que (X71,51,7Z) est conjugué soit a (Xa,S2,7Z) ou a (Xo, SQ_I,Z).

Une partie de ce travail de doctorat est consacrée a la description du groupe de dimension dynamique,
et donc a létude des classes d’équivalence orbitale, des sous-shifts dendriques et d’un type particulier
de sous-shifts ultimement dendriques, appelés sous-shifts spéculaires (voir Section pour plus de
détails). Ceci est présenté au Chapitre |4} Section et a été partiellement réalisé dans le cadre d’un
travail en collaboration avec F. Dolce, F. Durand, J. Leroy, D. Perrin et S. Petite ([BCD+18]). Les
principaux résultats sur ce sujet sont le Théorémem (groupe de dimension des sous-shifts dendriques)
et le Théoreme m (groupe de dimension des sous-shifts spéculaires). En utilisant ces deux résultats,
nous obtenons le Corollaire m qui dit que deux sous-shifts dendriques (resp. spéculaires) minimaux
sont fortement orbitalement équivalents si et seulement s’ils ont le méme simplexe de fréquences des
lettres (resp. le méme simplexe engendré par les fréquences de facteurs de longueur 2), et deux sous-
shifts dendriques (resp. spéculaires) minimaux et uniquement ergodiques sont fortement orbitalement
équivalents si et seulement s’ils ont le méme groupe additif de fréquences de lettres (resp. le méme
groupe additif engendré par les fréquences de facteurs de longueur 2). Nous établissons également une
relation entre 1’équilibre et le groupe de dimension dynamique dans le cas de systémes uniquement
ergodiques ayant des fréquences de lettres rationnellement indépendantes (Théoréme, qui indique
que si la partie groupe dans le groupe de dimension dynamique est abélien libre de rang d, ou d est
la cardinalité de I'alphabet, ’équilibre des lettres passe a 1’équilibre sur les facteurs de longueur arbi-
traire. Enfin, nous décrivons le groupe de dimension dynamique pour certains sous-shifts S-adiques
(voir Section pour plus de détails), qui sont une généralisation des systeémes substitutifs, obtenus

a partir d’'une composition infinie de substitutions (Théoreme [3.39)).



Ce texte est organisé en cinq chapitres. Le premier est consacré aux définitions générales, a ’historique
et a fixer les notations que nous utilisons dans le texte. Dans le second, nous présentons en détail
les concepts liés aux partitions en tours pour des actions minimales de Z sur 'espace de Cantor ;
nous donnons quelques résultats sur le rapport entre certaines suites bien choisies de partitions en
tours et le sous-groupe image, le groupe des infinitésimaux et le groupe de dimension dynamique
d’un sous-shift minimal de Z. Au Chapitre 3, nous appliquons les résultats du Chapitre 2 a I’étude
de certaines propriétés des systemes substitutifs et S-adiques, a savoir les groupes de dimensions et
I’équilibre, et au Chapitre 4, nous faisons de méme pour les sous-shifts dendriques et ultimement den-
driques. Au Chapitre 5, nous étudions le probleme de la réalisation des simplexes de Choquet en tant
qu’ensembles de mesures invariantes des actions de groupes moyennables congruent-monopavables ;
nous introduisons la notion de groupe moyennable congruent-monopavable, nous prouvons que cette
classe de groupes est plus grande que celle des groupes moyennables résiduellement finis et que pour
tout simplexe de Choquet K et tout groupe moyennable congruent-monopavable G, il existe un G-

sous-shift minimal (X, S, G) tel que M(X, S, G) soit affine homéomorphe a K.
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Introduction

The aim of this PhD thesis is to study several dynamical properties of symbolic systems, with partic-
ular emphasis on the role played by invariant measures of such systems. We approach the study of the
set of invariant measures from a topological, combinatorial and geometrical point of view, depending
on the nature of the underlying symbolic system.

In this introduction we briefly recall the main notions related to symbolic dynamics, invariant mea-
sures and properties in which they come into play. We also sumarize the results we have obtained and

present the organization of the text.

Symbolic dynamical systems are originally a tool to study general dynamical systems by the discretiza-
tion of the space and time. Roughly speaking, the idea is to discretize the time and code continuous
trajectories of a given continuous system by using different symbols, to obtain a new discrete system
made of symbolic trajectories. Then, one recovers relevant information about the original system by
looking at the second one, which most of the time is simpler. The begining of this approach goes
back to the early works of Hadamard ([Ha98]), Thue (JTh12]) and Morse ([Mor21]), among others,
although the study of symbolic dynamics in a systematic way was not initiated until the seminal works
of Morse and Hedlund [HM3§|, [HM40] in the 1940’s. In precise words, given a finite set of symbols
A, called an alphabet, a symbolic dynamical system or simply a symbolic system with symbols in A
is a topological dynamical system (X, S,G) where G is an infinite locally compact group, X is some
subspace of A% and S is a continuous left action of G on X. We use the notation S9 to refer the
action of the element g € G on X. Here, the space A® is endowed with the product topology of the
discrete topology on A. It is a Cantor space. Symbolic dynamics were originally concerned only with
Z-actions on the Cantor space, the elements in classical symbolic systems being sequences of symbols
or infinite words; this is the reason why symbolic dynamics is closely related to the study of combi-

natorics on words, formal languages and coding. See for example [LMO95] for a detailed exposition of
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the subject. More recently, the field has been extended to consider more general group actions on
topological spaces, particularly in the Cantor space. An important class of symbolic systems are the
subshifts. Given the alphabet A and the group G, consider X = A% and the action of G on X given
by S9((zn)rea) = ((9-2)n)nec = (x4-11)hec- The triple (X, S, G) is called in this case the G-fullshift
on A. If Y C X is any closed S-invariant subspace of X, (Y, S|y, G) is called a subshift on A. When
G = 7, we call the Z-fullshift or simply the fullshift on A the triple (A%, T,Z), where T = S~!, that

is, the classical shift map. A Z-subshift is any closed T-invariant subspace of AZ.

Invariant measures play an important role in the study of several properties of topological dynamical
systems in general and symbolic systems in particular. We use them in this work as a guiding thread to
study properties related to balance, realization of Choquet simplices and dimension groups, the latter
two in connection with the notion of orbit equivalence. We describe each of these topics later in this
introduction.

Recall that, given a topological dynamical system (X, S, G), an invariant measure of (X, S, G) is a pro-
bability Borel measure p on X such that for all g € G, u(S9(A)) = u(A), for every Borel subset A C X.
The set of all invariant measures of (X, S, G) is denoted M(X, S,G). An element p € M(X, S, G) is
said to be ergodic if whenever S9(A) = A for all g € G for some Borel set A C X, either u(A4) =0
or p4(A) = 1. The system (X, S, G) is said to be uniquely ergodic if M (X, S,G) is a singleton. These
are classical notions which belong to the field of Ergodic Theory (see for example [W82] for details
in this subject). It is a theorem by Bogolyubov [Bog39] that a group is amenable (see Chapter |5 for
a definition) if and only if for all continuous action of G on a compact metric space X, there exists
a probability masure on X which is invariant under the action of G. This was originally proved for
G = R in [BogK37] and then for amenable groups in general in [Bog39]. Later, Giordano and de la
Harpe showed in [GdH97] that a group G is amenable if and only if any continuous action on the
Cantor set has an invariant probability measure. Thus, in particular, whenever GG is an amenable
group, M(X, S,G) is non-empty. For more historical details in the subject of amenability, see for

example [CSS17, Chapter 9] or [Julb, Chapter 1].

Invariant measures and frequencies. In symbolic systems given by Z-actions, invariant measures
are related to the notion of frequency of a letter or a finite word with letters in A. Given a symbolic
system (X, S,7Z), let Lx denote the language of X, that is, the set of all finite words or factors in the

free monoid A* appearing in the elements of X. The frequency f,,(z) of a factor w € Lx in an infinite



word x is defined as the following limit, when it exists,

|x_n.'-x0."xn|w
n—00 2n +1

An infinite word =z € AZ is said to have uniform frequencies if for every factor w € Lx, the ratio

|$k"‘$k+2n\w

T converges to fy(z) when n tends to infinity, uniformly in k. If p € M(X,S,Z) is an

ergodic measure, the quadruple (X, S, B, 1) where B is the Borel o-algebra on X, is an ergodic measure-

theoretic dynamical system. For all factor w € Lx one defines the cylinder of w by
[w] ={z € A% : 2 - a1 = w},

and one can apply the Ergodic Theorem [W82, Section 1.6] to the characteristic function X[w] to ob-
tain that for p-almost every point z € X and for any factor w, the frequency f,,(x) exists. Similarly,
the unique ergodicity of (X, S,Z) is equivalent to the fact that every x € X has uniform frequencies.
In the case of minimal symbolic systems, unique ergodicity is indeed equivalent to the existence of

frequencies for all factors (see Section for details).

Given a uniquely ergodic symbolic system (X, S,Z) one can ask about the speed of convergence of
Birkhoff sums toward frequencies of finite words. If the convergence is fast enough, one says that the

infinite word x € X is balanced on a given factor. We detail this notion in the following paragraph.

Balance. In combinatorial terms, € X is balanced on the factor w € Lx if there exists a constant
Cy such that for every pair (u,v) of factors of x with the same length, the difference between the
number of occurrences of w in u and v differs by at most Cy, that is, ||u|w — |v|w| < Cy whenever
|u| = |v|, where the notation |ul,, stands for the number of occurrences of w in v and |ul, for its length.
If (X,S,Z) is a minimal system, every infinite word has the same language and thus balance on a
given factor is a property of the whole system.

The study of balance first occurred in the works of Morse and Hedlund ([HM38], [HM40]) in the form
of 1-balance for letters in infinite words defined over a two-letter alphabet, that is, when w is a letter
and C, = 1. It was shown that infinite words that are 1-balanced over a two-letter alphabet are
exactly the Sturmian words, that is, the binary codings of trajectories of irrational rotations on the
unit circle (see Example . Later, the concept was extended to factors and Cy,-balance in infinite

words with symbols in larger alphabets.
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Words over a larger alphabet that are 1-balanced have been characterized in [Hu00]. Sturmian words
have been proved to be balanced on all their factors in [FV02]: the authors have shown that the
constant Cy, above corresponds exactly to |w|, that is, whenever |u| = |[v|, ||u|w — |v]|w| < |w], which
generalizes their behavior on letter balance.

The notion of C-balance for letters was extended to the multidimensional framework in [BT02]: given
a configuration of Z" with symbols in an alphabet A, € A%", x is said to be balanced on the letter
i € A if there exists a constant C such that the difference between the number of positions z € Z"
verifying x(z) = i in two any sub-blocks of Z" of the same size is bounded by C'. In this article, the
authors characterize 1-balanced multidimensional words in Z™ and study conditions of unbalance for
some 2-dimensional words, like Sturmian 2-dimensional words.

This notion is also related to properties of tilings. We refer to [Sol97] or [Sad07] for details on this
subject. Roughly speaking, a tiling of the space R™, or an n-dimensional tiling is a covering of R™ by
tiles, such that tiles only intersect on their boundaries. A tile is a translation of a prototile, which is
a subset of R™ homeomorphic to the closed unit ball. The tiling is thus the union of tiles obtained by
translating a finite number of prototiles, and each tile is labeled according to the prototile it comes
from. One then considers the space of all tilings obtained from a given set of prototiles (or a spe-
cific subspace of this), and the natural action of R™ by translations on it. This construction gives
immediately an analogy between infinite sequences on a finite alphabet A and tilings of the real line
constructed from a finite set of prototiles: given a sequence, one can construct a tiling by associating
to each letter a € A a prototile defined as an interval of some length ¢, and then translating the
prototiles in the order given by the sequence. Conversely, given a tiling of the line, one can associate a
letter to each prototile and then construct a sequence by concatenating the letters in the order given by
the tiling. This extends in a natural way to multidimensional sequences and multidimensional tilings,
and suggests that it could be a relation between some properties of a subshift (X,7,Z") and the
associated tiling space together with the R™-action. Balance properties have been studied from this
viewpoint in [Sadl5], where C-balance on infinite sequences for letters and words have been related
to what is called plasticity and total plasticity of the associated tilings. Since there is a vast theory
developed for multidimensional tilings, this gives the idea of studying the relation between balance of
multidimensional words and cohomological properties of the associated tilings.

As is stated in Proposition when a minimal uniquely ergodic symbolic system with unique mea-
sure 4 is balanced on a given factor w, the measure p([w]) is an additive topological eigenvalue of

the system. This connection has been exploited in Ergodic Theory to prove unbalance (see for ex-
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ample |[CFMO0S8]). The example of Arnouz-Rauzy sequences is of particular interest on this matter.
Arnoux-Rauzy sequences are infinite sequences defined over a d-letter alphabet, d > 2, which general-
ize combinatorial properties of Sturmian sequences. In combinatorial terms, Sturmian sequences are
defined as aperiodic sequences of minimal complexity: they are the binary sequences having n + 1 fac-
tors of length n for all n € N. They were proved to be exactly the codings of irrational rotations on the
circle in J[CHT73|. Arnoux-Rauzy sequences were thus introduced in [AR91] as sequences over a three-
letter alphabet having 2n+ 1 factors of length n for all n € N, with exactly one right special factor and
one left special factor of each length (see Section 4.1|for the definitions), and then generalized to larger
size alphabets as the sequences having (d — 1)n + 1 factors of length n for all n € N (d = |A]), with
exactly one right special factor and one left special factor of each length. Arnoux-Rauzy sequences
were conjectured to correspond exactly to the codings of rotations on the torus of higer dimensions,
as well as Sturmian sequences correspond to rotations on the circle, but this conjecture was disproved
in [CFZ00] by exhibiting an unbalanced Arnoux-Rauzy sequence. We refer to [CEZ00] and [CEMOS]
for more on this subject.

It is interesting to note that balance has been used to very concrete applications like in the field of

optimal routing (see for example [AGHOQ]).

We devote a part of this PhD thesis to the study of balance behavior in dendric and eventually dendric
subshifts (see Chapter |4} Section . This kind of subshifts is precisely defined in Section We
briefly recall the definition here: given a minimal subshift (X,7,Z) on the alphabet A and a factor

w € Lx, the extensions of w are

Lw)={ac€Alaw e Lx}
Rw)={a€ A|lwa€ Lx}
B(w) = {(a,b) € Ax A|awb e L}.

The extension graph E(w) of w is the undirected bipartite graph whose set of vertices is the disjoint
union of L(w) and R(w) and whose edges are the pairs (a,b) € B(w). The subshift is said to be
eventually dendric if there exists m € N such that for all w € Lx with |w| > m the extension graph of
w is a tree, that is, connected and without cycles. In this case, m is called the threshold of (X, T,7Z).
If one can choose m =0, (X,T,Z) is called a dendric subshift.

For the class of eventually dendric subshifts we prove that two invariant measures p and p’ are equal if

and only if they coincide on the cylinders of factors of length n, for all n < m+1 (Theorem [4.12)). We
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also prove that an eventually dendric subshift with threshold m is balanced on the factors of length
m + 1 if and only if it is balanced on all factors (Theorem [4.19)). This is not the case of arbitrary
symbolic systems. Indeed, we also give necessary conditions for balance in substitutive systems with
rational frequencies in Chapter (3, Section (Theorem and use this to prove unbalance for all
factors of length at least 2 in the Thue-Morse sequence (Corollary , which is known to be balance
on letters.

Most of the previous results about balance are published in [BCBIS].

If we go out of the uniquely ergodic case, it is interesting to study the set of all invariant measures

from a geometric point of view. We introduce this subject in the following paragraph.

The Choquet simplex of invariant measures. Geometrically speaking, it is known that the set
of invariant probability measures of a continuous action of an amenable group on a compact metric
space is a Choquet simplex, that is, a compact convex metrizable subset K of a locally convex real
vector space such that for each v € K there is a unique probability measure m supported on ext(K)
with fe
[BR10), Chapter 7] for a proof in the case of Z-actions). Here, we consider M(X,T,G) as a subspace
of the dual C(X,R) endowed with the weak* topology, where C(X,Z) denotes the additive group

t(K) xdm(z) = v, whose extreme points are the ergodic measures (see for example [GI03], or

of continued real-valued functions defined on X. A natural question is thus whether the converse
is true, i.e, if given a Choquet simplex K and an amenable group G, it is possible to realize K as
the set of invariant probability measures of a continuous action of G on a compact metric space. In
[Do91] Downarowicz answered for the first time this question in the case G = Z, showing that every
Choquet simplex can be realized as the set of invariant probability measures of a Toeplitz Z-subshift
(see Example . The extension of this result to any amenable residually finite group (see Example
for the definition) was shown in [CP14]. In the recent work [FHI16], the authors show that every
face in the simplex of invariant measures of a zero-dimensional free dynamical system given by an
action of an amenable group, can be realized as the entire simplex of invariant measures on some other
zero-dimensional dynamical system with a free action of the same group. Thus, if the Poulsen simplex
(see Section for the definition) could be obtained as the set of invariant measures of a free action
of some prescribed amenable group G, the same would hold for any Choquet simplex.

In general, it turns out that the properties of G as a group impose some restrictions to the possibility

of realization of any Choquet simplex as the set of invariant measures of a continuous action of G' on
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a compact metric space. For example, it is known that the Poulsen simplex is the simplex of invariant
measures associated to the full G-shift action of any countable amenable group G on the Cantor space
{0,1}¢, and that if G’ has Property T, then for every continuous action of G' on a compact metric
space X, M(X,S,G) is either empty or a Bauer simplex, that is, a simplex in which the set of extreme

points is closed (see [GWIT]).

In this PhD thesis we tackle the problem of realization of Choquet simplices in the context of actions of
amenable monotileable groups (see Chapter [5)). In [W01] Weiss introduced the concept of monotileable
amenable group, which is a generalization of the notion of residually finite amenable group, in the
sense that the monotiles used to tile a monotileable group play the role of the fundamental domains
of the finite index subgroups in residually finite groups (see Section for details). It is still un-
known if there are amenable groups which are not monotileable. We introduce here the concept of
congruent monotileable amenable group (see Section , which includes all the amenable residually
finite groups. We show that the class of congruent monotileable amenable groups is larger than the
class of amenable residually finite groups by proving that every virtually nilpotent group is amenable
congruent monotileable (Theorem , and that any Choquet simplex can be realized as the set
of invariant measures of a minimal action of any congruent monotileable amenable group G. This
action is free if G is virtually abelian (Theorem . As a direct consequence we obtain that for any
Choquet simplex K there exists a minimal free Q-subshift (X, 7, Q) such that M(X,T,Q) is affine
homeomorphic to K (Corollary .

All previous results about congruent monotileable amenable groups and realization of Choquet sim-

plices are included in [CCI§].

The problem of realization of Choquet simplices as sets of invariant measures described above is related
to the notion of topological orbit equivalence between minimal Cantor systems. In the next paragraph
we recall this notion of equivalence between dynamical systems and introduce the dimension groups

associated to them, which are algebraic invariants of orbit equivalence.

Orbit equivalence and dimension groups. Two minimal dynamical systems (Xi,S1,G1) and
(Xa, S2,G2) are said to be (topological) orbit equivalent if there exists a homeomorphism ¢ : X7 — X5
sending orbits of the GGi-action onto orbits of the GGo-action. In the case of two minimal Z-actions,

orbit equivalence implies the existence of two maps ny : X1 — Z and ns : Xy — Z (uniquely defined



by minimality) such that, for all x € X3,
¢oSi(z) = S;l(r) o¢(z) and ¢ o S{m(m)(m) = Sy 0 ¢(x).

The maps n; and ng are called the cocycles of S and Sy respectively.

The two minimal dynamical systems (X7, S1,7Z) and (X9, S2,Z) are said to be (topological) strong orbit
equivalent if ny and ns both have at most one point of discontinuity. Orbit equivalence and Strong
orbit equivalent are notions weaker than conjugacy (a priori) which have been introduced in |[GPS95]
in an attempt to obtain similar results as those obtained in the measure-theoretic framework. Two
measure-theoretic dynamical systems (X1, S1, B, p1,G1) and (Xa, Sa, Ba, 2, G2) are orbit equivalent
if there exists a bimeasurable bijection ¢ : X; — Xs sending orbits of the Gi-action onto orbits of
the Ga-action. It is a theorem by Dye [Dye59] that any two ergodic measure-theoretic actions of Z on
non-atomic probability spaces are (measure-theoretic) orbit equivalent. This result was later extended
to ergodic actions of amenable groups in [OWS80]: two ergodic measure-theoretic actions of amenable
groups on non-atomic probability spaces are (measure-theoretic) orbit equivalent. (See [GalQ] for a
complete survey on the subject of measure-theoretic orbit equivalence).

In the topological framework the situation is very different: among the minimal Z-actions on the
Cantor set there are uncountable many orbit equivalence classes. This can be easily seen as a conse-
quence of the fact that (topological) orbit equivalence and strong orbit equivalence are characterized
(IGPS95]) in the case of minimal Z-actions on the Cantor space, by using what is called the dynamical
dimension group associated to the system: (Xi,S51,Z) and (X9, S2,7Z) are strong orbit equivalent if
and only if their dynamical dimension groups are isomorphic as ordered groups with unit; they are
orbit equivalent if and only if their reduced dynamical dimension groups are isomorphic as ordered
groups with unit. Roughly speaking, the dynamical dimension group of a system (X,S,Z) is an or-
dered group with unit whose group part is given by H(X,S,Z) = C(X,Z)/5C(X,Z), where C(X,Z)
is the additive group of continuous functions from X to Z and SC(X,Z) is the image of C(X, Z) under
the coboundary map : C(X,Z) — C(X,Z), defined by Sf(z) = f o S(x) — f(x) for all z € X. The
reduced dynamical dimension group of (X, S,Z) is another ordered group with unit whose group part
is the quotient H(X,S,Z)/{[f] € H(X,S,Z) : [y fdu = 0 for all u € M(X,S,Z)} (see Sectionm
for details on ordered groups with unit and dimension groups). Consider for instance two Sturmian
subshifts which code irrational rotations on the circle of angles a and 3, with o # 5. The positive

cone of the reduced dynamical dimension group associated to the first system is isomorphic to Pi-a,
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where for any angle v, P, = {x € 72 : w17y + 29 > 0}, while that associated to the second one is
isomorphic to Pg (see [DDMO00]). This shows that there exist uncountably many minimal Z-actions
on the Cantor space which are not orbit equivalent.

A similar result was proved for Z%-actions in [GPMSI0]: two dynamical systems (X7,S51,Z%) and
(X2, S2,7Z%) on the Cantor space are orbit equivalent if and only if their reduced dynamical dimension
groups are isomorphic as ordered groups with unit, where the reduced dynamical dimension group cor-
responds by definition to the quotient C(X,Z)/{f € C(X,Z) : [y fdu =0 for all u € M(X,S,Z%)}.
Thus, the reduced dynamical dimension group is a total invariant for topological orbit equivalence
among minimal actions of Z? on the Cantor space. It is also an invariant (not necessarily total) of
orbit equivalence among minimal actions of amenable groups on the Cantor space. On the other hand,
the space of traces of this group (see Section for the definition) is affine homeomorphic to the set
of invariant measures M(X,S,G). Thus, an amenable group G with the property that every metriz-
able Choquet simplex can be realized as the set of invariant probability measures of a minimal free
G-action on the Cantor set, admits at least as many topological orbit equivalence classes as metrizable
Choquet simplices there are.

It is not difficult to see that when X; or Xy are connected, topological orbit equivalence implies the
existence of a group isomorphism ¢ : Gq — G2 such that for all g € Gq, ¢ o S} = S%O(g) o ¢, that is,
both systems are conjugate. This is one reason why in the study of topological orbit equivalence it is
intereseting to look at totally disconnected phase spaces, like the Cantor space.

The notion of strong orbit equivalence is somehow natural since it was shown in [Bo83] that if n; (and
thus ng) or ng (and thus n;) above are continuous, then the two systems are flip conjugate, that is,

(X1, S51,Z) is conjugate to either (X3, So,7Z) or to (Xa, S5, 7Z).

The set of invariant measures, the dynamical dimension group and the reduced dynamical dimension
group are not the only algebraic invariants used to study orbit equivalence. Let (X, S, G) be a topo-
logical dynamical system, and consider the group of homeomorphisms of X with the composition,

(Hom(X),o0). The full group of S is defined by
[S]={¢p € Hom(X) :Vz € X3g € G : ¢(z) = S9(x)},

that is, the subgroup of homeomorphisms of X which locally coincide with the action of G. Note that

[S] trivially contains an isomorphic copy of the group G via the injection g — S9. If the action of G on
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X is minimal and aperiodic, each ¢ € [S] defines a map ng : X — G by the relation ¢(z) = S"s(®)(z).
The topological full group of S is the subgroup of [S] defined by

[[S]] = {¢ € [S] : ng is continuous}.

Note that [[S]] also contains an isomorphic copy of G. Indeed, for all g € G, ngs : X — G is the
constant function with value g. We thus have G C [[S]] C [5].

It was shown in [GPS99] that two minimal Z-actions (X1, S1,Z) and (X9, S2,Z) on the Cantor space
have isomorphic full groups if and only if they are orbit equivalent. Later, Medynets extended this
result in 2011 ([Med11]) by showing that two aperiodic minimal systems (X1, 51, G1) and (X2, S2, G2)
are orbit equivalent if and only if [S1] = [S2]. Full groups and topological full groups of Cantor minimal
systems are very interesting objects from the point of view of Group Theory. They provide examples
of non-elementaary amenable groups when the group acting is amenable. We do not work with this

kind of groups in this PhD thesis. We recommend [Jul5, Chapter 4] for a survey on this subject.

It is a part of this PhD work to describe the dynamical dimension group, and thus to study orbit
equivalence classes, of dendric subshifts and a special kind of eventually dendric subshifts, called spec-
ular subshifts (see Section for details). This is presented on Chapter |4, Section and was
partially done in the context of a joint work with F. Dolce, F. Durand, J. Leroy, D. Perrin and S.
Petite ([BCD+18]). The main results on this subject are Theorem (dimension group of den-
dric subshifts) and Theorem m (dimension group of specular subshifts). Using these two results
we obtain Corollary which says that two minimal dendric (resp. specular) subshifts are strong
orbit equivalent if and only they have the same simplex of letter frequencies (resp. the same simplex
generated by frequencies of factors of length 2), and two minimal and uniquely ergodic dendric (resp.
specular) subshifts are strong orbit equivalent if and only if they have the same additive group of letter
frequencies (resp. the same additive group generated by the frequencies of factors of length 2). We also
state a relation between balance and the dynamical dimension group in the case of uniquely ergodic
systems having rationally idependent letter frequencies (Theorem , which states that if the group
part in the dynamimcal dimension group is free abelian of rank d, where d is the cardinality of the al-
phabet, then balance on letters pass to balance on factors of arbitrary length. Finally, we describe the
dynamical dimension group for some S-adic subshifts (see Section for details), which are a gener-

alization of substitutive systems, obtained from an infinte composition of substitutions (Theorem|3.39)).
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Given a topological dynamical system (X, .S, G), there exists a way to decompose the space X into
towers, which is extremely useful when dealing with invariant measures and continuous functions de-
fined on X. This decomposition is originally attributed to Kakutani and Rokhlin in the case G = Z.
It is the fundamental tool we use in this work to approach both the study of dimension groups in the
case of minimal Z-actions and the problem of realization of Choquet simplex as the set of invariant
measures of congruent monotileable amenable groups. We briefly describe the subject in the next

paragraph.

Tower partitions. A tower partition of the system (X, S, G) is a partition of X of the form
P={T""(By):ue F,1<k<d},

where d € N, F}, C G are finite subsets, and By, C X are clopen for all 1 < k < d. The sets of the form
Tv"'(By) are calle the atoms of P. For a given 1 < k < d, the set Uuer, T (By,) is called the kth

tower of P, By is its base and |Fy| its height. In the case of Z-actions, tower partitions have the form
P={T"B;:1<i<d,0<j<h;}.

It is classical (see for instance [Ver81],[Pu89l Section 3],[DHPI8, Section 2.9], [BR10, Section 6.4.1])
that tower partitions always exist for Cantor minimal systems given by Z-actions. Moreover, given a

Cantor minimal system (X, S,Z) and a point ¢y € X, there always exists a sequence of tower partitions
(Pn)neN = {TjBi,n 1< < dn70 S] < hz,n}

verifying the following conditions,
(KR1) nlziZdn Bin = {zo},
(KR2) P41 is finer than P, for all n € N.
(KR3) U,,en Pn generates the topology of X.

Given a sequence of tower partitions (P, )nen of X, the nth-incidence matrix of (P, )nen is the following
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dn+1 X dp-integer matrix,
Qnli,j) = {0 <€ < hiny1: T*Bipni1 C Bin}l V1<i<dp41, V1< j<d,.

The existence of appropriate tower partition sequences (satisfying conditions similar to (KR1)-(KR3))
is also true for actions of congruent monotileable amenable groups, as it is proved in Proposition [5.2
and we use it in Chapter [5] to, given any Choquet simplex K and any congruent monotileable group
G, construct a minimal G-subshift whose set of invariant measures is affine homeomorphic to K.

In the case of Z-actions, we have carefully analyzed the relevance of conditions (KR1)-(KR3) in the
computations related to the dynamical dimension group and we have replaced (KR3) for a weaker
condition which we show sufficient to almost every computations (see Proposition for details).

As we will see in Chapter [2| the dynamical dimension group of a system (X,T") corresponds to an
inductive limit of a suitable sequence of tower partitions, also called Kakutani-Rokhlin partitions. We
point out the article [KW04], where the authors develope an algorithm, called TA (tower algorithm),
to compute the dynamical dimension group and the infnitesimal subgroup of Cantor minimal systems,
given an appropriate sequence of tower partitions.

Tower partitions are also useful in the study of the full group and topological full group of a system.
See for instance [BK00], where the authors show how to completely describe the topological full group
of a Cantor minimal system by looking at some convinient sequence of tower partitions (see [BKOO,

Theorem 2.2]).

The notion of tower partition is closely related to that of a Bratteli diagram. A Bratteli diagram is
a special kind of infinite graph introduced by Bratteli in [Br72]. It is a pair (V, E) where the set of

vertices V' and the set of edges E can be written as a countable union of non-empty finite sets,
V=VyuWhuWu..- and FEF=F UFE,U---,

with the property that Vj is a single point x¢ and there exists a range map r : E — V and a source
map s : E — V so that r(E,) C V,, and s(E,) C V,,_1. Also, we assume that s~!(v) # () for all v € V
and 7~ (v) # 0 for all v € V' \ V. An ordered Bratteli diagram (V, E,>) is a Bratteli diagram (V, E)
together with a partial order > on E such that e, e’ € E are >-comparable if and only if r(e) = r(€).
An ordered Bratteli diagram determines a sequence of incidence matrices, (M, ), where each M, has

|Vy,| rows and |V;,—1| columns, and M, (i, j) is the number of edges of E,, going from v;1V;,_1 to v; € V.
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The diagram is called stationary if all V,,’s have a constant cardinality k& and the incidence matrices
are the same k x k matrix for all levels. A diagram which has a uniformly bounded number of vertices
at each level is called a diagram of finite rank.

Given an ordered Bratteli diagram B = (V, E, >), it is possible to put a dynamic on it in the following
way (this is an original idea of Versik, [Ver85]): Let Xp denote the space of infinite paths on E, that
is,

Xp = {(61,62, . ) e € Ei,'r(ei) = 8(614.1) Vi € N}

(We assume that Xp is infinite). We endow X p with a topology by giving a basis of open sets, namely

the family of cylinder sets,

[617627"' ’ek]B:{(f17f27"') € Xp: fi =e¢; for alllgzgk}

The cylinder sets are also closed. The space Xp endowed with this topology is called the Bratteli
compactum associated to B. A minimal path of B is an element x = (e1,e3,--+) of Xp such that for
all n € N, e, is minimal according to >. We define analogously a maximal path of B. Under certain
conditions (we refer [GPS95| Section 3] for details), the compactum associated to an ordered Bratteli
diagram is a Cantor space and it contains exactly one minimal path and one maximal path. In this
case, we denote Xy, and Tpg,; the minimal and maximal paths respectively, and we can define the
Versik map Vg on Xp as follows: Vp(ZTmaz) = Tmin; if © = (e1,e2,--+) is not the maximal path, let
k be the smallest integer such that e is not a maximal edge, let fi be the sucesor of e; on Ej, and
define Vi(x) = (f1, fo, - fu—1, fis €k+1, €kt2, -+ ), Where (f1,- -+, fx—1) is the minimal finite path on
Ey0FE5o0--- with range equal to s(fx). The system (Xp,Vp,Z) is called a Bratteli- Vershik dynamical
system.

The key tool to prove the characterization of orbit equivalence and strong orbit equivalence on [GPS95]
is what is known as the Bratteli-Vershik Model Theorem: every Cantor minimal system given by an
action of Z is conjugate to a Bratteli-Vershik dynamical system, that is, for every Cantor minimal sys-
tem (X, S,Z) there exists a (simple) ordered Bratteli diagram B such that (Xp, Vg, Z) is conjugate to
(X, S,Z). This was proved in [HPS92]. Given a Cantor minimal system (X, S, Z), the idea is to obtain
the Bratteli-Vershik system conjugate to it by constructing a sequence of tower partitions (P )nen
where, at each level, the number of vertices of the diagram corresponds to the number of towers of P,

and the edges between succesive levels are determined and ordered according to the incidence matrices

of (Pn)neN .

xXvi



It is shown in [DHS99, Theorem 1] that the family of Bratteli-Vershik dynamical systems associated
to stationary, prperly ordered Bratteli diagrams is the disjoint union of the family of substitution
minimal systems and the family of stationary odometer systems.

Bratteli diagrams are also a useful tool to describe the invariant measures of dynamical systems. See
for example [BR10), Section 6.8], and the articles [BKMS10] and [BKMS12], where the authors study
the set of invarant measures on stationary and finite rank Bratteli diagrams.

When dealing with minimal Z-actions on the Cantor space one can decide to work directly with tower
partitions or to pass to Bratteli-Vershik models. We do not adopt the approach of Bratteli diagrams
in this work. We refer to [HPS92],[GPS95],[BR10, Chapter 6] or [DHS99] for details on this interesting
subject and on the interaction between tower partitions and Bratteli diagrams. We also recommend

the survey [BKalb| for more on Bratteli diagrams and invariant measures.

This text is organized in five chapters. The first one is devoted to general definitions and background
and to fix the notation we use through the text. In the second one we present in detail the concepts
related to tower partitions for minimal Z-actions on the Cantor space; we give some results about
the relation between certain well-chosen sequences of tower partitions and the image subgroup, the
group of infinitesimals and the dynamical dimension group of a minimal Z-subshift. In Chapter 3 we
apply results of Chapter 2 to the study of some properties of substitutive and S-adic systems, namely
dimension groups and balance, and in Chapter 4 we do the same for dendric and eventually dendric
subshifts. In Chapter 5 we study the problem of realization of Choquet simplices as sets of invariant
measures of actions of congruent monotileable amenable groups; we introduce the notion of congruent
monotileable amenable group, we prove that this class of groups is larger than that of residually fi-
nite amenable groups and that for any Choquet simplex K and any congruent monotileable amenable

group G there exists a minimal G-subshift (X, S, G) such that M(X, S, G) is affine homeomorphic to K.

The work presented in this PhD thesis is partially included in the following three articles,

e Berthé, V., Cecchi Bernales, P., Balancedness and coboundaries in symbolic systems; Theoretical

Computer Science, 2018, https://doi.org/10.1016/j.tcs.2018.09.012.

e Cecchi Bernales, P., Cortez, M.IL.; Invariant measures for actions of congruent monotileable

amenable groups; Groups, geometry and dynamics, 2019, DOT 10.4171/GGD/506.
e Berthé, V., Cecchi Bernales, P., Dolce, F., Durand, F. Leroy, J., Perrin, D., Petite, S., Dimension

xXvii



group of dendric subshifts; Preprint.
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Chapter 1

Definitions and background.

In this introductory chapter, we give all basic notions and background required to understand the

results and examples presented in Chapters and

A topological dynamical system or simply a dynamical system is a triple (X, S, G) where X is a compact
metric space, G is an infinite countable group and S : X x G — X is a continuous left action of G
on X. For all g € G, S9 denotes the homeomorphism induced by the action of g on X. If we refer to
a dynamical system as a pair (X,7T), that means that G = Z and the action of an element n € Z is
given by S(z,n) =1T"(x).

Through all the text, G will be an infinite countable group.

A dynamical system (X, S, G) is said to be minimal if X admits no non-trivial closed and G-invariant
subset, that is, if Y C X is a closed subset such that S9(Y) C Y for all g € G, then either Y = () or
Y = X. Note that (X, T) is minimal if and only if the only closed T-invariant subsets of X are ) and
X itself. Minimality is equivalent to the fact that for all x € X, the orbit of x under the action of G
is dense in X. We say that (X, S,G) is free or aperiodic on Y C X if S9(z) = x implies g = 1¢, for
every x € Y. If Y = X we just say that the subshift is free. We say that (X, S, G) is equiconinuous if
for every e > 0 there exists § > 0 such that whenever z,y € X satisfy d(z,y) < d, d(S9(x), S9(y)) <
for all g € G.

Let (X1,51,G) and (X2, S2,G) be two dynamical systems given by two actions of the same group
G. We say that (X3, 52, G) is a factor of (X1, 51, G) if there exists a continuous surjective function
¢ : X1 — X9 which commutes with the actions of G, that is, for all z € X, for all ¢ € GG, one has
(5] (x)) = S§(p(z)). If ¢ is also injective, the two systems are said to be conjugate.
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1.1 Coboundaries.

Given a dynamical system (X, T), the coboundary map 8 : C(X,R) — C(X,R) is defined by

Bf=foT 1.

Elements on the image of § are called coboundaries. If f,g € C(X,R) satisfy f — g € SC(X,R), we
say that f and g are cohomologous. Note that 8 maps C(X,Z) to C(X,Z). For any f € C(X,R),
x € X and n € N, define

(@) = f(@) + f(Tx)+ -+ f(T""a).

The family (f (n))neN is called the cocycle of f. The following classical result is a characterization of

coboundaries.

Theorem 1.1 (Gotshalk-Hedlund [GH55]). Let (X, T) be a minimal topological dynamical system.
The map f € C(X,R) is a coboundary if and only in there exists xg € X such that the sequence
(") (x0))pen is bounded.

Corollary 1.2. Let (X, T) be a minimal dynamical system. If f € C(X,R) is a non-negative coboun-

dary, then it is identically zero.

Proof. By Theorem there exists zg € X such that (f(z¢))nen is bounded, but by minimality,
f(T"xy) > %sup f for infinitely many values of n, so that lim,_ .. f(™(2) — oo unless sup f is

identically zero. O

Proposition 1.3. ([DHPI1S8, Proposition 4.2]) Let (X,T) be a minimal dynamical system. If f €

C(X,Z) is a coboundary, then it is the coboundary of some integer-valued function.

Proof. Let T = R/Z be the one-dimensional torus and 7 : R — T the canonical projection. Let ¢
denote the coboundary map defined on C(X,T) in the same way as on C(X,R). Note first that if
v € C(X,T) and By = 0, then ~ is constant. Indeed, let é € T and set Y = v 1({¢}). The subset Y
is closed since 7y is continuous and it is T'—invariant since Bv = 0. The system being minimal, if YV is
nonempty, it is necessarily the whole space X.

Suppose f € C(X,Z) is the coboundary of g € C'(X,R). Then, goT(z) — g(x) € Z for all z € X.
This implies that 3( o g) = 0 and then there exists & € T such that 7 o g(z) = ¢ for all # € X. Let ¢
be any element in 7 !({¢}) and define h(z) := g(x) — c. Since roh =0, h € C(X,Z), and it is clear

that B(h) = B(g) = /- 0
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1.2 Z-subshifts.

Let A be a finite non-empty set of cardinality d, which we call an alphabet. The sets A% and AN
endowed with the product topology of the discrete topology on each copy of A are compact metric
spaces. We refer to the elements on A% as infinite words and to those on AN as one-sided infinite
words.

The free monoid A* is the set of all words with symbols in A, including the empty word, which we
denote €. For a € A and for w € A*, the non-negative integer |w|, stands for the number of occurrences
of the letter a in the word w, and |w| stands for the length of w, that is, the total number of letters
appearing on w. We use the convention |e| = 0. The ith letter of w is denoted w; by labelling indices
from 0, i.e., w = wp -+ Wy —1- A factor of a finite word w € A" is defined as a finite concatenation
of some consecutive letters occurring in w. A factor of an infinite word or a one-sided infinite word
is defined in the same way. For v,w € A* such that v is a factor of w, the non-negative integer |w|,
stands for the number of occurrences of v in w. We use the notation u < w (resp. u < z € A% or AY)
for u a factor of w (resp. of x). The set of factors £, of x € A% or AY is called its language. More
generally, any set of finite words with symbols in an alphabet A is called a language on A. For an
infinte word & € A% or a one-sided infinite word x € AN, for n > 1, we use the notation Ty to refer
to the word x¢y -+ - z,_1, and T(_pp) tO refer to x_y,41 -+ xp—1, when z € AZ.

Recall that a non-empty compact metric space X is a Cantor space if it is totally disconnected (it has
no non-trivial connected subsets) and has no isolated points. Equivalently, X is a Cantor space if it has
no isolated points and a countable basis of clopen (closed and open) subsets. Up to homeomorphism,
there exists only one Cantor space. If #.4 > 2, the space A% has no isolated points and it is a Cantor
space, whose countable basis of clopen subsets is given by the family of all cylinder sets: given any

word w € A* and an integer n, the cylinder of w of index n is the following set,
(Wl ={z € A% 12y Ty i1 = W}

For all w € A*, we denote [w] the cylinder of w of index 0 and we call it the cylinder of w.

Let T denote the shift transformation acting on A%, defined by T((tn)nez) = (Uni1)nez. A Z-subshift
on A or simply a subshift on A is the dynamical system given by the pair (X,T|x), where X is a
closed shift-invariant subset of A%, endowed with the induced topology. We usually denote (X, T) the
system (X, T|x) to avoid an overcharged notation. We use the word subshift indistinguishly to refer

to both the space X C A” or the dynamical system (X,7). When X = A%, we refer to (X,T) as the



CHAPTER 1. DEFINITIONS AND BACKGROUND. 4

Z-fullshift on A or the fullshift on A. From the previous discussion, every subshift on A is a Cantor
system. An element x € X is said to be eventually periodic if there exist N,k € N such that for all
n>N, Tpik = Tn.

Given any infinite word = in A% (or infinite word in AY), we define the subshift generated by x, (X, T),
where

X, ={yec A? :Vw,w <y = w < x}.

Equivalently, X, is the closure of the orbit of x under the action of the shift 7. If (X, T) is a subshift
on A, then its language Lx is defined as the set of factors of elements of X. For any n > 1, £, (X)
denotes the set of factors of length n of elements in X.

An infinite word = (2,)nez € A% is said to be uniformly recurrent if every factor occurring in x
occurs infinitely often and with bounded gaps, that is, for every w < x, there exists s such that, for
every n, w is a factor of the finite word z,,...x,15—1. It is well known that the subshift (X,T) is
minimal if and only if for all x € X, z is uniformly recurrent (see for example [Quel0, Proposition

4.7] or [BR10, Proposition 7.1.5]).
Example 1.4. Substitution subshifts.

As a first example we introduce substitution subshifts. We give here just basic definitions and prop-
erties, since they will be treated on detail in Chapter

Let A be a finite alphabets with |A| > 2. A substitution on A is a non-erasing morphism on the free
monoid A*, that is, a map o : A* — A* satisfying o(ab) = o(a)o(b) for all letters a,b € A, and such
that there is no letter in A whose image under o is empty. A substitution o extends to a map from

AZ to A% by concatenation. The subhift generated by a substitution o is the pair (X4, T), where
X, ={ze Al :Yw,w<z=>JacAIneN:w=<o"(a)}

Let A, B be two finite alphabets. Given a non-erasing morphism o : A — B*, the incidence matriz M,
of o is the |B| x | A|]-matrix whose coefficients are M, (b,a) = |o(a)|p, for all a € A, b € B. A substitution
o on A is said to be primitive if there exists a power of M, which is positive. Equivalently, o is primitive
if there exists a positive ineger n such that for all a,b € A, b occurs in 0™(a). The incidence matrix
of a substitution does not contain all the information about it, since the order of letter occurrences
is missing, but we will see thet properties of M, determine some of those of (X,,T), for example,

frequencies (see Chapter |3, Section [3.3.1). It is well known that subshifts generated by primitive
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substitutions are minimal (see for example [Quel0]).
Example 1.5. Sturmian subshifts.

Sturmian sequences were for the first time introduced with this name in [HM40]. A fundamental
work on Sturmian sequences is [CH73|]. There are many equivalent ways to define Sturmian subshifts
(see for example [BR10], Chapter 1, for a combinatorial definition in terms of language complexity).
We will explain in Chapter [3| their S-adic characterization. Here we present their characterization as
codings of irrational rotations on the circle.

Let a € (0,1) be an irrational value, and consider the rotation by angle « defined on the one-
dimensional torus T = R/Z by

Ry(z) =2+ « mod 1.

The itinerary of a point x € R/Z under R, is the following sequence in {0, 1}

0 if R'(z) € [0,1— a)

feloln=0 1 4 R'(z) €[l —a,1).

Such an itinerary is called a Sturmian sequence or Sturmian word.

Given any a € (0, 1) irrational, the closure of the set of all itineraries of points in R/Z under R, de-
noted X,, is a subshift on A = {0, 1} and it is called a Sturmian subshift. Indeed, since « is irrational,
X, corresponds to the orbit closure of any itinerary associated to the rotation R, so it is the subshift
generated by any itinerary. It is known that Sturmian subshifts are minimal. As dynamical systems
given by actions of Z, (T, R,) is a topological factor of (X4, T), where T is the shift. Two Sturmian
subshifts (X,,T") and (Xg,T) are conjugated if and only if a = 3 (see for example [BS94] or [HM40]).
All previous results and their respective proofs can be found in the surveys on Sturmian words pre-
sented on [PEF02, Chapter 6] or [Lo02, Chapter 2]. A typical example of a Sturmian sequence is the
Fibonacci word: it is defined by the Fibonacci morphism op : {0,1} — {0,1} given by or(0) = 01 and

op(1) = 0. If we iteratively apply or we obtain the one-sided infinite sequence
o%(0) = 01001010010010100101001001010010 - - -,

which is called the Fibonacci word. Thus, the subshift generated by the Fibonacci word is a Sturmian

subshift. This coincide with the substitutive subshift (X, ., T).

Example 1.6. Toeplitz Z-subshifts.
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Toeplitz Z-subshifts (or simply Toeplitz subshifts) were originally introduced in [JK69]. Since then,
they have seen extensively studied and generalized to other group actions. We present the example of
Toeplitz G-subshifts in Section [[.3] For more details in the subject of Toeplitz Z-subshifts we refer to
[Do95].

An infinite word (x,,)nez with symbols in the alphabet A is said to be a Toeplitz word if for all n € N
there exists p € N such that for all k € Z, x,, = Ty 1p-

A Z-subshift (X,T) is said to be a Toeplitz subshift if X is the orbit closure under the shift of some
Toeplitz word. Toeplitz subshifts are known to be minimal, since Toeplitz sequences are uniformly

recurrent (indeed, they are regularly recurrent, see [D0o95l, Section 5 and 7] for details).

1.2.1 Return words.

Given a minimal symbolic system (X,T"), on the alphabet A and a letter a € A, a word w with
wa € Lx is said to be a left return word to a if a is a prefix of wa. It is said to be a first left return
word to a if a is a prefix of wa and there are exactly two occurrences of a in wa. Similarly, a word w
with aw € Lx is said to be a right return word to a if a is a suffix of aw. It is said to be a first right
return word to a if a is a suffix of aw and there are exactly two occurrences of a in aw. Right and left
return words to a factor are defined analogously.

Since (X,T) is minimal, the language Lx is uniformly recurrent, which implies that for every word
w € Lx, there exists a positive integer N, such that every word of length grater than V,, contains at
least two occurrences of w. Thus, for all w € L,,, the length of the first return words to w is bounded,

and therefore the number of first return words to w is finite.

1.2.2 Cylinder functions

Let (X,T) be a Z-subshift. A function f € C(X,R) is called a cylinder function if there exists n > 0
such that for all z € X, f(z) depends only on zg .

Proposition 1.7. ([DHP18, Proposition 4.13]) Let (X,T) be a dynamical system. Every function
belonging to C(X,Z) is cohomologous to some cylinder function in C(X,Z).

Proof. Let f € C(X,Z). Since f is integer-valued, it is locally constant, and then there exists k € N
such that for all z € X, f(z) depends only on x(_j ). Therefore, g(z) := f o T*(x) belongs to
C(X,Z) and depends only on x|y o) for all z € X, i.e., it is a cylinder function in C'(X,Z). Finally,

f—g=f— foT¥() is a coboundary because it is a sum of coboundaries. O
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Proposition 1.8. ([DHP18]) Let (X,T) ne a dynamical system. If f € C(X,Z) is a cylinder function

and a coboundary, then it is the coboundary of some cylinder function.

Proof. Let f € C(X,Z) be a cylinder function and a coboundary, then there exists g € C(X,R) such
that f = ((g). Since g is locally constant and f is a cylinder function, we can choose k € N large
enough so that for all z € X, f depends only on zjy;) and g depends only on z(_j ;). We claim
that for all x € X, g depends only on ;). Indeed, suppose that y,z € X satisfy yjox) = 2[0,2)-
Since f(z) depends only on z ), f®)(x) depends only on Z[,2k) and thus f®(y) = f®)(2). Since
(Tky)(,;ﬁk) = (Tkz)(,k,k), one has g(T*y) = g(T*z). Finally, recall that since f = £(g), then for all
s € Nand for all z € X, f)(z) = g(T*z) — g(z), so we obtain that

9(y) = g(T*y) — fO(y) = g(T*2) — f9(2) = g(2).

Therefore, g is a cylinder function depending on the first 2k coordinates. O

Let (X,T) be a subshift. For n > 0, let R, (X) denote the set of continuous functions from £,,(X) to
R. The symbolic coboundary map By, : Rp(X) — Rp+1(X) is given by

¢ = (Bnd)(aoar - --an) = ¢p(a1---an) — ¢lag---an—1) Vagai---an € Lny1(X). (1.1)

We say that ¥ € R,,+1(X) is a symbolic coboundary if there exists ¢ € R, (X) such that ¢ = 5,,¢.
If f € C(X,R) is a cylinder function depending on the first n coordinates, it has an associated function
¢f : Ly(X) = R which is defined by ¢¢(agar ---an—1) = f(x) for any = € [apai - - anp—1]. It is called

the symbolic map associated to f.

1.3 G-symbolic systems.

For any infinite countable group G and any finite alphabet A, the set A% endowed with the product
topology of the discrete topology on each copy of A is again a compact metric space. The elements
of A will be refered as configurations. In this context, the analogue of a word in the context of
Z-actions, is what we call a pattern, or a finite configuration: an element P € A where F is a finite
subset of G. For every pattern P € AY | we define the cylinder of P in the same way as in the context
of Z-actions, that is,

[P = {z € A% : z|p = P}.
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The set of all cylinders associated to patterns in A* forms a countable basis of clopen sets of A%, and
A% is again a Cantor space whenever |A| > 2.

Let T denote the G-shift action of G on A, defined by T¢(z)(h) = z(g~'h), for every g,h € G and
z € AS. We say that a pattern P has an occurrence on the element z € AS if there exists ¢ € G
such that T (z)|p = P. A G-subshift of A is the dynamical system given by the triple (X, Tg|x,G),
where X is a closed subset of A® which is invariant by the G-shift action. When X = A%, we refer

to (X, T,G) as the G-fullshift.

To present the following examples of G-symbolic systems we introduce a notion which will be crucial
in Chapter [5| namely, the notion of residually finite group. We refer to [CCI0, Chapter 2] or Section
for details. A group G is said to be residually finite if for each element g € G with g # 1g there
exists a finite group F' and a homomorphism ¢, : G — F such that ¢4(g) # 1r. Equivalently, there

exists a sequence of finite index normal subgroups of G, {Gy, }nen, such that (), .y Gy is trivial.
Example 1.9. Toeplitz G-subshifts.

In an analogous way as in Example we say that a configuration z € A% is a Toeplitz configuration
if for every g € G there exists a finite index subgroup I' of G such that for all ¥ € T, (v 1g) = z(g).
A G-subshift (X, T, G) is said to be a Toeplitz subshift if X is the orbit closure under the shift of some
Toeplitz configuration. Toeplitz G-subshifts are known to be minimal. We refer to [Co06], [CP0§] and
[CP14] for details on the dynamical properties of Toeplitz G-subshifts.

Note that if z € A® is an aperiodic Toeplitz configuration, then G is residually finite. Indeed, since
for all g € G there exists a finite index subgroup I'y such that x(y~1g) = z(g) for all v € ', there
exists a subgroup of G defined by

I'= ()T,

geG

Note that this intersection is trivial: if there exists v € T' such that v # 1, then z(y~1g) = z(g) for
all g € G, since v € I'y for all g € G. This implies that T7(z) = z, that is, = is periodic, which is a
contradiction. For each g € G we can assume that I'y is normal in G if it is not, there exists a normal
finite index subgroup H, which is contained in I'y. Finally, since G is countable, (I'y),e defines a
sequence of finite index normal subgroups of G with trivial intersection, thus G is residually finite.

Residually finite groups are thus the only groups that admit aperiodic Toeplitz configurations.

The next one is an example of a G-action on the Cantor space which is not a subshift.
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Example 1.10. Odometers.

Let G be a residually finite group and let (G,,)nen be a decreasing sequence of finite index normal
subgroups of G. For all n € N, the map 7, : G/Gny1 — G/G,, given by 7,(9Gn+1) = gGy, is a well

defined epimorphism. We define the following inverse limit

X =lim(Gp, ) = {(xn)nen € H G/Gy, : mp(Tpy1) = xp for alln > 0} C H G/G,.
n n>0 n>0
The space ano G/G,, endowed with the product topology of the discrete topology on each G/G,, is

compact and X is a closed subspace of it. We define the following action of G on X,

Sg((xn)HEN) = (gxn)nEN-

The system (X, S, G) is called a G-odometer. G-odometers are free minimal eqiucontinuous systems
and free Teoplitz G-subshifts are characterized as the minimal almost one-to-one extensions of G-

odometers (see [Co06] and [CP08] for details).

1.4 Invariant measures.

Given a topological dynamical system (X,T,G), an invariant measure of (X,T,G) is a probability
Borel measure p such that for all g € G, u(T9(A)) = u(A), for every Borel subset A C X. We denote
M(X,T,G) the set of all invariant measures of (X,7,G). An element p € M(X, T, u) is said to be
an ergodic measure if whenever T9(A) = A for all g € G for some Borel set A C X, either u(4) =0
or u(A) = 1. The system (X, T, G) is said to be uniquely ergodic if M(X,T,G) is a singleton.
Recall that a group G is amenable if it admits a Folner sequence of finite subsets (F},)n>0, that is, a
sequence verifying

lim Fng\ Fal

A =0 Vged.
(See Chapteror [CC10, Chapter 4] for details). There are many characterizations of amenable groups.
It is a theorem by Bogolyubov [Bog39| that a group is amenable if and only if for all continuous action
of G on a compact metric space X, there exists a probability masure on X which is invariant under the
action of G. Later, Giordano and de la Harpe showed in [GAH97] that for a group G to be amenable

it is necessary and sufficient that any continuous action on the Cantor set has an invariant probability

measure. So in particular when we deal with amenable groups we always have that M(X,T,G) is
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non-empty.
Free groups are not amenable (see Chapter |5| for a proof).

From now on we assume that every group we work with is infinite, countable and amenable.

1.4.1 The Choquet simplex of invariant measures.

A compact convex metrizable subset K of a locally convex real vector space is said to be a Choquet
simplex or just a simplex if for each v € K there is a unique probability measure m supported on
ext(K) such that fwt( K) xzdm(z) = v. This is a generalization of the unitary simplex in R", that
is, the convex hull of the canonical basis {e1,--- ,e,}, whose extreme points are exactly ey, - ,ep,.
There exists a Choquet simplex whose set of extreme points is dense, this simplex is unique up to affine
homeomorphism and it is called the Poulsen Simplex. It has the surprising property of universality:
every Choquet simplex is affinely homeomorphic to a face of the Poulsen simplex. We refer to [P61],
[ILOST8| and [FLP] for more on the Poulsen simplex.

The set of probability measures on a compact metric space X can be identified with a convex subspace
of the dual C'(X,R)* endowed with the weak* topology (this is a consequence of the Riesz Represen-
tation Theorem). For a dynamical system (X,7,G), it is well known that the set M(X,T,G) is a
Choquet simplex whose extreme points are the ergodic measures. This is a consequence of the Ergodic
Decomposition Theorem (see for example [GI03]). This implies in particular that if G is amenable,
then every dynamical system (X,7T,G) admits an ergodic invariant probabilty measure. We denote
E(X,T,Q) the set of ergodic invariant probability measures on X.

If (X, T, G) has a finite number of ergodic measures, M (X, T, G) is affine homeomorphic to the unitary
simplex of R™, for some n € N. It is known (see [GW97]) that the Poulsen simplex is the simplex
of invariant measures associated to the G-fullshift action of any countable amenable group G on the

Cantor space {0,1}¢.

1.4.2 Invariant measures and frequencies in symbolic systems.

Let (X, T) be a dynamical system given by an action of Z. For all invariant measure u € M(X,T), the
quadruple (X, T, B, ), where B is the Borel o-algebra on X, is a measure-theoretic dynamical system
(we refer to [W82] for details): B is a o-algebra on X, u is a probability measure defined on B, T
is p-measurable and u(A) = u(T~1A) for all Borel subset A. In this context we have the following

classical result.
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Theorem 1.11 (Birkhoff Ergodic Theorem). Let (X,T, B, ) a measure-theoretic dynamical sys-
tem. Let f € L'(X,R). The sequence

1n—1 )
— foT
2

converges ji-a.e. to a function f* € L1(X,R) which verifies f*oT = f* u-a.e. and fX fdu = fX fdu.
If i is ergodic, for all f € L'(X,R), the above sequence converges ji-a.e. to fX fdu.

n>0

If the system (X,7T) is uniquely ergodic, then we have the following stronger result (see for example

[W82] for a proof).

Theorem 1.12. Let (X,T) be a dynamical system. Then (X,T) is uniquely ergodic with measure

if and only if for all continuous function f: X — R, the sequence
1 n—1
k=0

converges uniformly to the constant value [ v fdu.

n>0

Suppose now that (X,T) is a subshift on the alphabet A. Let z € X. The frequency f,,(x) of a factor

w € Lx is defined as the following limit, when it exists,

folw) = lim, on + 1

Note that this quantity does not always exist. Consider for example the following one-sided infinite

word on the alphabet A = {a, b},
zo = abaabbaaabbbaaaabbbb - - -

and take any z € X;,. It is clear that neither f,(z) nor fy(x) exists. The word x is said to have

|zk"'$k+2n‘w

i converges to fy, () when n tends

uniform frequencies if for every factor w € Lx, the ratio
to infinity, uniformly in k. This means that the frequency of w does not depend on the place of x we
look at.

We know that £(X,T) is non-empty and for all p € £(X,T), (X,T,B,u) is a measure-theoretic

dynamical system. We thus can apply Theorem to characteristic functions of cylinders (see
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Section [1.2). Note that if w is any word in L£x and z any point in X, then the number of times that

W OCCUrs I T[_p 5 41) 18

n—|w|—1

|l'_n"'l'n_|w|_1’w = Z X[w] OTi(.Q?)7

it=—n

where x|, is the characteristic function of [w]. So we obtain that

-1 n—1—|w|
o w0 Tnlw < W ;
A T et A gt | 2 T IR 2 X o T o)

By applying Theorem we know that 1 S wjoT "1 and 1 Z?:_Ol_‘w‘ Xjw] 0 T" converges ji-a.e.
to p([w]), so we get the following result.

Theorem 1.13. Let (X,T) a subshift and p € E(X,T). Then, for p-almost every infinite word x € X
and for any factor w € Lx, the frequency f,(x) exists and equals p([w]).

Similarly, if we apply Theorem to a minimal subshift, we obtain the following result.

Theorem 1.14. Let (X,T) be a minimal subshift. Then (X, T) is uniquely ergodic if and only if for
all x € X, x has uniform frequencies. In this case, for all x € X and for all w € Lx, the frequency

fuw(x) is equal to p([w)), where wu is the unique invariant measure of (X, T).

The two previous results give us the idea that there could exist minimal non-uniquely ergodic systems
in which every point has frequencies in any factor but not uniform frequencies. We know that this is
not the case thanks to the following result by Oxtoby [Ox52]. See [BR10), Proposition 7.2.11] for an

elegant proof.

Theorem 1.15 ([Ox52]). If (X,T) is a minimal non-uniquely ergodic subshift, then there exists an
infinite word x € X and a factor w € Lx such that f,(x) is not defined.

So in the case of minimal subshifts, unique ergodicity is equivalent to the existence of frequencies, and
if (X, T') is uniquely ergodic, then for all z € X the frequency of the factor w in x is equal to p(jw]).
In the latter case, we denote by u,, the frequency of w (in any point z).

Substitution subshifts arising from primitive substitutions are known to be uniquely ergodic (see for
example [Chapter 5/|[Quel0]). In Chapter |3} Section we summarize some results about how to

compute frequencies in this case.
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1.4.3 Balance in symbolic systems.

We now introduce the notion of balance for Z-subshifts and relate it with frequencies studied in section
1.4.2)
Let (X,T) be a subshift. For an infinite word = € X and a factor v € Lx, we say that x is balanced

on v if there exists a constant C, such that for all w,w’ € Lx with |w| = |w’|, one has
[wlo = [w'ls] < Co.

We say that x is balanced on letters if it is balanced on all letters in A, and that it is balanced on
factors (resp. balanced on the factors of length mn) if it is balanced on all factors of X (resp. on all
factors of X of length n).

If (X,T) is a minimal subshift, then since all elements have the same language, balance is a property
of the language Lx and does not depend on the choice of a particular point. Thus, in the case of
minimal systems, we will say that the system or the language is (or is not) balanced in some factor.
The following proposition (which is a rephrasing of [Adam03, Lemma 23]) states that balance is
preserved when decreasing the length of factors. It is thus sufficient to prove that balance does not

hold for some length to obtain that it does not hold for all larger lengths.

Proposition 1.16. [Adam03, Lemma 23] If an infinite word x is balanced on a factor v, then it is
balanced on the prefiz of length |v| — 1 of v. If a minimal subshift (X,T) is balanced on factors of
length n + 1, then it is balanced on factors of length n.

Proof. Let x € A”. For every n, we consider an alphabet A, and a bijection 6, : A, — L, (). The
word z(") := @, (x), defined over the alphabet A,,, codes factors of length n according to the bijection
0, in the same order as in x with overlaps and without repetition. The map Hnownoegil is a morphism
from the monoid A}, | to Ay, that maps letters to letters: it maps the coding of a block of length
n + 1 to the coding of its prefix of length n. The word z(™ is thus the image by a letter-to-letter
substitution of the word 2"+, Indeed z(™ = 6, o ,, 0 0, (z(" V).

We conclude by noticing that the action of a letter-to-letter substitution preserves balance. O

The following proposition states a relation between balance and frequencies. Its proof can be found

in [BD14l Proposition 2.4] for factors of length 1. It extends easily to factors of arbitrary length.

Proposition 1.17. Let (X,T) be a minimal subshift. The language Lx is balanced in the factor v if

and only if v has a frequency p, and there exists a constant B, such that for any factor w € Lx, we
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have

[lwlo = polw]] < By

Equivalently, Lx is balanced in the factor v if and only if v has a frequency u, and there exists B,

such that for all x € X and for all n > 1,

||x[0,n)|v — pyn| < By,

The previuos result tells us that in particular balanced minimal systems are forced to be uniquely
ergodic. Balance is indeed a property which is stronger than unique ergodicity and that measures the

quality of the convergence of %|$[o,n)|v towards fi,.
Example 1.18. Balance in Sturmian subshifts.

Sturmian sequences were characterized in [HM40] as binary aperiodic sequences which are 1-balanced
on letters, that is, aperiodic sequences on A = {0, 1} such that given two factors of the sequence, w and
w’, having the same length, the difference between the number of 0’s (or 1’s) in w and the number of
0’s (or 1’s) in w’ is at most 1. This behavior was observed to extend to factors in [FV02], where it was
shown that every Sturmian sequence is balanced on every factor. More precisely, the authors proved
that if x € {0,1}? is a Sturmian word, then for all factors u,v,w of z, ||u|, — |v|w| < |w| whenever

|u| = |v|. However, this is not a complete characterization: not all such sequences are Sturmian.

Proposition 1.19. Let (X,T) be a minimal and uniquely ergodic subshift and let u denote its unique

invariant measure. Given a factor v € Lx, define
o= Xw] = Ho € C(X, R)~

Then, (X, T) is balanced on the factor v if and only if the map f, is a coboundary.

Proof. 1t is a direct consequence of Proposition and Theorem ]

1.5 Orbit equivalence and dimension groups.

Orbit equivalence and strong orbit equivalence are notions of equivalence between dynamical systems,
which are weaker than conjugacy. Strong orbit equivalence is characterized by a total invariant called
the dynamical dimension group of the system. We devote this section to recall some basic notions and

results regarding orbit/strong orbit equivalence and dimension groups.
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1.5.1 Orbit equivalence.

Two minimal dynamical systems (X1,71,G1) and (X2, T, G2) are said to be orbit equivalent if there
exists a homeomorphism ¢ : X7 — X5 sending orbits of the Gi-action onto orbits of the Ga-action,

that is, for all x € X, one has

({T{(2) : g € G1}) = {T3¢(x) : h € Ga}.

When the group acting on X is Z, orbit equivalence implies the existence of two maps n; : X1 — Z

and ng : Xo — Z (uniquely defined by minimality) such that, for all z € X7,
¢oTy(z) = T8 o ¢(x) and ¢ o T[> (z) = Ty 0 p(x).

The two minimal dynamical systems (X1,7}1) and (Xo,T2) are said to be strong orbit equivalent if nq
and ne both have at most one point of discontinuity. Such notion is natural since it was shown in
[Bo83| that if ny (or ng) is continuous, then the two systems are flip conjugated, that is, (X1,7T1) is
either congujated to (Xa,T) or to its inverse (Xa, Ty ).

1.5.2 Dimension groups.

An ordered group is a pair (G, GT) where G is a countable abelian group G and G is a subset of G,

called the positive cone, satisfying
GT+GTcG™, G"'n(-G")={0}, Gt -G"=aG.

We write a < bifb—a € Gt,and a < bif b —a € G" and b # a. An order unit for (G,G") is an
element u in G such that, for all @ in G, there exists some non-negative integer n with a < nu. We
say that an ordered group is unperforated if a € G and na € G for some a € G and n € N implies
that a € GT.

A dimension group (G,G™,u) with order unit u is an unperforated ordered group (G,G™") satisfying
the Riesz interpolation property: given ai,as,bi,bs € G with a; < b; (4,5 = 1,2), there exists c € G
with a; < ¢ < b;. Two dimension groups with units (G1,GY,u1) and (G2, Gy, us) are isomorphic
if there exists a group isomorphism ¢: G1 — G such that ¢(G]) = G5 and ¢(u1) = uz. Given a

dimension group with unit (G, G",u), a trace of (G,G",u) is a group homomorphism p : G — R such
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that p is non-negative (p(G*) > 0) and p(u) = 1. The collection of all traces of (G, G, 1) is denoted
by S(G,G*,u). It is known [EffS1] that S(G, G, u) completely determines the order on G. In fact,

Gt ={aecG:pa)>0,¥pe S(G,G",u)} U{0}.

An order ideal of (G,GT,u) is a subgroup J of G such that J = J* — J* (where J* = G* N J) and
such that whenever 0 < a < b € J, a € J. A dimension group (G,G",u) is said to be simple if it
contains no non-trivial order ideals.

The image subgroup of an ordered group with unit is defined as the following subgroup of R,

I(G.GYuy= [ 76
T€S(G,G+,u)

Given a dimension group with unit (G, G, u), an element a € G is said to be infinitesimal if p(a) = 0
for every trace p € S(G, G, u). The collection of all infinitesimals of G form a subgroup, called the
infinitesimal subgroup of G and denoted Inf(G, G, u). Note that G/ Inf(G, G, u) is also a dimension

group for the induced order.

1.5.3 Dimension group associated to subshifts and G-subshifts.

Let (X,T) be a dynamical system given by a Z-action. The dynamical dimension group of (X,T) or
simply the dimension group of (X,T) is the following triple,

KO(XvT) = (H(X7T)7H+(X7T)7 [1])7

where H(X,T) = C(X,Z)/BC(X,Z), [-] denote the class modulo SC(X,Z) of an element in H(X,T),

H*(X,T) is the set of classes of non-negative functions and 1 is the constant function equal to 1.

Theorem 1.20. ([HPS92]) If (X,T) is a Cantor minimal system, the triple K°(X,T) is a simple
dimension group. Futhermore, if (G,GV,u) is a simple dimension group, then there exists a Cantor

minimal system (X, T) such that K°(X,T) is isomorphic to (G,GT,u) as ordered group with unit.

The following result gives a connection between the dynamical dimension group of minimal Cantor

systems given by Z-actions and orbit equivalence.

Theorem 1.21. ([GPS95]) Let (X1,T1) and (X2, T2) two minimal Cantor systems. Then the following

are equivalent.
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1. (X1,T1) and (X2, Ty) are strong orbit equivalent if and only if K°(X1,T1) and K°(Xo,Ty) are

isomorphic as ordered groups with unit.

2. (X1,Ty) and (X2, Ty) are orbit equivalent if and only if K°(X1,T1)/ Inf(K°(X1,T1)) and K°(X2, Ty)/ Inf (K°(

are isomorphic as ordered group with unit.

Given an invariant measure u € M(X,T), we define the trace 7, on K%(X,T) by 7,([f]) := [ fdp.
It is shown in [HPS92] that the correspondence p — 7, is an affine isomorphism from M (X,T) to
S(K°(X,T)), so that traces of the dynamical dimension group K°(X,T) are the invariant measures
of the system (X, T) (see also [Ho95, Section 3]). This implies that the image subgroup of K°(X,T),
which is denoted I(X,T), is given by

1xn - () {[rrecxn).

HEM(X,T)

and the infinitesimals of K°(X,T), denoted Inf(X,T), are given by

Inf(X,T) = {[f] e HX,T): /fd,u =0Vu e M(X,T)}.

Remark 1.22. Note that the image subgroup I1(X,T) coincides with the additive group generated by

invariant measures of cylinders, that is

1(X.7)= () {ullw):we Lx)).

REM(X.T)
Indeed, the inclusion (e pqoxm) ({p([w]) :w € Lx}) € I(X,T) is obvious. For the converse inclusion,
let « € I1(X,T). By definition, for all p € M(X,T) there exists a function f € C(X,Z) such that
a= [ fdu. Since f € C(X,Z), f is cohomologous to a cylinder function g € C(X,Z) by Proposition
. One has o = [ fdu = [ gdu. Since g is a cylinder function, there exists a positive integer n such

that g can be written as the sum

g= > Lwxu,

u€Ln (X)

where L, (X) denote the set of factors of length n in Lx, L(u) € Z for all u, and X, denotes the

characteristic function of the cylinder [u]. Thus,

o= [odn= Y twnllu) € ({u(o]) v e Lx)).

u€Ln(X)
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Since this is true for all p € M(X,T), we conclude that a € (e pq(x,m) {([w]) : w € Lx}).

If (X, T) is uniquely ergodic with unique T-invariant measure yu, then H (X, T)/Inf(X, T) is isomorphic
to (I(X,T), (X, T)NR*, 1), via the correspondence

[f]+ Inf(X,T) — /fdu.

Note that since the projection of a coboundary on H(X,T) always belongs to Inf(X,T), the groups
H(X,T)/Inf(X,T) and C(X,Z)/Inf(X,T) coincide. This motivate the definition of another dimen-
sion group associated to any dynamical system (X, T, G), called its reduced dynamical dimension group

and denoted G(X, T, G), as follows,
oex.1.0) = ey {rece s [ra=0 e mxr.a).

From Theorem we know that in the case of a Z-action, the reduced dimension group completely
characterizes the orbit equivalence classes. This result was extended to Z%actions in [GPMSI0] with

the following theorem.

Theorem 1.23. ([GPMS10]) Let (X, T,Z%) and (X', T",Z™) be two minimal dynamical systems on the
Cantor set. Then they are orbit equivalent if and only if G(X,T,Z%) and G(X',T',Z™) are isomorphic

as ordered groups with unit.

Note that the simplex M(X, T, G) corresponds in the general case to the set of traces of G. Indeed,
given an invariant measure p € M(X,T), we define the trace 7, on G(X, T, G) by 7,([f]f) := [ fdpu.
Conversely, given a trace 7 on G(X,T,G) and a clopen U C X, define ¢-(U) = 7(xv). Since X is a
Cantor space, there exists a unique measure p on X such that u(U) = ¢(U) for all U. By construction,
7, = 7 and p is T-invariant. It is not difficult to see that this defines an affine isomorphism from
M(X,T) to S(G(X,T,Q)), so that traces of the reduced dynamical dimension group G(X, T, G) are the

invariant measures of the system (X, 7, G) and again M (X, T, G) is an invariant of orbit equivalence.

1.5.4 Dynamical dimension group and balance.

The following result states that when a subshift is balanced on the factors, Inf(X,T') is trivial.

Proposition 1.24. Let (X,T) be a minimal and uniquely ergodic subshift. If (X,T) is balanced on
its factors, then the infinitesimal subgroup Inf(X,T) is trivial.
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Proof. Let p denote the unique invariant probability measure of (X, 7). Thanks to Proposition m,
since (X,T) is balanced on the factors, for any v € Lx the function f, := x[,) — v is a coboundary.
Let f € C(X,Z) such that [f] is an infinitesimal of K°(X,T). By Proposition f is cohomologous
to a cylinder function g € C(X,Z). Let k be a positive integer such that g depends only on the first

k coordinates. One has

g= Z £(w) X )

ue[,k(X)

for some ¢(u) € Z. So we obtain

/fdu— /gdu— > t(u)pun = 0.

ueLy (X)

Therefore,

f@)= Y tw)xp —m)+ D> L)

weLy(X) ueLly(X)

=0
Since X[, — ptu is a coboundary for all u € L;(X), f is an integer linear combination of coboundaries,

and thus a coboundary. O

Remark 1.25. A Cantor minimal system (X, T) is called saturated if for any two clopen sets, A, B C
X with p(A) = uw(B) for all p € M(X,T) there exists a homeomorphism ~ belonging to the topological
full group of T' (see Introduction for the definition) such that v(A) = B. In [BK00] the authors show
that a Cantor minimal system (X, T) is saturated if and only if every element on the inifnitesimal
subgroup of the dynamical dimension group is a coboundary. Thus, we have proved in the above

proposition that if (X, T) is balanced on the factors, then the system is saturated.

1.6 Tower partitions.
Let (X,T,G) a dynamical system. A partition in towers of X is a clopen partition P of the form
P ={T" " (By):ue F,1<k<d},

where d € N, I}, C G are finite subsets, and By C X are clopen for all 1 < k < d. The sets of the
form T% ' (By) are the atoms of P. For a given 1 < k < d, the set Uwer, T ' (By) is called the kth

tower of P, By, is its base and |Fy| its height. The positive integer d is the number of towers of P.
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The terminology tower partition comes from the case of Z-actions: in this case, P has indeed the
form of a finite number of towers, each with a finite number of floors, and each floor is sended by the
homeomorphism 7' to the next one. See Figure for an illustration. This way of decomposing X
is attributed to Kakutani and Rokhlin in the case of Z-actions. The following result guarantees the
existence of sequences of tower partitions with nice properties. It is attributed originally to Vershik

([Ver&1]).

Proposition 1.26. [BR10, Chapter 6] Let (X,T') be a minimal Cantor dynamical system, let x € X.

There exists a sequence of tower partitions (Pn)nen verifying the following conditions,
(KR1) ﬂlzizdn Bin = {z0},
(KR2) Pp41 is finer than P, for all n € N.
(KR3) U,,en Pn generates the topology of X.

Given a sequence of tower partitions (P, )nen of X of the form
Pn = {Tu_l(Bk,n) YIS kaa 1< k < dn}a

let B,, denote the union of the tower basis {Bkvn};clll' We say that P11 is finer than Py, if each atom
of P41 is contained in an atom of P, and the sequence of bases (By,),en is decreasing, that is, for all

n €N, B,y1 C By

1.7 Topological eigenvalues.

We consider here dynamical systems given by an action of Z and recall some notions and results related
to their topological eigenvalues.

Let (X,T) be a topological dynamical system given by an action of Z. A non-zero complex-value \
is said to be a continuous eigenvalue or a topological eigenvalue of (X, T) if there exists a non-zero
complex-valued continuous function f € C(X,C) such that Vo € X, f(Tz) = Af(z). In this case, A is
said to be a continuous eigenvalue associated to the continuous (or topological) eigenfunction f.

If there exists a non-zero complex-valued function f € C(X,C) which is integrable with respect to
some measure p € M(X,T), such that f(Tz) = Af(z) p-a.e., A is called a measurable eigenvalue.
Given p € M(X,T), the Koopman operator Ur defined by Urf = T o f is a unitary operator on
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Thk_lBk
Thl—lB1
TIB; Tha=1B,
TT TH T B TBy TT
By By, B,
1 k d

Figure 1.1: A partition in towers.

L?(u) (see for example [W82] for details), and since every topological eigenvalue is a measurable one
for any given measure u € M(X,T), every topological eigenvalue belongs to the unitary circle S! C C.
If o is such that €7 is an eigenvalue of (X, T), « is said to be an additive topological eigenvalue.
We denote by E(X,T) the set of all additive topological eigenvalues of (X, T). The set E(X,T) is an
additive subgroup of R which contains Z (every integer corresponds to the topological eigenvalue 1
which is associated to any constant function). We now give a relation between balance and topological

eigenvalues of minimal, uniquely ergodic subshifts.

Proposition 1.27. Let (X,T) be a minimal and uniquely ergodic subshift and let u denote its unique
invariant measure. If o is balanced on the factor v, then w, is an additive topological eigenvalue of

(X,T).

Proof. Suppose that X is balanced on the factor v. By Proposition there exists g € C(X,R)
such that f, = goT — g. Note that e>™X(®) =1 for any z € X, since X[v takes values in {0,1}. This

yields

2imgoT _ 2img

exp exp” 2THe exp
Hence, exp~ 2™ is a topological eigenfunction associated to the additive topological eigenvalue p,. [

The previous results shows in particular that when the minimal uniquely ergodic subshift (X,T) is
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balanced on factors, the image subgroup I(X,T) is included in E(X,T) (see Section [1.5.2). It is also
known that F(X,T) is an additive subgroup of I(X,T') ([IO07]), so we conclude that when a minimal
subshift is balanced on factors, E(X,T) = I(X,T).

Recall that for a given ergodic measure-theoretic dynamical system (X, T, B, i), it is weakly mixing if
and only if it admits no non-trivial measurable eigenvalue (see for example [W82| Section 1.7]). Thus,
a minimal uniquely ergodic system (X,7T) with unique measure p which is balanced on any factor v
with frequency 0 < p, < 1, defines a measure-theoretic dynamical system (X, T, B, ) which cannot
be weakly mixing. The absence of weak mixing is indeed a property which has been already used to

prove unbalance (see for example [CEMOSg]).



Chapter 2

Some results on the dynamical
dimension group using tower

partitions.

In this chapter we describe the relation between some well-chosen sequences of tower partitions and
the image subgroup, the group of infinitesimals and the dynamical dimension group of a minimal Z-
subshift. We will use the results presented here to explore some dynamical properties (image subgroup,
infinitesimals, dynamical dimension group and balance) in the examples treated in Chapters [3| and

Our main results in this regard are Propositions [2.10] 2.11] and 2.17}

2.1 Tower partitions and inductive limits.

Let (X,T) be a minimal subshift and
(Pr={T"Bipn:1<i<dn,0<j<hin})nzo (2.1)

a sequence of tower partitions of X, such that for all n € N, P11 is finer than P,,. Let B, = J;"*; Bin.
Let C(Py,) denote the subgroup of C'(X,Z) consisting of the set of functions which are constant on the
atoms of P, and G(P,,) the subgroup of C(B,,,Z) consisting of the set of functions which are constant
on each base B; . Let GT(P,) denote the subset of G(P,,) consisting of non-negative functions and

define 1(P,,) € G (Py) by 1(Py)(z) = hi, for all x € B;,,.

23
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Consider the group homomorphisms I'p, : C(P,) — G(Pp) and Rp, : G(Pn) — R(Py) defined as
follows,

(Ip, f)(z) = fPin)(z) for x € By,

g(x) ifzeB,
(Rp,9)(x) =
0 else.

It is not difficult to see that I'p, o Rp, is the identity on C'(By,Z). By Theorem ker(Ip, ) consists
of coboundaries, and then there exists a group homomorphism 7p, : G(P,) — H(X,T) such that

mp, © Ip, = m, where 7 is the canonical projection from C(X,Z) to H(X,T).

Proposition 2.1 ([DHPI8|). The map wp, defined above is a morphism of ordered groups with unit
between (G(Pr), GT(Py), 1(Py)) and (H(X,T),H*(X,T),1x).

Since Pp41 is finer than P,

I’Pn+1,'Pn = IPnJrl ° an
is a well-defined group homomorphism which maps G(P,,) to G(P,+1). If we identify G(P,) with Zn
and G(P,41) with Z9+1, the matrix associated to the morphism Ip, +1,P, 18 given by

Qn(i,5) = {0 <1 < hint1 : T'Biny1 € Bjn}|  V1<i<dn, V1<j<d, (2.2)

Let (G(6),GT(6),1(8)) be the inductive limit of the sequence (G(P,)),GT(Pxn), 1(Ppn))nen with
the homomorphisms Ip, , p,, where we identify G(P,) with Z% for all n > 0, that is, the triple
(A/AY (A/A®)T, u), where

A={(xn)nz0 € [[ 2™ | Tk > 0: Qn(xn) =%nt1 VYn >k},
n>0

A’ = {(xXp)ns0 €EA|TE>0:%x,=0 Vn >k},
AT ={(Xp)n>0 €A |FE>0:x, €Z Yn >k},

(A/A)T is the set of classes modulo AY of elements in A™, and u is the class modulo A® of the
sequence (up)n>0, where

u, = (hl,na e 7hdn,n)‘

Let ip, : G(P,) — G(6) denote the projection on the inductive limit defined as follows: for every
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f € G(Prn), ip,(f) is the class of the sequence

ifk<n
Yr = f ifk=n
Qr-Qnf ifk>n

Proposition 2.2 ([DHP18]). There exists a unique morphism of ordered groups with unit g : G(&) —
H(X,T) satisfying g o ip, = 7p, .

(See Figure [2.1).

Proposition 2.3. Let (Pp)nen defined as in (2.1)), let C(&) = U,5oC(Pn). The morphism 7g :
G(6) — H(X,T) defined in Propasition is surjective if and only if every f € C(X,Z) is cohomol-
ogous to a function which belongs to C(S).

Remark 2.4. To prove this proposition we use a crucial idea presented in [H095, Section 4, Remark

5.b)].

Proof. Suppose g : G(6) — H(X,T) is surjective. Let f € C(X,Z) and consider [f] € H(X,T).
Since 7 is surjective, there exists ¢ € G(&) such that 7g(¢) = [f]. By definition, ¢ is the class of
some sequence (¢n)nen € | [,y G(Pr) satisfying that there exists k& € N such that ¢, 11 = Qn(én)
for all n > k. It is clear that Rp, (¢r) € C(Py) and ip, () = ¢. Let g = Rp, (¢r). By construction,
g € C(6). We have that

[f] = 76(¢) = 16 (ip, (1)) = me © ip, (Ip,(9)) = 7(9) = [g]-

We conclude that f is cohomologous to g.

Conversely, suppose that every f € C(X,Z) is cohomologous to some function g € C(&). The mor-
phism 7(&) will be surjective if H(X,T) = ,,>o 7P, (G(Pr)). Since the inclusion U, 7p, (G(Pr)) C
H(X,T) follows from the definition, it is enough to show that for any [f] € H(X,T), [f] belongs to
Unso 77 (G(P)).

Let [f] € H(X,T) and take any representative f. By hyphotesis, f is cohomologous to a function
g € C(6), then, f — g € BC(X,Z) and there exists n € N such that g is constant on the atoms of P,,.
Since g € C(Py), lg] = mp, o Ip,(g9) € mp,(G(Py)). But [f] = [g], and then

[f] € mp, (G(Pn)) € | 7p, (G(Pn))

n>0
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Pr)

C(
V \
H(X,T
-

G(Pn)

(X,T)
S

G

Figure 2.1: The isomorphism wg, where Gg denotes the inductive limit of the system
(G(Pp),G*(Pn), 1P, )n>0 with morphisms Ip, ., p, and ip, : G(P,) — Gg is the natural projection
on the inductive limit.

Remark 2.5. Note that the equivalent conditions of Proposition are satisfied as soon as the
sequence (Pp)n>0 s such that for all n € N, Py, is finer than the partition in n-cylinders Q,, = {[w] :
w € L,(X)}. Indeed, if every Py, is finer than Q,,, every cylinder function is constant in the atoms of
Py, for n large enough, and we know from Proposition that every f € C(X,Z) is cohomologous to

some cylinder function.

Proposition 2.6. Let (Py)nen defined as in (2.1)), let Y = (,,cn Bn. If Y consists of only one point,
the morphism mg : G(6) — H(X,T) defined above is injective.

Proof. Suppose o € G(S) belongs to ker(ng). There exists n € N and g € C(P,) such that a =
ip, o Ip,g. Indeed, « is the class modulo Aj of a sequence (x;);ey which verifies x; € Z% and there

exists k € N such that for all i > k, x;11 = Qgx;. Let n > k and define g € C(P,,) by

Xn(]) if 4j:2 € U[O,n)([aj])

0 otherwise

9(z) =

Note that (Ip,9)(y) = xu(j) if y € 0(9)([a;]). Therefore, ip, o Ip,g is the class modulo Ag of the
sequence

(07 T 70a Xn ann ) Qn+1ann7 e )7
nth  (n+1)th (n+2)th
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which is equal to a. Since mg(a) = 0 and 7(g9) = 7e(a), the function g is a coboundary. Let
h € C(X,Z) such that g = SBh. Let zy be the unique element belonging to Y, then for all £ € N,
By is a clopen neighborhood of ¢, and since h € C(X,Z), it is locally constant, so for some m > n
large enough, h is constant (with value h(x)) in By, (recall that bases B,, are nested). Since m > n,
g € C(Pp,) and by definition ip, o Ip,g = ip,, o Ip, g, but since h is constant in B, and g = Sh,
Ip,,g = 0 and therefore

a=1ip,olp,g=ip,olp,g=0ce)-
O

Let (Ppn)n>0 be a sequence of tower partitions of (X, T') defined as in (2.1). Let C(&) be as defined in
Proposition and Y as defined in Proposition Consider the following conditions.

(CO0) For all 1 <i < d,, the heigth h;, tends to infinity when n tends to infinity.

(C1) Every f € C(X,Z) is cohomologous to a function which belongs to C(&).

(C2) The set Y consists of only one point.

(C3) There exists m € N such that for all n > m, d,, = d and matrices @,, belong to GL4(Z).

Note that condition (C1) is equivalent to the surjectivity of mg thanks to Proposition and from
Remark [2.5| we know that it is satisfied if every P, is finer than the partition in n-cylinders Q,,. Note
also that, thanks to Proposition (C2) is a sufficient condition to have the injectivity of 7g.

Remark 2.7. Conditions (C1) and (C2) have to be compared with classical conditions (KR1) and
(KR3) for Kakutani-Rokhlin partitions. We follow here the notation used in [BR10, Chapter 6],

where these conditions are stated as follows
(KR1) The setY consists of only one point.
(KR3) C(6) generates the topology of X.

Condition (KR1) is exactly the same as our condition (C2), but (KR3) is not the same as (C1).
It is not difficult to check that (KR3) = (C1), but there exist sequences of tower partitions which
satisfy (C1) and do not satisfy (KR3) (See Example[3.13 in Section[3.9). Proposition[2.3 shows that

(C1) is the optimal condition which guarantees the surjectivity of Tg.
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Remark 2.8. If one thinks of the Bratteli diagram associated to a given sequence of tower partitions,
condition (C3) can be interpreted as a finite rank condtion. Actually condition (C3) isa bit stronger,

because we require the incidence matrices not only to be square, but also to be invertible in 7.

We now present a series of results which can be obtained if (X, T') has a sequence of tower partitions

verifying some of conditions (C0)-(C3).

2.2 Image subgroup and infinitesimals.

Lemma 2.9. Let (X,T) a minimal subshift and let p € M(X,T). Let (P, = {TVB;, : 1 <i <

dn,0 < j < hin})n>o0 be a sequence of tower partitions of (X,T), (Qn)n>0 the sequence of matrices
associated to (Pp)n>0. For alln € N define

ﬁn = (N(Blyn% to nu(Bdn,n))‘

If (Pn)n>o0 satisfies condition (C3), then for all n > m,
fin = ((Qn -+~ Qm)") ™ i

Proof. Let p € M(X,T),1<i<dandn >m, then

hjn—1

p(Bim) = p(Bim N X)) = p(Bim N T*Bj ).
j=1 k=0

Since n > m, P, is finer than P,, and then B;,, N TkBj,n is either empty or the whole atom TkBj’n,

so we obtain
d

(Bim) = ZM(Bi,m) {0 <k < hjn:T"Bjui1 € Bim}l.
=1

If we rewrite this in terms of matrices,
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Since this is true for all 1 <1 < d, we obtain that yi;, = (Qy, - - - Q)i and consequently

pin = ((Qn -~ Qm)t)_l:u?n'
O

Proposition 2.10. Let (Py)nen be a sequence of tower partitions of (X, T') satisfying conditions (C1)
and (C3). Let d and m be defined as in condition (C3). Then, the image subgroup of (X, T) is the
additive subgroup of R generated by the measures of basis B; m, 1 <1 < d, that is

d
(x1= {ZZu(Bi,m} :
) \i=1

HEM(X,T
Proof. We show that the image subgroup I(X,T) is included in (),crqx 1) {fo:l Zu(BLm)} (the
other inclusion is obvious). Suppose a € I(X,T). By definition, for all 4 € M(X,T'), there exists

f € C(X,Z) such that a = [ fdu. Since (Pp)n>0 satisfies condition (C1), f is cohomologous to a
function g € C'(X,Z) which is constant on the atoms of P,, for every n large enough. We have that,

d hj,n_l
/gdu Y>> wT'Bin)g lris,, -
7j=1 =0
Since p is T'—invariant,
d hj,nfl
[otn=3"uBin) 3 glris,,
j=1 i=0

Define k; = Z?i’g_lg |7iB;, (the sum of the map g over the j — th tower of the partition Pp).

Applying Lemma [2.9] we obtain

/gdu =

d
Zu e Qm) (i, )k;

=1

M&gM&

d

J:1

N
I
—

Since Z?zl(Qn---Qm)_l(i,j)k‘j belongs to Z for all 1 < i < d, @ = [ fdu = [ gdp belongs to
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ZZ 1 Zp(Bj ). Since p € M(X,T) was arbitrarily taken, we conclude that

ac ) ){ZZM m}

peEM(X,T
which ends the proof. O

In the particular case of a uniquely ergodic system with a sequence of tower partition satisfying
conditions (C1) and (C3), we know that I(X,T) = Z‘Ll Zj(Bim). We also have the following result
regarding the infinitesimal subgroup of K°(X,T).

Proposition 2.11. Let (Py)nen be a sequence of tower partitions of a minimal subshift (X,T) sat-
isfying conditions (C1) and (C3). Let d and m be as defined in (C3). Suppose that there exists
an invariant measure p € M(X,T) such that the coordinates p(B;jm) of the vector pi, are ratio-
nally independent. Then, the infinitesimal subgroup Inf(X,T) of K°(X,T) is trivial, that is, (X,T)

18 saturated.

Proof. Let f € C(X,7Z) and suppose that [f] is an infinitesimal of K°(X,T). Take a function g €
C(X,Z) which is cohomologous to f and constant on the atoms of P, for n large enough. Such a
function always exists, because the sequence of tower partitions satisfies condition (C1). Let u be an
invariant measure such that the coordinates of (i, are rationally independent. By definition, [f] = [¢]
and [ fdu = [ gdu = 0. Since g is constant on each atom of P, we have
hjn—1
/gdu SN wT'Bin)g i,

Jj=1 =0

Since p is T'—invariant,

d
0= /gdu =Y w(Bjn)kj,
j=1

where k; = Z?ig_l g |TiBj7n. By Proposition [2.10, for all 1 < j < d, the measure p(B;j,,) is an integer

linear combination of the measures {p(B1m), - - , #(Bdm)} provided n > m, and since this quantities
are rationally independent by hypothesis, then we obtain that for alln > m, {u(B1,), -, 1(Bgy)} are
rationally independent as well. This means that Z;lzl p(Bjn)k; =0 implies k; =0 for all 1 < j < d.
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That is, for all 1 < j <d, for all n > m,

hjn—1

Z 9 lrip;,=0
i=0
Fix any n > m and take any point 2 belonging to the basis of P,,. For any N € N, the coclycle f(N)(z)

can be decomposed as a sum of k;-S (for 1 < j < d) plus an error of the form

!
€= § 9 \TiBjW
i=0

for some 1 < j < d, some 0 <[ < hj,. As we have seen before, every k; is zero, and the error € is
bounded by sup |g| - maxi<j<qhjn. Applying Theorem [1.1] we conclude that g is a coboundary, and

then so is f. Therefore, Inf(X,T") consists only of coboundaries. O

In [ARI16], the authors prove that a system generated by a primitive aperiodic and irreducible sub-
stitution is saturated provided it satisfies an extra condition called the common prefir property. See

[AR16, Sections 1 and 3] for details.

Remark 2.12. There are examples of minimal systems having sequences of tower partitions satisfying
(C1) and (C3), and a measure vector i, with rationally dependent coordinates. See for instance
|BCD+18, Remark 6.4] where we present an example of an interval exchange transformation on a
three-letter alphabet (see Example which generates a minimal uniquely ergodic dendric subshift
(see Chapter having rational dependence on the letter cylinder measures. In this example, the
sequence of tower partitions is constructed using return words (see Section , m = 0 and the

atoms of Py are the cylinder of letters. This example has indeed nontrivial infinitesimals.

2.3 The dynamical dimension group

The dynamical dimension group is related with the inductive limit of a suitable sequence of tower

partitions. This relation is described in detail in the following result.
Proposition 2.13. Let (P,)nen be a sequence of tower partitions of (X, T) satisfying (C1) and

(C2’): For every u € C(Y,Z), there exists h € C(X,Z) such that h|ly = u and fh € C(S).
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Then, there exists a group homomorphism r: C(Y,Z) — G(S) such that the sequence
0-%7-5cy,z) -5 G6) IS HX,T) - o,

where 7. is identified with the subset of constant functions on'Y and i denotes the inclusion, is exact.
Remark 2.14. Note that condition (C2) implies (C2).

Proof. Let uw € C(Y,Z) and take h € C(X,Z) as in condition (C2’). Since Sh € C(&), there
exists n € N such that Sh is constant in the atoms of P,. Define r(u) := ip, o Ip,(Sh). Note that
7me(r(u)) = m(Bh) = 0, so that r is a well-defined homomorphism between C(Y,Z) and ker(rg). On the
other hand, if & € G(&), there exists n € N and g € C(P,,) such that o = ip, o I'p, g (see the first part
of the proof of Proposition [2.6). If a € ker(rg), then m(g) = 0 and thus g is a coboundary, then there
exists g € C(X,Z) such that g = 5g. Let u = gly. By definition, r(u) = ip, olp,(8§) = ip,olp,g = a,
and we conclude that o € Im(r). We have proved that ker(ng) = Im(r).

Since (C1) is satisfied, 7g is surjective, which is equivalent to the fact that ker(0) = Im(7g).

Let us prove that r(u) = 0 if and only if w is constant, or equivalently, that ker(r) = Im(z). Suppose
that u € C(Y,Z) verifies r(u) = 0. Let h € C(X,Z) be as defined in condition (C2’) and n € N such
that Sh € C(Py). By hypothesis, ip, o Ip,(8h) = Og(s), which means that there exists mo > n such
that for all m > my, Ip,, p,Ip,(Bh) =0 € 7% that is, Ip, (Bh) = 0. This implies that h is constant

in B,,. Indeed, is suffices to note that for any 1 <+¢ < d,, and for all x € B; ,,,
Ip,, (BR)(x) = ho T"m(z) — h(z) = 0,

so that h(x) = h o T"m(z). This implies that h|y is constant, and then v is contant as well.

Conversely, suppose that u € C(Y,Z) is constant. Then h|y is constant, and since h is continuous, h
is constant in B, for all m > n large enough. This implies that ip,, o Ip, (Sh) = 0. By definition,
ip,, o Ip,, (Bh) = ip, o Ip,(Sh) and we conclude that r(u) = 0. This proves that ker(r) = Im(:) and

concludes the proof of the proposition. ]

Note that when (C1) and (C2) are satisfied, we recover Propositions and as immediate con-
sequences of Proposition [2.13]

Lemma 2.15. Let (Pn)n>0 be a sequence of tower partitions of a uniquely ergodic minimal subshift

(X,T) satisfying conditions (CO) and (C3), let (Qn)n>0 be the sequence of matrices associated to
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(Pn)n>0- Let p be the unique T-invariant measure on X and d, m as defined in (C3). Then, for all

1<0<d, foralll <j<d,
1m

n—oo hz’n

= ((Bjm).-
Proof. Note that, if x € By,
hen—1

{0 <k <hppn:T"Bin CBjm}l = Y xB,,.(T"x),
k=0

that is,
hen—1

(Qan)(&]) = Z XBj,m(Tkx)'

k=0

Since the system is uniquely ergodic, Birkhoff’s Theorem (Theorem [1.12)) implies that

n—oo N

. 1 n—1
lim — ZXBj,m (Tkz) = w(Bjm)-
k=0

Since (Pp)n>0 satisfies condition (C0), we obtain

hen—1

. 1 k
Jim kz_o X8, (T*2) = 1(Bjm),
which is what we wanted to prove. O

Proposition 2.16. Let (Py)nen be a sequence of tower partitions of a minimal subshift (X, T) satis-
fying conditions (C0), (C1) and (C3). Then, G(&) = Z% and the isomorphism o can be chosen so
that (1(6)) = u, where

u=(him, - ham) € Z.

If moreover (X, T) is uniquely ergodic with unique invariant measure u, then (G(&), GT(6),1(8)) is

isomorphic as ordered group with unit to (Z¢, A, u), where
A={zeZ: (x,1,) >0} U{0},

and tiy, s as defined in Lemma[2.9
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Proof of Proposition[2.1G. Define ¢ : A — Z4 by

o((Tn)n>0) — (Qk - 'Qm)_l(ifk-f—l)

where k is any index which satisfies k > m and Vn > k, Q,(z,) = Tp+1.
It is not difficult to see that ¢ is a well-defined group homomorphism whose kernel is exactly A?. This

homomorphism is also surjective: for any x € Z¢, consider the sequence

0 ifn<m
VYn = b'e ifn=m

Qn--Qmx  ifn>m

then we have that ¢((y,)n>0) = x (choose k = m). We call ¢ the induced isomorphism between A /A°
and Z? as well.
Note that ¢(1(6)) = u. Indeed, for all 1 < /¢ < d and for all n > 0, one has
dn
hens1 = Z {0 <k < hpny1 : T*Byns1 € Bin}l - hin,

i=1

which implies that for all n > 0, @, (uy) = un+1, so we can choose k = m and we obtain

o((un)n>0) = Qr_nl (Umy1) = Q;llQm(um) = Uy = W

Recall that the inductive limit (G(&), G*(&),1(6)) is the triple (A/A° (A/AY)T u).

We now prove that if (X, T') is uniquely ergodic, p(G*(&)) C A. Let z = (X5,)n>0 & sequence belonging
to AT. We want to show that either ¢(z) = 0 or (¢(z), ) > 0 for all p € M(X,T). Suppose ¢(x) # 0,
then, for all £ > m such that @, (x,) = xp+1Yn > k,

(Qk -+ Qm) ' (xk41) # 0.

This implies that x,, # 0 for all n > k. Since z € AT, we conclude that for all n > k there exists
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1 <4 < d such that (x,); > 0. Let p € M(X,T),

d d

<<10(1:)’ ﬁ> = Z Z(Qk Tt Qm)_l(xk—l—l)u(Bi,m)
i=1 i=1
d d
= S @k Qo) M ) (k1) 1B
i=1 j=1
d d
= S ) 3@ Qo) 6 )i Br):
=1 i=1
From Lemma [2.9, we know that
d
D @k Qu) (6 ) (Bim) = p(Bjkia)-
i=1

So we obtain that

d
((x), @) = > (Xn41) 1 Bjps1).
j=1

Since the system is uniquely ergodic, the support of p is a closed T-invariant subset of X, so by
minimality every p(Bj k1) is strictly positive. Since there exists 1 < j < d such that (x,); > 0, we
conclude that Z;l:l(karl)jM(Bj,kH) > 0, which implies that ¢(x) € A.

We now prove the converse inclusion: ¢~1(A) C GT(&). Let x € A. Recall that the inverse image of x
under ¢ is the class modulo A° of a sequence (yy,)n>0 verifying y,, = (Qy, - - - Q) (x) for all n. > m. We
want to prove that there exists N > m such that for all n > N, y,, = (Qn -+ Qm)(x) € Z4. If x =0,
then y, = 0 for all n € N and consequently (y,)n>0 € A® C A*. If x # 0, then Z?Zl X;p(Bjm) > 0,
since x € A. By Lemma we know that for all 1 <[ < d,

d

d
lim — Z(Qn e Qm)(lvj)xj = Z /A(Bj,m)Xj > 0.

j=1 j=1

Since hy, > 0 for all 1 <1 < d, the last inequality implies that there exists N > m such that for all
n> N, and for all 1 <[ <d,

(Qn T Qm)(l’j)xj > 07

M-

1

J

that is, for all n > N, (Q -+ Qm)(x) € Z4. O
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From the previous proposition we know that if conditions (C0), (C1) and (C3) are satisfied, the
group H(X,T) is a quotient of the additive group Z?. If moreover s is injective, the inductive limit

(G(8),GT(6),1(6)) is isomorphic to the dimension group K°(X,T). We deduce the following result.

Proposition 2.17. Let (Pp)nen be a sequence of tower partitions of (X,T) satisfying (C0)-(C3).
Let i and u be as defined in Proposition[2.16, Let

A={xez%: (x,ip) >0 Yue MX,T)}u{o}.

Then, (H(X,T), H*(X,T),1x) and (Z%, A, u) are isomorphic as ordered groups with unit.

Proof. Let ¢ the group isomorphism from G(&) to Z? defined in the proof of Proposition We

already know that (1(&)) = u. The morphism 7g o ¢!

is then a group isomorphism satisfying
7g 0 o 1 (u) = 71s(1(6)) = [1x]. Note that these properties do not need the system (X,T) to be
uniquely ergodic.

We now show that g o o' (A) € HT(X,T).

Recall from section that traces completely determine the positive cone of a dimension group.
Since the traces of K°(X,T) corresponds to invariant measures of (X, T'), the positive cone H* (X, T)

is characterized as follows,
1) = {1 € HOCT): [ fdu> 00 € MOGLT) | U )
Let x € A, then ¢~ 1(x) is the class modulo A° of the sequence

0 ifn<m
Yn = X ifn=m

Qn--Qmx ifn>m

This corresponds to the image under ip,, of the function fx € G(Pp,) given by fx(z) = x; if x € B; .

Therefore,

e © QD_I(X) = 7g oip,, (fx) = 7 0 ip,, © Ip,, (9x) = 7(9x),

where gx € C(Pp,) is given by gx(x) = x; if z € B;,, and gx(z) = 0 else. If x = 0, then x; = 0 for all
1 <i <d, so that gx = 0 and then 7(gx) =0 € HY(X,T).
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If x #0, let p € M(X,T). Since x € A, Zle X;p(Bim) > 0. Note that

d
[ oxin =3 xiBi),
=1

so we conclude that [ gxdp > 0 for all p € M(X,T), which implies that [gx] = 7(9x) € HT(X,T).
This proves that g o =1 (A) € HH (X, T).

Finally, we show that ¢ o 75" (H*(X,T)) € A. Let f € C(X,Z) be a function such that [f] €
H"(X,T). Then either f is a coboundary or [ fdu is strictly positive for every p € M(X,T). If
f is a coboundary, then 7g'(f) = (0,0,---) mod A? and then po7g'(f) =0 € A. If f is not a
coboundary, let n > m be a positive integer such that f is cohomologous to a function g € C(Py,).

We know that
m&(ip, © Ip,(9)) = w(h) = =(f) = [f],
that is, g (7(f)) = ip, o Ir,(g). On the other hand, Ip, (k) is the function with value
hin—1
Z g |T’@’Bi7n

k=0

in the base B, for 1 <i < d,,. Therefore, ip, o Ip,(g) is the class modulo A® of the sequence

(Oa )07 g , ng 7Qn+1Qnga"')
~—~ ~—~—
n-th| [n+1-th
Where g = (I,Pn (g)’Bl,n’ T ’Ipn (h’)|Bdn,n) Then? SO(Z'Pn © IPn (g)) is the VeCtor

(Qn o Qm)_l(g)'
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Let p be any measure in M(X,T)

d
(pomg ((f)tim) = D porg (m(£))()u(Bim)
=1
d d hjn—1
= ZM(Bz,m) Z(Qn ) 'Qm)_l(Z 7) Z g |T’€B]~,n
i=1 j=1 k=0
d d hjn—1
- Z (Z :U'(Bz,m)(Qn ) Qm)_l(zv])> Z g ’T’“Bjﬂn :
j=1 \i=1 k=0
Finally, applying Lemma |2.9] we obtain
d hjn—1
0< /gdu = ZM(Bj,n) Z 9 lrrp;,
j=1 k=0
d d hjn—1
= Z (Z M(Bz,m)(Qn e Qm)_l(zaj)> Z g |TkBj7n
=1 \i=1 k=0

and we conclude that ¢ o mg'([f]) € A. This proves the second inclusion and conclude the proof of

the theorem. O

Remark 2.18. All previous results about image subgroup, infinitesimals and dimension group are based
on conditions (C0)-(C3), which are properties of tower partitions. We construct some appropriate
tower partitions in Chapters[3 and[{ to apply those results. See for example Proposition[3.31, Corollary
Theorem Theorems [{. 14, [4.15, [£.16 and [].17, Theorems and [{.25




Chapter 3

Substitutive and S-adic systems

In this chapter we apply the results of Chapter [2|to substitution and S-adic subshifts. All the definitions
and many of the results related to substitution systems are well known. S-adic systems, which roughly
speaking are a generalization of substitutive ones, obtained by an infinite composition of different
substitutions, are a more recent subject of study and thus less understood; we present them in detail
and we treat substitutive systems as a particular case of S-adic systems (see Example below). We
study the behavior of the image subgroup, infinitesimals, dynamical dimension group and balance for

this kind of subshifts.

3.1 Definitions and examples.

Let A be a finite alphabet with Card(.A) > 2. Recall from Example that, given a substitution o

on A, we can consider the substitutive subshift associated to o, (X,,T"), with
Xo={vecA? Vu,w<r=3ac AInecN:w<o"(a)},

and that if o is primitive, (X,,7") is minimal and uniquely ergodic. The language of o is the language
of X,.

There is an equivalent definition of substitutive subshifts using fixed or periodic points. Given a
substitution o on A, a fized point of o is an element z € A% satisfying o(x) = z. A periodic point of
o is an element = € A” such that there exists k > 0 with o (z) = x.

Note that if there exist two letters a,b € A with |o(a)|,|o(b)| > 2 and such that o(a) begins with

a, o(b) ends with b, there exists a unique fixed point € A% of o satisfying z_; = b and zg = a.

39
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If ba € L,, then z is called an admissible fixed point of o and it is not difficult to check that X,
corresponds exactly to the orbit closure of  under the shift.

If o is primitive, then there exists a positive integer p such that ¢P has an admissible fixed point,
denoted by y. In this case, X, » corresponds to the orbit closure of y under the shift. Since ¢ and oP
define the same language, X,» = X,, and then X, corresponds to the orbit closure of y under the
shift.

We say that a substitution o : A — A* is aperiodic if (X,,T) is aperiodic for the shift map, that
is,(Xy,T) is a free subshift. In general, when we say a periodic/aperiodic point on X we refer to a
periodic/aperiodic point for the shift map.

Let A, B be two finite alphabets. When we refer to a morphism o : A — B* we always assume that o
is non-erasing.

We say that a morphism o : A — B* is left proper (resp. right proper) if there exists b € B such that
for all @ € A, b is a prefix (resp. a sufix) of o(a). We say that o is proper if it is both left and right

proper. We will need the following lemma in Section [3.2

Lemma 3.1. Let A be a finite alphabet. If o : A — A* is a left proper substitution and 6 : A — A*
is any substitution, then the composition o0 : A — A* is left proper. If o is left proper and 0 is right

proper, then the composition o6 is proper.

Proof. Suppose that o : A — A" is a left proper substitution and 6 : A — A* is any substitution. Let
te A u: A— A* such that o(a) = fu(a) for all a € A. Then, for all a € A one has

o0(a) = 0(8(a)) = 0(8(a)o) - - o (0(a)jp(ay) 1) = Cu(B(a)o) - -- Cu(8(a) ey ).

Thus, for all a € A, ¢ is a prefix of 06(a) and o6 is left proper.
Suppose now that o is left proper and 6 is right proper. Let £,7 € A, u,w : A — A* be such that for
all a € A, o(a) = tu(a), 8(a) = w(a)r. Then, for all @ € A one has

06(a) = o(w(a))o(r) = o(w(a))lu(r) = tu(w(a)o) - - - Lu(w(@) w(a)|—1)fu(r)o - - w(r) @) -1-

Thus, for all a € A, £ is a prefix of 0f(a), u(r)}y)—1 is a suffix of o0(a) and o6 is proper. O

If 0 : A — B* is a proper morphism with o(a) = fu(a) for all a € A, we define its right conjugate
7: A— B* by
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Note that the right conjugate of a left proper morphism is right proper. Given a right proper morphism,

we define analogously its left conjugate, which is left proper.

3.1.1 Recognizability

Let X C A” be a subshift on A, we say that a substitution o is recognizable in X if for all y € B%
there exists at most one pair (k,z) € N x X such that y = T%o(z) and 0 < k < |o(xg)|. Such a pair
is called a centered o-representation of y. We say that o is recognizable in X for aperiodic points if
for all aperiodic y € BZ there exists at most one centered o-representation of y. We now present the
classical definition of recognizability, which is combinatorial and was first introduced in [M092] and
[Mo96].

Let X C A” be a subshift on A and y = T*o(z) for some z € X, k € Z. The set C,(k,x) of cutting

points of y is defined as follows,
Co(k,z) = {lo(zpp)| +k: £>0}U{0}t U {—|o(z)0)l —Fk: <0}

Given a morphism o : A — B* and a point = € A%, we say that o is recognizable in the sense of Mossé

for z if there exist ¢ € N such that for all m € C,(0,x), for all m’ € Z,

U(x)[m,g’erg) = U(x)[m’fé,m”r@) =m e CJ(O, a:)

The constant ¢ aboved is called a constant of recognizability for o. The constant of recognizability of o
is the smallest one among all constants of recognizability for . This constant is computable when o
is a primitive substitution (see [DL17]). In [BSTY1S, Section 2] there is a complete analysis regarding

the relation between this two notions of recognizability. We present here an important one.

Theorem 3.2. [BSTY1S, Theorem 2.5] Let o : A — Bt a morphism, v € A” and let (X,T) be the
subshift generated by x. Then the following holds

e If o is recognizable in X, then o is recognizable in the sense of Mossé for x.

e If(X,T) is minimal, o is injective on the letters and o is recognizable in the sense of Mossé for

x, then o is recognizable in X.

It is a theorem by B. Mossé that primitive aperiodic substitutions are recognizable for their fixed
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points ([Mo92], see also |[Quel0, Theorem 5.8]). As a consequence of this result and Theorem if

o : A — Ais primitive and aperiodic, o is recognizable in X, since for any fixed point z of o, X, = X,,.

3.1.2 Directive sequences

Let (A, )nen be a sequence of finite alphabets and o, : A,4+1 — A} morphisms. We denote O, ) the
composition o, 0 g1 0---00on_1. Let o0 = (0p)nen be a sequence of morphisms. We say that o
is everywhere growing if minge 4, {|oj0,n)(a)|} tends to oo as n — oo, that is, if the length [0y, (a)l
tends to co when n — oo for all a € A,,. We say that o is primitive if for every n > 0, there exists
N > n such that o}, ny has a positive incidence matrix.

For n > 0, the language of order n Lf,n) associated with o is

LS = {w € A% : 3N > n,3a € Ay, w < o) (a)}.

For each n > 0, the set Xf,") is the set of infinite words z € A% all whose factors belong to L,(,n ). We
set Xo = X,(,O)7 L, = LS,O) and call (X4, T) the S-adic system generated by the directive sequence o,
where T is the shift transformation. For all £ > 1, we denote by Lffn; the subset of length ¢ factors of

L.

Remark 3.3. Note that £g(Xc(,n)) - L% and that this inclusion is strict in general: consider for
instance a substitution o : A — A* such that a letter a € A only appears as a prefix of o(a). This
is a mon-primitive substitution where a has an occurrence in o(a) but it appears in no infinite word
x € A%, If there were x € A” such that a < x, then it would be a letter b € A such that ba < o™(c),

for some n € N, some ¢ € A, which is not possible since a only appears as a prefix of o(a). This is not
(n)

the case in the minimal framework: if o is everywhere growing and primitive, then Eg(Xc(,n)) =L,

for all £ > 1.
Example 3.4. Substitutive subshifts

Substitutive subshifts are exactly the S-adic systems where A, is equal to a constant alphabet A
for all n € N and o, is the same substitution ¢ : A — A* for all n € N. Therefore, properties
of substitutive subshifts can be directly recovered from more general properties o S-adic subshifts.

However, substitutive systems were historically studied earlier and some results in the substitutive
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case have been obtained using very specific properties which is not clear how to extend to the S-adic
case. Note that when the S-adic system is obtain from one single substitution o : A — A, the directive

sequence o is primitive if and only if ¢ is primitive as a substitution.
Example 3.5. Uniformly recurrent subshifts

Return words provide a way to represent minimal subshifts as S-adic systems. We quote here the
procedure given in [BDD+18| Section 3] to get this representation. Let (X,7") a minimal subshift
defined on the alphabet A and let x be any element belonging to X. Recall from Section that
for every a € A, w € Lx is a first left return word to a if a is a prefix of wa and there are exactly
two occurrences of a in wa. Let R'(xo) be the (finite) set of first left return words to the first letter
of z, xp, and consider the factorization of z in words belonging to R'(xg). There exists a unique
sequence (wi)rez € R'(20)% such that z = ---w_sw_jwowiws---. Now consider R the alphabet
{1,2, - ,|R'(x0)|} and let A : R — A* be the morphism which maps every i € R to the ith first left
return word w € R/(x¢) to appear in T[0,00), and which extends to R* and R” by concatenation. The
derived sequence of z is the unique sequence D(x) € R” such that A(D(z)) = z. The morphism ) is
called the return morphism in [BDD+18]. Define D°(x) = z, Ry = A, Ri = R, A = A, and then
define inductively D"(z) and A, as follows. Given D"(z), Ry, Rpy1 and A, : Ry — RE, DFl(x) is
the unique sequence in RZ | such that A, (D" "!(z)) = D"(z), then Rp4o = {1,2,- - ,|R (D" (2)0)|}
and finally A\nq1 @ Rpy1 — Ry, the morphism which maps every i € Ryi2 to the ith first left
return word w € R'(D"*!(z)g) to appear in D" (x)[g ), and which extends to R}, and R% | by
concatennation. It is not difficult to verify that the sequence of morphisms A = (A, : Ryy1 — R} )nen

is a primitive directive sequence which satisfies X = X.
Example 3.6. Sturmian subshifts

Sturmian subshifts (see Example [1.5)) can be obtained using S-adic representations. Moreover, they
can be obtained by using a directive sequence where the o,’s belong to a finite set of morphisms.

Consider the morphisms 79,71 : {0,1} — {0, 1}* given by

0 — O 0 — 01
T0 — T = .
1 — 10 1 — 1

It is known that, given any sequence (iy)nen € AY, the limit word

_ 1 i1, 42, 13, 14 in—1
r= lim 7'r?7r3myt T 0
i 7o 1 To 1 (0)
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exists, and that if (i, )n,ecn is not ultimately constant, then the directive sequence (7;, )nen iS primitive
and the subshift X, is Sturmian. Moreover, if & € R\ Q, the Sturmian subshift associated to the

rotation of angle « is exactly the subshift generated by the limit word

— ] J1,.d2.93 Ja _J2n—1_Jon
z= lm 7' m - (0),
where [0; j1 + 1, j2, 73, - - - | is the continued fraction expansion of « (see [AR91, Section 1] for details).

S-adic systems are known to be minimal provided their directive sequences of morphisms are primitive
(see for example [BD14, Lemma 5.2]).

We say that the directive sequence o is recognizable if for all n > 0, o, is recognizable in Xc(,nH). We
say that o is eventually recognizable if there exists n € N such that for all n > N o, is recognizable in
X,(,n+1). There exist directive sequences which are eventually recognizable but not recognizable, and
directive sequences which are not even eventually recognizable. Moreover, in both cases the directive
sequences can be choosen primitive (see [BSTY1S8|, Section 4] for examples). This shows that Mossé’s
Theorem ([Mo92]) cannot be extended in a natural way from the substitutive to the S-adic framework.
We now list some results from [BSTYTS8|, Section 4] which provide sufficient conditions to recognizability
and eventual recognizability for sequences of morphisms.

Recall that a morphism o : A — B* is left (right) permutative if for all a # b in A, the first (last) letters

of o(a) and o(b) are different. Two morphisms o, 7 : A — B* are said to be rotationally conjugate if

there exists w € B* such that o(a)w = wr(a) for all a € A, or wo(a) = 7(a)w for all a € A.

Theorem 3.7. [BSTYI1S, Theorem 4.6] Let o = (op)n>0 be a sequence of morphisms with oy :

Apy1 — A5, For alln € N, let My, denote the incidence matriz of oy,. If
o tk(My,) = #Ant1 for alln € N, or
o #A,.1 =2 forallneN, or
e 0, is rotationally conjugate to a left or right permutative morphism,
then o is recognizable for aperiodic points.

Let d > 2 be an integer and Q) C Ri. Let (€2;)icr be a finite or countable partition of Q. Let (M;);cr
a family of matrices such that M;Q; C ;. The d-dimensional continued fraction map associated to

(M;);er is the map F : Q — Q defined by F(z) = M () if z € Q;. We define M (x) = M; if = € Q;.

(2
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The associated continued fraction algorithm is the iterative application of F' to a given vector z € €2,
which produces the sequence (M (F™(x)))nen, called the continued fraction expansion of x.

Given a continued fraction expansion (M (F™(z)))nen, We can associate each matrix M (F"(x)) to a
substitution o, (in a non-canonical way, since the same incidence matrix could correspond to different
substitutions). Then, to a continued fraction algorithm we associate a directive sequence of substitu-
tions and then an S-adic subshift.

Recall that a matrix M with integer coefficients is said to be unimodular if det(M) = £1.

Theorem 3.8. [BSTY18, Proposition 4.9] Let o be a directive sequence obtained from a unimodular

continued fraction expansion algorithm. Then o is recognizable.

Theorem 3.9. [BSTYI1S, Theorem 5.2] Let o = (op)n>0 be a sequence of morphisms with oy :

Apt1 — A3 such that liminf,,_, #A,, < co. Then, o is eventually recognizable for aperiodic points.

Through this chapter we will use the following equality

ol T (z) = TIC0m o)l () Vre X, V5> 1, (3.1)
which is a consequence of the fact that

ol T (x) = -+ O .n) (Tj-1)  Ol0,0) (€5)0 [0,y (Tj41) -+ -

We assume henceforth that (Xo,7") is minimal. For w € Lg(X((,n)), the cylinder [w],, corresponds to
the following subset of X,(,n)

[wlp ={z € Xc(rn) LTQ Ty -1 = W}

When the S-adic system is obtained from one single substitution o : A — A, we omit the subindex n

in the above notation, since Xt(,”) = X, for all n € N.

In the next section we use the condition of recognizability to construct appropriate sequences of tower

partitions for S-adic systems.
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3.2 Tower partitions for S-adic systems.

Let o = (0p)n>0 be a recognizable sequence of morphisms with oy, : Ap41 — Aj. For all £ > 1, define

the sequence of partitions 73,(16) of X, as follows

737(1@ = {Tja[o,n)([ao ceeap_qlp) fapar - rap_q € L:%,O <j<lojpmnlao)l} Vn>1. (3.2)

Define also Péé) = {lap - ap_1]o : ap---ap1 € LETO)Z}, that is, Pée) is the partition whose towers

correspond to the cylinders [ag - - - ag—1]p and have just one floor.

Proposition 3.10. For all n € N and for all £ > 1, 737(16) is a partition in towers of X with 737(121
finer than Pg), and (P,(f))neN satisfies condition (CO) of Section .

Proof. The heigth of the tower with base o ,([ao - - - as—1]) is |o0,n)(ao)|, which tends to infinity with

n, since o is everywhere growing. This means that (737(16) Jnen satisfies condition (CO).

Let 7 € Xo = X and n € N. We know from [BSTY18, Lemma 4.2], that  admits at least

one centered o ,)-representation in Xf,"). Since s is recognizable, then this is the only centered

O[0,n)-representation in Xf,") admitted by z. In other words, there exists a unique y € Xf,n) and a

unique 0 < k < |0, (yo)| such that z = Tka[oyn) (y). Let a; = y; for all 0 < ¢ < {. By definition,
(n)

o0 We conclude that there exists

y € lagar - - - ag—1]p and, since y € Xé"), ag:--ap_q € Lz(Xs(n)) CL
ag---ay_1 € LE:% and 0 < k < |O'[0,n)(a())| such that = € TkU[o,n)([ao ++~ay_1]n). This shows that for

alln>1 77,‘; covers Xg. Pée) trivially covers X, .

We now prove that 7372") is a partition. Suppose that there exist ag---ap_1,bp--bp_1 € L™ o <j<

o,

|0[07n)(a0)\, 0<k< |O’[07n)(b0)| such that x € Tj0[07n)([a0-'-ag_1]n) N TkU[O’n)([b()' . 'bg_l]n). This

means that there exist y; € [ag---a¢—1]n, and ya € [by - - - by—_1],, such that

=TI (y1) = Trolm (v2).

Since 0 < j < |opn(ao)l = |ojon)((y1)o)l, (y1,7) is a centered oy ,)-representation of x. Since

0 <k < |ojon(bo)l = lojn((y2)o)l, (y2,k) is a centered oy ,,-representation of z as well. By

recognizability, y; = y2 and j = k, so in fact Tka[07n)([a0 cag—1]n) = Tlopgn)([bo- - be—1]n). (()e) is

trivially a partition.

Finally, let us show that for all n, 737921 is finer that 737@. Let Tka[ojn_i_l)([ao -+~ ay—1]p) be an atom of

PT(L?_I and let = belong to it. This implies that ag - - as—1 € £g(Xc(,n+1)), 0 <k < |ojgns1)(ao)| and there

exists y € [ag - - Gr—1]n+1 such that z = Tka[omﬂ)(y). Therefore, one has = = Tka[om)(an(y)). Note
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that since y € X((,"H), on(y) € X&) it w < on(y), then w < o, (w’) for some w’ < y and there exists

N >n+1, a € Ay such that w' < 0,11, 5y(a); we have that o, (w') < 00 (01,8 (a) = opn)(a),
and therefore w < o, (w') < o7, vy(a); since w was arbitrarily taken, we deduce that o, (y) € xim,
Define b; = 0,,(y);, for all 0 < ¢ < £. Then by ---by_1 € Lg(Xs(n)) and x € TkJ[O,n)([bO eobp—1]n).
Suppose first that 0 < k < |ojg ) ((on(a0)o)|- Note that o,,(ag)o = bo. In this case, 0 < k < [0 ) (bo)]
and then Tka[om)([bo -+ +-bg_1]n) is an atom of 73,(14), so we conclude that Tka[o,nﬂ)([ao c@p—1)ny1) 18
included in an atom of Py(f).

Suppose now that |o(g ) ((on(a0)o)| < k < |0]g,n+1)(a0)]. Then, there exists a unique 1 < j < |0y, (ao)|
such that

010,n) ((on(@0) o)) <k < |opon)(onlao)pj+1))l-

Define m = |79 ) (0 (¥)(0,5))|- By (8.1), we know that
T = Tk_mg[o,n)Tj (Gn(y)) € Tk_ma[o,n)([an(y)j T Jn(y)j-i-f—l]n)'

Note that 0 < k —m < [opgn)(on(a0);)| = |ojm)(on(y);)], since 1 < j < |on(ao)|. The word

on(Y)j -+ on(y)j+e—1 belongs to ﬁg(Xc(,n)), then Tk_ma[ovn)([an(y)j -+ 0n(Y)j4+e—1]n) is an atom of Pén).

Thus, Tka[omﬂ)([ao «++ag—1]n+1) is included in an atom of PY. We conclude by noticing that clearly

PY is finer than P’ O

Proposition 3.11. The sequence (Pg))neN of partitions defined in (3.2)) satisfies condition (C1) for
all £ > 2.

Proof. Let f € C(X4,Z). From Lemma we know that f is cohomologous to a cylinder function
g € C(Xo,Z). Let k be a positive integer such that for all z € Xy, g(x) depends only on x|y ;. Take
n > 1 large enough so that

loj0,m) (@) >k Vae Ay

We can choose such an n because o is everywhere growing. Suppose z,y € T ojo,n)(laoar - - - ap—1]n), for
some agaj -+ ap_q1 € Lgt), some 0 < j < |o(0,n)(a0)|- Since |09 n)(ao)| + |o70,n) (@1)] + |0(0.0) (@e-1)| > Lk
and the heigth of the oo ,)([ao - - ag—1]n)-tower is equal to |0 ) (ao)|, = and y coincide on at least
their (¢ — 1)k first coordinates, and then g(z) = g(y). We conclude that g is constant on the atoms of
PL and therefore g € C(&). O

Remark 3.12. Note that the sequence (3.2)) does not necessarily generate the topology of Xo. We
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illustrate this with the following example.
Example 3.13. Thue—Morse substitution.

Consider the Thue-Morse substitution o : {0,1} — {0,1}* given by 0 + 01,1 > 10, and the directive
sequence o, = 0", with A, = {0,1} Vn € N. The sequence of partitions (3.2)) for £ = 2 has in this

case the form
PP = {TIs"([ab]) : ab € {00,01,10,11},0 < j < 2" — 1} (3.3)
Consider the map f : Xo — 7Z defined by

0 ifaz,lzo

flz) = ,
1 ifzx_1=1

We claim that for any positive integer n > 0 there are two different points x and y belonging to the
same atom of P such that f(z) # f(y). Indeed, let n > 0 and take 2’ € o™([001]), v/ € o™([101]).
These two points belong to the base of the partition P2 since [001] C [00] and [101] C [10]. Therefore,
it is not difficult to check that 717" (Dl(z) and T17"Ml(y/) belong to o™ ([01]). Let z = TIo"Ol(a"),
y = TI°"Wl(y/). Finally, note that no matter the parity of n, the last letters in the words ¢™(0) and

0"(1) are always different. Therefore, x and y belong to the same atom of P2 but f(z) # f(y).

An alterantive way to see that 73,(12) does not generate the topology of X, in this case, is to note that
there are two different points which belong to the same atom of P for all n > 0. Let z € {0, 1} the
infinite word having all powers ¢™(01) as prefixes; let y and z € {0, 1} be the infinite words having
respectively all powers ¢”(01) and ¢"(10) as suffixes; then, the bi-infinite words y - z and z - x are

different but both belong to ¢"([01]) for all n > 0.

The previous one is an example of a sequence of tower partitions satisfying (C1) but not (KR3).
Note that the sequence does not satisfy (C2)=(KR1) either, since the two points y-z and z-x (where
the dot indicates the zero position) belong not only to the same atom of PT(LQ), but also to the base of
PP for all n > 0.

When ¢ = 1, Proposition [3.11]is no longer true. We ilustrate this fact with the following example.
Example 3.14.

Consider again the Thue-Morse substitution defined in the previous example. In this case, the sequence
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( ,(11)) is given by

P = {T6"([a]) s a € {0,1},0 < j < 2"}, (3.4)

The groups G(6&W) and H(X,,T) are isomorphic to Z [%] and Z X Z [%] respectively, where Z [%]
denotes the group of dyadic rationals (see [DHP18] for a computation). Suppose we have a homomor-
phism ¢ : Z [3] — Zx Z [1], and let p(z) = (¢(2)1, ¢(x)2). We claim that ¢(z); =0 for all z € Z [1].

Let k be a positive integer,

Therefore,

250 <21k)1 =)

If ¢ (1/2%) # 0, then |p(1)1| > 2*. Since k was arbitrarily taken, we conclude that |[p(1)1] > 2* for
all k£ € N, which is not possible. So we conclude that ¢ (1 / 2"3)1 = 0 for all £ € N, which implies that
¢(1); = 0, which in turn implies that for any = € Z [1], ¢(z); = 0.

Thus, ¢ cannot be surjective.

The previous example shows that the smallest ¢ for which we know P satisfies condition (C1) is
¢ = 2. However, the sequence 7379) is simpler to handle and will be useful if we impose some additional
hypothesis to the sequence o. We present these hypothesis in the following. We start by making a
connection between the inidence matrices of o, and the morphisms Ip, ,, p, defined in Chapter

Recall from Example that the incidence matrix of a substitution o : A — A* is the |A| x |A]

integer matrix whose (i, 7) coefficient is the number of occurrences of i in o(j).

Proposition 3.15. Let Pr(bl) be as defined in (3.2)), and let (QSJ))%N be the sequence of matrices

associated to the homomorphism I’P(” P - Let (Mp)nen be the sequence of incidence matrices of the
n+1""n

substitutions op. Then, for alln € N, Q,(ll) =M.

Proof. Let a € A,11 and b € A,,. By definition,
My (a,b) = |o(n)alo = #{0 < j < |on(a)| : on(a); = b}.

One easily checks that #{0 < j < |on(a)| : op(a); = b} = #{0 < j < |on(a)| : TVon([alnt1) C [b]n}-
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We thus want to show that

#{0 < j < |on(a)| : T?on([alns1) C [Bn} = #{0 < k < |oj0m41)(@)] : T 00 41y ([alnr1) € 010y ([(B]n)}-

Suppose there exists 0 < j < |o,(a)| such that T7o,([a]nr1) € [b]n. If 5 = 0, on([a]ns1) C [bln,
which implies that oy ,,11)([aln+1) € 0)0,n)([b]n), and then Tka[omﬂ)([a]nﬂ) C 0o, ([b]n) for k = 0.
If1<j <lon(a)], set k = |ojn)(on(a)p )| One has 0 < k < [o[g41y(a)|. Now take x € [a]n41. By
, we have

T 010, (0n(2)) = 010, T (0n(2)).

By hypothesis, T9(c,,(2)) € [b]n, and then T*o(g,,11) () € 0jg ) ([b]). Note also that by definition the

k associated with a given j is unique, so we conclude that

#{0 < j <lon(a)| : T/o([a]nr1) € B} > {0 < k < |opniny(@)] : TE070 1) ([alns1) S 70,0 ([b]n)}-

Conversely, suppose that there exists 0 < k < |0y ,41)(a)| such that Tka[o’nﬂ)([a]nﬂ) is included in
a0,n)([0]n). Let z € [a]p41 and let y = Tka[()’nH) ().

We first assume 0 < k < |0(g)(0n(a)o)|. In this case, (k,on(z)) is a centered oy ,)-representation
of y. By hypothesis, there exists z € [b],, such that y = 09, (2), so that (0,z) is a centered oy ,)-
representation of y as well. By recognizability, ¥k = 0 and o,(z) = z, and thus o,(z) € [b],. We
conclude that o, ([a],+1) C [b], and then for j = 0 we obtain T7o,([a],r1) C [b]a.

Now we assume that [0 ) (0n(a)o)| < k < |ojgpns1)(a)|. In this case, there exists a unique 1 < j <
|on(a)| such that

|0[0,n)(0n(a)[0,j))| <k< |U[o,n)(0n(@)[o,j+1))|-

Let m = |o(g,n)(on(a)p,))]- Using (3.1, one has that

TmO'[Om) (O’n(l')) = 0’[0,77,)TJ (Un (:L‘)),

and thus y = Tka[oﬁn) (on(x)) = Tk_ma[o’n)Tj(an(m)). On the other hand, y € o[y ,)([b]5), and then,
there exists 2z € [b], such that y = opg,)(2). One has 0 < k —m < [o)g ) (on(a);)]- Again, (k —
m, T (o,())) and (0, z) are centered 0[o,n)-representations of y. By recognizability, k —m = 0 and

Tio,(z) = z € [b],. We conclude that T7c,([a]nr1) € [b]n. Since the j associated to a given k is
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unique, we conclude that

#{0 < j <lon(a)| : Ton(laln+1) € Bla} < #{0 <k <lojoniy(@)] : T 041y ([alns1) S 070, (b)) }-

O

Let o0 = (04, : Ap+1 — Apn)nen be a primitive recognizable everywhere growing sequence of morphisms.
(n)
0,2

in the following way: for every u = uguj € Lg;l), al,

For any n > 0, we consider the finite set L_ 5 as an alphabet, and we define the substitution o7, on it
(u) consists of the |y, (up)| first factors of lenght
2 of oy, (u). For example, if o, (ug) = apay - - - a, € A} and o, (u1) = boby - - - as € A}, then

/

op(u) = oy (uour) = (agar)(araz) - - - (ar—1ar)(arbo).

Note that o), : Lgf;l) — LSLQ)* and o/, (Lo(XS"™)) € Lo(X{M)*. For any n < m € N, we write o

[n,m)

/

L / !
to refer the composition 0, 007 ,;0---007, ;.

For one sinlge substitution, ¢’ is defined on La(X,) and it is called the two-block extension of o (see
[DHP18, Section 9] or [Quel(l Section 5.4.1] for more on the higer-block extensions of a substitution).
We will use it to make the computations of the dynamical dimension group of substitution systems in
Section 3471

The following result is analogous to Proposition [3.15] The proof is almost identical. We include it

here because we do not know alternative proofs in the literature.

Proposition 3.16. Let PT(L2) be as defined in (3.2)), and let (Qg))neN be the sequence of matrices

associated to the homomorphism 17’7(12421,7’7(12)' Let (M])nen be the sequence of incidence matrices of the

substitutions ol,. Then, for alln € N, Q%Z) = M/T.

Proof. Let ab € LQ(XS(RH)) and cd € Lg(Xs(n)). By definition,
M (ab,cd) = #{0 < j < |on(a)| : ol (ab); = cd}.

Note that #{0 < j < |on(a)| : o (ab); = cd} = #{0 < j < |on(a)| : T?o,([ab]) C [cd]}. We thus want
to show that

#{0 < j <lon(a)| : T'on([ab]) C [ed] = #{0 < k < | n41)(a)] : T 010 1) ([ab]) S 010 ) ([ed])}
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Suppose there exists 0 < j < |o/,(ab)| = |0 (a)| such that T7a,([ab]) C [cd]. If j = 0, o, ([ab]) C [cd],
which implies that o ,4.1)([ab]) C 0o ([cd]), and then Tka[omﬂ)([ab]) C ojo,n)([cd]) for k = 0. If
1 < j < lon(a)], set k = |ojgn)(on(a)joy ))|- One has 0 < k < [o)gp41)(a)]. Now take z € [ab].
By (3.1), we have Tka[oan)(an(fv)) = 01, T7(on(x)). By hypothesis, T7(c,(x)) € [cd], and then
T ko[o,nﬂ)(x) € 0(o,n)([cd]). Note also that by definition the k associated to a given j is unique, so we

conclude that

#{0 < j <lon(a)| : T?on(lab]) C [cd]} > #{0 < k < |ofn11)(a)] : T 0(0,041) ([ab]) C 0700 ([cd])}-

Conversely, suppose that there exists 0 < k < [o[g,41)(a)| such that Tka[omﬂ)([ab]) is included in
ofo,n)([cd]). Let 2 € [ab] and let y = T* oy 1) ().

We first assume 0 < k < |0(g,)(0n(a)o)|. In this case, (k,on(z)) is a centered oy ,)-representation
of y. By hypothesis, there exists z € [ed] such that y = 0y, (2), so that (0,z) is a centered oy ,)-
representation of y as well. By recognizability, & = 0 and o,(z) = z, and thus o,(x) € [cd]. We
conclude that o, ([ab]) C [ed] and then for j = 0 we obtain T7oy,([ab]) C [cd].

Now we assume that [0 ) (on(a)o)| < k < |ojgns1)(a)|. In this case, there exists a unique 1 < j <

|on (a)| such that

1o70,0) (Tn(@)0,5))] <k < |oj0.n)(onla)j, 1))l

Let m = |01, (on(a)j,;)|. Using (B.1), one has that Ty, (0n(x)) = 00T (on(z)), and thus
Y= Tka[om)(an(:r)) = Tk*ma[om)Tj(an(x)). On the other hand, y € oy ,)([cd]), and then, there exists
z € [ed] such that y = o ,)(2). One has 0 < k —m < |0y n)(0n(a);)|. Again, (k —m,T7(o,(x))) and
(0, z) are centered oy ,,)-representations of y. By recognizability, ¥ —m = 0 and Tio,(z) = 2z € [cd).

We conclude that T70,([ab]) C [ed]. Since the j associated to a given k is unique, we conclude that

#{0 < j < lon(a)| : TVon([ab]) C [ed]} < #{0 < k < |ojo,n41)(a)] : T*00 11y ([ab]) € 070 ) ([ed]) }-

O]

In the following we present a series of results which state that conditions (C1) and/or (C2) can
be satisfied by Pfll) when regarding S-adic systems with an infinite number of left or right proper
substitutions. This strategy has been inspired in the ideas presented in [DL12].

Lemma 3.17. Let A be a finite alphabet, and let o = (0,)n>0 be a recognizable everywhere growing

sequence of morphisms such that o, : A — A* for all n € N. Suppose there exists a subsequence
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(nk)ken such that for all k € N, oy, is left proper with common prefiz ¢ € A. Then, the sequence of

tower partitions 73,(11) associated to o satisfies conditions (C1).

Proof. By Proposition it suffices to prove that for every cylinder function g € C(X,Z), there
exists n € N such that g is constant in the atoms of 77,(11). For simplicity we denote P, each partition
777(11). Let g € C(X,Z) be a cylinder function and m € N such that g depends on the coordinates
[0,m). Let k > 0 such that |0 ,,)(¢)] > m. We can always choose such a k since o is everywhere
growing. Suppose that z € [a],,+1 for some a € A. Since oy, is left proper with prefix £, o, 11)(2)
begins with the prefix (g ,, 11)(a)0[gn,)(£), and thus every element in the atom 1707y ,, +1)([aln,+1),

0 <j < |o[ne+1)(a)], has a common prefix of length at least |o,,)(¢)]. Since |0y, )(£)| > m, g is

constant in every such an atom. O

Remark 3.18. Note that the hypothesis of oy, having a common prefix £ for all k > 0 can be replaced
by the following: for all k > 0, oy, is left proper with prefix {i. Indeed, since A is finite and every l
belongs to A, this condition implies that some prefix occurs infinitely often, and thus, up to consider

a subsequence of (ng)ken, we may assume that every oy has the same prefiz.

Lemma 3.19. Let A be a finite alphabet, and let o = (0,)n>0 be a recognizable everywhere growing
sequence of morphisms such that o, : A — A* for all n € N. Suppose there exists a subsequence
(nk)ren such that for all k € N, op,, is left proper and oy, ., is right proper. Then, the sequence of

tower partitions P associated to o satisfies conditions (C1) and (C2).

Proof. All substitutions in the subsequence (oy,, )zen are left proper, so by Lemma the sequence
PV satisfies condition (C1). Let us prove that PV satisfies (C2). For any k > 0, consider the
COmMPOSition Oy, nyy 1)Ongsy,- By Lemma Olnoy.mans,) 15 left proper, and since op,,  , is right
PTODET, Oy, ngpsq)Onapyq 18 Proper. This means that for all k > 0 there exist lp,ry € A, v : A — A

such that for all a € A,

Olnak,nak+1) O nakr1 (a) = L (a)'rk .

Since A is finite, we can reason as in Remark to conclude that, up to take a subsequence, there
exists £,7 € A such that for all k¥ > 0 and for all a € A,

Olngg,nagt1) O n2r+1 (a) = Evk(a)r.
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Suppose € Y = [,y Bn. Then the central window of  has the form

o U[O,’nzk)(r) : U[O,nzk)(é) e

Since |o(g n,,) ()] and |09 5,,)(7)| are arbirtarily large, we conclude that Y = {z}. O

Lemma 3.20. Let A be a finite alphabet, and let o = (0y)n>0 be a recognizable everywhere growing
sequence of morphisms such that oy, : Apy1 — A} for allm € N. For alln >0, let £, € A a (possibly
empty) word and uy, : Any1 — A% a substitution verifying op(a) = bpun(a) for all a € Apq1. For all

n € N, define 7,(a) = up(a)ly, for all a € A,y1. Then, the following assertions hold.

e For alln > 2, for all a € Ay, o9 (a) begins with the word
o10,n—1)(ln—1) - - - 0,1y (1) Lo,
and T n)(a) ends with the word
botio,1y (€1) = Ton—1) (Un—1)-
e Foralln > 1, for all a € A, U{e} one has
10,0 (@)10.n—1) (bn=1) - - - 70,1y (€1)€0 = LoTio,1)(£1) - - - To,n—1) (bn—1)T[o,n) (@)
Proof. We proceed by induction on n. For the first assertion, let n = 2, let a € As. One has

0[0,2)(@ = 0,1 (01(a))
= 0o),1)(l1ui(a))
= op,1)(l1)op,1)(u1(a))
(

= op,1)(¢1)oo(ur(a)).

Since {p is a prefix of og(u1(a)), then oy 1)(£1)o is a prerix of oyg9(a).

Let n > 2 and suppose that for all a € A, 09, (a) begins with oo, _1)(ln-1) - 0j01)(f1)l. Let
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a € Apy1. Then one has

J[O,n—l—l)(a) = U[O,n)(Un(a))
= jon)(on(@)o)oon)(an(a)1) - 010 (00(a) 6, (a))-1)
= 0[0,0)(n)oj0,n)(0n(a)1) -+ 00 (00(@) 6, (a)~1)-

By inductive hypothesis, oy ) (0 (a)1) begins with oyg ,,_1)(€n—1) - - - 0(9,1) (¢1) €0, and therefore o7 ,, 1 1)(a)
begins with oo ,)(¢n) - - - 70,1y (€1)fo-
In a completely analogous way, we prove that every (g ,y(a) ends with the word £o7ig,1) (1) - - - Tjo,n—1) (b

Let us prove the second assertion. Let n = 1. If a = ¢, then

op(E)lo = elo
= foe

= 507’[071) (E)

If a € A; is not the empty word, one has

0[071)(a)€0 = Jo(a)&)
= foUo(a)go
= goT()(a)

= 607[071) (Cl)

Let n > 1 and suppose that the assertion is true for all a € A, U {e}. If a = ¢, then

T10,0+1)(E)T0n) (ln) 01y (l1)lo = Tjomt1)(E)0T0,1) (1) -+ Tlon—1) (bn—1)T[0,n) (£n)
= eloTio,) (1) - - - Tjo,—1) (€n—1)T(0,n) (Un)

(Un—1)7(0,n) ()

(bn—1)70,n) (4n)e

= LoTo,1y(€1) ** T0,n—1) (bn=1)T(0,0) (n) T0,n11) (€)-

= Lomo,1y(41) -+ Ton—1)
1)

)
(

= LoTjo,1)(41) -+ Tjo,n—
(

1).
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Ifa#e¢ forall 1 <k <nlet Ly = |0} ny1)(a)] — 1. One has

T10,n+1)(@)T0,0) (ln) -+ 00,1y (€1)l0 = 00 nt1)(@)l0T[0,1)(€1) - Tjo,0—1) (bn—1) T[o,n) (n)
= 00(01,n+1)(@)loT0,1) (1) - - Tjo,n—1) (bn=1)T[0,n) (¢n)
= Louo (71 ng1y(a)o) - Loro (71 g1y (@) Ly )oTio,1) (€1) - -~ Tlom) (€n)
= Lom,1)(071,n11)(@)710,1)(€1) - - - To,m) (£n)
= Lo710,1)(01(012,n+1)(@)))Tj0,1) (1) = T[o,n) (€n)
= LoTpo,1)(lrua (02ny1)(@)o) -+ lrur (02,n11) (@) 1) Ti0,2) (€2) - -~ Tjo,) (€n)

= Lo710,1)(1)710,2)(£2) - * - Tjo,n—1) Un—1)T(0,n) Tlnn+1) (@) T[o,n) (n)

)
= Lo70,1)(41) ** To,n—1) (bn—1)T(0,n) (on (@) T[0,n) (€n)
= 5070,1)(51) *T(0,n— 1)@ )T[o,n)(fnun(a))T[o,n)(gn)
= Lo70,1)(41) * * To,n—1) (bn—1)T(0,0) (€n) Tj0,n+1) (@)

O]

Proposition 3.21. Let A be a finite alphabet, and let o = (0,)n>0 be a recognizable sequence of
morphisms such that o, : A — A* for alln € N. Suppose that there exists a subsequence (ng)ren such
that for all k € N, o, is left proper or right proper. Then, there exists a directive sequence & = (6;)i>0
of substitutions &; : A — A*, such that Xo = Xg and the sequence of tower partitions 737(L1) associated

to & satisfies conditions (C1) and (C2).

Proof. If there are infinitely many o,,’s which are left proper and infinitely many o,,’s which are
right proper, then we can assume, modulo taking a subsequence, that for all k£ > 0, oy, is left proper
and op,, ., is right proper. We thus define 7; = 05, and we apply Lemma to conclude.

Suppose that all o, ’s are left proper. Define the new sequence (5;);cn as follows,

on, if 7 is even
T

g; =

Tn, if 7 is odd.

where 7, is the right conjugate of oy,.
The sequence (7;);en verifies that &; is left proper if 7 is even and right proper if i is odd, so by Lemma

the sequence of tower partitions PV associated to & satisfies conditions (C1) and (C2).
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Let us show that X5 = X4, for which is enough to show that Lx, = Lx_ . First, note that X, = X.
Indeed, if ¢, and u,, are as in Lemma we know that

e For all ng > 2, for all a € Ay, 0(9,,)(a) begins with the word

U[O,nk—l)(enk—l) T U[O,m)(gm)&mv

and 7o ,,)(a) ends with the word
o Tio,ny) (Una) * oy —1) (Bny—1)-
e For all ny > 1, for all a € A, U {e} one has
U[O,nk)(a)a[o,nk—l)(fnk—l) T U[o,m)(fm)gno = fnoT[o,m)(fm) T T[o,nk—l)(fnk—l)T[o,nk)(a)~

Let v belong to the language of X,. There exists some a,b € A and k > 0 such that ab € L'(Xé:’“))
and v < o[g p,)(ab), that is, v < o ) (@)oo 5,) (D). By Lemma T(0,ny,)(b) begins with

U[O,nkfl)(gnk—l) T U[O,m)(em )Enov

= gnoT[O,nl) (an) ©T0,n,—1) (gnk—1)~

This implies that

v = 070,0,) (@) 010, —1) no—1) - T10,01) (Cny Jng = CrgT0,00) Uy ) = T0,10—1) (b —1) T(0 ) (@)

There exists also ¢ € A such that 7y ,,\(ca) = 7jg.n,)(¢)T[0,n,)(a) € Lx,. By Lemma Tio,np) (€)
ends with the word

= LngT(o,n1) (bny) * Tomg—1) (Cng—1),

which implies that v < 7 p,)(ca). If there exists d € A such that 7, (d) begins with ca, then
v < Tonu+1)(d) and thus v € Lx,_ . Analogously, one proves that every factor belonging to Lx,

belongs also to Lx,_. This proves that X, = X .
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Now, let &; = ¢;u;, where
- ly, if i is even
€ if 4 is odd.
and
uy,, if 71is even

Tn, if 7 is odd.

For all i > 0, let 7; be defined by 7;(a) = @;/;. We may apply Lemma in the same way as above
to obtain that Xz = X;.
Finally, since for all ¢ > 0 7; = 7,,,, we have that X = Xz. We conclude that X, = X; = X5z = X5.

If all o, s are right proper, we define the new sequence (6;);en as follows,

on;, if7isodd

0; =

Tn; if 4 is even.

where 7, is the left conjugate of oy,.
The sequence (7;);cn verifies that &; is left proper if ¢ is even and right proper if ¢ is odd, so by Lemma
the sequence of tower partitions PV associated to & satisfies conditions (C1) and (C2). To
show that X5 = X, we proceed in a completely analogous way as in the case where all o,,,’s are left
proper.

O]

3.3 Frequencies.

Recall from Chapter (1| Section that in a minimal subshift (X,T") every point has (uniform)
frequencies if and only if (X, T") is uniquely ergodic, in which case the frequency u, of a factor w € Lx

is equal to u([w]), where p is the unique invariant measure of M(X,T).

3.3.1 Frequencies for substitutive systems.

Substitutive systems arising from primitive substitutions are minimal and uniquely ergodic (see for
example [Quel0], Sections 5.2 and 5.4]). This implies that frequencies do exist and are uniform. The
way to compute them is related to linear properties of the incidence matrix of the substitution. We

recall here a list of results which make explicit this relation and which are taken almost literally from
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[Quel0, Chapter 5]. We start by recalling a classical theorem for primitive matrices, the Perron-

Frobenius’s Theorem.

Theorem 3.22 (Perron-Frobenius). Let M be a primitive real matriz. Then, the following asser-

tions hold,
(a) M admits a unique positive eigenvalue 0 verifying 0 > || for all other eigenvalue X of M.
(b) The eigenvector associated to 6 can be chosen positive.
(c) The eigenvalue 6 is simple.

The eigenvalue 6 above is called the dominant eigenvalue or the Perron-Frobenius eigenvalue of M.
As a consequence of Theorem [3.22] there exists a unique right normalized eigenvector associated to
the dominant eigenvalue, normalized meaning that the sum of its components equals 1. It is called the
right normalized dominant eigenvector or the right normalized Perron-Frobenius eigenvector of M.
We define now an analogous to the 2-block extension substitution ¢’ in higher dimensions.

Let 0 : A — A a primitive substitution and ¢ > 2. Consider the finite set L£;(X,) as an alphabet,
and define the substitution o, on it in the following way: for every u = uguy - - -up—1 € Lo(Xy), o(u)
consists of the |o(ug)| first factors of lenght ¢ of o(u). We extend oy to L,(X,)* and Ly(X,)% by

concatennation.

Lemma 3.23. [Quel0, Lemma 5.3/ If o0 : A — A is a primitive substitution, then for all £ > 2,

op: Lo(Xy) = Lo(Xo5)* is a primitive substitution as well.

The previous lemma ensures that we can apply Theorem to the incidence matrix M,, of the
substitution oo. The following result states that frequencies of letters (resp. factors of length 2)
on primitive substitutive systems exist and are provided by the right normalized Perron-Frobenius

eigenvector of M, (resp. M,,). It is a restatement of Propositions 5.8 and 5.9 in [Quel0)].

Proposition 3.24. If o : A — A is a primitive substitution, then for all £ € {1,2} the frequencies of
factors of length € exists and the vector £, € RE¢Xo) whose coordinates are given by these frequencies

is equal to the normalized right Perron-Frobenius eigenvector of My,, where o1 = 0.
Example 3.25. Chacon substitution

The primitive Chacon substitution o is defined over the alphabet {1,2,3} by o¢: 1 — 1123,2 +—

23,3 + 123. The eigenvalues of My, are 3, 1 and 0, so the dominant eigenvalue is 3 and the letter
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frequency vector is (1/3,1/3,1/3).

We refer to [Quel0], Section 5.4.3] for a description of an algorithm allowing to compute the frequency
of any factor w € £L(X,) thanks to matrices M, and M,,. The next result states that eigenvalues of

My, are the same for all £ > 1, except possibly for the aditional eigenvalue zero.

Proposition 3.26. [Queld, Corollary 5.5] Let o : A — A be a primitive substitution. The eigenvalues

of My, are those of Mg,, with possibly the additional eigenvalue zero.

3.3.2 Frequencies for S-adic systems.

We have seen that substitutive systems are uniquely ergodic provided the underlying substitution is
primitive (J[Quel0]). The situation is different when dealing with S-adic systems: there exist uniformly
recurrent (and thus primitive S-adic) subshifts which are not uniquely ergodic. This is for instance
the case of the counterexample constructed in [Keane77], consisting of a regular interval exchange
transformation (see Example of 4 intervals, which has exactly two invariant measures.

The following result gives sufficient conditions for unique ergodicity of S-adic systems.

Theorem 3.27. [BD1j, Theorem 5.7] Let X5 be an S-adic subshift with directive sequence o =
(0n)nen, such that oy, : Apy1 — A% and Ay = {1,2,--- ,d}. Suppose that o is everywhere growing.

Let (My,)nen be the sequence of incidence matrices of o,,. Then, the limit cone

0 — ﬂ MO"‘MnRi
n—00
parametrizes the letter frequencies: the set of vectors f € CO such that fi+ fo+---+ fq = 1 coincides
with the image of the map which sends a shift-invariant measure @ on Xg to the vector of letter
frequencies (u([1]), u([2]), - -+, w([d])). In particular, X has uniform letter frequencies if and only if
the cone C9) is one-dimensional.

If furthermore, for each k, (0pn1k)neN 1S an everywhere growing directive sequence, and the limit cone

o) — ﬂ Mk"'MnRi

n—oo

is one-dimensional, then the system (Xq,T) is uniquely ergodic.

The above condition on the convergence of the cones C'¥) can be interpreted as a Perron-Frobenius-
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like condition, like in the case of substitutive systems. The following theorem states then a sufficient

condtion on the incidence matrices for S-adic systems to have uniform letter frequencies.

Theorem 3.28. [Fur60] Let d > 1, let (My)nen be a sequence of non-negative integer d x d matrices.
Suppose there exists a strictly positive matriz B and indices j1 < k1 < jo < ko < --- such that
B=Mj - My _1=M,-- My,_1 =--- (that is, the block B ocurrs infinitely often in the sequence

of composition matrices). Then, there exists a positive vector f € ]Ri such that

() Mo---M,RE =R, f.
n—00
The above condition is related with the notion of recurrence of a matrix sequence. A sequence of
square integer matrices (M, )nen is said to be recurrent if for each m € N there exists n € N such that
My My, = My, -+ My, This implies that every block occurs infinitely often in the sequence. A
particular case of Theorem is thus the following result, which corresponds to [Thul7, Proposition
1.5.5].

Proposition 3.29. [Thul7, Proposition 1.5.5] Let (My), be a recurrent sequence of non-negative

matrices belonging to GL4(Z). There is a vector u € Ri satisfying

() Mo---MR% =Ru.
n—oo
To ensure the existence of uniform word frequencies, that is, unique ergodicity, we have the following
result in the particular case we work with a constant alphabet for all o,’s. Its proof is a direct

consequence of [PF02, 5.1.21] and [Thul7, Lemma 1.5.9].

Theorem 3.30. [Thul, Theorem 1.5.10] Let A be a finite alphabet. Let o = (0, 1 A — A*)pen be an
everywhere growing directive sequence of morphisms and (M, )nen the associated sequence of incidence
matrices. If o is primitive and (Mp)nen is unimodular and recurrent, then (X, T) is minimal and

uniquely ergodic.

Recall from Proposition that if a subshift (X,T') is uniquely ergodic, then whenever conditions
(C1) and (C3) are satisfied for some sequence of tower partitions (Pp),en of (X,T), the image

subgroup I(X,T) is given by
d

I(Xa T) = Z ZM(Bi,m)7
=1
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where d and m are as defined in condition (C3). Recall also from Remark that

(X, 7)= () {u(w):weLx)),

pEM(X,T)

so when (X,T) is uniquely ergodic, every factor frequency p,, is an integer linear combination of
{u(Bim), -, 1(Bgm)}. Suppose that an S-adic system given by a recognizable primitive directive
sequence o = (op)n>0 with o, : A — A*, is uniquely ergodic. Under the hypothesis of Proposition

the sequence 77,(11) satisfies condition (C1), so we obtain the following result.

Proposition 3.31. Let A be a finite alphabet with #A = d > 2, and o = (op)n>0 be a primitive
recognizable directive sequence of morphisms with o, : A — A* for alln € N. Let (My,)nen be the
sequence of incidence matrices of o. Suppose (X, T) is uniquely ergodic. If there exists a subsequence
(ng)ken such that for all k € N, oy, is left or right proper, and there exists m € N\ {0} such that for
all n > m, M, € GL4(Z), then for all factor w € L(Xy), the frequency p,, belongs to the following
additive subgroup of R,

> Zp(opomy([a)).

€A
If there exists a subsequence (ng)ken such that for all k € N, oy, is left or right proper, and for all
n >0, M, € GL4(Z), then for all factor w € L(Xy), the frequency p, belongs to

3" Zu([a)-
€A

Corollary 3.32. Let A be a finite alphabet with #A = d > 2, and o = (0y)n>0 be a primitive directive
sequence of morphisms with o, : A — A* for alln € N. Suppose that o is obtained from a unimodular
continuous fraction algorithm and that the sequence of incidence matrices (Mpy)nen 18 recurrent. If
there ezists a subsequence (ng)gen such that for all k € N, o, is left or right proper, then for all

factor w € L(X4), the frequency p, belongs to the following additive subgroup of R,

> Zu(la)).

€A
Example 3.33. Poincaré algorithm.

Consider the classical Poincaré three-dimensional continued fractions algorithm defined on R? (see
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[INo95| for details), whose associated matrices are

1 00 1 0 0 1 10
Mis=11 1 0 Miza=11 1 1 Maz=10 1 0

1 11 1 01 1 11
1 1 1 1 01 1 1 1
Mys1=10 1 0 Mza=11 1 1 M1 =10 1 1
011 0 01 0 01
The six associated substitutions are defined by
1 — 123 1 — 132 1 — 13
o123 = 2 — 23 O132= 2 — 2 o213 = 2 +— 213
3 — 3 3 — 32 3 — 3
1 = 1 1 — 12 1 — 1
0231 = 2 +— 231 0312= 2 — 2 0321 = 2 +— 21
3 — 31 3 — 312 3 — 321

Note that every M;j;, is unimodular and all substitutions o;j; are right proper. If o is a recurrent
directive sequence with all ¢,,’s belonging to those substitutions, then by Corollary for all factor
w € L(X4), the frequency p,, belongs to the following additive subgroup of R,

> Zu(la)).

icA
3.4 Dynamical dimension group.

3.4.1 Dynamical dimension group for substitutive systems.

In this section we present some results allowing to explicitely compute the dynamical dimension group

of substitutive systems. We first introduce some definitions and notations to understand the statements

and proofs.
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Given a p x p-real matrix M, its eventual range Rys and its eventual kernel KCps are respectively

Ry = (MR, Ky = [ ker(MF).
k>1 k>1

We have the following chain of inclusions,
.. MFRP C MFIRP C ... C M2RP C MRP C RP.

Since M*HIRP C M*RP, dim(M*HRP) < dim(M*+1RP), and since dim(RP) = p, there are at most p
strict inclusions in the chain. Note that if M*T1RP = M*RP for some k, then M is invertible on M*RP,
and thus M*+t"RP = MF*RP for all n > 0. This implies that Rj; = MPRP and M is an automorphism
of Ryr.
Note also that a similar argument shows that ICp; = ker(MP), and finally that RP = Ry & s (see
for example [LM95, Section 7.4] for details).
Let

Ay ={veRy :3k >0 MveZP},

AL, ={veRy:Ik>0,MveZl},

and let 1/ be the projection of the vector (1,--,1) on Rys. The triple (Aps, AL, 1) is an ordered
group with unit. When we work with primitive proper substitutions, we have the following theorem,

which corresponds to [DHS99, Theorem 22, (i)].

Theorem 3.34. Let o be a primitive aperiodic substitution defined on the alphabet A. Let M be the

incidence matriz of o. If o is proper, then K°(Xy,T) is isomorphic to (A, A]J(/[, 1n).

When the substitution is not proper, the situation is more complicated. One strategy to work with
non-proper substitutions is the one developed in [DHS99|, where the authors associate to each prim-

itive aperiodic substitution, a proper primitive aperiodic substitution such that the two associated

subshifts are isomorphic (see [DHS99, Proposition 20]). Another strategy is the one presented in

[Ho95] and recently developed in [DHP18]. We explain this second strategy here.

We know thanks to Proposition and Proposition that for any primitive and recognizable S-

adic system, the group homomorphism 7g : G(&) — H (X4, T') associated to the sequence of partitions

for £ = 2 is surjective and consequently K°(X, T') is isomorphic to (G(&)/ ker(rg), (G(&)/ ker(rs)) T, [1(&)]),
where (G(G)/ker(rg))™ is the projection on G(&)/ker(ng) of G(&)T and [1(6)] is the class modulo
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ker(mg) of 1(&). This is true in particular for primitive substitutions. The following series of results,
issued from [DHP18|, Section 9], allows us to compute ker(ng), so that we can explicitely know the
dynamical dimension group K%(X,,T).

The following proposition ([DHP18, Proposition 3.5]) gives us a convenient description of the inductive
limit hgn(Zp , M). We include its proof because we will use the explicit form of the isomorphism in the

sequel.

Proposition 3.35. [DHPI18, Proposition 3.5] Let M be a p X p real metriz. Then, the inductive limite
lig(Zp, M) is isomorphic to Apy.

Proof. Let a € liﬂ(Zp, M). Recall that hﬂ(Zp, M) is the quotient A/AP, where

A ={(Xn)n>0 € HZP | 3k >0: Mx,, = Xpy1 Vn >k},

n>0
AO:{(Xn)nZOGA|3kZO:Xn:O VnZk}

Then, « is the class modulo A? of a sequence # = (X, )nen Which verifies x,, € ZP and there exists
k € N such that for all n > k, x,4+1 = Mx,. Choosing k large enough, we may assume that x,, € Rjy.
Since M, and therefore M*, defines an automorphism of Rj;, there exists a unique y € Rjs such
that M*y = x;. Define 6 : A — Ay by 6(x) = y. This map is a well defined group homomorphism
between A and Ajy.

Suppose #(x) = 0. This implies that M*0 = x;,, so that x; = 0 and then x,, = 0 for all n > k, that is,
x € AY. Conversely, if z € A, then we can assume that x;, = 0 and since M* is an automorphism of
Ry, y = 0= 0(x). We conclude that ker(f) = AY.

Finally, note that 6 is surjective. Indeed, for a vector y € Ay, consider a positive integer k such that

MPFy € 7P. Consider the sequence

0 ifn<k
M"y ifn>k

Xn =

Then it is clear that for all n > k, x,11 = Mx,, and x;, = M*y, which implies that 0((x,)nen) = y.
We conclude that Ay is isomorphic to A/A? = hgn.(Zp, M). O

Remark 3.36. Let 0 : A — A be a primitive substitution on the alphabet A, with |L2(X,)| =

d > 2. The previous proposition tells us that when we take the matric Ma = My,, which is equal
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to the transpose of Qq(f) for all n € N thanks to Proposition |3.16|, the inductive limit hﬂn(Zd,M@)

corresponds to Apy,, .
If f € C(Xy,Z) and i is a positive integer such that f € C(PZ@)), then the image of f in G(&) =
lng (2, M) s i

p@ O Ip(z)f, which is the class modulo Ay of the sequence
0 if k <i
Xk = ngz)f ka:Z

(M) L f - if k>

If k = i+d, then X} belongs to Ryr, and thus to Ayr. Since (MIYF . (MT)IRY — (M])k+IRE 4s
an automorphism and (MQT)dIP@)f belongs to (MI)F+HIR?, there exists a unique y € (M )R such

that (MI)ky = (MQT)dIPi(z)f. This implies that the image y of f in AM;r satisfies
(M3)'y = pe) -

Lemma 3.37. [DHPI1S8, Lemma 9.7] Let o0 : A — A be a primitive substitution, and let 737(12) be as
defined in (3.2). Let mg : G(6) — H(X,,T) be the unique morphism of ordered groups with unit
associated to the sequence (737(12)). Then, Tg is surjective and ker(ng) (seen as a subset of AMQT) s

Ay N Bi(R1(Xo)).
As a corollary we obtain the following.

Theorem 3.38. Let o : A — A* be a primitive substitution, and o9 : Lo Xy) — Lo Xs)* its 2-block
extension. Let My be the incidence matriz of oo. Then, the dynamical dimension group K°(X,,T)
is isomorphic to (AM2T/AM2T N B1(R1(Xy)), (Apr/Apg 0 B1(R1(X,)))T, 1), where (AM2T/AM2T N
B1(R1(X,)))" is the projection of AL; on Ay /Ay 0 B1(R1(X5)), 1 denotes the class modulo
Ay N A1(R1(Xo)) of the vector O((1(Pn)men)) € Apr and 0 is the morphism defined on Proposition
5. 59l

3.4.2 Dynamical dimension group for S-adic systems.

From Proposition we know that if a sequence of tower partitions satisfies conditions (C0)-(C3),
then the dynamical dimension group can be explicitly computed. Let A be a finite alphabet with
|Al = d > 2, and o = (0,)n>0 be a primitive recognizable directive sequence of morphisms with

on: A— A* for all n € N. Under the hypothesis of Proposition the sequence (Pﬁl))neN satisfies
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conditions (C1) and (C2). We also know from Proposition that this sequences satisfies always
condition (C0). Then, we obtain the following result.

Theorem 3.39. Let A be a finite alphabet with |A| = d > 2, and o = (on)n>0 be a primitive
recognizable directive sequence of morphisms with oy, : A — A* for all n € N. Let (M,)nen be the
sequence of d x d integer matrices given by the incidence matrices of o. Suppose that there ezists a
subsequence (ng)ken such that for all k € N, o, is left or right proper, and that there exists m € N

such that for alln > m, M, € GL4(Z). Let i and u be as defined in Pmposz’tz’on and
A={xez%: (x,1ip) >0 Yue M(Xs,T)}U{0}.

Then, (H(X,,T), HY(X,,T),1x,) and (Z% A,u) are isomorphic as ordered groups with unit.

Note that the sequences of matrices (M, Jnen and (Ms, )nen (Where & is the directive sequence given
by Proposition [3.21]) are identical, since the matrix of a left proper (resp. right proper) substitution

and that of its right conjugate (resp. left conjugate) are the same.
Example 3.40. Arnoux-Rauzy-Poincaré algorithm.

Consider the Arnoux-Rauzy-Poincaré three-dimensional continued fractions algorithm defined on Ri

(see [BL15] for details), whose nine associated matrices are

1 1 1 1 0 0 1 0 0

My=10 10 Ma=11 11 Ms=10 1 0

0 0 1 0 01 1 1 1
1 00 1 00 1 10
Mps=11 1 0 Myze = (1 11 Maz=10 1 0
1 11 1 0 1 1 11

Mazi=10 1 0 M31o = M3z =10

(] =
= =
— —
S
S =
o = O
= =
(a] =
S =
_ = =
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The nine associated substitutions are defined by

1 — 1 1 — 12 1 — 13
1= 2 — 21 o02= 2 — 2 3= 2 ~— 23
3 — 31 3 = 32 3 = 3
1 — 123 1 — 132 1 — 13
o123 = 2 — 23 O132= 2 — 2 0213 = 2 +— 213
3 — 3 3 — 32 3 — 3
1 — 1 1 — 12 1 — 1
0231= 2 — 231 0312= 2 — 2 o321 = 2 +— 21
3 — 31 3 — 312 3 —~ 321

Note that every M; and every M;;; is unimodular and all substitutions o;, 0 are right proper, so by
Theorem the dynamical dimension group of any S-adic system obtained by a directive sequence

o = (Ti)ieN, where 7; € {01, 092,03, 0123, 0132, 0213, 0231, 0312, 0321 }, is the triple
3
(Z 7Aa u)a

where A and u are defined as in Theorem @
Example 3.41. Fully subtractive algorithm.

Consider the Fully subtractive three-dimensional continued fractions algorithm defined on Ri (see

[Sch00] for details), whose three associated matrices are

100 1 10 1 01
Mi=1]110 Ma=10 1 0 Ms=1|0 1 1
101 01 1 0 0 1

The three associated substitutions are defined by

1 — 123 1 — 1 1 — 1
o= 2 = 2 o2= 2 — 231 o03= 2 — 2

3 = 3 3 = 3 3 = 312
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The set of dual substitutions, which correspond to the substitutions associated to the transposed

matrices, is given by

1 — 1 1 — 12 1 — 13
1= 2 — 21 02= 2 — 2 o3= 2 — 23
3 — 31 3 = 32 3 —= 3

Note that every MZT is unimodular and all substitutions &; are right proper, so by Theorem the
dynamical dimension group of any S-adic system obtained by a directive sequence o = (;);en, where
i € {1,2,3}, is the triple

(2%, A, ),

where A and u are defined as in Theorem @

3.5 Balance in substitutive and S-adic systems.

We begin this section by stating a connection between the dynamical dimension group of a symbolic
system and their balance properties. The next theorem is the main result and states that if the group
part in the dynamimcal dimension group is free abelian of rank d, where d is the cardinality of the

alphabet, then balance on letters pass to balance on factors of arbitrary length.

Theorem 3.42. Let (X,T) be a minimal uniquely ergodic symbolic system with unique invariant mea-
sure i, defined over a finite alphabet A of cardinality d. Suppose that letter frequencies are rationally
independent and the group part of the dynamical dimension group of (X, T) is isomorphic to Z¢. Then
(X, T) is balanced on factors if and only if it is balanced on letters. In particular, if (X, T) is balanced
on letters, then all the frequencies of factors are additive topological eigenvalues and all cylinders are

bounded remainder sets.

Note that we stablish an analogous result for dendric and eventually dendric subshifts in Chapter
Section but without requiring the letter frequencies to be rationally independent. To prove
Theorem we use the following lemmas.

Lemma 3.43. Let (X,T) be a minimal uniquely ergodic subshift on the alphabet A, with unique
invariant measure i and for all f € C(X,7Z) let f denote the class of f in the dynamical dimension

group H(X,T). For all a € A, let xo denote the indicator function of [a]. Suppose that the measures
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{p([a]) : a € A} are rationally independent. Then, ({Xq : a € A}) is a free abelian subgroup of H(X,T)
of rank d.

Proof. We must show that {X; : a € A} is free and has exactly d elements. Suppose that there exist
integers A, for all a € A such that

Z AaXa = Op(x,1)-
acA

This means that there exists g € SC(X,Z) such that for all x € X,

S Aavale) = glo).

acA

Therefore, for all n € N and for all z € X,

1 1! .
E Z |5130"‘:Z:n—1|a = nZ(;goTl(w)‘

acA

Thanks to Theorem the right part of the previous equation tends to 0 as n tends to oo, since g

|zo-Tn—1la
n

is a coboundary. On the other hand, lim, . = p([a]) for all a € A, since the system is

uniquely ergodic. We obtain that

> Aaulla]) = 0,

acA
and by rationally independence, we conclude that A\, = 0 for all a € A. This proves that {5 : a € A}
is free. In particular, if a,b € A are different letters such that X, = Xs, then Xa — X6 = O (x,7), which
contradicts the fact that {xg : a € A} is free. O

Lemma 3.44. Let (X,T) be a minimal subshift defined over a finite alphabet A of cardinality d and
let i be an invariant measure of (X, T). Suppose that letter frequencies are rationally independent and
the dynamical dimension group of (X,T) is isomorphic to Z¢. Then, for all f € C(X,Z) there exists

F € BC(X,R) and rational numbers Z—Z for all a € A such that

Fx) =S Py, (z) + F(z) Ve X.

acA Qa
Proof. By Lemma ({Xq :a € A}) is a free abelian subgroup of H(X,T) of rank d. We know
that there exists a basis {f, : @ € A} of H(X,T) and positive integers {a, : a € A} such that
{agfs : a € A} is a basis if ({Xq:a € A}) (see [ST, Theorem 1.12]). Since {a.f, : a € A} and
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{Xa : a € A} are basis of ({\z : a € A}), there exist integer matrices A, B such that for all a € A,

Xa = Z A(CL, b)abﬁa

be A

aoafa =) Bla,b)Xs
be A
Let f € C(X,Z). Since f € H(X,T) and {f, : a € A} is a basis of H(X,T), we know that there
exist unique integer coefficients {k, : a € A} such that f = > ac ka- This implies that there exists
g € BC(X,Z) such that for all z € X,

= kafa(z) = g(a).

acA

On the other hand, since aqf, = > pea B(a, b)Xp, there exists h € BC(X,Z) such that for all z € X,

aafa(®) =Y Bla,b)xp(x) = h(z).

be A

This means that for all x € X,

ZZ (0, b)xo( >+zho(j> + g(a).

be A aGA acA

The sum ) %2 B(a,b) is a rational number p,/q, which depends on b. Since h is an integer

a€A aq
h(z) ;

aE.A Qq
that F' € BC(X,R) and for all x € X

coboundary, the sum ) is a real coboundary, and then defining F' =) z) + g we obtain

a€A aq

f(z) = &Xa(l') + F(z) VreX.

O

Proof of Theorem [3.43. If (X, T) is balanced on factors, then it is balanced on letters thanks to Propo-
sition Suppose (X, T) is balanced on letters and let C' be a constant of balancedness for all letters
ac A Letve Lx. If [v] =1, then v is a letter and (X, T) is balanced on v by hypothesis. Suppose

|| > 1 and let u,w € Lx of length n — 1 > |v|. Pick a bi-infinite word 2 € X such that u = x[; ;1
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and w = T[; ;1) for some indices 7,5 € Z. We have

i+n—1—|v| j+n—1—|v|
uly = Jwlo] = Y xuT2)— > xp(Tx)|.
=i l=j

Now, according to Lemma X[v] can be written as

b
X[ = ~Xla] — Fo,
acA ¢
where F, € fC(X,R). This implies that
i+n—1—|v| P J+n—1—|v| P
|y = [wlo] = >, ( ~X[a) (T'x) + Fy (T€$)> - > ( X (T'x) + F, (Téw)>
l=i acA 1? l=j acA da
» i+n—1—|v| j+n—1—|v| i+n—1—|v| j+n—1—|v|
= Z . Yo xw@) = > x|+ D). FooTz) - Z Fyo T (x)
P i+n—1—|v| j+n—1—|v|
< Z i”*xl *Lign—|v|— tla — ‘xj ) "$j+n—|v|—1‘a| + Z F, OTe(w) - Z F, OTK( )
acA 1? —i :
P i+n—1—|v| j+n—1—|v|
< “04+ F,oT(2)| + F,oTz
<yl Y W+ 3 @
a =1 =J
itn—1—|v| j+n—1—|v|
< OZ@+ Z FooT'@)|+ Y. |F 0T ).
ae.A l=j

Since F, € fC(X,R), by Theorem (1.1} both ZH" 1= |F, o T*(2)| and ZHn 1=l |F, o T(z)| are
bounded, and we obtain that ||u|, — |w|v| < K,C + B, where K, = > 4 ” fe, and EHH L=l |Fy o

T (z)|, E]+n 1=l |F, o T*(z)| < B,. This ends the proof of the balance on v. We conclude that
(X,T) is balanced in every factor v € Lx.

Lastly, the result on additive topological eigenvalues comes from Proposition ]

As a consequence of the previous results we can describe the balance behaviour of some substitutive

and S-adic systems, as it is stated in the following two corollaries.

Corollary 3.45. Let o be a proper primitive aperiodic substitution on a d-letter alphabet A. Let M be
its incidence matriz. Suppose that the letter frequencies are rationally independent. If M € GL4(Z),

then (X4, T) is balanced on letters if and only if it is balanced on factors.
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Proof. When M € GL4(Z), Ay = Z%, and then the result follows directly from Theorem and
Theorem It can be seen as a direct consequence of Theorem [3.39| and Theorem [3.42] as well. [

Corollary 3.46. Let A be a finite alphabet with #A = d > 2, and o = (0,)n>0 be a primitive
recognizable directive sequence of morphisms with op : A — A* for alln € N. Let (My,)nen be the
sequence of d x d integer matrices given by the incidence matrices of o. Suppose that o satisfies the
hyphotesis of Proposition and that there exists m € N such that for all n > m, M, € GL4(Z).
Suppose also that (Xq,T) is uniquely ergodic with rationally independent letter frequencies. Then,

(X, T) is balanced on letters if and only if it is balanced on factors.

Proof. Tt follows directly from Theorem and O

We now work with the sequence of tower partitions given by (3.2) with £ = 2 to study balance

properties of substitutive systems where frequencies are known to be rational.

3.5.1 Balance in substitutions with rational frequencies.

Let 0 : A — A be a primitive substitution, and let P{? be as defined in (13.2). Let 7g : G(6) —
H(X,,T) be the unique morphism of ordered group with unit associated to the sequence (Péz)). The
correspondence between G(&) and Ay, we explicitely presented after Proposition together with

Lemma [3.37], implies the following result.

Proposition 3.47. Let o be a primitive substitution. Let f € C(Xy,Z) such that there existsi € N for

which f is constant in the atoms of 731-(2). For all £ > i, let ¢y = I,0f € RE2(Xo) | Let d = |Lo(X,)|.
L

If f is a coboundary, then ¢y € B(R1(X,)) for all ¢ > i+d.

Proof. For simplicity we note P,, the partition 737(?) for all n € N. Let kK =i + d. From Remark
we know that the image of f in Ayr is the unique element y € (MT)R? which verifies (M])Fy =

(M])e¢;. Since f is a coboundary, 7(f) = 7r6(IP @ f) = Om(x, 1), 50 from Lemma [3.37| we know
ey )

that the image of f in AMQT belongs to 81 (R1(X,)), that is, y € B(R1(Xs)). Note that 51 (R1(X,)) is

invariant under MJ . Indeed, let I : R1(X,) — R1(X,) be given by

I¢(a) = ¢(o(a)o) Vae A

Let ¢ € R1(X,), let ab € L2(X,). Then,

(BroI)g(ab) = (19)(b) — (I9)(a) = ¢(a(b)o) — d(o(a)o)-



CHAPTER 3. SUBSTITUTIVE AND S-ADIC SYSTEMS 74

On the other hand,
|o2(ab)|—1

M (Big)(ab) = > Big(oa(ab)i),

=0

which by definition corresponds to

Bro(o(a)oo(a)r) + Prg(o(a)io(a)2) + - - - + B1d(a ()00 (a)jo(a)-1) = (7 (b)o) — d(o(a)o).

This proves that MJ o 31 = B o I, and thus 1 (R1(X,)) is invariant under M .
This implies that (MJ)Py € 1(R1(X,)) for all p > 0. In particular, if £ > F,

be = (My)"'p = (M3 )'y € Br(Ri(Xo)).
O

The previous proposition is a restatement of Proposition 4.6 in [BCB1§|. An alternative proof can be
found there. We now explore some consequences that Proposition has for balance in substitutiv
systems having rational frequencies. The next results are presented in [BCBIS8|, Section 4], we include

the proofs for completeness.

Proposition 3.48. Let o be a primitive substitution. Let v € L(X,) having a rational frequency
po and fo = Xp] — o € C(Xs,R). There exists k € N be such that f, is constant in the atoms of
the partition 73122). If (X4, T) is balanced on v, then I’Pf)f” € B(R1(X)) for all n > k + d, where
d = |L2(Xs)l-

Proof. For simplicity we note P, the partition 777(12) for all n € N. We write p, = p,/q, in irreducible

form. For all n > 0, the partition P, verifies that all elements in any atom of P, share at least
their L,, + 1 letters, where L,, = min{|c"(a)| : a € A}. Therefore, for all k large enough, f, (and
consequently g, - f,) is constant in the atoms of Pj. By Proposition since (X,,T) is balanced
in v, f, is a coboundary, and then so is g, - f,. By Proposition Qv - Ipff) fv € B1(R1(X,)) for all
n 2k +d, and consequently I, f, € B(R1(X)) for all n >k +d. O

Recall from Section that, given a minimal symbolic system (X, T") on the alphabet A and a letter
a € A, aword w with wa € Lx is a left return word to the letter a if a is a prefix of wa. It is a first
left return word if wa contains exactly two occurrences of a. Recall also that the number of first left

return words to any letter is finite. In the sequel we refer to left return words as return words.
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Lemma 3.49. Let (X,T) be a minimal symbolic system defined on the alphabet A, a € A and
W = wo -+ W)y|—1 be a return word to a. If ¢ € B1(R1(X)), then

lw[—1

¢(w|w|_1a) + Z d)(wi_lwi) =0.
=1

Proof. One has wow1, W1wa, -+, Wiy|—2Wj|—15 W}e|—10¢ € L2(X). The result follows directly from the

definition of return words and from the fact that there exists ¢ € Ry(X) such that ¢ = SBep. O]

We now deduce from Proposition [3.48 and Lemma [3.49 necessary conditions for balance. The following
theorem corresponds to Theorem 1.2 in [BCBIS].

Theorem 3.50. Let o be a primitive substitution over the alphabet A and let L(X,) denote the
language of o. Let v be in L(X0o), and suppose that it has a rational frequency p, = py,/q, written
in irreducible form. Suppose that the associated subshift (X,,T) is balanced on v. Then, we have the

following.

1. For each a € A and each return word w to a, q, divides |o"™(w)| for all n large. In particular, if

aa € La2(X,), then q, divides |0"(a)| for all n large.

2. Let a € A and suppose that there exist b,c € A such that bac € L(X,) and bc € L(X,). Then g,

divides |c™(a)| for all n large.

Proof. Let ¢y = I’P,(f)f“' By Proposition v € B1(R1(Xy)) for all nlarge. For any ab € Lo(Xy)

o (ab) = oy <1 - z) — (lo™a)] — aap) - % (3.5)

where

aay = {0 < j < |o"(a)| : TVo" (ab]) € [v]}],

that is, agp is the number of levels in the ab—tower of 737(12) in which all elements begin with the word

v. Using Lemma and ({3.5]), we obtain

0 = auy sa(@ —po) = (0" (Ww—1)] = Cwp,_a) - Po+
w| -1
Z iy (@ — Po) — (|0 (Wim1)| = 0w, _yw;) - Po
i=1
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which implies

lw|—1 w|—1
G | ot D g | = po [ 10" (W)l + Y 0" (win1))]
i1 i=1
= polo"(w)].

The integers p, and ¢, being coprime, either

|w[—1

O‘w\w|_1a+ Z Oy, _qw; | =0
i=1
or g, divides |¢™(w)|. Since |¢"(w)| # 0, we conclude that g, divides |0"(w)|, which ends the proof of
the first assertion.
For the second assertion, let a € A and assume that there exist b, ¢ such that bac belongs to L3(X,)
and bc € Lo(X,). Since ¢, € S1(R1(X,)) and ba, ac, be € Lo(X,), one has ¢y, (ba) + ¢r,(ac) = ¢p(be),
that is,

0 = apalq —pv) — pu(lo™(b)| — aa) + Qac(qv — Pv) — Pu(l0"(a)| — tac)
_abc(QU - pv) +pv(|0'n(b)’ - abc)

= (Oéba + Qe — abc)Qv - pv‘an(a)"

The integers p, and g, being coprime, either apq + e — ape = 0 or ¢, divides |0™(a)|. Here again

Qg + Qae — pe 7 0, since |0™(a)| # 0, hence ¢, divides |o"(a)]. O

Remark 3.51. Note that Proposition gives us the smallest n for which the conclusions of both
parts of Theorem are always true. It corresponds to n =i+ d and thus it can be determined in

an effective way. We illustrate this through the following example.

Example 3.52. Consider the primitive Chacon substitution oc as defined in Example[3.25 We know
that the letter frequency vector is (1/3,1/3,1/3) and then ¢1 = q2 = g3 = 3. One has 11 € L3(X,,),
and then, for every a € {1,2,3}, if the system is balanced on a, 3 divides |oj(1)| for alln > i+d (see
Proposition for notation). In this case, it is enough to take i = 1; moreover one has d =5, so
that 3 divides |0%,(1)|. But |0%,(1)| = 1093, which is not divisible by 3. We conclude that (Xy.,T) is

neither balanced on letters, nor balanced on factors of any given size, by Proposition[1.16. In view of
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Proposition this is consistent with the fact that (Xs.,T) is weakly mizing, that is, it admits no

non-trivial topological eigenvalue (see for example [PF02, Lemma 5.5.1]).

As a consequence of the previous theorem, we have the following corollary about the Thue-Morse

substitution.

Corollary 3.53 (Imbalance in Thue—Morse substitution). Let oryr be the Thue—Morse sub-
stitution on {0,1} (see ezample[3.15). The subshift (Xop,,, T) is unbalanced on any factor of length
£>2.

Proof. From [Dekk77, Theorem 1], we know that the frequency pu, of a factor v of length ¢ > 2 verifies
Ly = é2_m or [y = %2_7”, where m is such that 2™ < ¢ < 2™+ Frequencies are then rational,
py =1, and g, € {3 2™ 3.2™}. Note that 00 belongs to L2(Xsy,,). The result then follows from
the first assertion of Theorem O

Corollary gives an answer to the question about balance in factors of length grater than 2 in
the Thue-Morse sequence which cannot be obtained by using the criteria presented in [Adam03] and
[Adam04], since the matrix M,, admits a root of unity as eigenvalue, wchich corresponds to a critical
case where linear properties of M,, give not enough information to decide if balance does or does not

hold (see for example the discussion in [Adam04, Section 5.3 and 5.4]). We also deduce from Theorem

the following.

Corollary 3.54. Let o be primitive substitution of constant length £ over the alphabet A of cardinality
d such that its incidence matrix is symmetric and d is coprime with £, or does not divide £", for all
n large. If there exists a letter a and a return word w to a such that d is coprime with |w|. Then,

(Xo,T) is not balanced on letters.

Proof. The substitution matrix M, admits as left eigenvector (and thus as right eigenvector) associated
with the eigenvalue ¢ the vector with coordinates all equal to 1. One thus has p, = 1/d for all a and

we apply the first part of Theorem [3.50 0

3.6 Further work.

3.6.1 Dynamical dimension group in the general case.

We have constructed appropiate sequences of tower partitions (satisfying conditions (C0)-(C3)) which

allow us to compute the dynamical dimension group of S-adic systems. This has been possible only
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by asking the directive sequences to satisfy certain conditions, namely those related to properness
(see for instance Proposition , and the fact that the matrices of the partition are invertible.
However, there are many examples of S-adic systems in which the directive sequence is given only by
substitutions which are neither right proper nor left proper, and where the substitution matrices are
not invertible.

We would like to know how to compute the dynamical dimension group of any given S-adic system
only by knowing its primitive directive sequence. Since the sequence of partitions (Pég))neN satisfies
conditions (CO0) and (C1) for all £ > 2, one possibility is to replicate the strategy used in Section
for substitutions. In the following we describe some progress we have in this direction in the
case of a recurrent directive sequence. Recall that if we take a random sequence o € SN, where S is a
finite set of substitutions, we will see almost always (with respect to any natural measure on SV) that
any finite pattern of o occurs infinitely often, so recurrence is not a very expensive condition.
Suppose that every alphabet A, is equal to a fixed finite alphabet A = {1,2,--- ,d} and {0y, }nen is
included in a finite set S of morphisms on A. Suppose that o = (0y, )nen is recurrent.

Each matrix Q¢ (wich we will note @y, for simplicity) has |L (Xs(n+1))] rows and Lo (Xs(n))] columns.
Suppose that every alphabet Lo (Xs(n)) has constant cardinality £. Then every @, is a square matrix.

For any n > 0, consider the following linear transformation

Qn‘@n—l'“QoRZ : Qn—l e QORZ — QnQn—l e QORE

By the rank-nullity theorem, dim(Q,_1 - -- QoR?) > dim(Q,, - - - QoR?), as vector subspaces, and then

we have the following chain of inequalities
dim(R) > dim(QoR’) > dim(Q1QoR") > --- > dim(QnQn-1--- QoR) > ---

Since dim(R*) = £ and for all n > 0 dim(Q,,Qn_1--- QoR?) € {0,1,--- £}, there are at most ¢ strict

inclusions in the previous chain, and then there exists an N > 0 such that for all n > N, for all j > 0,

QnQn-1- QoR" 2 Qi jQuyj—1- - QoR’ (3.6)

and the product Qn4;Qn+j—1- - Qn+1 defines a bijection between the subspaces @Q,Qp—1 - -QoR! and
QnyjQnyj—1--- QoR¢. Note that, in contrast to the situation we have in Section the integer N

is a priori not computable in an effective way in this case.



CHAPTER 3. SUBSTITUTIVE AND S-ADIC SYSTEMS 79

Let m denote the dimension of QNQn_1 - - - QoR, we claim that m > 1. Indeed, if m = 0, then for
alln > N

QnQn—1- QoR" = {0},

that is, for any v € R, Q,Qn_1---Qov = 0. In particular, for v = (1,---,1), we obtain that for all
1<yt

l
> QuQu1-+-Qol5.1) =0,
=1

which means that for all 1 < j < /¢, the sum of the j-th row of Q,,Q,—_1--- Qo is null, but then, since

each @ has nonnegative entries, the whole matrix @, Q.1 - Qo is null itself, a contradiction.

Lemma 3.55. Suppose that the sequence of matrices Qy is recurrent, that is, for all m € N there is

an n € N such that

Qnim - Qn=Qm Qo

Let N be the positive integer defined in (3.6) and let (ir)r>0 an increasing subsequence of indices
verifying
Qip+NQip+N-1" Qi = QNQN-1---Qo Vk >0.

Then, there exists a sequence of isomorphisms ¢y, : Qi+ NQi+N—-1""" QikRg — R™ which satisfies that
forall k >0

Sk = Prt1 0 (Qip 4N Qi N+1)- (3.7)

Proof. We know that Q;, + NQi,+N—1 - - @y, is isomorphic to R™ for all kK > 0. We can always assume
that (ix)r>0 is strictly increasing and igp > 0. Let f be any isomorphism between Qj,+n - - @4, and
R™. We will define ¢ inductively. For k£ = 0, set ¢9 = f. For k > 0, suppose we have already defined

the isomorphism ¢;. The linear transformation

. l ¢
Qik+1+N"'Qik+N+l|Q' +N"'Q' RE " sz—l—NQ,LkR — Q1k+1+NQZkR
k 3

is surjective by definition. Its image verifies

¢ 0~
QiptN Qi REC Qi an--Qyy \RE=R™
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On the other hand,
Qipir+n - QoRY C Qi yin - Qi R,

and then
m = dim(Qik+1+N e QURK) S dim(Qik+1+N e QZkR£>

This implies that dim(Q;,, ,+n - - QikRE) = m, and therefore Q;, , ,+n - QikR‘e = Qi +N QikHRé.
We conclude that Q;,_,+n - Qi +N+1 18 a bijection between Qi 4N -+ Q) and Q;y 4N -+ Q4 - Fi-

nally, we define

1
k1 = P 0 (Qiyy+N - Qi N+1)

Let (¢x)r>0 be the sequence of isomorphisms defined in lemma and
Ag:={veR":3k>0 st ¢, (v)e€ 7.

This space is an analogous of Ajs of Section The next proposition shows that under appropriate
hypothesis, Ag and the inductive limit liﬂ(Zé, Qr) coincide. This result is analogous to Proposition
0.30)

Proposition 3.56. Let (Qn)n>0 be the sequence of incidence matrices of the two-block extension
substitutions o). Suppose that every alphabet .CQ(X,(,n)) has constant cardinality £. Suppose moreover

that the sequence (Qn)n>0 is recurrent. Then, @(Ze, Qn) = Ag.

Proof. Let N be as defined in (3.6 and let (i;)r>0 an increasing subsequence of indices such that

Qi+ NQiy+N-1-Qs, = QNQN—-1---Qo Yk >0.

Recall that the inductive limit Iigl(Zg, Qy) is the quotient A/A°, where we use the notation introduced
in Section Define the map 7 : A — Ag as follows: for z = (z,)p>0 € A, let k& > 0 such that
Tpt1 = Qnay for all n > i 7(z) = ¢p(xrNti+1), Where (¢r)r>0 is the sequence of isomorphisms
defined in lemma [3.55

1. 7 is well defined. In the first place, znyi,+1 = Qi+ NQip+N—1 - - Qi (xs,) and then ¢g(TrN1i,+1) €

R™. Moreover, ¢, '(7(z)) = znti+1 € ZF, thus 7(z) € Ag Suppose ki and ks both verify that
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Tpt1 = Qnap for all n > iy, and suppose wlog that g, > ix,. Then we have

TN+ip,+1 = Qi +NQip,+N-1 " Qi +N+1(TN+ip +1)-

From (3.7)), it follows easily by induction that

Phy = Phy © Qi + N Qi +N-1 "+ Qi +N+41

and therefore

Dhy (TN+igy+1) = Phy (TN+iy, +1)

which shows that 7 is well defined.

2. 7 is surjective. Let v € Ag. By definition this means that v € R™ and there exists & > 0 such
that ¢~!(v) € Z*. Take such a k and consider the sequence

T = (07 U 505 qb];l(v) ’Qik+N+1(¢I;1(V))7 Qik+N+2Qik+N+l(¢lzl(v))7 U )
——
(in-+N+1)—th

Clearly x € A and 7(x) = ¢p(@i,+N+1) = Qbk(ﬁb];l(v)) =V.

3. The kernel of 7 is A’. Let x € A and suppose 7(x) = 0, then there exists k¥ > 0 such that
¢k (i +N+1) = 0 € R™, which implies that x;, 4 y+1 = 0, since ¢y, is an isomorphism, and then for all
n>i,+N+1, z, =0, thus z € A%, Conversely, if z € A, there exists n € N such that z; = 0 for all

i >mn. Let K =min{k > 0: 4, > n}, then x;, 4 n41 = 0 and consequently ¥ (x) = ¢x (i, +nNt1) = 0.

The map 7 is trivially a group homomorphism. We conclude that Ag = A/ AL, O

The previous proposition shows that H(Xs,T) is isomorphic to a quotient of Ag. Indeed, since the
sequence (737(12)) satisfies (C1), H(X4,T) is isomorphic to a quotient of G(&), by Corollary By
definition, G(&) is equal to lig(ZZ, Qn), which by Proposition is isomorphic to Ag. Moreover,
we know that

H(Xq.T) = A/ ker(rs),

so we would be able to compute the group part of the dynamical dimension group of (X,,T) if we
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could explicitly determine the space Ag and the image of ker(7g) in Ag.

3.6.2 Balance in the general case.

We have stated in Theorem [3.42] a relation between balance and the group part of the dynamical di-
mension group in uniquely ergodic minimal systems having rationally independent letter frequencies.
Thus, if the previous strategy to compute H(X4,T) worked, we could know which is the balance
behavior in some uniquely ergodic minimal S-adic systems having rationally independent letter fre-
quencies, without requiring properness of the substitutions.

In the case of S-adic systems having rational frequencies, which can occur, for instance, when all
subtstitutions in the directive sequence have the same constant length, we would like to used the same
strategy of Section to extend Propositions to the S-adic setting and then to obtain an
analogous to Theorem [3.50}, giving necessary conditions for balance in S-adic systems having rational

frequencies.



Chapter 4

Dendric and eventually dendric

subshifts

In this chapter we apply the results of Chapter [2| to minimal dendric and eventually dendric subshifts.
These subshifts are defined in a purely combinatorial way, by looking at what is called their extension
graph (see the definition below). The class of dendric subshifts includes Sturmian subshifts, Arnoux-
Rauzy subshifts and subshifts generated by codings of regular (also called i.d.o.c) interval exchange
transformations (see Examples and . We study the behavior of the image subgroup,

infinitesimals, dynamical dimension group and balance for this kind of systems.

4.1 Definitions and examples.

Let £ be a language on the finite alphabet A. We say that L is factorial if it contains the alphabet A

and the factors of all its elements. For any factor w € L, the extensions of w are the following sets,

Lw)={a€ A|aw € L}
R(w) ={a € A|wa € L}
B(w) ={(a,b) € Ax A|awb € L}.

We say that L is biextendable or simply extendable if for all w € £, |L(w)| > 1 and |R(w)| > 1. Tt
is said to be recurrent if for every u,v € L, there exists w € L such that uwwv € L, and uniformly
recurrent if it is biextendable and for every w € L there exists n € N such that w is a factor of any

word of £ of length n. Given an infinite word z € A%, it is not difficult to see that z is uniformly

83
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recurrent (in the sense of Section if and only if its language £, is uniformly recurrent.

A factor w € L is said to be a left special factor if |L(w)| > 2, a right special factor if |R(w)| > 2,
and a bispecial factor |L(w)|,|R(w)| > 2. The extension graph £(w) of w is the undirected bipartite
graph whose set of vertices is the disjoint union of L(w) and R(w) and whose edges are the pairs
(a,b) € B(w).

A language L is said to be eventually dendric if there exists m € N such that for all w € £ with
|w| > m the extension graph of w is a tree, that is, connected and without cycles. In this case, m is
called the threshold of L. If one can choose m = 0, L is said to be a dendric set.

For an infinite word = € A%, the language £, is clearly factorial and biextendable. The word z is said
to be eventually dendric with threshold m if there exists m € N such that for all w € £, with |w| > m
the extension graph of w is a tree. If one can choose m = 0, x is said to be a dendric word. Similarly,
for a minimal subshift (X,T") on the alphabet A, if there exists m € N such that for all w € Lx
with |w| > m the extension graph of w is a tree, (X, T) is called an eventually dendric subshift with
threshold m. If one can choose m = 0, (X,T) is said to be a dendric subshift.

Dendric sets were introduced for the first time in [BDD+15] under the name of tree sets and have
been studied for instance in [BDD+15’], [BDD+15"],[DP17],[BDD+1§|. The notion of eventually
dendric is more recent and has been introduced in [DPI8§]. The class of dendric subshifts is not closed
under conjugacy, while that of eventually dendric is (see)[DP18]. In [BDD+17] a very special kind of
eventually dendric languages, called specular sets, is studied (see also Section .

The language of a dendric subshift (X,7) has the property that every word belonging to it is neutral,
that is, for all w € Lx, |B(w)| — |L(w)| — |R(w)| + 1 = 0. Sets of words with this property are called
neutral sets. The characteristic of a language L is the integer xz = |L(¢)| + |R(¢)| — |B(e)| and it
corresponds to the number of connected components in the extension graph of the empty word. An
eventually dendric set of characteristic ¢ is an eventually dendric set £ with threshold m = 1 and such
that . = ¢, that is, the extension graph of the empty word is a union of ¢ trees (see also [DP17]).
The following result shows that in neutral sets (and thus in languages of dendric subshifts), the notions

of recurrence and uniform recurrence coincide.
Proposition 4.1. [DP17, Corollary 5.3] A recurrent neutral set is uniformly recurrent.
Example 4.2. Sturmian subshifts.

Sturmian subshifts can be defined in strictly combinatorial terms as the subshifts generated by Stur-

mian words: aperiodic infinite words in which for all n € N, the number of factors of length n
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corresponds exactly to m + 1. It is a theorem by Morse an Hedlund [HM38] that for an infinite
word z, either x is eventually periodic or p,(z) is strictly increasing, and therefore if it is the case
that p,(x) < n for some n, then z is eventually periodic. Strumian words are then those of mi-
nimal complexity among aperiodic words. By definition, Sturmian words are always defined over a
binary alphabet since pi(z) = 2, and they satisfy that there exists exactly one left special factor
and one right special factor of each length. Any bispecial factor w € L, satisfies in this case that
E(w) = {a x A} U{A x b} some a,b € A, as depicted in Figure Thus, Sturmian subshifts are
dendric. See [BDD+15, Example 3.2] for more details.

Figure 4.1: The extension graph of any bispecial factor of a Sturmian word.

Example 4.3. Arnoux-Rauzy subshifts.

This corresponds to a generalization of Sturmian subshifts for larger size alphabets: given a finite
alphabet A with |A| =d > 2, 2 € A% or x € A" is said to be an Arnouz-Rauzy word if it is uniformly
recurrent and for each n € N, it has (d — 1)n + 1 factors of length n, there exists exactly one left
special factor of length n with d left extensions and exactly one right special factor of length n with
d right extensions. Arnoux-Rauzy subshifts are those generated by Arnoux-Rauzy words, they were
introduced in [AR9I] for d = 3. As in Sturmian words, for any bispecial factor w € L,, the extension
graph verifies £(w) = {a x A} U {A x b}, as depicted in Figure (see [BDD+15, Example 3.2] for

more details).

Figure 4.2: The extension graph of a factor of an Arnoux-Rauzy word.
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Example 4.4. Interval exchange subshifts.

Consider a finite alphabet A and two orders <; and <s in the symbols of A. Let (I,)qsc4 a partition of
the interval [0,1) in semi-intervals ordered by <;. See Figure below for the example A = {a, b, c}
and a <1 b <35 c.

Let Ay be the length of I, let

Nazz)\a Va:z)\b-

b<ia b<oa

The interval exchange transformation relative to (I5)qe4 is the map I :[0,1) — [0,1) given by
I(z) =24 (Vg — pta) if z€ I,

In the example of Figure this corresponds to exchange the order of the pieces I,, I, and I. on the
interval, to obtain the new order Jy, J., J,, as depicted in Figure

® Ia ® LS L

Figure 4.3: Partition of the interval according to <.

Figure 4.4: An interval exchange transformation I.

The interval exchange tranformation I is said to be regular (also called i.d.o.c. in the literature) if the
orbits of nonzero separation points under I are infinite and disjoint, where separation points are the

starting points of each I,. Now, take a point p in the interval and consider the orbit of p under I,
{I"(p) :n € Z}.

This gives an infinite sequence (,(n))nez on AZ satifying z,(n) = a if I"(p) € I,. The subshift
generated by z,, is called an interval exchange subshift. It is theorem by Keane [Keane75] that regular
interval exchanges transformations produce minimal interval exchange subshifts. In [BDD+15|, the

authors prove that regular interval exchange subshifts are dendric (see [BDD+15, Proposition 4.2]).
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4.1.1 Specular subshifts.

We introduce here a special kind of eventually dendric subshifts called specular subshifts. They were
introduce in [BDD+17], where there is a complete description of their properties from several viewp-
points. We recall here some of those related to return words, which we use later in Section 4.2
Recall that, given a finite alphabet A, the free group on A, F 4, is the set of all reduced finite words in
AU AL, that is, words on A U A" which do not have factors of the form aa=' or a'a for a € A.
Let A be a finite alphabet and 6§ : A — A an involution. Consider the group Gy < F4 defined by
Gy = (a € A | ab(a) = €). The group Gy is called a specular group. It is known that any specular
group is isomorphic to Z*  (Z/27)*/, where i is the number of orbits of § with two elements and j
is the number of fixed points of 6. In this case, the pair (i,7) is called the type of Gy. Two specular
groups are isomorphic if and only if they have the same type (see [BDD+17], Proposition 3.1]), so one
refers to Gy as the specular group of type (i, 7). In a specular group Gy, a reduced word is a word with
no factors of the form 6(a)a or af(a) for a € A.

Given an alphabet A, an involution # and a the specular group Gy, a laminary set on A relative to 0
is a symmetric (closed under taking inverses), biextendable subset of Gy consisting of reduced words.
A specular set is a laminary set on A relative to 6 which is a dendric set of characteristic 2, that is, a
set of words such that the extension graph of every non-empty word is a tree, and the extension graph
of the empty word is a union of two connected components. A specular subshift is a subshift in which

the language of every element is a specular set.
Example 4.5. [BDD+17, Example 4.2/

Consider the substitution o : {a,b, ¢, d} — {a,b,c,d}* given by a — ab, b — cda, ¢ — cd and d +— abc.
The extension graph of the empty word is the depicted in Figure so the threshold in this example
is m = 1. It is shown in [BDD+17] that X, is a specular subshift.

Example 4.6. [DP18, Example 3.6]

Consider the Tribonacci substitution ¢ : {a,b,c} — {a,b,c}* given by a — ab, b — ac, ¢ — a. The
substitutive subshift X, is dendric. Consider the projection morphism « : {a,b,c} — {a,c} given by
a— a, b a, c— c It is shown in [DPI18, Example 3.6] that the image a(X,) is an eventually
dendric subshift with threshold m = 4. Since there are non-empty words whose extension graph is not

a tree, a(X,) is not a specular subshift.
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Figure 4.5: The extension graph of ¢ in Lx, (Example [4.5)).

We now state a combinatorial lemma which will be useful in Sections and [£.4] to study the set of
invariant measures and balance properties in eventually dendric subshifts. It corresponds to Lemma

3.2 in [BCBIY].

Lemma 4.7. Let T be a finite tree, with a bipartition X andY of its set of vertices, with | X|,|Y| > 2.
Let E stand for its set of edges. For allx € X, y € Y, define

Y, ={yeY:(z,y) € E} Xy ={xeX:(zx,y) € E}.
Let (G,+) be an abelian group and H a subgroup of G. Suppose that there exists a function g :
X UY UFE — G satisfying the following conditions:
(1) g(XUY) C H;
(2) forallx € X, g(x) = Zerz g(x,y), and for ally €Y, g(y) = erxy g(z,y).
Then, for all (x,y) € E, g(x,y) € H.

Proof. Observe first that Conditions (1) and (2) imply that the image under g of any edge connected
to a leaf belongs to H. We proceed by induction on k := max{|X]|, |Y|}. First assume k = 2. Such
as illustrated in Figure there is only one possibility for the graph 7 (modulo a relabeling of the

vertices), since T is connected and has no cycles, which is

X = {1, 22}, Y = {y1, 92}, £ = {(w1,91), (z2, 91), (v2,92) }-
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@ ()——Hn)
() &

Figure 4.6: The tree 7 when k = 2.

Both ¢g(z1,y1) and g(x2,y2) are in H because x; and yo are leaves. By Condition (2), one has
9(z2) = g(x2,y1) + g(x2,y2), and then g(x2,y1) = g(z2) — g(x2,y2). Since g(x2) € H by Condition (1)
and H is a group, then g(x2,y1) € H.

Now assume k > 2 and that the induction hypothesis holds for k—1. Suppose also wlog that | X| > |Y|.

Note that in this case there exists a leaf in X. Indeed, if all vertices in X have degree at least 2, then

|E| =) deg(z) > 2|X]
zeX

because 7 is a bipartite graph. On the other hand, since 7 is a tree,
|E| =X+ Y| =1 <|X|+[Y]<2X]

which is a contradiction. The same argument shows that if X and Y have the same cardinality, then
both X and Y have at least one leaf. We distinguish two cases, namely |X| > |Y| and |X| = |Y].
First assume that |X| > |Y]. Take a leaf in X, and call it z9. Consider the graph T obtained from
T by removing the vertex zo and the edge (xo,yo), where yp is the only vertex in Y connected with
xg. This new graph is also a tree, with bipartition of vertices X=X- {z0}, Y = Y, and set of edges
E =E —{(z0,y0)}. Since |X| =k —1 and |Y| = |Y|, then max{|X|,|Y|} = k — 1.

We define g in XUYUE as follows. On ()?UEN/UE) —{yo}, g = g; on yo, define g(yo) = 9(vo) —9(z0, Yo)-
Let us verify that § satisfies Conditions (1) and (2) with respect to 7.

(1) Ifze X, gz) =ga) e H Ity e Y andy # y, g(y) = gly) € H. If y = ypo, then
9(yo) = g(yo) — g(xo, yo0), but both g(yo) and g(xp,yo) are in H, since g satisfies Conditions (1)

and (2), and zo is a leaf. Therefore, the image under § of any vertex of 7 is in H.

(2) We need a more precise notation here. For a vertex # € X, we define Y] := {y € Y : (z,y) € E}
and Yj ={yeY:(z,y) € E}. Iz € X, then Y] = Yj, and for all y € V)], g(x,y) = g(z,7).
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Therefore,
gy =g@)= > gzy)= > =)
yGYxT yeyz%
We use analogously the notation XyT and Xj for a vertex y € Y. Let be Yy € Y. If Y # Yo, then
T x7T T =~ _
X, =X, and for all z € X/, g(z,y) = g(z,y). Hence,

Jw) =9 =Y gy = > Gy

zeX] acEXj

Finally, if y € Y and y = yo, then XJ = Xj U{xo}. We thus have
9(y) = 9(y0) — 9(x0,50) = —9(20,y0) + 2 pexy 9(2,Y)
= —g(l’o, yO) + g(fUO, yO) + ZIEXZ- §($, y) = erxj' §(x7 y)a

which ends the proof of the fact that g satisfies Conditions (1) and (2).

By induction, for all (z,y) € E, g(z,y) € H. But in E one has § = g, which implies that for all
(z,y) € E, g(x,y) € H. Since z is a leaf in X, g(zo,y0) € H, and then for all (z,y) € E, g(z,y) € H.
This ends the case | X| > |Y].

Now assume that | X| = |Y|. Then, both X and Y have at least one leaf; let us call them zy and yo,
respectively. Let ., and y,, denote the only vertices connected with x¢ and yg, respectively. It is not
difficult to see that yo # ¥z, and xg # Ty, since T is connected and has no cycles.

Consider the graph T obtained from T~ by removing the vertices z and yo, and the edges (z¢, yz,) and
(%yo,y0). This new graph is again a tree, with bipartition of vertices X =X—{z0},Y =Y —{yo}, and
set of edges E = E—{(20, Yay ). (@yo, o) }. Since |X| = k—1and [Y] = k—1, then max{|X|, Y|} = k—1.
On the new set X UY U E, define the function § as follows. On ()N( UY U E‘) —{@yo Yzo}, g = g; on
Ty,, define g(zy,) = g(yy) — 9(Tye» Y0), and on Yy, G(Yzo) = 9(Yzo) — 9(T0s Yao )-

Following the same strategy as in the case |X| > |Y|, one can see that g satisfies Conditions (1) and
(2) in T, and since max{|X|,|Y|} = k — 1, we conclude by induction that for any edge (z,y) € E,
g(z,y) belongs to H, which implies that g(xz,y) € H. Since xg and yo are leaves in X and Y,
(20, Yzy), 9(xyo,Y0) € H. We conclude that for all (z,y) € E, g(z,y) € H. O
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4.2 Return words in dendric and specular subshifts.

Recall that, given a minimal symbolic system (X, T), on the alphabet A and a factor u € A", a word
w with wu € Lx is said to be a left return word to u if u is a prefix of wu. It is said to be a first left
return word to u if u is a prefix of wu and there are exactly two occurrences of  in wwu. Similarly, a
word w with uw € Lx is said to be a right return word to w if u is a sufix of au. It is said to be a first
right return word to u if u is a sufix of uw and there are exactly two occurrences of u in aw. Dendric
and specular subshifts have interesting properties regarding the set of return words of their languages.
They have been mostly explored in [BDD+15] and [BDD+17]. We quote here two important results
we will use in Sections (4.3 and 4.5

Let £ be a specular set on the alphabet A, given by the involution . Since L is biextendable, every
letter a € A appers exactly twice in £(g), once as a vertex in L(¢) and once as a vertex in R(g). A
letter is said to be even if these two occurrences are in the same tree of £(¢g), it is said to be odd
otherwise. A word w € L is said to be even if it has an even number of odd letters, it is said to be
odd otherwise. The even subgroup on F 4 is the subgroup of Gy formed by the even words. It is a free

subgroup of index 2 and rank |A| — 1.

Theorem 4.8. [BDD+15, Theorem 4.5] Let S be a (uniformly) recurrent dendric set containing the
alphabet A. Then for any non-empty w € S, the set of first right return words to w is a basis of the

free group F 4. In particular, every non-empty word has |A| first right return words.

Theorem 4.9. [BDD+17), Theorem 6.15] Let S be a (uniformly) recurrent specular set. Then for any
non-empty w € S, the set of first right return words to w is a basis of the even subgroup on F 4. In

particular, every non-empty word has |A| — 1 first rigth return words.

The proofs of the previous results work exactly in the same way for left return words.

4.2.1 Tower partitions using return words.

Let (X,T) be a minimal subshift over the alphabet A with cardinality d and take any x € X. For

every n > 1, let Wy (z) := {wipn, -+ , w4, n} be the set of first left return words to (g ), and define
Pn = {Tj[wi,nx[ojn)] 11<i<d,,0<j<|wnl} (4.1)

Define also Py = {[a] : a € A}, that is, Py is the partition whose towers correspond to the cylinders [a]

and have just one floor (it thus has d towers). The following proposition states that (P,),en above is
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a nested sequence of tower partitions of (X,T"). A proof can be found in [DHP18| Proposition 2.18].
Proposition 4.10. For all n > 0, P, is a tower partition of (X,T) and P41 is finer than Py.

The matrices @, associated to partitions P, correspond by definition to

Qn(i,J) = {0 < Jj < [win+1] : T [win1%0n41)] € [Win@jo,m)]}-

The (4, 7)th entry of Q, is exactly |w;ny1|w;,. That is, the number of occurrences of w;,, in w; 1.
This is consistent with the fact that, since z[g ) is a prefix of z(g 1), any wint1 € Wyi1(x) has a
unique decomposition as a concatenation of elements w;j, € Wy (x) (here we use the fact the Wjn's
are first left return words). Note that in the case of dendric subshifts, every W, (z) is a basis of the
free group F 4, which implies that for all n € N, for all w € W,,(x), w is written in a unique way as a
concatenation of elements w’ € W,,;1(z) and their inverses, which in turn implies that for all n € N,

the matrix @, belongs to GL4(Z) with

Qril(jv i) = ‘wj,n Wi n+1)

when now the occurrences have to be counted considering inverses. Similarly, in the case of specular
sets, W,,(z) is a basis of the even subgroup for all n > 1, which implies that @,, is invertible in Z for
allm > 1. So both dendric and specular subshifts are such that partitions P,, as defined in satisfy
condition (C3), with m = 0, d = |A| in the case of dendric subshifts, m = 1, d = |A| — 1 in the case
of specular subshifts. More generally, if we have that for all n > ¢, for some positive integer ¢, W, (x)

generates the same subgroup of F 4, then the matrix @), is invertible for all n > £.

4.2.2 S-adic representation of dendric systems using return words.

As explained in Example return words provide S-adic representations of every minimal subshift.
Consider a minimal dendric subshift (X,7T") defined on the alphabet A and = € X. The directive
sequence (A, : Rpt1 — R} )nen described in Example obtained from the factorization of D"(x)
in first left return words to D"(x)p, is called the A-adic representation of X. Note that thanks to
Theorem in the case of dendric minimal subshifts every R,, corresponds to A. Moreover, in this
particular case the A-adic representation has the property that every A, belongs to a precise set of
substitutions S, on A. We introduce these substitutions in the following.

An automorphism ¢ of the free group F 4 is said to be positive if for all a € A, ¢(a) belongs to the



CHAPTER 4. DENDRIC AND EVENTUALLY DENDRIC SUBSHIFTS 93

semigroup AT, that is, the set of non-empty words with symbols in A. A positive automorphism is
tame if it belongs to the submonoid generated by the permutations of A and the automorphisms aq,

Qg p, defined for all a,b € A, a # b, by

ab ifc=a
agp(c) = |
c else

_ ba ifc=a
Qg p(c) = |
¢ else.

The automorphims oy, p and @,y together with the permutations of A are called the elementary
positive automorphisms of 4 and we denote them by S.. A substitution on .4 which extends to a tame
automorphism on F 4 is called a tame substitution.

The following result corresponds to the second part of [BDD+18| Theorem 6].

Proposition 4.11. Let (X,T) be a minimal subshift defined on the alphabet A, let (A, : Rpy1 —
R} )nen be the A-adic representation of X. For allm € N, A\, : A — A* is a tame substitution. In

other words, the A-adic representation of X provides a S.-adic representation of X.

4.3 Invariant measures, image subgroup and infinitesimals.

Most part of the results of this section are presented in [BCD+18] for dendric subshifts. We present
them here in its more general version, some of them for the class of all eventually dendric subshifts

and some others for dendric and specular subshifts.

Theorem 4.12. Let (X,T) be a minimal eventually dendric subshift with threshold m on a d-letter
alphabet A, and let p and p' be two T-invariant measures on X. If u and u' coincide on factors of

length n for allm < m + 1, then they are equal.

Proof. Let p and p/ be two T-invariant measures such that ulu] = p/[u] for any word u € Lx with
|lu] <m+1. Let us show that for any word w € Lx, p([w]) = ¢/([w]) by induction on the length of
w.

If |w| = m + 1, then the result follows immediately. Let n > m + 1 and suppose that for all v € Lx
with |v| < n, one has u([v]) = ¢/([v]). Let w be a word with length |w| = n + 1. Write

w=wy-- Wy, and define wW:=wy---w,, W =Wy Wp_1, W= Wi " Wp_1
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We analyze separately three cases depending on the right/left extensions of w and w’, namely |L(w)| =

1, |R(w")| =1, and lastly |L(w)| > 2 and |R(w’)| > 2.

e We first assume |L(w)| = 1. The only left extension of w is wg. By T-invariance of u, one has
p([0)) = X ae ) o)) = plw]. Similarly, 1/ ([@]) = @' (fw]). Since p([w]) and p'([@]) coincide
by induction hypothesis, we get p([w]) = ' ([w]).

e We now assume |R(w’)] = 1. The only right extension of w’' is w,, which yields p([w']) =
2 ber(w) Mw'b]) = plw]. Similarly, p/([w']) = p/(fw]). Since p(w’) and p'(w') coincide by
induction hypothesis, we get u([w]) = ¢/ ([w]).

e Finally, we assume |L(w)| > 2 and |R(w')| > 2. Let £(w) be the extension graph of w. It is a
tree since |w| > m, and each of the sets in its bipartition of vertices has cardinality at least two.
We thus can apply Lemma [4.7 with G = R, H = {0} and ¢ : L(w) U R(w) U E(w) — R defined
as follows:

9(a) = p(law]) — 1/ (law]), for a € L(w),

9(b) = pu([wb]) — p/([wb]), for b € R(w),

9(a,b) = pu([awd]) — i ([oit)), for (a,b) € B(@).
Conditions (C1) and (C2) of Lemma[4.7 hold, and then for any biextension awb of @, u([awb]) —
p'([awd]) = 0. In particular, since (wp, wy,) € E(w), u([w]) = p'([w]).

This proves that for any word w in the language of X, u([w]) = p/([w]). Since th family of cylinders
is a basis of the topology, we conclude that, for any clopen U C X, u(U) = p/(U). O

We obtain the following corollary for dendric and specular subshifts.

Corollary 4.13. Let (X,T) be a minimal dendric (resp. specular) subshift on a d-letter alphabet A,
and let p and p' be two T-invariant measures on X. If pn and i’ coincide on the letters (resp. on the

letters and the factors of length 2), then they are equal.

The previous result extends to the family of dendric subshifts a statement initially proved for interval

exchanges in [FZ0§].

Theorem 4.14. Let (X,T) be a minimal dendric subshift and let M(X,T) stands for its set of
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T-invariant probability measures. Then, the image subgroup of (X,T) is

(x.1)= ) {Zﬁmw}

neM(X,T) \acA

In particular, if (X,T) is uniquely ergodic and p is its unique T-invariant measure, then

1(X,7) = 3" Zu([a)).

acA

Proof. This is an immediate consequence of Proposition [2.10] since the sequence of tower partitions
(Pn)nen defined in (4.1)) satisfies conditions (C1) and (C3) with m = 0 and d = |.A|. Since the bases
of Py are the cylinders of letters {[1],[2],- -, [d]}, the result follows. O

Theorem 4.15. Let (X,T) be a minimal specular subshift and let M(X,T) stands for its set of

T-invariant probability measures. Then, the image subgroup of (X,T) is

I(x,7= > Zulwao)) ¢
HEM(X,T) | weWi(zx)
where x is any element of X . In particular, if (X, T) is uniquely ergodic and u is its unique T -invariant

measure, then

10X,7) = Y Zu(wa)).

weWi (z)
Proof. This is an immediate consequence of Proposition [2.10] since the sequence of tower partitions
(Pn)nen defined in satisfies conditions (C1) and (C3) with m = 1 and d = |A| — 1, and this
is true for any « € X. Since the bases of P; are the cylinders {[w1120], [w2,120], - , [wa—1,170]}, the

result follows. O

Theorem 4.16. Let (X,T) be a minimal dendric subshift on a d-letter alphabet A and suppose that
there exists a measure p € M(X,T), such that {u([a]) : a € A} are rationally independent. Then, the
infinitesimal subgroup Inf(X,T) is trivial, that is, (X,T) is saturated.

Proof. This is an immediate consequence of Proposition [2.11] since the sequence of tower partitions
(Pn)nen defined in (4.1)) satisfies conditions (C1) and (C3) with m = 0 and d = |A|. Since the
bases of Py are the cylinders of letters {[1],[2],--- ,[d]}, whose measures are suppose to be rationally

independent, the result follows. O
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Theorem 4.17. Let (X, T) be a minimal specular subshift on a d-letter alphabet A, let x € X. Suppose
that there exists a measure p € M(X,T) such that {u([wzxg)) : w € Wi(x)} are rationally independent.
Then, the infinitesimal subgroup Inf(X,T) is trivial, that is, (X,T) is saturated.

Proof. This is an immediate consequence of Proposition [2.11] since the sequence of tower partitions
(Pn)nen defined in (4.1]) satisfies conditions (C1) and (C3) with m =1 and d = | A|; and this is true
for any € X. Since the bases of Py are the cylinders of letters {[wi ozol, [w2,020],- - , [wa—1,0%0]},

whose measures are suppose to be rationally independent for p, the result follows. ]

4.4 Balance in eventually dendric subshifts.

Lemma 4.18. Let (X,T) be a minimal eventually dendric subshift with threshold m on the alphabet
A. Let H be the following subset of C(X,Z)

H= Z Z (w, B)xrk () © Kw € Z, | Ky| < 00,a(w, k) €Z 5,
w€£m+1(X) keKy
where x4 denotes the characteristic function of the set A, for all A C X. Then, for all v € Lx with

|v| > m +1, the characteristic function x, belongs to H.

Proof. One first easily checks that H is a subgroup. We now proceed by induction on the length of v.
The claim is clearly true if |v| = m + 1, by setting K, = {0} and a(w,k) =1 if w = v, 0 otherwise.
Now let n > m + 1 and suppose that for all u € Lx with |u| < n, one has X[u) € H. Let v be a word
of length n 4+ 1. We write

v=1y---v, and define 0 = vy ---vp, v =09 Vp_1, V=101 Up_1.

As in the proof of Theorem we analyze separately three cases depending on the right/left exten-
sions of v and v/, namely |L(v)| = 1, |[R(v')| = 1, and lastly |L(v)| > 2 and |R(v')| > 2, the latter case
being handled thanks to Lemma

e Suppose first that |L(v)| = 1. The only left extension of v is vy, and thus, for all z € X,
X[v)(z) = X (Tz). By induction hypothesis we have that x belongs to H, that is,

Xg = Y > alw k)Xgu)

w€£m+1(X) keKy



CHAPTER 4. DENDRIC AND EVENTUALLY DENDRIC SUBSHIFTS 97

for some K, C Z,|Ky| < 00, a(w, k) € Z, so we obtain that for all z € X,

X (@) =xe(Tx) = Y D alw, k)xpr-i () (@).

WELm41(X) kEKw

Defining K/, :={k—1:k € K,,} for all w € L,41(X), and f(w, k) = a(w,k+1) for all k € K,

we conclude that, for all x € X,

X[ (® Z Z (w, K)Xw([u])

’we[:m+1 kEK’
and then X[, belongs to H.

e Now suppose that |R(v')| = 1. The only right extension of v’ is v,, and thus, for all z € X,
X[ (%) = X[v)(z). We conclude by applying the induction hypothesis.

e Finally, we assume |L(?)| > 2 and |R(v)| > 2. Let £(v) be the extension graph of v. It is
a tree since |0| > m, and each of the sets in its bipartition of vertices has cardinality at least
two. Define g : L(v) U R(v) U E(v) — G as follows. For a € L(v), g(a) = X{aqg), for b € R(v),

g(b) = XT-1[ab) and for (CL, b) S E(®)7 g(a7 b) = X[awb]
Condition (1) of Lemma holds by induction hypothesis. Let us check that (2) holds. Let
a € L(v). For all x € X, one has

X[a7] = > X[aot)(z)  and thus  g(a) = > g(a,b).

beR(v),(a,b)eE(D) beR(v),(a,b)EE(v)

Similarly, let b € R(v) and x € X. One has

X7-1[58) (T) = X[op) (1) = > X[awb] (Z)-
a€L(v),(a,b)EE(v)

We conclude that for all b € R(v), g(b) = >_ e 1(5),(ap)cE () 9(a, b). We now can apply Lemma
which yields that x4 € H, for any biextension avb of v. In particular, since (vo,v,) € E(v),
then X[v] € H.

O]

The previous lemma allows us to prove the following theorem, which correponds to Theorem 1.1 in
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[BCB1§| in the case of dendric subshifts. Note that it describes a balance behavior which contrasts
whit that of substitutive systems with rational frequencies (see Theorem [3.50)).

Theorem 4.19. Let (X, T) be a minimal eventually dendric subshift with threshold m. Then (X,T)
is balanced on factors of length m + 1 if and only if it is balanced on every factor. In particular, if
(X, T) is balanced on factors of length m+ 1, then all the frequencies of factors are additive topological

etgenvalues and all cylinders are bounded remainder sets.

Proof. We assume that the eventually dendric subshift (X,T') is balanced on the factors of length
m + 1. Let C be a constant of balancedness for factors of length m + 1. Let v € Lx. If [v] <m + 1,
then (X,T) is balanced on v thanks to Proposition Suppose that |v| > m + 1 and let n be a
positive integer, u, w be two factors belonging to Lx of length n — 1 with n — 1 > |v|. Pick an infinite

word x € X such that u = z[;;,,) and w = z[; j ) for some indices i, j € Z. We have

i+n—1—|v| Jtn—1—|v|
lulo = fwll = | Y- xp(T@) = > xw(Te)|.
=i t=j

Now, according to Lemma for all w € Ly4+1(X), let K, be a finite subset of Z such that, for all
k € K, there exists a(w, k) € Z verifying

Xp = Y, D W k)Xk ()

wE£m+1( ) keK’w

Then,
i+n—1—|v| j+n—1—|v|
lulo = Jwlo] = | Y Yo D alw k)xgrp (The) — Z Yo Y alwk)xpe(Th)
=i WELm41(X) kEKw WELp4+1(X) kEKw
i+tn—1—|v| j+n—1—\v|
= Z Z a(w,k‘) Z XTk[w)] (Tﬁ$) - Z X1k [w) (sz)
WELm41 kEK =1 l=j
i+n—1—|v| Jjtn—1-|v|
< S Y a B > X (T = > Xwp (Th)
w€£m+1(X) ke Ky l=i l=j
i+n—1—|v| J+n—1—|v|
= > DRl D xwTT )= DY X (THT )
WELm+1 k€K =i —;
= S > Haw, B T *2) ol tuh e = (T 7*2) ol ol -

wELm41 (X) keKy
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Note that (T_km)[i7i+n_‘v|+|w|) and (T_ky)[j7j+n_|v|+‘w‘) are two factors of length n — 1 — |v| 4+ |w|

belonging to Lx, and then by balance on the factors of length m + 1, for all w € L, 4+1(X),

(T2 i ol o) o = [T Y) ol o] < C.

We obtain that |[uf, — |w[y] < L1 (X)[KC, where K = max,cz, . (x) {ZkeKw la(w, k)| }, which
ends the proof of the balance on v. We conclude that (X, T) is balanced in every factor v € Lx.

Lastly, the result on additive topological eigenvalues comes from Proposition [1.27] O

Corollary 4.20. Let (X, T) be a minimal dendric (resp. specular) subshift. Then (X, T) is balanced on
the letters (resp. on the factors of length 2) if and only if it is balanced on every factor. In particular,
if (X, T) is balanced on the letters (resp. on the factors of length 2), then all the frequencies of factors

are additive topological eigenvalues and all cylinders are bounded remainder sets.
As a consequence of Theorem and Proposition [1.24] we otain the following corollaries.

Corollary 4.21. Let (X,T) be a minimal eventually dendric subshift with threshold m. If (X,T)
is balanced on factors os length m + 1, then the infinitesimal subgroup Inf(X,T) is trivial, that is,

(X, T)is saturated.

Corollary 4.22. Let (X,T) be a minimal dendric (resp. specular) subshift. If (X,T) is balanced on
letters (resp. on factors of length 2), then the infinitesimal subgroup Inf(X,T) is trivial, that is, (X, T)

is saturated.
Example 4.23. Balance in Arnoux-Rauzy words

Arnoux-Rauzy words (see Example can also be expressed in S-adic terms as follows. Let
A= {1,2,...,d}. We define the set Sqr of substitutions as Saur = {0y : i € A}, with 0; : @ —
i, j+ ji for j € A\ {i}. An infinite word u € A% is an Arnoux-Rauzy word if and only if its lan-
guage coincides with the language of a word of the form lim,_,~ 5,0, - - - 03, (1), where the sequence
i= (in)n>0 € AV is such that every letter in A occurs infinitely often in i = (ip)n>0-

In this latter case, the infinite word w is uniformly recurrent and we can associate with it the sub-
shift (Xj,T) which contains all the bi-infinite words having the same language as u. For any given
Arnoux-Rauzy word, the sequence i = (iy,),>0 is called the Sag-directive word of u. All the Arnoux-
Rauzy words that belong to the dynamical system (Xj,7T') have the same S4g-directive word. An

Arnouz-Rauzy substitution is a finite product of substitutions in Sar. For more details on the S-adic
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representation of Arnou-Rauzy words, see [BCS13| Section 2].

Let o be a primitive Arnoux-Rauzy substitution. Then, (X,,T) is balanced on factors. Indeed,
Arnoux-Rauzy substitutions are known to be Pisot (see [AIOI] or [AD15]): primitive substitutions
such that the dominant eigenvalue of their substitution matrix is a Pisot number, that is, an algebraic
integer whose conjugates lie strictly inside the unit disk. Thus, they generate words that are balanced
on letters (see [Adam03], Section 6] for details), and consequently on factors by Theorem

Let (Xj;,T) be an Arnoux-Rauzy subshift on a three-letter alphabet with S4p-directive sequence
i = (in)n>0. If there exists some constant h such that we do not have iy, = ip41 = -+ = dpyp
for any n > 0, then (Xj, 7)) is balanced on factors. Indeed, it is shown in [BCS13|] that (Xj,T) is
(2h+1)-balanced on letters. We again conclude thanks to Theorem [4.19

4.5 Dimension group of dendric and specular subshifts.

The following result is presented in [BCD+18] for minimal dendric subshifts.

Theorem 4.24. Let (X,T) be a minimal dendric subshift on a r-letter alphabet. Let M(X,T) stand

for its set of invariant measures. Then, its dimension group K°(X,T) is isomorphic to
(Z", {x e Z" | (x,£,) >0 for all p € M(X,T)}U{0}, 1),

where £, = (u([1]), -, p([r])) and 1 = (1,1,--- ,1) € Z%.

Proof. This is a consequence of Proposition since the sequence (Py,)nen defined in (4.1)) satisfies
(C0)-(C3) for m =0, d = r, and all heigths in Py are equal to 1. O

Theorem 4.25. Let (X,T) be a minimal specular subshift on a r-letter alphabet. Let M(X,T) stand

for its set of invariant measures. Then, its dimension group K°(X,T) is isomorphic to

(Z", {xeZ" | (x,f,) >0 for all p € M(X,T)}U {0}, u),

where £, = (u([w11%o0]), -+, u([Wa-1,1%0])) and u = (jwi 1|, , |wg-1,1]) € Z".

Proof. This is a consequence of Proposition since the sequence (P, )nen defined in (4.1]) satisfies
(C0)-(C3) for m =1, d =r—1, and this is true for all x € X,. The tower heigths in P; corresponds

to the lengths of return words to xg. ]
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Corollary 4.26. Two minimal dendric (resp. specular) subshifts are strong orbit equivalent if and
only they have the same simplex of letter frequencies (resp. the same simplex generated by frequencies
of factors of length 2). Two minimal and uniquely ergodic dendric (resp. specular) subshifts are strong
orbit equivalent if and only if they have the same additive group of letter frequencies (resp. the same

additive group generated by the frequencies of factors of length 2).

Since on a three-letter alphabet, all dendric subshifts are uniquely ergodic, we deduce from Corollary

the following.

Corollary 4.27. All minimal dendric subshifts on a three-letter alphabet with the same group of letter

frequencies are strong orbit equivalent.

4.6 Further work.

Some of the results we have proved for dendric and specular subshifts rely on the fact that the set
of return words associated to every word (or every non-empty word) is a basis of the same subgroup
of F 4 (for instance, Theorems and Theorems and and Theorems and .
This crucial fact is a sufficient condition for the matrices of the sequence of tower partitions (Pp)nen
defined in to be invertible, and thus for (P, )nen to satisfy condition (C3) of Chapter 2.

Note that the important thing here is not which subgroup of F 4 all these sets generate, but just the
fact that it is the same subgroup for all (non-empty) word.

It is not the case that in an eventually dendric subshift with threshold m, the set of return words of
any factor of length at least m generates the same subgroup of the free group F 4. This is the case
of specular subshifts, where supplementary conditions have been added, apart from being eventually
dendric with threshold 1.

It is thus an interesting question to know under which conditions we have that in an eventually dendric
language with threshold m, the set of return words of any factor of length greater than some N (which

N7?) generates the same subgroup of the free group F 4.



Chapter 5

Subshifts of congruent monotileable

amenable groups.

In this chapter we study the set of invariant measures on subshifts of a special kind of groups, namely
congruent monotileable amenable groups. We recall the notions of amenability and monotileable
amenable groups. We introduce the concept of congruent in this context, and show that any Cho-
quet simplex can be obtained as a set of invariant measures of a minimal subshift of any congruent
monotileable amenable group. We also show that this class of groups includes all virtually nilpotent

groups.

5.1 Amenable groups.

We give here a brief introduction on amenable groups. We refer to [CC10), Chapter 4] for a complete

survey of most important results in this topic.

5.1.1 Invariant measures on groups.

Let S be any set and denote P(.S) the power set of S. We say that a map u : P(S) — [0,1] is a finitely
additive probability measure on S if u(S) =1 and u(B1 U By) = pu(B1) + u(B2) whenever By, By are
subsets of S with B; N By = (). For any given set S, we denote by PM (S) the set of all finitely additive
probability measures on S. Let G be a group, and consider the following left and right actions of G
on PM(G)

(gm)(A) = u(g'A),  (ng)(A) =u(Ag™"), VACG,

102



CHAPTER 5. SUBSHIFTS OF CONG. MONOTILEABLE AMENABLE GROUPS 103

where gA = {ga : a € A} and Ag ={ag:a € A} for all A C G, for all g € G. A measure u € PM(G)
is said to be left-invariant (resp. right-invariant) if g.u = p (resp. p.g = p) for all g € G, that is, is p

is invariant under the left (resp. right) action of G described above.

Proposition 5.1. The group G admits o left-invariant finitely additive probability measure if and only

if it admits a right-invariant probability measure.

Proof. Suppose G admits a left-invariant finitely additive probability measure p. Define i : P(G) —
[0,1] by fi(A) := u(A~1) for all A C G, where

Al ={at:aec A}

Note that /i is a right-invariant finitely additive probability measure on G. Indeed, ji(G) = u(G~!) =
w(G) = 1; if A, B are subsets of G with AN B = (), then

A(AUB) = u((AUB)™") = (A UB™)

and since ANB =0, A~'N B~ = (. We get u(A~tUB™Y) = pu(A™Y) + uw(B™) = ia(A) + u(B).
Finally, since p is left-invariant, for all g € G and for all A C G,

ji-g(A) = i(Ag™) = p(gA™") = w(A™") = f(A),

so [ is right-invariant and G' admits a right-invariant finitely additive probability measure.

The converse implication is completely analogous. O

A group G is called amenable if it admits a left- (or right-) invariant finitely additive probability
measure. Note that finite groups are trivially amenable: let N be the cardinality of a finite group G
and define

VA CG.

The map p is a left- and right-invariant finitely additive probability measure on G.

Remark 5.2. The equivalent conditions of Proposition |5.1| are also equivalent to the existence of a
left- (or right-) invariant mean on G: a map m : {*°(G) — R verifying m(1) = 1 and m(zx) > 0

whenever x > 0, where (*°(G) is the set of all bounded real sequences indexed by G endowed with the
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order x <y < x(g9) < y(g) for all g € G, and 1 is the sequence 1(g) = 1g for all g € G (see [CCI10,
Proposition 4.4.4]). The set M(G) of invariant means on G is a convex compact subset of the dual
space (£°(G))* with respect to the weak-+ topology (see [CCI10, Theorem 4.2.1]). The group G acts
continuously on M(G) in the following way: consider the left and right actions of G on RS given by

(gx)(h) ==z(¢g"'h),  (z.g)(h)==z(hg™"), VheG.

The space £°°(G) is a vector subspace of R which is invariant under these actions. It is not difficult to
show that both actions of G on £*°(G) are isometric, and therefore continuous. The left (resp. right)
action of G restricted to M(G) is affine and continuous with respect to the weak-x topology (see [CC10,
Proposition 4.3.1]).

Example 5.3. (The free group in two generators.)

Let us show that the free group in two generators [Fo is not amenable. Write Fg in its canonical form,
Fy = (a, b). Suppose there exists a left-invariant finitely additive probability measure p on Fy. Denote
by A the subset of Fy consisting of all reduced words starting with a non-zero power of a. Note that

Fy = AU aA and therefore
w(F2) < p(A) + p(ad).

Since p is left-invariant, p(aA) = p(A), which implies that 2u(A) > p(F2) = 1, and therefore,
w(A) > 1/2. On the other hand, note that for all £ > 2, the subsets A, bA, b?A,-- -, b’ A are pairwise

disjoints, so that
(A) 4 p(bA) + - + p(b°A) = n(AUDBA U B A) < p(Fa) = 1.

Since y is left-invariant, pu(A) + u(bA) + - - - + u(b*A) = (£ + 1)u(A), which implies that u(A) < 1/¢, a

contradiction.
Proposition 5.4. Every subgroup of an amenable group is amenable.

Proof. Let G be an amenable group with a left-invariant finitely additive probability measure y, and
let H < G. Let R be a set of representatives of right cosets of H in G, that is, a subset R C G such
that G is the disjoint union of the cosets {Hr : r € R},

G:UHT‘.

reR
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Define i : P(H) — [0, 1] by

ﬁ(A):p(U Ar).

reR
We claim that u belongs to PM(G). First, n(H) equals 1 by construction. If A, B are two disjoint
subsets of H, then for all r € R, Ar N Br = (), from which we deduce

u(AUB) = mu (U (AU B)r) =mu (U Ar U U Br) = mu (U Ar) +u (U Br) = n(A)+u(B).
reR reR reR reER reR
Finally, since p is left-invariant, for all h € H and for all A C H,
[.h(A) = fi(hA) = (U hAr) =4 (h U Ar) =u (U Ar> = Ji(A),
reR reR reER

and we conclude that & is invariant. Therefore, H admits a left-invariant finitely additive probability

measure and thus it is amenable. O
Corollary 5.5. Free groups are not amenable.

Proof. Let F,, the free group on n generators,
]F’n — <CLO, e 7an71>'

Suppose F,, is amenable. Proposition [5.4]implies that every subgroup of F,, is amenable. Consider the
subgroup H of F,, generated by ag and a;. H is isomorphic to Fg, but we know by that o is not

amenable, which is a contradiction. O

The proofs of the following two results are based on the properties of the set M(G) (see Remark .
Details can be found in [CC10] Sections 4.5 and 4.6].

Proposition 5.6. [CC10, Proposition 4.5.5] Let G be a group and H < G. If both H and G/H are

amenable, then G is amenable.
Theorem 5.7. [CC10, Theorem 4.6.1] Abelian groups are amenable.

Recall that, given a group G, the commutator of two elements g, h € G is the element [k, g] = hgh~'g~'.
If H, K are two subgroups of GG, the commutator of H and K is the subgroup of G generated by all
commutators [h, k] where h € H and k € K. Note that [H, K| is a normal subgroup of G and G/[G, G|
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is abelian. The derived series of G is a decreasing series of normal subgroups of GG defined inductively
as follows: D(G) = G, DY(G) = [G,G] and for all n > 1, D"*(G) = D(D™(G)). For all n > 0,
D"Y(G) <« D(G) and D"t1(G)/D"(G) is an abelian group. The group G is said to be solvable if
there exists a positive integer N such that D™V (G) is trivial. In this case, N is called the class or the

degree of solvability of G.
Theorem 5.8. Solvable groups are amenable.

Proof. We proceed by induction on the solvability class n. If n = 0 and G is a solvable group of class
n, then G is trivial and thus amenable as any finite group. Suppose every solvable group of solvability
class n is amenable, and let G be a solvable group with solvability class n + 1. The group D(G) is
solvable of class n, thus amenable by inductive hypothesis. The quotient group G/D(G) is abelian,
thus amenable by Theorem By Proposition G is amenable. ]

Given a group G, the lower central series of G is a decreasing sequence of normal subgroups defined
inductively as follows: C%(G) = G, and for all n > 0, C"*1(G) = [C™(G),G]. The group is said to
be nilpotent if there exists a positive integer N such that CV (G) is trivial. In this case, N is called
the class or the degree of nilpotency of G. Every nilpotent group is easily shown to be solvable, so we

obtain the following result.

Corollary 5.9. Nilpotent groups are amenable.

5.1.2 Residually finiteness and amenability.

Recall from Section that a countable group G is residually finite if for every element g € G with
g # 1¢ there exists a finite group F' and a homomorphism ¢, : G — F such that ¢4(g) # 1r.

Proposition 5.10. Let G be a countable group. Then, G is residually finite if and only if there exists

a sequence of finite index normal subgroups of G, say {Gy}nen, such that (,cy Gr is trivial.

Residually finite groups are thus those groups for which we can define odometers (see Section [1.3]).
Finite groups are trivially residually finite: if g € G verifies g # 1, define ¢, = Idg : G — G. Let
p € N be a prime number. The sequence G, = p"Z is a decreasing sequence of finite index normal
subgroups of Z whose intersection is trivial, so by Proposition Z is residually finite. Since every
direct product of a family of residually finite groups is residually finite (see [CCI10l Proposition 2.2.2]),
7% is residually finite for every d > 1.
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Example 5.11. (The group GL,(Z))

Let us prove that the linear group GL,(Z) is residually finite for all n > 1. Let A € GL,(Z) such
that A # I,,«,. Choose a positive integer ¢ € Z such that |A(i,7)| < £ for all 1 < i,j < n, and define
éa : GLn(Z) — GLn(Z/IZ) by

¢a(M)(i,j) = M(i,7) mod .

Then, ¢4 is a group homomorphism satisfying ¢a(A) # 1gr, (z/ez)-

Finitely generated nilpotent groups are residually finite, so finitely generated nilpotent groups are
examples of amenable residually finite groups. Classical examples of non-residually finite groups are
divisible groups: a group is said to be divisible if for all g € G and all n > 1, there exists h € G such
that A" = g.

Example 5.12. (The additive group of rationals)

The additive group Q is clearly divisible: let g € Q and n > 1, take h = % € Q. We have that

h”_g+.. +g:ng:g
s n n
—_——
n—times

Example 5.13. (The Priifer group)

Given a prime number p, the Priifer group Z(p*) is defined as the following subgroup of the unit
circle,

Z(p™) = {exp(i2rm/p™) : 0 < m < p",n € N},

that is, the set of all p"-th roots of unity, when n runs over N. Equivalently, Z(p>°) can be represented

as the inverse limit
Z(p™) = in(Z/p" L, in),

where i, : Z/p"Z — Z/p""'Z is the multiplication by p. By definition, Priifer groups are p-groups,

and they are divisible. They are also infinite countable abelian groups (see [Ful5] for more details).
Theorem 5.14. A non-trivial divisible group is not residually finite.

Proof. Suppose G is a non-trivial divisible group and let F' any finite group. Let n = |F|. Since G is
divisible, for all g € G, there exists h € G such that A" = g. Let ¢ : G — F' a group homomorphism,
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then ¢(g) = ¢(h™) = ¢(h)"™. Since F has n elements, f* = 1p for all f € F, and thus ¢(g9) = 1p.
Since this is true for all g € GG, we conclude that ¢ is trivial, and since G is non-trivial, it cannot be

residually finite. O

The previous theorem shows that @Q and the Priifer group are examples of countable infinite abelian
non-residually finite groups. They are not finitely generated. There also exist finitely generated groups

which are not residually finite (see [CC10, Section 2.6]).

5.1.3 The Fglner conditions.

We now recall an equivalent definition of amenability which is the one we use in this chapter for all
proofs. Given a countable group, a sequence (F},),>¢ of finite subsets of G is called a right Folner
sequence if for every g € G,

: [Fog \ Fyl _

TR

A left Folner sequence of G is defined analogously.

Proposition 5.15. The countable group G admits a right Folner sequence if and only if it admits a

left Folner sequence.

Proof. Suppose (Fy,)n>0 is a right Fglner sequence of G. For all n > 0, define F, = F; 1. Observe
that (ﬁn)nzo is a left Fglner sequence of GG. Indeed, for any g € G,

Since (Fy,)n>0 is a right Felner sequence, the previous limit equals zero and we get that (F},),>0 is a
left Fglner sequence.

The converse implication is completely analogous. O
Given finite subsets K, F' of G and € > 0, we say that F' is right (K, ¢)-invariant if

{g € F:gK C F}
||

> (1—¢).

The concept of left (K, e)-invariance is defined in the same way: for finite subsets F, K C G and € > 0,
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we say that F' is left (K, ¢)-invariant if

{g e F: KgC I}
7] > (1—e¢).

Note that if F is right (K, ¢)-invariant, then F~! is left (K1, ¢)-invariant.
The following lemma shows that right Fglner sequences are those which become more and more

invariant.

Lemma 5.16. Let G be a countable group. A sequence (Fy,)n>0 is a right Folner sequence of G if and
only if for every finite subset K of G and for every € > 0, there exists N > 0 such that for alln > N,
F,, is right (K, e)-invariant.

Proof. First note that

{g€Fn:gK CF,} = () FanFok".
keK

Suppose (F,)n>0 is a right Felner sequence, and take any finite X C G, € > 0. Since for all k € K,

im0 ‘F\‘lii:f’l' = 0, then for all k € K, 3 Ny € N such that for all n > Ny,

|Fy \ Fnk™t €
[Pl K|

Since K is finte, there is a N € N such that for all n > N and for all £ € K, the above inequality
holds. Now,

Fu\ () FanFuk™' = | Fu\ Fuk™Y,
keK keK

then,

Bl =1 () Fa 0 Eak™ | =[F \ () Fu k™|
keK keK

= | Fu\ Fuk™ |

keK

<Y U F N\ FukTY < | Fole,
keK

and therefore,

|Fn| — [{g € F: gK C B, }| < ¢|F,|.

Conversely, suppose that for any ¢ > 0 and any finite K C G, there is an NV € N such that for all
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n > N, F, is right (K, ¢)-invariant. Take g € G and consider K = {g}. Let € > 0. Then, there is a
N € N such that for all n > N,
|F, N Fpg™t > (1—e)|Fy

-1
< ¥n > N, Fn \ Fn 0 g ‘<5
| Fn

But F, \ F,, N F,g~! = F, \ F,g~ !, and therefore, for all n > N,

[ \ Fhg _1‘
| Pl
This implies that lim,, s lFTlgmr\flJ"' < e. Since € was arbitrarily taken, we conclude that
F, F,

O

The equivalent conditions of Proposition are known as the Fglner conditions. The following
theorem due to Folner states the equivalence between the Fglner conditions and the amenability of a

group. See [CC10, Theorem 4.9.1] for a proof.

Theorem 5.17. Let G be a countable group. Then, G is amenable if and only if G satisfies the Folner

conditions.

In the case of abelian groups, it is clear that every right Fglner sequence is a left Fglner sequence and

vice versa, and the notions of right and left (K,e)—invariance coincide.

5.2 Monotileable amenable groups.

Let G be a countable infinite group. A left monotile of G is a finite subset I’ of G for which there exists
a subset C of G such that the collection 7 = {cF' : ¢ € C} is a partition of G, that is, G = |J,co cF'
and c;F NcoF = 0 if ¢1,c € C are distinct elements. In this case we say that T is a left monotiling.
A right monotile of GG is a finite subset F' of G for which there exists a subset C' of G such that the
collection T = {Fc: c € C} is a partition of G. In this case we say that T is a right monotiling.

We say that G is monotileable amenable if there exists a right Fglner sequence (F},)n>0 of G such that

every F, is a left monotile of G. Note that if G is monotilable amenable, then (F,;1),>¢ is a left Fglner
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sequence whose elements are right monotiles of G.

Given a sequence (F},),>0 of finite subsets of G, we say that the sequence is congruent if 1 € Fy and
for every n > 0 the exists a set J, C G such that 15 € J,, and such that {cF, : ¢ € J,} is a partition
of Ft1.

We say that G is congruent monotileable if it admits a congruent right Fglner sequence made of left

monotiles, which is also exhaustive, that is, G = UnZO F,.

Lemma 5.18. Let G be a congruent monotilable amenable group with a right Folner sequence (Fy)n>0

made of congruent left monotiles. Then, for every m > n > 0, the collection
{em-1-"-cnFy : c; € J;, for everyn < i< m}

is a partition of F,.

Proof. The proof follows directly from the definition of congruent monotileable amenable groups by

using induction. O

The next lemma is the key tool to show that countable abelian and nilpotent groups are congruent
monotilable. If M is any set, ~ is an equivalence relation on M, m : M — M/ ~ is the canonical
projection and H C M/ ~, we say that HCMisa lifting of H if W(ﬁ) = H and 7 is one-to-one in

~

H.

Lemma 5.19. Let L, G and Q be countable discrete amenable groups such that1l - L —- G — Q — 1
is an exact sequence. Suppose L and Q) have congruent and exhaustive right Folner sequences made of
left monotiles, (Us)s>o and (Ts)s>o respectively. Then, G has an exhaustive right Folner sequence made
of left monotiles. More precisely, there exists a sequence (fs)szo, such that each fs C G 1is a lifting of
T, and an increasing sequence of indices, (ms)s>0, such that Fy = Umsfs defines an exhaustive right

Folner sequence made of letf monotiles of G. If in adittion L C Z(G), then (Fs)s>o s also congruent.

Proof. Let (Ks)s>o be an increasing sequence of finite subsets of G such that G = (J s>0 Is. Let
(es)s>0 be a decreasing to zero sequence of positive reals. Let 7 : G — G/L = @ be the projection of
G on G/L. Since (Ts)s>0 is a right Fglner sequence, Lemmatells us that, up to take an increasing
subsequence, we can assume that for all s > 0, T is right (7(Kj), es/2)-invariant.

We define inductively (fs)szo and (mg)s>0. For s = 0, define fo = 1¢ and mg = 0, so that 15 € Fy =
Up.
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If s > 0, suppose we have defined fs,l and ms_1. By hypothesis, there exists a finite subset D C Q)

containing 1¢ such that

Ts = U defl
deD

Take any lifting D of D, and define ﬁ =U deb (ffs_l. It is straightforward to show that IA} is a lifting
of T and that T, = Udef) a?ﬁ_l.

Note that T ! is a left (7(K; '), es/2)-invariant right monotile of @ and that fs_l is a lifting of T, 1.
Then, by [W01, Theorem 2], there exists a subset J C L such that, if U C L is a left (J,e5/2)-invariant
right monotile of L, then T; U is a left (K !, e,)-invariant right monotile of G.

Now, every U is a left monotile of L and therefore every U; ! is a right monotile of L. Since (U;1)s>0
is a letf Fglner sequence, the U, Dg are as much left invariant as we want. Pick an index mgs > mgs_1
such that U,! is left (J,£5/2)-invariant. By [WO01l, Theorem 2], T\;lUnji is a left (K !, es)-invariant
right monotile of GG, and therefore Fy := Umsf s is a right (K, es)-invariant left monotile of G. This
shows that (Fs)s>0 is a right Felner sequence made of left monotiles of G.

Let us show that (Fs)s>o is exhaustive. Let g € G, then there is a sg such that w(g) € Tj,, since
(Ts)s>0 is exhaustive. Then, there exist [ € L and { € fso such that ¢ = lf. For s > 0 big enough,
l € Up, and te fs, therefore g € F.

Finally, let us see that, if L C Z(G), (Fs)s>0 is congruent. Let s € N. Since (my)s>0 is increasing and

(Us)s>0 is congruent, Lemma tells us that there exists a finite subset of L, C, such that

Unor = | cUnm,

ceC

On the other hand, by construction, there is a set E C G such that

T =L
écE
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Therefore,

Fsy1 = U cUn, U éfs

= U U Unm,.eT,

I
-
-
5
5
=)

ceCecE =F,

O]

Remark 5.20. If G is a countable amenable group having a finite index subgroup which is congruent
monotilable, then so is G. Indeed, it is not difficult to see that, if L is a congruent monotilable
finite index subgroup of G, R is a subset of right coset representatives, and (Up)n>0 is a congruent
right Falner sequence made of left monotiles of L, then the sequence Fy, := U, R defines a congruent
right Folner sequence of G. This implies that any virtually congruent monotilable group is congruent

monotilable as well.
Proposition 5.21. Every countable abelian group is congruent monotilable.

Note that if G is finitely generated, then it is a direct product of Z% and a finite abelian group, for
some positive integer d, so it is trivially residually finite. Any such a group (provided it is amenable)

is congruent monotilable, as it is stated in the following result.

Proposition 5.22. [CP1j, Lemma 5] Let G be an amenable residually finite group and let (I'y,)n>0 be
a decreasing sequence of finite index normal subgroups of G such that ﬂnZO Iy, = {1lg}. There exists

an increasing sequence (n;);>0 and a Folner sequence (F;)i>o of G such that
e {1g} C F; C Fiy1 and F; is a fundamental domain of G /Ty, for alli > 0,
o G=U;>qFi, and
o [ = UfueF]-ani vF; for every 0 <i < j.

A fundamental domain D of a quotient group G/I is a subset of G containing exactly one representative
element of each class in G/T". The sequence (F;);>o is exhaustive and in this case J; = Fj11 N1Ty,.
Since each Fj; is a fundamental domain of T',,;, for all distinct elements vy, vy € J;, v1 F; NveF; =0, so

that (F})i>0 is an exhaustive congruent Fglner sequence made of left monotiles.
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Proof. (proof of Proposition |5.21)) Let G be a non-finitely generated abelian group, and let us enu-
merate its elements as G = {lg = go,91, - }. Since G is non-finitely generated we can define an

increasing sequence (ky,)n>0 as follows: let kg = 0 and for n > 0 let define

kn = mln{l > knfl P 9k, ¢ <{907 t 7gkn_1}>}-
For every n > 0 we set

Kn = {90>gla o )gkn} and Gn = <Kn>7

where () denotes the generated subgroup in G.
Since G is abelian, G,,—1 < G,, and G,,/G,—_1 is an abelian group. Moreover, this is a non trivial

cyclic group. Indeed, any class ¢gG,,—1 has the form

Iy —1

l
9Gp_1 = géo g g Gy where I; € 2.
Since g(l)o . 'g;i":f € G,—1 and G, is abelian, gG,,_1 = gi{“" Gn-1 # Gn_1, so that
Gn/Gno1 ={gf Gn1:k € Z}.

If for all K £ 0 g,’jn ¢ Gn—1, then G,,/G,—1 = 7Z. If there is some k # 0 such that g],jn € Gy_1, then
Gn/Gpn—1 = Z]IZ, where
l:'=min{k e Z" : g* € G,_1}.

The rest of the proof is organized as follows:

e For every n > 0, we will inductively define (F7')s>¢ an exhaustive and congruent right Fglner

sequence made of left monotiles of GG,,, a positive integer m,,_1 and a finite subset F,,_1 C G.

e We will show that (F} ),>o0 is an exhaustive and congruent right Fglner sequence of left

monotiles of G.

For n = 0, define F? = {1}, for every s > 0. This is an exhaustive and congruent right Fglner

sequence of left monotiles of Gy, because this group is trivial. We also put m_; =0 and F_; = {15}.

Let n > 0. Suppose we have defined an exhaustive and congruent right Fglner sequence (F"~1) s>0 of

left monotiles of G,,—1, the positive integer m,_o and the subset F),_5. Because (F. 8"_1) s>0 is exhaus-
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tive and K,,_1 does not depend on the parameter s, we can assume that K,, 1 C F;"”_l and FS”_1 is

right (K,_1,&,—1)-invariant, for every s > 0.

Since G,,/Gp—1 is cyclic (and then residually finite), it admits an exhaustive and congruent right

Fglner sequence of left monotiles. Let us denote this sequence as (177 1)4>.

From Lemma there exist a sequence of liftings, (fs’"‘*l) and an increasing sequence of indices,
(Mp—1.5)s>0, such that (F7-1 T "~1)s>p is an exhaustive congruent right Fglner sequence made of

Mn—-1,s~ S

left monotiles of G,,. We define

F? = Fr=t 71 for every s > 0.

S Mp—-1,s— S

We can assume that for every s > 0, my_1, > mp_2, K, C F}* and that F}" is right (K, e,)-invariant.
We define my,—; = my,—10, and

F, 1 =F""!

Mnp—1"

Claim: (F,)n>0 is an exhaustive congruent right Fglner sequence of G made of left monotiles.

This sequence is right Fglner because for all n > 0, F,, = FrTrLG,o is right (K, ey,)-invariant. Since
F, = F,Znyo is a left monotile of GG,,, we have that F}, is a left monotile of G. Indeed, if C,, C G,, is such
that {cF,, : ¢ € C,} is a partition of G, and A,, C G is a lifting of G/G,,, then {gcF, : g € A,,,c € Cp}
is a partition of G. We have that F,, = F}}, = F} . Since (Mmp—1,5)s>0 is increasing, and (F7')s>0

Mnp—1,mp

is a disjoint union of translated copies of F; n—l — [ ;. This together

: n—1
is congruent, every Fj—~ Mp—1,0

1,s

with the fact that all the elements in j’\,ﬁ;l are in diferent classes of G, /G,—1, imply that F, is a

disjoint union of translated copies of F,_1. O

Theorem 5.23. Every countable virtually nilpotent group is congruent monotileable.

Proof. Suppose G is a countable nilpotent group. Again recall that if G is finitely generated, it is
residually finite and then congruent monotilable by the results in [CP14]. If G is not finitely generated,
we use induction on the nilpotency class of the group. If GG is of class 1, then G is abelian and the

result follows from Proposition If its nilpotency class is 2, then consider the exact sequence
1—-1[G,G] - G—G/[G,G] =1

where [G, G| denotes the commutator subgroup of G. Since both [G,G] and G/[G,G] are abelian,
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each has a congruent right Fglner sequence made of left monotiles. Since [G,G] < Z(G), we deduce
from Lemma that G is congruent monotilable.

If G has nilpotency class n grater than 2, consider the exact sequence
1-G"1 G —-G/G" =1

where G? denotes the i-th subgroup in the lower central series of G. Since G"~! < Z(G), it is abelian,
and therefore it follows from Proposition that G™~ ! is congruent monotilable. On the other hand,
G/G™ ! is a group of nilpotency class n — 1 (this follows from the fact that for all 0 < i < n — 1,
(G/G"1 = G*/G™1), and then by inductive hypothesis it is congruent monotilable as well. Since
G" ! < Z(G), we deduce from Lemma that G is congruent monotilable. This proves that any
countable nilpotent group is congruent monotilable.

From the argument above and Remark we deduce that every countable virtually nilpotent group

is congruent monotilable. O

5.3 Tower partitions using a congruent Fglner sequence made of
monotiles.

We assume henceforward that G is an infinite countable congruent monotileable amenable group.

Given G and (F,)n>0 a Folner sequence made of congruent monotiles of G, we construct a minimal

G-subshift in several steps as follows.

Let dy > 3 be an integer and let A ={0,--- ,dp}. For every 1 < i < dy let define By; € AFo as

1 fv=1¢g

Boslv) = 0 ifveFy\{lg}.

For n > 0, let dy41 > 3 be an integer and let B, y11, -+, Byy1,4,,, be different elements in Afn+1

verifying the following conditions
(B1) Bpt1,i(Fy) = By, for every 1 <i < kp4q.
(B2) Bpi1,i(cFy) € {Bna,- -+ ,Bna,} for every c € J, \ {1g}.

Lemma 5.24. Let (By1, -+ ,Bnd,)n>0 be the sequence defined above. Then for every n > 0,
By, , By, satisfy the following condition
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(B3) If g € F,, and 1 < i,7' < d,, are such that By, ;(gv) = By ir(v) for every v € F, N g 'F,, then

g=1qg andi=1".

Proof. The case n = 0is clear: since g € F,, 14 € ¢~ 'F, and then in particular Boi(9) = Bov(1g) =7,
which implies that g = 1 and ¢ = 7.

Suppose the assertion is true for n > 0. Let g € F,,11 and 1 < 4,7 < k,41 be such that
Byt1,k(gv) = By (v) for every v € Fppq N g 1 Fy.
Let ¢, € J, and s € F), be such that g = ¢,s. Since ¢, F,, C F), 41, conditions (B1) and (B2) imply
By ¢(su) = By 1(u) for every u € F;, N sTIF,,
where 1 < ¢ < d,, is an index such that By41(¢,Fy) = Bpy. By inductive hypothesis we get s = 1
and ¢ = 1. Conditions (B1) and (B2) imply ¢, = 1¢, and therefore g = 1¢ and i = 4'. O
Lemma 5.25. Let (B 1, -+, Bna,)n>0 be a sequence satisfying conditions (B1), (B2) and (B3)

defined above. Then there exists xo € AC such that

({z € A% : 2(F,) = Bna} = {x0}.

n>0

Proof. By Condition (B1) and because every set {x € X : x(F},) = By,1} is compact, we have

({z € A9 : 2(F,) = Bua} #0.
n>0
Since the Fglner sequence (F,),>0 is exhaustive, we deduce there exists only one element z in this

intersection. O

Let T denote the shift action on A% and 29 € A® be the unique element on the interesection
Np>oiz € A% . 2(F,) = By1}. Consider the subspace X = {T9(x) : g € G}. For every n > 0 and

1 <1 <d, we define

dn,
Cni={r € X :2(F,) = Bn;} and C, = | Cus. (5.1)
=1

Lemma 5.26. Let v € G. Then the following are equivalent:
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1. T (20) € Ch.
2. There exist m > n and ¢, € Ji for everyn < k < m such that v=cp_1--Cp.

Proof. Suppose that v € G is such that T”fl(aso) € C,. If v=1¢g then for m =n+1 and ¢, = 1¢g
we get the desired property. Suppose now that v # 1g. let m > 0 be the smallest integer such that
vF, C F,,. Because [vF,| = |F,|, it is necessary that m > n. Suppose that m = n. Since 1g € F,

this implies that v € F},. By hypothesis we have
zo(vs) = By (s) for every s € F,.

On the other hand,

xo(vs) = Bp1(vs) for every s € v ' F,.

Lemma [5.24] implies that v = 1¢, which is a contradiction. Thus we have m > n.

Since vF,, C F,;, and 1g € F,, we have v € F,,,. Lemma [5.1§ implies that for every n < k <m — 1
there exist ¢ € Ji such that v € ¢;—1 - Fy. Let s € F,, such that v = ¢;;,—1 - - - ¢ s. By definition
of xy, we have

20(Cm—1-""cnFn) = By, for some 1 <k < ky,
which implies that for every g € s71F},,
zo(vg) = xo(Cm—1- - cns9) = By r(59).

On the other hand, for every g € F), we have

zo(vg) = Bn(g).

Thus
By,1(9) = By x(sg) for every g € F;, N sTIE,.

From Lemma [5.24] s = 1¢ and then v = ¢;;,—1 - - ¢,. By applying inductively Lemma we get

that v = ¢;,—1 - - - ¢, is a return time of xg to C,. O

Let (Bpj,--- , Bn.d,)n>0 be a sequence satisfying conditions (B1), (B2) and (B3). For every n > 0,
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consider the collection of sets

P ={T" (Cny):v € Fp,1<i<dy}, (5.2)

where C),; is defined as in (.1]). For all n > 0, P, defines a tower partition of X = {T9(z) : g € G}

and P41 is finer than P,. We prove this in the following proposition.

Proposition 5.27. For every n > 0, P, as defined in (5.2)) is a clopen partition of X and Pp41 is
finer than P,.

Proof. Suppose that v,u € F,, and 1 <1,j < d, are such that
T (Cpp) NT™ (Cpy) # 0,
then there exists z € X such that
T € Tuv_1 (Cn,i) N ij.

Since x € X, there exists a sequence (g;)i>o of elements in G such that

lim 79 (x9) = z and then lim TV i (zg) = T”“_l(a:).
1—00 1—00

Lemma implies that for a large enough ¢ there exist ¢, € J, for every n <p <m—1, and ¢, € J,
for every n < p <r — 1, such that

g[l = Cp—1""-Cp and g[lvu*

where m > n+1 and r > n+ 1 are the smallest integers such that ge_an C F,, and g[lvulen C F,
respectively. Then,

Cm—1"""CpU = Cp_1 "+ * CpU.

Suppose that r > m. From Lemma this implies that

Cr=+Cn = 1g and ¢ = ¢y for every n < £ < m — 1.

We get that v = v and then the sets in P, are disjoint.
Let g € G\ F,. Let m > n be such that g € F,,,. Then the congruency of (F},),>0 implies there exist
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¢; € J; for every n < ¢ < m such that g = ¢;,,_1 - - - chu, for some u € F,,. Then from Lemma we
get

1

T9 (wo) =T"

1

(T(cmfr--Cn)*l(g;O)) € T“fl(Cn,g), for some 1 < /¢ < d,.

This shows that P, is a covering of X.

Finally, condition (B1) and (B2) imply that P41 is finer that P,. Indeed, let z € T“il(CnH’j) for
some u € Fyy1, 1 < j < dpq1. There exists y € Cpyq,; such that z = T“fl(y). Since y € Chy1,5,
Y(Fnt1) = Bny1,j(Fng1) and by condition (B1) y(F,) = Bp1, so that y € Cy, 1.

If u € F,,, then it is clear that z = T“il(y) belongs to an atom of P,,. If u ¢ F,,, then by congruency,
there exist unique ¢ € J,, \ 1¢ and v € F;, such that u = cv. By condition (B2), y(cF,,) = By, some
1<i<d,. Sincey € Cy 1, Tcil(y) € Cp i, and we get

2=T" (y) =T 'T° (y) €T" (Cny),

which concludes the proof. O

Note that the sequence (Pp)n>0 does not necessarily generate the topology of X. There could be
points belonging to the partition boundary 0X (see the definition below), that is, points which are not
separated by (Pp)n>0. Let 0X be defined as

kn
ox=JNU U 77 (Cup):

QEG n>0k=1 ”L)an\an

Proposition 5.28. The system (X,T,G) is minimal and free on X \ 0X. If G is virtually abelian,

the system is free.

Proof. Let F C G a finite set, and let P € AF such that
C={xeX:x(F)=P}#0.

We will show that Ro(zg) := {g € G : T9 '(x0) € C} is syndetic, which is enough to conclude that
the subshift is minimal (see for example [Aus88, Chapter 1]). Let g € G such that T9(xo) € C. Since
the orbit of x( is dense in X such a g always exists. We have xo(g~'F) = P. Let n > 0 such that
g 'F C F,_1. Then

20(¢g7'F) = Bp_11(g"'F) = P.
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Condition (B1) and Lemma imply that for every ¢,—1 € Jm—1, - ,cn € Jpn, With m > n, we have
T(cm71~~cn)71(1;0) €CnCCht.

Thus we get
T(Cm—l"'cn)fl(xo)(g_lF) = anl,l(g_lF) =P

This shows that ¢,,_1---¢c,g~! € Ro(xo).

Now let h € G and m > n be such that ¢ € F,,. Lemma implies that there exist ¢;,—1 €
Im—1,+" ,¢n € Jy such that h € ¢,—1 -+ ¢, F,. Then we obtain that h € Ro(xg)gF,, which implies
that Rco(xo) is syndetic.

Let z € X and g € G be such that 79(x) = z. For every n > 0, let v,, € F}, be such that = € T”gl(Cn).
We have ©z = TY9(z) € T9vn (Cp). Since P, is a partition, if there exists n > 0 such that v,g~! € F,,
then g = 1. Thus if there exists g € G \ {lg} such that TY9(z) = x, then v, € F,, \ F,g for every
n > 0. This shows that the subshift is free on X \ 0.X.

Suppose that G is virtually abelian. Let T' be a finite index abelian subgroup of G. Since G/T is
finite, there exist £ > k > 1 such that ¢‘T' = ¢*T, which implies ¢* % € I'. Thus we can assume that
g € I'. On the other hand, there exist a subsequence (v, )r>0 and v € G such that v,, € oI, for
every k > 0. Let 75 € I be such that vy, = vy, for every k > 0. Since T (z) € Cy, , we have that
limy_yoo TV On (2) = limy_yoo T (2) = T”il(:vo). This implies that limy_,o, T9% () = Tgvil(xo) and
since T9% (z) = T%9(z) = TV (x), we conclude that T9" ' (z¢) = TV ' (z¢). Since zg € X \ X, we

1

deduce gv~! = v~! and then the system is free. O

We now work with the incidence matrices associated to the sequence of tower partitions P,. For every

n>0and 1<i<d,, define
Jn,k,i = {C € Jn: Bn—l—l,k(CFn) = Bn,i}y

and the matrix Q, € My, xa,.,(Z") as

n+1

Qn(%]) = ’Jn7j,i|7 for every 1<:< dnv 1 S] < dn—',-l-

Proposition 5.29. The sequence (Qn)n>0 corresponds to the sequence of incidence matrices associated
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to the sequence of tower partitions (Pp)n>0, that is, for all1 <i <d,, 1 <j <du41,

1

Qn(la.]) = |{U € Fn+1 : TIF (Cn+1,j) g Cn,l}|

Observe that
‘FnJrl |
2

dn,
> Qu(ig) = |Ju] = , for every 1 < j < dpy1.
=1

This means that the sequence (Qn,)n>0 is managed by (|Fy|)n>0, that is:

1. @, has d, > 2 rows and d,41 > 2 columns;

2. ngl Qn(i k) = ‘T};ﬁ‘, for every 1 <k < dp41.

It is easy to check that Q,(A(dn+1,|Fnt1])) € A(dy, |Fr|), where

k
Ak, p) = {(ml,-'- ,xg) € (RT)F: Zazz = ;}

=1

Thus the following inverse limit is well defined.

l'&n(A(dn, [Fnl), Qn) = (2n)n>0 € H A(dn, |Fl) : 2n = Qnzng1¥n >0
n n>0
Remark 5.30. We can assume that the matrices Q, are positive. Indeed, if there exists By ; such
that for every m > n it does not appear in By, 1, then the clopen set {x € X : x(F,) = By, 1} is empty.
Thus we can assume that for every n > 0 and 1 < i < ky, there exists my,; such that B, ; appears (as
a translated copy) in B, ;,1- By condition (B1) we can assume that my, ; = m,, is independent on i.

By (B1) again, the product Q-+ Qm,, +1 1S positive.

5.3.1 Invariant measures for (X,7,G).

We denote M(X, T, G) the space of all invariant probability measures of (X, T, G). Recall that, since
G is amenable, this is a non-empty Choquet simplex (see Section [L.4). We say that A C X is a full
measure set of X if A€ is negligible with respect to any invariant measure of (X, T, G).

The next Lemma will allow us to show that M(X, T, G) is affine homeomorphic to @n(A(kn, |Fnl), My).

Lemma 5.31. The set X \ 0X has full measure.
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Proof. Let p € M(X,T,G),g € G and n > 0. We have

dn
|Fn \ an‘ Z M(Cn,k)
i=1

dn,
wlU U 77 (Con)

1=1veFy\Fng

[Fn \ Frgl
| F
Then
dn
vl . |Fm \ Fmg’ _
sl U U 771G | < lim e =0,
n>0i=1veF,\Fng
which implies that X has zero measure with respect to any invariant measure of (X, 7T, G). ]

From Proposition and Lemma [5.31| we obtain:
Corollary 5.32. (X, T,G) is free on a full measure set.

Proposition 5.33. There is an affine homeomorphism between M(X,T,G) and the inverse limit

Proof. From Lemma the invariant measures of (X, T, ) are supported on X \ 0X, and every
point in this set is separated by the atoms of the partitions P,. Thus every open set U C X is a
(countable) union of elements of the atoms of the partitions P,’s and a set in dX. This implies that
the measure of U is completely determined by the measures of the atoms in P,’s. The rest of the

proof follows according to [CP14l Proposition 2]. O

5.4 Invariant measures, a realization theorem.

In this section we prove that every Choquet simplex can be obtained as the set of invariant measures
of a minimal G-subshift, where G is any congruent monotileable group GG. More precisely, we prove

the following theorem.

Theorem 5.34. Let G be an infinite congruent monotileable amenable group. For every Choquet
simplex K, there exists a minimal G-subshift, which is free on a full measure set, whose set of invariant

probability measures is affine homeomorphic to K. If G is virtually abelian, the subshift is free.

One of the key elements to prove the above theorem is the fact that, given a sequence of positive

integers (pp)nen such that p,, divides p,; for all n, every Choquet simplex can be represented as an
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inverse limit related to that sequence. This is stated in the two following results, whose proof can be

found in [CP14].

Lemma 5.35. (|CP1j, Lemma 9]) Let K be a finite dimensional metrizable Choquet simplex with
exactly d > 1 extreme points. Let (pp)n>0 be an increasing sequence of positive integers such that for
every n > 0 the integer p, divides pn+1, and let k > max{2,d}. Then, there exist an increasing subse-
quence (n;);>0 of indices and a sequence (M;);>o of square k-dimensional matrices which is managed

by (pn,)i>o0 such that K is affine homeomorphic to @i(ﬂ(kz,pni), M;)

Lemma 5.36. ([CP14, Lemma 12]) Let K be an ifinite dimensional metrizable Choquet simplex with
exactly d > 1 extreme points. Let (pp)n>0 be an increasing sequence of positive integers such that for
every n > 0 the integer p, divides p,y1. Then, there exist an increasing subsequence (n;);>o of indices

and a sequence (M;);>o of matrices which is managed by (pp,)i>0 such that for every i > 0,
kivi <min{M;(0, k) : 1 <0<k, 1 <k <k},

and such that K is affine homeomorphic to the inverse limit @i(A(kni,pni),Mi), where M; has k;

rows and kijy1 columns, for every i > 0.

Since we work with amenable groups which are monotileable in a congruent fashion, we will use the
above results setting (pn)nen = (|Fn|)nen for a given group G, where (F,)ncn is a congruent right
Folner sequence made of left monotiles of G. The other element to prove Theorem [5.34]is the following
result, which corresponds to Proposition 22 in [CC1§].

Proposition 5.37. Let (F,)n>0 be a congruent Folner sequence made of monotiles of a congruent
monotileable amenable group G. Let (My)n>0 be a sequence of matrices which is managed by (|F,|)n>0-
For every n > 0, we denote by ky, the number of rows of M,. Suppose there exists K > 0 such that
kni1 < K‘T}:ﬁ‘, for every n > 0. Then there exists a minimal free G-subshift (X,T,G) such that
M(X,T,G) is affine homeomorphic to the inverse limit gnn(A(k:n, |En)), My,).

Proof. We will use the following lemma.

Lemma 5.38. ([CP14, Lemma 8, part (iii)]) Let (My)n>0 be a sequence of matrices which is managed
by (|Fn])n>0. For every n > 0, let ky, be the number of rows of M,,. Suppose there exists a constant

K > 0 such that
|Fn+1‘
| F3l

kpy1 < K , for every n > 0.



CHAPTER 5. SUBSHIFTS OF CONG. MONOTILEABLE AMENABLE GROUPS 125

Then there exists an increasing sequence (n;)i>o in Z* such that for every i > 0 and for every
1<k<k

4417

k < My, - My, —1(4, k) for every 1 < € < ky,.

Ni+1

Thanks to the above lemma, we can assume that for every n > 0,
kpny1 <min{Mp(i,7) : 1 <@ <kp,1 <j<knpyi}.

For every n > 0, let M, the (k, +1) x (ky41 + 1)-dimensional matrix defined as follows

M, (kn, 1)
and
1
My (1,k) — 1
Mn(',k‘ +1)=| M,(2,k) , for every 2 < k < kj11.
My, (kn, k)

From [CP14, Lemma 1] and [CP14, Lemma 2] we have that the inverse limits lim (A(kn, [Fpl), M)
and Y&nJA(k,ﬁ— 1,|F,|), M,) are affine homeomorphic. Observe that (M,)>o is managed by (|Fp|)n>0

and verifies that, for every n > 0,
3<kp +1<min{M,(5,§):2<i<ky,+1,1<j <k +1}. (5.3)

Let ¢, and ¢, 1 denote the number of rows and columns of Mn respectively. Let A = {0,---,¢y}. For

every 1 < £ < {y, define By, AP0 by

¢ ifv=1¢g

Boaw) =4 if v e Fy\ {1g}.
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For n > 0, suppose that we have defined B, 1,---, B, , different elements in Afn . We define

Bni11,- ,Bptiyg,,, in Afrn+1 as follows: for every 1 < ¢ < £y,41

Bn+1,£(Fn) = Bn,b

and for every c € J, \ {1g},
Bn—l—l,Z(CFn) € {Bn,2a c 7Bn,€n}

in a way such that

{v € Jn : Bpgy1e(cFp) = Bni}t| = Mn(i,f),

for every 2 < i < /4,,.

Condition ensures that it is possible to make this procedure in order that By i1 # Bpy1,s if
k # s, since there are more possibilities to define each pattern By, 1 ¢ than patterns to be defined (see
[CP14, Remark 2]). By construction, By 1,--- , By, satisfy conditions (B1), (B2) and (B3), so that
we can construct a minimal subshift (X, T, G) as we make right after Lemma which is free in
X \ 0X and free if G is virtually abelian, thanks to Proposition Finally, thanks to Proposition
M(X, T, Q) is affine homeomorphic to @n(A(knqt 1,|Fy,), M,,), which is in turns homeomorphic
to @n(ﬁ(kn, | ), My,). O

Now he have all the elements to prove Theorem

Proof of Theorem[5.3]] Let K be any Choquet simplex, and for all n > 0 define p,, = |F,,|. From Lem-
mas and we know that there exists an increasing subsequence (n;);>0 and matrices (M;);>0
managed by |F,,| such that K is affine homeomorphic to the inverse limit ml(A(knz, |Fn, 1), M),
where M; has k; rows and k;;1 columns, for every i > 0 (k,, is constant and equal to max{2,d} when
K is finite dimensional and has exactly d extreme points). Then, we apply Proposition to get
that there exists a minimal free G-subshift (X, T, &) such that M(X,T,G) is affine homeomorphic
to the inverse limit @Z(A(kmv |Fy,]), M;). We conclude that M(X,T,G) is affine homeomorphic to
K. ]

Combining Theorem and Theorem we get that for any countable abelian group G (even
those which are not residually finite), any Choquet simplex K can be seen as the simplex of invariant

measures associated to a minimal free G-subshift. In particular, we obtain the following corollary.
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Corollary 5.39. For any Choquet simplex K there exists a minimal free Q-subshift (X,T,Q) such
that M(X,T,Q) is affine homeomorphic to K.

5.5 Further work.

We have proved that any Choquet simplex K can be seen as the set of invariant probability measures
of a minimal subshift of any congruent monotileable amenable group G. In other words, if G is a
congruent monotileable amenable group, then for any Choquet simplex K there exists a minimal G-
subshift (X,T,G), such that K = M(X,T,G). It is not known if there are monotileable amenable
groups which are not congruent monotileable. This question is interesting from the viewpoint of the
problem of realization of simplices as sets of invariant measures, since there is an important class of
groups which are known to be monotileable amenable, but a priori not necessarily in a congruent
fashion, namely the class of solvable groups (see [W01, Theorem 2]). Thus, if we could show that
every monotileable amenable group is congruent monotileable, we would be able to extend Theorem
to solvable groups.

Another interesting question is whether Theorem can be extended to the larger class of (countable)
amenable groups, that is, whether any Choquet simplex K can be seen as the set of invariant measures
of a minimal subshift of any amenable group G on the Cantor set. While it is not known if there
are amenable groups which are not monotileable or congruent monotileable, it is known that every
amenable group can be tiled using a finite set of prototiles [DHZ]. Thus, if we could use a similar
strategy to that of Section to construct a minimal G-subshift with a given Choquet simplex, using
not one but a finite number of prototiles, we could extend Theorem to amenable groups.

It is also possible that the previous question has a negative answer, that is, that there exists amenable
groups for which there is some Choquet simplex K such that for any minimal G-subshift (X, T, G), K
is not homeomorphic to M(X,T,G) (it would be of course a group which cannot be monotiled in a
congruent fashion). More generally, we are interested in the question of, given an amenable group G,
to determine which are the simplices that can be realized as the set of invariant measures of a minimal
G-subshift, or, given a Choquet simplex K, which are the groups that admit K as the set of invariant

measures of some minimal G-subshift.
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