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Doctor en Ciencia Mención Matemática . Comisión compuesta por:

aaaaaaaaaaaaaaaaaaaaaaaaaaa
Profesor Gúıa
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Resumen

On the Geometry of Discrete sets

Rodolfo Andrés Viera Quezada

Julio/2020

Profesor gúıa: Dr. Andrés Navas Flores

El objetivo de la presente tesis es investigar aspectos anaĺıticos y geométricos de conjuntos de

Delone en espacios euclideanos. En una primera parte, siguiendo el trabajo de Burago y Kleiner

sobre la existencia de conjuntos de Delone en el plano que no son bi-Lipschitz equivalentes al

lattice estándar, demostraremos que una función acotada y positiva genérica definida sobre el

cuadrado, puede ser usada para construir tales conjuntos de Delone.

En la segunda parte de esta tesis estudiaremos el problema de encontrar conjuntos de Delone

repetitivos en el plano los cuales no pueden ser mapeados sobre el lattice estándar por bijecciones

Lipschitz. Este estudio lo realizaremos utilizando ideas introducidas en el trabajo de Cortez

y Navas sobre construcciones expĺıcitas de conjuntos de Delone no rectificables, y mediante un

análisis de las llamadas funciones Lipschitz regulares.

Keywords: Delone sets, bi-Lipschitz maps, Lipschitz regular maps.
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Introducción

Motivado por problemas provenientes de varias ramas de la matemática (por ejemplo la Teoŕıa de

Metric Embeddings [2, 20, 23], Teoŕıa Geométrica de Grupos [14], Teoŕıa de la información [12],

F́ısica-Matemática de cuasi-cristales [1, 18]), en los últimos años ha habido mucha actividad en el

estudio de la equivalencia Lipschitz entre conjuntos discretos. En esta tesis nos enfocaremos en

un aspecto particular de esta basta teoŕıa, a saber, la equivalencia Lipschitz entre conjuntos de

Delone en espacios euclideanos.

El problema de estudiar la equivalencia bi-Lipschitz entre conjuntos de Delone fue motivado de

manera independiente por Furstenberg y por Gromov. Mientras que Furstenberg estaba interesado

en aspectos dinámicos asociados a este problema, la motivación de Gromov viene desde la Teoŕıa

Geométrica de Grupos. En concreto, Furstenberg estaba interesado en representar el conjunto de

tiempos de retorno de una R
2-acción por una Z

2-acción. El conjunto de tiempos de retorno de

una R
2-acción es (bajo adecuadas condiciones) un conjunto de Delone, y para obtener la deseada

representación, se debe tener una equivalencia bi-Lipschitz de este conjunto con Z
2 (se sugiere

ver [4, 17] para más detalles). Por otro lado, la motivación de Gromov viene del concepto de

quasi-isometŕıa y la geometŕıa a gran escala. Dos espacios métricos se dicen quasi-isométricos si

ellos contienen conjuntos de Delone que sean bi-Lipschitz equivalentes. En este sentido, surge de

manera natural la pregunta si en un espacio métrico la elección de tales conjuntos importa, es decir,

si un espacio métrico puede contener conjuntos de Delone que no sean bi-Lipschitz equivalentes.

En 1998, Burago y Kleiner en [3] y, de forma independiente McMullen en [21], demostraron que

existen conjuntos de Delone en el plano que no son bi-Lipschitz equivalentes a Z
2. Tales conjuntos,

de naturaleza discreta, surgen a partir de ejemplos asociados a la siguiente pregunta de naturaleza

continua: ¿Toda función continua en el plano, acotada y lejos de 0, se puede escribir como el

jacobiano de algún homeomorfismo bi-Lipschitz? Varios autores han abordado esta pregunta, no

solo para funciones bi-Lipchitz, sino que también en otras clases de regularidad; recomendamos

leer [7, 22, 25] y las referencias que alĺı aparecen. Luego, en el año 2016, Cortez y Navas en

[6] construyeron los primeros ejemplos concretos de conjuntos de Delone, cuyos puntos tienen

coordenadas enteras, que no son bi-Lipschitz equivalentes a Z
2. Tales ejemplos son construidos

a través de una “discretización” de los argumentos y resultados de naturaleza “continua” que

aparecen en [3].
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Con respecto a conjuntos de Delone en el plano que śı son bi-Lipschitz equivalentes a Z
2, Burago

y Kleiner en [4] dan condiciones suficientes para que un conjunto de Delone en R
2 sea bi-Lipschitz

equivalente a Z
2. Usando este resultado, Solomon demuestra en [26] que el conjunto de Delone que

resulta al poner un punto en cada baldosa del embaldosado de Penrose, es bi-Lipschitz equivalente

a Z
2. Posteriormente, Aliste-Prieto, Coronel y Gambaudo en [5] generalizan el resultado obtenido

por Burago y Kleiner en [4] a dimensiones superiores, y lo usan para demostrar que todo conjunto

de Delone linealmente repetitivo en R
d es bi-Lipschitz equivalente a Z

d. Con respecto al problema

de la equivalencia bi-Lipschitz en espacios no-euclideanos se sugiere ver, por ejemplo, [10,19,24,28].

En esta tesis estaremos enfocados en estudiar las siguientes preguntas:

1. ¿Existen funciones positivas y acotadas definidas en R
d que no se pueden escribir como el

Jacobiano de una aplicación bi-Lipschitz?

2. Si tales funciones existen, ¿qué tan grande es este conjunto de funciones en el espacio

(C(Rd,R), || · ||0), donde || · ||0 representa la norma del supremo?

3. ¿Existe algún conjunto de Delone Dd ⊂ Z
d repetititvo que no puede ser mapeado por

biyecciones Lipschitz sobre Z
d?

Estas tres preguntas pueden ser fácilmente respondidas negativamente en el caso unidimensional,

por lo que en este trabajo las abordaremos para dimensiones superiores (cabe destacar que la

pregunta 1 se aborda en los art́ıculos [3] y [21]). Esta tesis está dividida en cinco caṕıtulos y un

apéndice, los cuales procederemos a describir.

En el Caṕıtulo 1 nos dedicaremos a introducir el problema de la equivalencia bi-Lipschitz entre

conjuntos de Delone. Este caṕıtulo es separado en dos partes: en la primera parte (Sección 1.1)

daremos la definción de conjunto de Delone y además introduciremos el problema de encontrar

tales conjuntos en el plano que no sean bi-Lipschitz equivalentes al lattice estándar. Veremos

además las primeras propiedades y observaciones asociadas a este problema. En la segunda parte

(Sección 1.2) estaremos interesados en estudiar la resolución del problema propuesto por Gromov

y Furstenberg. Esta segunda parte corresponde principalmente en una revisión de la construcción

de Burago y Kleiner en [3].

En el Caṕıtulo 2 se presenta el primer resultado obtenido en esta tesis, a saber, que una función

positiva genérica (respectivamente medible) ρ : Rd → R, donde d ≥ 2, no puede ser realizada

como el Jacobiano de una aplicación bi-Lipschitz, i.e, para las cuales la ecuación

Jac(f) = ρ (0.0.1)

no tiene soluciones bi-Lipschitz f : Rd → R
d. En particular, una función continua, positiva y

acotada genérica puede ser usada para construir conjuntos de Delone que no pueden ser mapeados
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de forma bi-Lipschitz sobre Z
2, en concordancia con la construcción de Burago y Kleiner de tales

conjuntos. Concretamente, nuestro objetivo en el Caṕıtulo 2 será demostrar el siguiente resultado.

Una función continua, positiva genérica φ : R2 → R no puede ser escrita como el Jacobiano de

un homeomorfismo bi-Lipschitz. Lo mismo ocurre para funciones genéricas positivas en L∞.

Este caṕıtulo está basado en el art́ıculo Densities non-realizable as the Jacobian of a 2-dimensional

bi-Lipschitz map are generic, el cual fue publicado en el Journal of Topology and Analysis (ver

[27]).

En el Caṕıtulo 3 introducimos las llamadas aplicaciones Lipschitz regulares, como una her-

ramienta para tratar con problemas relacionados a conjuntos discretos. Este caṕıtulo consti-

tuye una revisón del art́ıculo [15] de Dymond, Kaluža y Kopecká, quienes usan esta clase de

funciones para responder negativamente a una pregunta propuesta por Feige (ver [20]), quien

estaba interesado en saber si todo conjunto finito de n2-elementos en el plano puede ser ma-

peado sobre la grilla estándar {1, . . . , n}2, de tal forma que las distancias entre los puntos sean

estiradas lo menos posible. Esta pregunta surge como motivación de extender a dimensiones

superiores el llamado problema del ancho de banda, el cual consiste en etiquetar los n vértices

{v1, . . . , vn} de un grafo G = (V,E) v́ıa una función f : V → {1, . . . , n} de tal forma que el

número max{|f(vi) − f(vj)| : (vivj) ∈ E} (el ancho de banda) sea minimizado. En [15] los

autores responden negativamente a la pregunta planteada por Feige siguiendo esencialmente las

mismas ideas propuestas en [3]. La diferencia fundamental con el trabajo de Burago y Kleiner es

que ejemplos de conjuntos finitos que responden negativamente la pregunta de Feige, la cual es de

naturaleza discreta, surgen a partir de ejemplos asociados a la siguiente pregunta de “naturaleza

continua”: ¿Existe una función positiva, continua ρ : I2 → R para la cual la ecuación

f#(ρλ) = λ|f([0,1]2) (0.0.2)

no tiene solución Lipschitz regular f : [0, 1]2 → R
2?

La ecuación (0.0.2) corresponde a una extensión a funciones Lipschitz regulares de la ecuación

(0.0.1), estudiada por Burago y Kleiner. El Caṕıtulo 3 se divide en tres secciones: en la Sección 3.1

introduciremos el concepto de funciones Lipschitz regulares y enunciaremos algunas propiedades

básicas (para más detalles asociados a esta sección se sugiere ver [9]). En la Sección 3.2 estudiamos

uno de los principales resultados del art́ıculo [15], a saber, la descomposición de aplicaciones Lips-

chitz regulares en “pedazos” bi-Lipschitz. Finalmente, en la Sección 3.3 estudiamos la construcción

en [15] que responde negativamente a la pregunta propuesta por Feige mediante ejemplos de fun-

ciones continuas positivas ρ : [0, 1]2 → R para los cuales la ecuación (0.0.2) no tiene soluciones

Lipschitz regulares.

El Caṕıtulo 4 tiene por objetivo discutir la equivalencia Lipschitz entre conjuntos de Delone.

xiii



En concreto, estudiaremos el problema de encontrar un conjunto de Delone repetitivo en el plano

que no puede ser mapeado sobre Z
2 por alguna bijección Lipschitz. La estrategia planteada para

tratar con este problema utiliza, fundamentalmente, los resultados obtenidos por Cortez y Navas

en [6], como también las ideas sobre aplicaciones Lipschitz regulares, introducidas por Dymond,

Kaluža y Kopecká en [15]. De manera más precisa, primero estudiaremos una extensión de los

resultados en [6] para funciones Lipschitz bajo condiciones adecuadas; esto nos permitirá usar las

ideas introducidas por Cortez y Navas a nuestro problema. Por otro lado, dado un conjunto de

Delone D ⊂ Z
2 que satisface la propiedad 2Z (esta definición será dada en el Caṕıtulo 4) y una

aplicación Lipschitz f : D → Z
2, demostraremos que después de normalizar y pasar al ĺımite,

obtendremos una función F : [0, 1]2 → R
2 la cual es Lipschitz regular. Este hecho nos permitirá

usar la maquinaria introducida en [15] sobre aplicaciones Lipschitz regulares para abordar nuestro

problema.

En la primera parte del Caṕıtulo 4 (Sección 4.1), revisaremos la construcción realizada por Cortez

y Navas en [6] de conjuntos de Delone repetitivos no-rectificables, como también extensiones de

algunos resultados obtenidos en [6] al caso de aplicaciones Lipschitz definidas sobre un conjunto de

Delone D ⊂ Z
2 y con valores en Z

2, las cuales son bi-Lipschitz en un subconjunto adecuado de D.

Luego, en la Sección 4.2 demostraremos algunas implicancias relacionadas a funciones Lipschitz

definidas sobre conjuntos de Delone en Z
2 los cuales satisfacen la propiedad 2Z. En la sección 4.3

discutiremos cómo abordar el problema inicial que motiva este caṕıtulo.

En elCaṕıtulo 5 presentamos las conclusiones obtenidas en este trabajo de tesis y, adicionalmente,

mostraremos algunos problemas abiertos surgidos en este trabajo.

Finalmente es inclúıdo un Apéndice, el cual aborda de manera introductoria algunos conceptos

básicos de análisis de aplicaciones Lipschitz, como también de teoŕıa de la medida, los cuales son

importantes para entender lo desarrollado en este trabajo tesis.
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Chapter 1

Delone sets and Burago-Kleiner’ construction

In this Chapter we will focus on bi-Lipschitz maps and Delone sets, which are uniformly discrete

and coarsely dense subsets of the euclidean space. In Section 1.1 we define Delone sets and some

equivalence relations on this set class. In section 1.2 we will be devoted to the Burago-Kleiner’

construction of a Delone set in R
d, d ≥ 2, for which there is no bi-Lipschitz bijection onto Z

d. In

this Chapter we are mainly concerned with the article [3].

1.1 Delone sets and Bi-Lipschitz equivalence.

As we mentioned before, in this chapter we study discrete sets in the Euclidean space which are

separated and dense in a uniform way.

Definition 1.1:

A subset D of a metric space (X, d) is called a Delone set (or a separated net) if there exist two

positive real numbers σ,Σ such that any two points of D are at least at distance σ, i.e, d(x, y) ≥ σ

for any x, y ∈ D with x 6= y (D is said to be σ-separated) and so that every ball of radius Σ in X

contains a point of D, i.e, for each z ∈ X there is y ∈ D such that d(y, z) ≤ Σ (D is said to be

Σ-coarsely dense).

For example, Zd ⊂ R
d is a Delone set. See Figure 1.1 for a picture of a Delone set in the Euclidean

space.

Remark 1.2:

Every metric space (X, d) contains a Delone set. It is sufficient to consider a subset D of X

which is maximal with the property that, given a positive real number σ, two points x, y ∈ D are at

distance at least σ. This construction produces a Delone set which is σ-separated and σ-coarsely

dense.

Delone sets are important in coarse geometry (see [14]) as a discretization of a metric space and

in Mathematical Physics, from the discovery of Quasicrystals by the Nobel prize laureate Dan

2
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Figure 1.1: Part of a Delone set D (black points). Each ball of radius σ > 0 centered at a point
of D contains at most one point of the Delone set, and each ball of radius Σ > 0 contains at least
one point of D.

Shechtman and his coworkers in the early 1980s (see [13]).

It is natural to attempt to compare two Delone sets. A Delone set D in R
d is said to be rectifiable

if it is bi-Lipschitz equivalent to Z
d (see Section A.1 in the Appendix for a basic background on

Lipschitz Analysis). The study of bi-Lipschitz equivalence between Delone sets was motivated

by Gromov in [14] with a Geometric Group-theoretic motivation. We say that two metric spaces

(X, d) and (Y, ρ) are quasi-isometric if and only if there exist Delone sets D1 ⊂ X and D2 ⊂ Y

which are BL equivalent. In the analysis of the quasi-isometry equivalence relation, the following

question arises naturally.

Question 1.3 (Gromov, 1993):

Can a metric space contain two Delone sets that are not BL equivalent?

This question was answered in the affirmative by Burago and Kleiner in [3] and, independently

by McMullen in [21]. Concretely, they prove the following theorem (see Section 1.2 below).

Theorem 1.4 (Burago & Kleiner, McMullen, 1998):

For every d ≥ 2, there exists a non-rectifiable Delone set Dd in R
d .

Remark 1.5:

There is another notion of equivalence between Delone sets in a given metric space. We say that

two Delone sets D1,D2 contained in a metric space (X, d) are bounded displacement equivalent (or

that are BD-equivalent) if there exists a bijection f : D1 → D2 with the property that

sup
x∈D1

d(f(x), x) < +∞

Notice that BD-equivalence is a stronger condition that BL-equivalence. Indeed: let D1,D2 be two

Delone sets in a metric space (X, d), with Di being σi-separated and Σi-coarsely dense, for i = 1, 2.

Let f : D1 → D2 be a bijection such that C := supx∈D1
d(f(x), x) < +∞. Observe that by the

3



σ1-separability, we have that for every x, y ∈ D1

d(f(x), f(y)) ≤ d(f(x), x) + d(x, y) + d(y, f(y))

≤ 2C + d(x, y)

≤
(

2C

σ1
+ 1

)

d(x, y)

Since f−1 is also a bounded displacement map, the same argument applied to f−1 provides a lower

Lipschitz constant to f . Henceforward, f is a bi-Lipschitz bijection.

Remark 1.6:

Question 1.3 can be answered negatively in the 1-dimensional case. In fact, let D ⊂ R be a Delone

set being σ-separated and Σ-coarsely dense. Write D = {. . . < x−2 < x−1 < x0 < x1 < x2 < . . .}
and suppose that x0 = 0. Define f : D → Z by letting f(xn) := n. By the Σ-density of D, we have

that every two consecutive points in D are at distance at most 2Σ. Then, for n > m

|xn − xm| = (xn − xn−1) + (xn−1 − xn−2) + . . .+ (xm+2 − xm+1) + (xm+1 − xm)

≤ 2Σ + . . .+ 2Σ = 2Σ(n−m).

On the other hand, by the σ-separability, we have that

|xn − xm| = (xn − xn−1) + (xn−1 − xn−2) + . . .+ (xm+2 − xm+1) + (xm+1 − xm)

≥ σ + . . .+ σ = σ(n−m).

Therefore, f is a bi-Lipschitz bijection.

Remark 1.7:

Not every Delone set in R is bounded displacement equivalent to Z. For instance, 2Z is not BD

equivalent to Z.

We point out that Burago-Kleiner and McMullen show only the existence of non-rectifiable Delone

sets. The first concrete examples of non-rectifiable Delone sets contained in Z
d, for d ≥ 2, were

constructed by Cortez & Navas in [6]; these examples are also constructed to be repetitive (see

Section 4.1 below).

1.2 Burago-Kleiner’ construction

In this section we are dedicated to the Burago-Kleiner’ proof on the existence of non-rectifiable

Delone sets in R
d, for d ≥ 2. In [3], Burago and Kleiner and (independently) McMullen in

[21], answered Question 1.3 affirmatively by solving a question of analytical nature: Is there an

L∞ positive function ρ : R2 → R, which can not be realized as the Jacobian of a bi-Lipschitz

homeomorphism almost everywhere? In the next paragraphs, we sketch how to produce a non-

4



rectifiable Delone set from such a bad density map, where for simplicity, we perform all the

computations in the 2-dimensional setting.

Let ρ : [0, 1]2 → R be a continuous function such that 0 < inf ρ ≤ sup ρ < +∞. Consider a

sequence of disjoint squares (Sk)k∈N with vertices in Z
2 and side-lengths equal to lk, satisfying

that lk → +∞. Moreover, consider a sequence of (unique) affine homeomorphisms ϕk : R2 → R
2

sending the unit square onto Sk with scalar linear part. Let (mk)k∈N be a sequence such that mk

and lk/mk both tend to +∞, and subdivide each square Sk into m2
k squares {T i

k}
m2

k

i=1 of side-length

equal to lk/mk (see Figure 1.3).

Sk Sk+1

lk+1

mk+1

lk
mk

lk+1

lk

T i
k

Figure 1.2: The squares Sk and Sk+1, and a square T i
k.

We “implant” the density ρ into each square Sk in order to construct a set D ⊂ R
2 in such a way

that the set D, inside each square Sk, encodes the structure of ρ more precisely while growing

k ∈ N. First of all, we place one point at the center of each unit square with integer vertices

which are not contained in
⋃+∞

k=1 Sk. Secondly, for every k ∈ N and i = 1, . . . ,m2
k, we place

⌊

∫

T i
k

ρ ◦ ϕkdλ

⌋

points evenly inside each square T i
k. This construction produces a discrete set

D ⊂ R
2. Since inf ρ > 0, then D is coarsely dense and, since sup ρ < +∞, the set D is separated;

therefore D is a Delone set.

Now, suppose that D is a rectifiable Delone set and let g : D → Z
2 be an L-bi-Lipschitz bijection,

for some L ≥ 1. Define Rk := ϕ−1
k (D) ∩ [0, 1]2 and consider the “pull-backs” fk : Rk → 1

lk
Z
2

defined by:

fk(x) :=
1

lk
(g ◦ ϕk(x)− g ◦ ϕk(xk)),

where xk ∈ Rk is some base point. It is direct that the mappings fk are L-bi-Lipschitz and

uniformly bounded. By the proof of Arzelá-Ascoli theorem, we may find a subsequence (fki
)i∈N

which converges uniformly to some L-bi-Lipschitz map f : [0, 1]2 → R
2.

5



Let µk and νk be two normalized counting measures given by

µk(A) :=
|A ∩Rk|

l2k
for every A ⊂ [0, 1]2,

νk(B) :=
|B ∩ 1

lk
Z
2|

l2k
for every B ⊂ R

2.

It is direct that νk|f([0,1]2) converges weakly to λ|f([0,1]2). Besides, by Proposition A.5, we have

that µk converges weakly to ρλ restricted to [0, 1]2, where:

ρλ(A) :=

∫

A

ρdλ, for every A ⊂ R
2.

Since (fki
)i∈N converges uniformly to f , by Lemma A.7, we have that (fki

)#µki
converges weakly

to f#(ρλ). On the other hand, again as a consequence of Proposition A.5, it is shown that

(νk)k∈N converges weakly to the Lebesgue measure in f([0, 1]2). Hence, we have the equality

f#(ρλ) = λ|f([0,1]2), which, by the Euclidean Area Formula (Theorem A.3) is equivalent to the

equation

Jac(f) = ρ a.e.

This way, in [3] and [21] it is shown the following theorem.

Theorem 1.8 (Burago-Kleiner, McMullen, 1998):

The following are equivalent:

i) Every Delone set in R
d, with d ≥ 2, is rectifiable.

ii) For every continuous function ρ : Id → R with 0 < inf ρ < sup ρ < +∞ there exists a

bi-Lipschitz homeomorphism f : [0, 1]d → R
d so that

Jac(f) = ρ a.e.

Remark 1.9:

The implication ii) ⇒ i) in Theorem 1.8 was proven by McMullen in [21].

Therefore, it remains to prove that there exists a continuous function ρ : [0, 1]2 → R so that

0 < inf ρ < sup ρ < +∞ which can not be written as the Jacobian of a bi-Lipschitz map. The key

fact about the construction of such a bad density function, is that there are two adjacent small

squares whose images by any bi-Lipschitz map defined in [0, 1]2, which are close in measure. In

the next paragraphs we sketch how to prove the following theorem.

Theorem 1.10 (Theorem 1.2 in [3]):

Given c > 0, there exists a continuous function ρ : [0, 1]2 → [1, 1 + c] for which there is no

bi-Lipschitz homeomorphism f : [0, 1]2 → R
2 such that

Jac(f) = ρ a.e. (1.2.1)
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We refer to a function ρ : [0, 1]2 → R
2 for which the equation (1.2.1) has no bi-Lipschitz solutions

as a non-realizable density.

Remark 1.11:

Observe that to obtain a non-realizable density it is sufficient to construct, for every L ≥ 1 and

c > 0, a continuous function ρL,c : [0, 1]2 → [1 + c] which is not realizable as the Jacobian of

an L-bi-Lipschitz map. Indeed, if we have such a family (ρn,c)n∈N of bad densities, we consider

a sequence of disjoint squares Sn ⊂ [0, 1]2 converging to some point p ∈ [0, 1]2, and then define

ρ : [0, 1]2 → [1, 1 + c] so that ρ|Sn
= ρn,min{c, 1

n
} ◦ ϕn, where ϕn : R2 → R

2 is the unique affine

homeomorphism with scalar linear part sending [0, 1]2 onto Sn. Outside
⋃

n∈N
Sn, ρ is defined in

order to obtain the continuity. This construction provides a non-realizable density ρ.

Remark 1.12:

It is sufficient to construct a non-realizable density ρ : [0, 1]2 → [1, 1+ c] as in Remark 1.11 being

measurable (non necessarily continuous). Indeed, if (ρk)k∈N is a sequence of smoothings of the

measurable function ρ converging to ρ in L1, then by the Arzelá-Ascoli theorem, any sequence of

L-bi-Lipschitz maps φk : I2 −→ R
2 such that Jac(φk) = ρk a.e, will converge, up to a subsequence,

to a bi-Lipschitz map φ : I2 −→ R
2 satisfying Jac(φ) = ρ a.e. See the proof of Proposition 2.3 for

a variation of this argument.

By Remarks 1.11 and 1.12, Theorem 1.10 is a consequence of the following Proposition.

Proposition 1.13 (Lemma 3.1 in [3]):

Given L ≥ 1 and c > 0, there exists a measurable function ρ : [0, 1]2 → [1, 1+ c] such that there is

no L-bi-Lipschitz homeomorphism f : [0, 1]2 → R
2 so that

Jac(f) = ρ a.e.

Definition 1.14:

Given a positive real number A, we say that two points x, y ∈ R
2 are A-stretched under a map

f : R2 → R
2 if

||f(x)− f(y)|| ≥ A||x− y||.

For N = N(L, c) sufficiently large, the specific construction of the measurable non-realizable

density is based on the so-called checkerboard function ρN,c defined below (see Figure 1.3).

Definition 1.15:

For N ∈ N, consider the rectangle RN := [0, 1]×
[

0, 1
N

]

and the squares Si :=
[

i−1
N

, i
N

]

×
[

0, 1
N

]

,

with i = 1, . . . , N . Given c > 0, we define the function ρN,c : RN → [1, 1 + c] by letting

ρN,c(x) =















1 if x ∈ Si with i even,

1 + c if x ∈ Si with i odd.
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1 1+cb b

Figure 1.3: The checkerboard function ρN,c : RN → [1, 1 + c].

Using a quite long argument, Burago and Kleiner prove that for a large enough N , there exists

ǫ = ǫ(L, c) > 0 such that for every L-bi-Lipschitz map φ : [0, 1]2 → R
2 whose Jacobian Jac(φ) is

equal to ρN,c except for a set of measure less than ǫ, there must exist two points x, y ∈ RN that are

(1+κ)||φ(0, 0)−φ(1, 0)||-stretched under φ for a certain κ = κ(L, c) > 0. Using this, as a next step

they modify the function on a rectangular neighborhood U of the line segment xy by including a

rescaled version of another checkerboard function. By the same argument, there are two points

x2, y2 ∈ U that are (1 + κ)2||φ(1, 0)− φ(0, 0)||-stretched by an homeomorphism realizing this new

function as the Jacobian. Repeating this argument at smaller and smaller scales, we eventually

obtain a function ρ : RN → [1, 1 + c] which cannot be the Jacobian of an L-bi-Lipschitz map.

Concretely, they prove the following lemma.

Lemma 1.16 (Lemma 3.2 in [3]):

For every L > 1 and c > 0, there exist κ > 0, µ > 0 and positive integers N0 and M satisfying the

following property: for every N ∈ N with N ≥ N0, there exists ε > 0 such that if the points (0, 0)

and (1, 0) are A-stretched by an L-bi-Lipschitz homeomorphism f : RN → R
2 whose Jacobian

Jac(f) coincides with ρN except in a set of measure less than ε, then there must exists 1 ≤ i ≤ N

and a pair of points of the form

(

p

NM
+

i− 1

N
,

q

NM

)

and

(

p+ 1

NM
+

i− 1

N
,

q

NM

)

in RN , with

p, q ∈ [0,M ] ∩ Z, which is (1 + κ)||f(1, 0)− f(0, 0)||-stretched under f .

In order to demonstrate Lemma 1.16, Burago and Kleiner proceed by contradiction. Their proof

is supported in three key claims which describe some properties of bi-Lipschitz mappings and that

we proceed to explain. From now, denote by xi
p,q the points of the form

(

p

NM
+

i− 1

N
,

q

NM

)

,

where 1 ≤ i ≤ N and p, q ∈ [0,M ] ∩ Z. We call these points marked. Note that the marked

points are the vertices of the regular division of Si into M2 squares of side length 1/NM . We

write A := ||f(1, 0)− f(0, 0)||, W := (A/N, 0) and W i
p,q := f(xi+1

p,q ) − f(xi
p,q). If l ∈ (0, 1) we say

that xi
p,q is l-regular if the length of the projection to the x-axis of the vector W i

p,q is greater than

(1 − l)A/N . We say that a square Si is l-regular if xi
p,q is regular for every 0 ≤ p, q ≤ M . The

three key claims in order to prove Lemma 1.16 are the following. The first claim says that there

is κ > 0 such that if all pairs (xi
p,q ,x

i+1
p,q ) are no more than (1+ κ)A-stretched under f , then there

exists regular squares.

Claim 1.17 (Claim 1 in [3]):

There exists κ0 = κ0(l,M) > 0 and N0 = N0(l,M) ∈ N such that for every 0 < κ ≤ κ0 and for

8



every integer number N ≥ N0 there is an l-regular square Si.

Remark 1.18:

Although in the Remark 2 of [3] it is pointed out that Theorem 1.10 holds for Lipschitz home-

omorphisms, we remark that for the proof of Claim 1.17 the lower bi-Lipschitz constant of f is

necessary.

The second claim tell us that if l > 0 is chosen small-enough, then every l-regular vector W i
p,q is

extremely close to the vector W .

Claim 1.19 (Claim 2 in [3]):

Given m > 0, there exists l0 = l0(m) > 0 such that if 0 < l ≤ l0 and 0 < κ < l, then for every

l-regular points xi
p,q we have that ||W −W i

p,q|| ≤ m/N .

The third claim says that by a suitable choice of m and M , the area of f(Si) is very close to the

area of f(Si+1) .

Claim 1.20 (Claim 3 in [3]):

There exist m0 > 0,M0 ∈ N such that if 0 < m ≤ m0 and M ≤ M0 then the following holds: if

for some 1 ≤ 1 ≤ N and for every 0 ≤ p, q ≤ M we have that ||W −W i
p,q|| ≤ m/N , then

|λ(f(Si+1))− λ(f(Si))| <
c

2N2
.

Thus, if the equation (1.2.1) holds for an L-bi-Lipschitz mapping (except for a set of measure

less or equal than ε), then the Euclidean Area Formula (Theorem A.3) and Claim 1.20 force the

values of ρ : RN → [1 + c] in Si and Si+1 to be very close. This yields a contradiction since ρ

is chosen as a checkerboard function, whose values oscillate in two neighbouring squares Si, Si+1.

Therefore, to construct a density map ρ : [0, 1]2 → R which can not be written as the Jacobian of

an L-bi-Lipschitz map, it is sufficient to put a suitable checkerboard function in [0, 1]2 at smaller

and smaller scales, in order to stretch two marked points in a factor (1 + κ)iA by passing from

a scale to a smaller one. The number P of rescaled checkerboard functions is chosen so that

(1 + κ)PA is greater L, thus overcoming the bi-Lipschitz constant. See Figure 1.4 for a sketch of

this construction.

Following the Burago-Kleiner’ proof, Lemma 1.16 can be formulated as a dichotomy of bi-Lipschitz

mappings (see [15] for more details).

Lemma 1.21 (Lemma 3.3 in [15]):

Let L ≥ 1 and ε > 0. Then there exist parameters

M = M(L, ε) ∈ N, κ = κ(L, ε) ∈ (0, 1) N0 = N0(L, ε) ∈ N,

such that for all c > 0, N ∈ N, N ≥ N0 and all L-bi-Lipschitz mapping f : [0, c]×
[

0, c
N

]

→ R
2,

at least one of the following statement holds:

9



Zoom

Zoom

Zoom

Zoom

Figure 1.4: Non-realizable density. In the gray zones the density attains the value 1 + c and in
the white zones attains the value 1.

1. There exists a set Ω ⊂ {1, . . . , N − 1} with |Ω| ≥ (1− ε)(N − 1) such that for all i ∈ Ω and

for all x ∈
[

(i−1)c
N

, ic
N

]

×
[

0, c
N

]

,

∣

∣

∣

∣

∣

∣

∣

∣

f
(

x+
( c

N
, 0
))

− f(x)− 1

N
(f(c, 0)− f(0, 0))

∣

∣

∣

∣

∣

∣

∣

∣

≤ cε

N
.

2. There exist z ∈ c

NM
Z
2 ∩
([

0, c− c

NM

]

×
[

0,
c

N
− c

NM

])

such that

∣

∣

∣

∣f
(

z +
(

c
NM

, 0
))

− f(z)
∣

∣

∣

∣

c
NM

> (1 + κ)
||f(c, 0)− f(0, 0)||

c
.

The first statement in Lemma 1.21 says that an L-bi-Lipschitz function maps two neighbouring

cubes to (cε/N)-close images (up to a translation by (1/N)(f(c, 0)− f(0, 0))). The second state-

ment says that there exists two points which are (1 + κ)||f(c, 0) − f(0, 0)||/c-stretched by f . As

a consequence of Lemma 1.21, we have the following Proposition.

Proposition 1.22 (Lemma 3.1 in [15]):

Let k ∈ N, L ≥ 1 and η, ζ ∈ (0, 1). Then there exists r = r(k, L, η, ζ) ∈ N such that for every

non-empty open set U ⊂ R
2 there exist finite tiled families S1 . . . ,Sr of cubes contained in U with

the following properties:

1. For each 1 ≤ i < r and each cube S ∈ Si, we have that

λ



S ∩
r
⋃

j=i+1

⋃

Sj



 ≤ ηλ(S).

2. For any k−tuple (h1, . . . , hk) of L−bi-Lipschitz mappings hj : U → R
2 there exist i ∈

{1, . . . , r} and e1−adjacent cubes S, S′ ∈ Si such that

∣

∣

∣

∣

∫

S

|Jac(hj)|dλ−
∫

S′

|Jac(hj)|dλ
∣

∣

∣

∣

≤ ζλ(S),

for all j ∈ {1, . . . , k}.
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Remark 1.23:

For a detailed proof of the non-realizability of the bad densities constructed by McMullen, see [16].
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Chapter 2

Generic properties of bad densities.

A direct consequence of the Fundamental Theorem of Calculus is that every positive continuous

function ρ defined on a compact interval [a, b] can be written as the derivative of a diffeomorphism,

namely

f(x) :=

∫ x

a

ρ(s)ds.

The very same formula shows that every positive L∞ function that is bounded away from zero

can be written as the a.e. derivative of a bi-Lipschitz homeomorphism.

As was shown by Burago-Kleiner [3] and McMullen [21] in very important works (see also [16]),

this is no longer true in the 2-dimensional framework: there exist positive L∞ (even continuous)

functions that cannot be written as the Jacobian of a bi-Lipschitz homeomorphism of the plane.

This pure analytical result is obtained as the fundamental step of another result of a discrete

nature: there exist coarsely dense, uniformly discrete sets in the plane (that can be taken as

subsets of Z2) that are not bi-Lipschitz equivalent to the standard lattice Z2. Although recently a

shortcut (and extension) to this last result has been produced in [6], the analytical one is interesting

by itself, and deserves more attention. Based on Burago-Kleiner’s version of this result (which is

slightly more general than McMullen’s), in this section we show that not only bad densities exist,

but are also generic.

Main Theorem:

A generic positive continuous function φ : R2 → R cannot be written as the Jacobian of a bi-

Lipschitz homeomorphism. The same holds for a generic positive L∞ function.

We point out that similar results hold (with the same proof) in dimension greater than 2. The

restriction to the 2-dimensional case below just allows simplifying notation and computations.
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2.1 The continuous case

Recall that a subset G of a metric space M is said to be thick if it contains a set of the form
⋂

n∈N

Gn, where each Gn is an open dense subset of M .

Definition 2.1:

If all points of a thick subset have some property, then this is said to be a generic property of M .

We now consider the space C+(I
2,R) of all positive continuous functions ρ : I2 → R with the

norm ||f ||0 := sup{|f(x)| : x ∈ I2} . In this section, we will use the Burago-Kleiner construction

to prove Main Theorem in the continuous setting.

Theorem 2.2:

Let C be the set of all functions ρ ∈ C+(I
2,R) such that there is no bi-Lipschitz map φ : I2 → R

2

satisfying ρ = Jac(φ) a.e. Then C is a thick subset of C+(I
2,R).

This Theorem will follow from the next

Proposition 2.3:

Given L > 1, consider the set CL of all functions ρ ∈ C+(I
2,R) such that there is no L-bi-Lipschitz

map φ : I2 → R
2 satisfying Jac(φ) = ρ a.e. Then CL is an open dense subset of C+(I

2,R).

Theorem 2.2 is a direct consequence of this, since

⋂

n∈N

Cn = C.

To prove Proposition 2.3, we first establish that CL is an open subset of C+(I
2,R) for each L > 0.

Let X := C+(I
2,R) \ CL, and consider a sequence (ρk)k∈N ⊂ X such that ρk −−−−→

k→∞
ρ. We need

to show that ρ /∈ CL. To do this, let φk : I2 → R
2 be a sequence of L-bi-Lipschitz maps such that

Jac(φk) = ρk a.e. By the Arzelà-Ascoli theorem, (φk)k∈N has a subsequence that converges to an

L-bi-Lipschitz map φ : I2 → R
2. To simplify notation, we assume without loss of generality that

φk −−−−→
k→∞

φ. Our goal is to show that Jac(φ) = ρ, and hence ρ /∈ CL.

Let U ⊂ I2 be a closed ball and denote by λ the Lebesgue measure in R
2. Then, by the Euclidean

Area Formula and as ρk → ρ,

Area(φk(U)) =

∫

U

Jac(φk)dλ

=

∫

U

ρkdλ

−−−−→
k→∞

∫

U

ρdλ.
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Below we show that, also, Area(φk(U)) → Area(φ(U)), and hence Jac(φ) = ρ, as announced. To

do this, given ε > 0, consider the sets (see Figure 2.1)

V ext
ε (φ(U)) := {x ∈ R

2: d(x, φ(U)) < ε}

V int
ε (φ(U)) := {x ∈ φ(U): d(x, ∂φ(U)) > ε}.

φ

V ext
ε (φ(U))

V int
ε (φ(U))

φ(U)

U

Figure 2.1: The sets φ(U), V ext
ε (φ(U)) and V int

ε (φ(U)).

Then the desired convergence

Area(φk(U)) → Area(φ(U))

obviously follows from the next (see Figure 2.2).

Lemma 2.4:

Given ε > 0, there exists a positive integer k0 such that if k ≥ k0, then

i) φk(U) ⊂ V ext
ε (φ(U)),

ii) V int
ε (φ(U)) ⊂ φk(U).

Proof. Assume i) does not hold. Then for each k ∈ N there exists yk ∈ φk(U) \ V ext
ε (φ(U)).

Let xk ∈ U be such that yk = φk(xk). Since U is closed, there exists a sequence (xkl
)l∈N that

converges to a certain x ∈ U . By the equicontinuity of the sequence (φk)k∈N and the convergences

xkl
−−−→
l→∞

x and φk → φ, there exists l0 ∈ N such that if l ≥ l0, then |φkl
(xkl

) − φkl
(x)| < ε

2 and

|φkl
(x) − φ(x)| < ε

2 . Thus, for l ≥ l0,

|φkl
(xkl

)− φ(x)| ≤ |φkl
(xkl

)− φkl
(x)| + |φkl

(x) − φ(x)| < ε

2
+

ε

2
= ε.

Hence, ykl
= φkl

(xkl
) −−−→

l→∞
φ(x) ∈ φ(U) ⊂ V ext

ε (φ(U)). However, this is impossible, since (yk)

is a sequence in the closed subset R
2 \ V ext

ε (φ(U)), and then all its accumulation points lie in

R
2 \ V ext

ε (φ(U)).

To prove ii), let x, y ∈ ∂U be such that the arc between x and y has length less than ε
2L . Let
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k0 ∈ N be such that |φk(x) − φ(x)| < ε/4 and |φk(y) − φ(y)| < ε/4 for all k ≥ k0. Since φk is

L-bi-Lipschitz, the curve in the boundary of φk(U) joining φk(x) and φk(y) has a length < ε/2.

Therefore, ∂(φk(U)) ∩ V int
ε (φ(U)) = ∅, and thus V int

ε (φ(U)) ⊂ φk(U), for k ≥ k0.

Remark 2.5:

Define CL,∞ as being the set of all positive functions ρ ∈ L∞
+ (I2,R) such that there is no L-bi-

Lipschitz map f : I2 → R
2 satisfying Jac(f) = ρ a.e. Then the same argument above shows that

CL,∞ is an open subset of L∞
+ (I2,R).

φ

φk

Figure 2.2: The sets φ(U) (black) and φk(U) (red) for k ≥ k0.

We next establish that CL is a dense subset of C+(I
2,R) for each L > 0. Given ϕ ∈ C+(I

2,R) with

image [a, b] := ϕ(I2) ⊂ (0,∞) and given ε > 0 with ε << b−a, we want to construct a continuous

function ρ ∈ CL such that ||ρ− ϕ||0 < ε. To do this, consider the interval Iε := (a, a+ ε) ⊂ [a, b].

Let Cε ⊂ I2 be a connected component of ϕ−1(Iε) and Sε a sufficiently small square contained

in Cε . Let ρε : Sε → Iε be a continuous density that is not realizable as the Jacobian of an

L-bi-Lipschitz homeomorphism (see Figure 2.3). By the Tietze extension theorem, there exists a

continuous function ρ̂ε : Cε → [a, a+ ε] such that ρ̂ε|Sε
= ρε and

sup
x∈Cε

ρ̂ε(x) = sup
x∈Sε

ρε(x).

(0,0) (1,0)

(0,1) (1,1)

a
b

a+ ε

ρε

Cε

b bb

Figure 2.3: Construction of the function ρε : Sε −→ [a, a+ ε].
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Lemma 2.6:

There exists a continuous function ρ : I2 → [a, b] such that ρ|I2\Cε
= ϕ, ρ|Sε

= ρε, and ||ρ−ϕ||0 <

ε.

Proof. Let {̺1, ̺2} be a partition of unity subordinate to the open cover {I2\Sε, Cε} of I2. Define

ρ : I2 → [a, b] by letting ρ(x) := ϕ̺1 + ρ̂ε̺2.

By definition, it readily follows that ρ|I2\Cε
= ϕ and ρ|Sε

= ρε. In addition, since {̺1, ̺2} is a

partition of unity, we have

||ρ− ϕ||0 = ||ϕ̺1 + ρ̂ε̺2 − ϕ||0
= ||ϕ̺1 + ρ̂ε̺2 − ϕ(̺1 + ̺2)||0
= ||(ρ̂ε − ϕ)̺2||0.

Now, since ρ̂ε(Uε) ⊂ [a, a+ε], we have sup
x∈Cε\Sε

|(ρ̂ε(x)−ϕ(x))ϕ2(x)| < ε. Therefore, ||ρ−ϕ||0 < ε,

as desired.

2.2 The L
∞ case

We consider the set L∞
+ (I2,R) := {ρ ∈ L∞(I2,R) : ρ(x) > 0 a.e.}. Our goal is to prove the next

Theorem 2.7:

Let C∞ be the set of all positive measurable functions ρ ∈ L∞
+ (I2,R) such that there is no bi-

Lipschitz map f : I2 → R
2 satisfying Jac(f) = ρ a.e. Then C∞ is a thick subset of L∞

+ (I2,R).

As in the continuous case, this theorem is a consequence of the next

Proposition 2.8:

Given L > 1, let CL,∞ be the set of all positive functions ρ ∈ L∞
+ (I2,R) such that there is no

L-bi-Lipschitz map f : I2 → R
2 satisfying Jac(f) = ρ a.e. Then CL,∞ is an open dense subset of

L∞
+ (I2,R).

Proof. From Remark 2.5, we know that CL,∞ is open. Let us show that it is a dense subset of

L∞
+ (I2,R). Given ϕ ∈ L∞

+ (I2,R), denote b := supϕ(x). Fix ε > 0, and define ϕε as

ϕε(x) =















ϕ(x) if ϕ(x) ≥ ε,

ε if ϕ(x) < ε.
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Let a ∈ [ε, b] be such that ϕ−1
ε ([a, a+ ε]) has positive measure. Let y be a Lebesgue density point

of ϕ−1
ε ([a, a+ ε]), which means that

lim
δ→0+

λ(ϕ−1
ε ([a, a+ ε]) ∩ Sδ(y))

λ(Sδ(y))
= 1,

where Sδ(y) denotes the square centered at y and having sidelength δ. An easy application of

Lemma 1.19 then shows the following: For a small-enough δ > 0, there is a function ρε : Sδ(y) →
[ε, b] that takes values in [a, a+ε] for points in ϕ−1

ε ([a, a+ε])∩Sδ(y) and coincides with ϕε on the

complement of ϕ−1
ε ([a, a+ ε]) ∩ Sδ(y) such that no L-bi-Lipchitz map f : Sδ(y) → R

2 can have a

Jacobian equal to ρε. Let ρ be defined by letting

ρ(x) =















ρε(x) if x ∈ Sδ(y),

ϕε if x /∈ Sδ(y).

By construction, ρ belongs to CL,∞, and ‖ρ− ϕ‖∞ ≤ 2ε. As this construction can be performed

for any ε > 0, this shows that CL,∞ is a dense subset of L∞
+ (I2,R).
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Chapter 3

N
2-point sets and Lipschitz Regular maps.

In this chapter we are devoted to study Lipschitz Regular maps and its decomposition in bi-

Lipschitz pieces as a tool to deal with a question posed by Feige in [20], who asked whether every

finite set of points in the plane with integer coordinates can be mapped onto the standard grid by

bijections that stretch the pairwise distances in a controlled manner.

Lipschitz regular mappings were originally defined in [8], and they are vastly studied, for instance,

in [9] and [15]. The section 3.1 can be seen as a basic background on Lipschitz regular maps

and section 3.2 deals with its bi-Lipschitz decomposition. In Section 3.3 we explain how Feige’s

question can be answered negatively as a consequence of the existence of a type of non-realizable

densities ρ : I2 → R, for which the equation f#(ρλ) = λ|f(I2) does not have Lipschitz regular

solutions (in a similar way than the Burago-Kleiner’ construction). This Chapter is mainly based

on the work of Dymond, Kaluža and Kopecká in [15].

3.1 Some basics on Lipschitz regular maps.

Lipschitz regular mappings can be understood as an intermediate class between Lipschitz and

bi-Lipschitz maps. While bi-Lipschitz maps are too rigid, Lipschitz regular maps are more flex-

ible, even they can collapse distances. But, unlike Lipschitz maps, Lipschitz Regular maps have

a behaviour similar to bi-Lipschitz maps, for instance, they map connected components in an

appropriate way.

Definition 3.1:

Let X and Y be two metric spaces. We say that a Lipschitz mapping f : X → Y is Lipschitz

regular if there is a constant C ∈ N such that for every r > 0 and every ball B ⊂ Y of radius r,

the set f−1(B) can be covered by at most C balls of radius Cr. The smallest such C is called the

regularity constant of f , and is denoted Reg(f).

Remark 3.2:

We can think on bi-Lipschitz maps as follows: a map f : X → Y is bi-Lipschitz if it is Lipschitz
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and there exists a constant C > 0 such that for every open ball B of radius r in Y , the set f−1(B)

is contained in a single ball of radius Cr. Thus, bi-Lipschitz maps are obviously Lipschitz Regular.

A useful equivalent interpretation of Definition 3.1 is provided by the next lemma.

Lemma 3.3:

A Lipschitz map f : X → Y is Lipschitz regular if and only if there exists C > 0 such that for

every y ∈ Y and every r > 0, the set f−1(BY (y, r)) does not contain a 2Cr-separated set with

more than C elements.

Proof. Suppose that f is Lipschitz regular with Reg(f) = C, and let r be a positive real number

and y ∈ Y . Consider {x1, . . . , xn} be a maximal 2Cr-separated set contained in f−1(B(y, r)). We

must to show that n ≤ C. Notice that the family (B(xi, 2Cr))ni=1 covers the set f−1(B(y, r));

otherwise, if x ∈ f−1(B(y, r)) \ ⋃n
i=1 B(xi, 2Cr) we would have that {x1, . . . , xn, x} is a 2Cr-

separated set, contradicting the maximality. Since f is Lipschitz regular, we conclude that n ≥ C.

Analogously, given r > 0 and y ∈ Y , if {x1, . . . , xn} is a maximal 2Cr-separated set con-

tained in f−1(B(y, r)), with n ≤ C, we have that the family (B(xi, 2Cr))ni=1 is a covering of

f−1(B(xi, 2Cr)). Since n ≤ C, we have that f is Lipschitz regular.

From now on, we say that a Lipschitz regular mapping is (L,C)-regular if Lip(f) ≤ L and

Reg(f) ≤ C. Lemma 3.4 and Corollary 3.5 are elementary properties whose proofs can be found

in [9].

Lemma 3.4:

Let X and Y be two metric spaces. If f : X → Y is Lipschitz regular and d > 0 then there is

C = C(Lip(f), Reg(f), d) such that

C−1Hd(f−1(E)) ≤ Hd(E) ≤ CHd(f−1(E))

for every E ⊂ Y .

As a corollary of Lemma 3.4, Lipschitz Regular mappings satisfy the following Luzin’s properties.

Corollary 3.5:

Let f : X → Y be Lipschitz regular. Then

1. for every E ⊂ X such that Hd(E) = 0 we have that Hd(f(E)) = 0, and

2. for every F ⊂ Y such that Hd(F ) = 0 we have that Hd(f−1(F )) = 0.

The next Proposition will be key to deal with Feige’s question below. It will be settled for
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Euclidean spaces, but it also holds for a more general class of metric spaces, namely, the so-called

Ahlfors-regular spaces (see Lemma 12.6 in [9]).

Proposition 3.6:

Let f : Rd → R
d be a Lipschitz map and suppose that there is C > 0 satisfying

λ(f−1(B(y, r))) ≤ Crd

for every y ∈ Y and every r > 0. Then f is Lipschitz regular.

The regularity property ensures us that the cardinality of the pre-image of any given point is

uniformly controlled. This property is shared with bi-Lipschitz maps.

Lemma 3.7 (Observation 2.5 in [15]):

Let f : X → Y be a Lipschitz regular and y ∈ Y . Then we have that

|f−1({y})| ≤ Reg(f).

3.2 Bi-Lipschitz decomposition of Lipschitz regular mappings.

In this section we deal with the bi-Lipschitz decomposition of Lipschitz Regular maps in Euclidean

spaces. In [15] it is proved that a Lipschitz regular map defined in a bounded region of Rn can be

“densely decomposed” into bi-Lipschitz pieces.

Theorem 3.8 (Theorem 2.10 in [15]):

Let U ⊂ R
d be open and f : U → R

d be a Lipschitz regular mapping. Then, there exist pairwise

disjoint open sets (An)n∈N in U such that
⋃

n∈N
An is dense in U and, for each n ∈ N, the map

f |An
is bi-Lipschitz with lower bi-Lipschitz constant b = b(Reg(f)).

The proof of Theorem 3.8 relies on the following three steps:

1. For any given open set in the domain, there is an open subset such that the given map is

almost injective (see definition 2.15 below).

2. A Lipschitz regular, almost injective map on an open set is injective.

3. A Lipschitz regular, injective map on an open set with convex image is bi-Lipschitz.

We proceed to precise the three steps above to obtain the bi-Lipschitz decomposition. We begin

with the definition of almost injectivity.

Definition 3.9:

A map h : A ⊂ R
d → R

d is said to be almost injective if there is a set B ⊂ A such that λ(A\B) = 0

and h|B is injective.
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Lemma 3.10 (Lemma 2.12 in [15]):

Let U ⊂ R
d be a non-empty open subset, and let f : U → R

d be Lipschitz regular. Then, there

exists a non-empty open set V ⊂ U such that f |V is almost injective and f(V ) is an open ball.

The next step is to prove that an almost injective Lipschitz regular mapping on an open set U is

actually injective on U .

Lemma 3.11 (Lemma 2.13 in [15]):

Let U ⊂ R
d be an open set, f : U → R

d be a Lipschitz regular, almost injective mapping. Then

f |U is injective.

The third step is to prove that an injective, Lipschitz regular mapping with convex image is

bi-Lipschitz.

Lemma 3.12 (Lemma 2.14 in [15]):

Let U ⊂ R
d be an open set and let f : U → R

d be an injective, Lipschitz regular mapping such

that f(U) is convex. Then, f is bi-Lipschitz with lower bi-Lipschitz constant at most 1
2Reg(f)2 .

As it is pointed out in [15], Theorem 3.8 can be obtained by a consecutive application of Lemmas

3.10, 3.11 and 3.12. As a consequence, we have that a Lipschitz regular mapping on an open set

can be expressed, on some open subset of the image, as a “sum” of bi-Lipschitz homeomorphisms.

Proposition 3.13 (Proposition 2.15 in [15]):

Let U ⊂ R
d be a non-empty open set and f : U → R

d be a Lipschitz regular mapping. Then

there exist a non-empty open set T ⊂ f(U), N ∈ {1, . . . , Reg(f)} and pairwise disjoint open sets

W1, . . .WN ⊂ U such that f−1(T ) =

N
⋃

i=1

Wi and f |Wi
→ T is a bi-Lipschitz homeomorphism for

each i, with lower bi-Lipschitz constant b = b(Reg(f)).

3.3 Feige’s question

Given an undirected connected graph G = (V,E) with set of vertices V = {v1, . . . , vn}, we want

to map V by an one-to-one mapping onto the set {1, . . . , n} with bandwidth as small as possible.

More precisely, we want to find a bijective map f : V → {1, . . . , n} so that max{|f(vi) − f(vj)| :
(vivj) ∈ E} is minimized (for a wide discussion to bandwidth problem, we refer to [12] and the

references therein). Thus, Feige in [20] posed the following question (see Figure 2.1 below).

Question 3.14 (Feige, 2002):

Is there a constant L > 0 such that for every n ∈ N and every set S ⊂ Z
d with cardinality |S| = nd,

there exists a bijection f : S → {1, . . . , n}d with Lipschitz constant satisfying Lip(f) ≤ L?
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Lip(f) ≤ L?

|S| = n2

{1, . . . , n}2
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b b b

b b b

Figure 3.1: Feige’s question.

Remark 3.15:

As in Remark 1.9, Feige’s question has trivially a positive answer for d = 1.

By highly non-trivial modifications on the Burago-Kleiner’ construction (see Chapter 1, Section

1.2), in [15] it is shown the following theorem which answer in the negative Feige’s Question for

every dimension d ≥ 2.

Theorem 3.16 (Theorem 1.2 in [15]):

Let Fn be the collection of all subsets S ⊂ Z
d, d ≥ 2, with |S| = nd and, for each S ∈ Fn, define

LS := inf{Lip(f) : f : S → {1, 2, . . . , n}d is a bijection}.

Then the sequence

Cn := sup{LS : S ∈ Fn}, n ∈ N

is unbounded.

Following the Burago-Kleiner’ proof on the existence of non-rectifiable Delone sets, Theorem 3.16

is showed as a consequence of the non-solvability of an extension of the equation (1.2.1), but

involving Lipschitz regular maps instead of bi-Lipschitz maps. Given a function ρ : I2 → R

with 0 < inf ρ < sup ρ < +∞, let (li)i∈N and (mi)i∈N be two sequences of positive integers such

that li, mi and li/mi tend to +∞ when i goes to +∞. Let (Ci)i∈N be a sequence of pairwise

disjoint squares with side-length equals to li and such that for each i ∈ N, the square Ci is

decomposed into m2
i squares (Ti,k)

m2
i

k=1 of side-length equal to li/mi (as in Figure 1.3 above).

Moreover, let ϕi : I2 → Si be an affine homeomorphism with scalar linear part, mapping I2

onto Ci. As a next step, implant the function ρ in each square (Ti,k)
md

i

k=1 by choosing a positive

integer ni,k ∈
{⌊

∫

Ti,k

ρ ◦ ϕ−1dλ

⌋

,

⌊

∫

Ti,k

ρ ◦ ϕ−1dλ

⌋

+ 1

}

and putting ni,k points with integer

coordinates in each square Ti,k. If the ni,k points are choosed such that
∑m2

i

k=1 ni,k is of the form

n2
i , we define the set Si as this collection of n2

i points.
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Assume that there exists a sequence of L-Lipschitz bijections fi : Si → {1, . . . , ni}d. Define Xi by

ϕ−1(Si), and the “normalized” maps gi : Xi → R
d given by gi(x) :=

1
ni
(fi ◦ ϕi(x)). By choosing

ni and li such that ni/li −→ 1, we have that for any L′ > L it is possible to find a positive integer

i0 from which the mappings gi are L′ Lipschitz. Without lost of generality, we can assume that

all the mappings gi are L′-Lipschitz. By Kirzbraun-Valentine’s extension theorem (see Theorem

1.1), we can extend each gi to a map gi : Id → R
d by preserving the Lipschitz constant L′.

By Arzelá-Ascoli theorem, there exists a subsequence of (gi)i∈N that converges uniformly to an

L′-Lipschitz map f . Again, without lost of generality, we can assume that gi converges to f .

For every i ∈ N, define a (normalized) counting measure in Xi by

µi(A) :=
1

n2
i

|A ∩Xi|.

By Lemma A.2 we have that µi converges weakly to ρλ and by Lemma A.4 and the uniform

convergence, we have that (gi)#µi converges weakly to f#(ρλ). Besides, it is proved that (gi)#µi

converges weakly to ρλ|I2 = ρλ|f(I2) (see Claim 5.3.3 in [15]). Thereby it is shown that for any

U ⊂ I2, the L′-Lipschitz map f satisfies the equality,

λ(f(U)) =

∫

U

ρdλ.

Hence, as a direct consequence we have that for every measurable set U ⊂ f(I2) that

λ(U) =

∫

f−1(U)

ρdλ ≥ λ(f−1(U)) inf ρ,

which implies that λ(f−1(U)) ≤ λ(U)
inf ρ . By Proposition 3.6, the mapping f must be Lipschitz

regular.

Therefore, the above argument shows that to answer negatively Feige’s question, it is suffices to

find a positive function ρ : Id → R such that 0 < inf ρ < sup ρ < +∞ for which there is no

Lipschitz regular solutions of

f#(ρλ) = λ|f([0,1]2). (3.3.1)

We finish this section with the following property: for a generic bounded, positive, continuous

functions from to square I2 to R, the equation (3.3.1) has not Lipschitz regular solutions. In

particular this provides a negative answer to Feige’s question. In [15] the authors prove that the

set of positive continuous functions which has Lipschitz regular solutions of (3.3.1) is σ-porous,

which is a stronger property than to be of first Category (in the sense of Baire).

Definition 3.17:

Let (X, || · ||)) be a Banach space.
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1. A set P ⊂ X is called porous at a point x ∈ X if there exist ε0 > 0 and α ∈ (0, 1) such that

for every ε ∈ (0, ε0) there exists y ∈ X such that:

||y − x|| ≤ ε and B(y, αε) ∩ P = ∅.

2. A set P ⊂ X is called porous if P is porous in every x ∈ P .

3. A set E ⊂ X is called σ-porous if E may be expressed as a countable union of porous

subsets of X.

The next theorem provides a non-realizable density ρ for which 3.3.1 has not Lipschitz regular

solutions (compare with Main Theorem in Chapter 2)

Theorem 3.18 (Theorem 4.1 in [15]):

Let Ψ := {ρ ∈ C(I2,R) : (3.3.1) has Lipschitz Regular solution f : I2 → R
2}. Then Ψ is a

σ-porous subset of C(I2,R).

Theorem 3.18 is a consequence of the lower bi-Lipschitz constant given by Proposition 3.8 and an

adequate manage of the bi-Lipschitz decomposition given by Proposition 3.13. We point out that,

though the above theorem ensures the existence of a continuous function which is not Lipschitz

regular realizable, it does not provided any explicit example of such a function.

We finish this chapter with some observations about Theorem 3.18. Notice that if (3.3.1) holds,

then for the open subsets T ⊂ f(I2) and W1, . . . ,WN given by the Proposition 3.13, we have that

ρ(y) = |Jac(f1)(y)| −
N
∑

i=2

ρ(f−1
i ◦ f1(y))|Jac(f−1

i ◦ f1)(y)| for a.e y ∈ W1, (3.3.2)

where fi : Wi → T is bi-Lipschitz, with lower bi-Lipschitz constant only depending on the reg-

ularity constant. Observe that the equation (3.3.2) says that the density map ρ is a “linear

combination” of a controlled number of Jacobians. Naively we could define the density ρ by

putting a Burago-Kleiner’ non-realizable density (those densities studied in Chapters 1 and 2) in

each of the Wi’s and then try to argue similarly to the work of Burago-Kleiner or McMullen. The

problem here is that any bad-behavioured density map in a bi-Lipschitz piece can be compensated

by the bad-behavioured density map in the other bi-Lipschitz pieces. For this reason the ideas in

[3] cannot be used directly to construct a density map for which (3.3.1) has not Lipschitz regular

solutions.

Remark 3.19:

It is an open problem to extend Theorem 3.18 to the set of positive L∞ functions.
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Chapter 4

On Delone sets that are not (bi-)Lipschitz equivalent to the

standard lattice.

The aim of this Chapter is to deal with Delone sets and Lipschitz bijections. In particular, we are

mainly concerned in the following question.

Question 4.1:

Are there repetitive Delone subsets of R2 that admit no Lipshitz bijection with Z
2?

Some words about notation. Along this work we will deal with functions defined on discrete

sets and extensions of these to the whole space. As in [6], for the former we use a standard notation

f , whereas for the corresponding extension we will use the notation f̂ . As usual, for a real number

A, we denote its integer part by [A]. Given two real numbers A ≤ B, we denote [[A,B]] the set

of integers n such that A ≤ n ≤ B. Given positive integers M,N , we let RM,N be the rectangle

[[0, 2MN ]]× [[0,M ]]. Given k ∈ [[1, 2N ]] and a positive integer P dividing M , let SP
k be the subset

of RM,N formed by the points of the form

xk
i,j :=

(

(k − 1)M + i
M

P
, j

M

P

)

, (4.0.1)

where i, j lie in [[0, P ]]. By some abuse of notation, the notation xk
i,j will still be used for i=P+1

(yet xk
P+1,j does not belong to SP

k ). The points xk
i,j will be called marked points. Notice that SP

k

also depends on M and N , but this dependence (which will be clear in each context) is suppressed

just to avoid an overload of notation. For a square S of the form SP
k ⊂ RM,N , where M is a

multiple of P , define Ŝ := {((k − 1)M + i, j) : i, j = 0, 1, . . . ,M − 1}. We call Ŝ the lower-left

corner of the corresponding square S.

To simplify, we will only work with Delone subsets D of Z
2 satisfying what we call the 2Z-

property: all points (m,n) with an even m do belong to D. In particular, we will consider domino

tilings of the plane made only of the pieces 1-1 and 1-0. More generally, we say that a subset

D ⊂ [[A,B]] × [[A′, B′]] satisfies the 2Z-property if all points (m,n) ∈ [[A,B]] × [[A′, B′]] with an

even m do belong to D.
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There is a little technical problem that arises when considering maps defined on strict subsets

of either Z
2 or RM,N . To solve this, we introduce a general construction. Namely, given either

a Delone set D ⊂ Z
2 or a subset D ⊂ RM,N satisfying the 2Z-property in each case, for every

function f : D → Z
2 we define its extension f̂ to either Z2 or RM,N taking values in 1

2Z
2 by letting

f̂(x) =

{

f(x) if x ∈ D,

f
(

x+ (1, 0)
)

− (12 , 0) if x /∈ D.

The proof of the next lemma is straightforward and we leave it to the reader.

Lemma 4.2:

If f : D → Z
2 is L-bi-Lipschitz, then f̂ is a 6L-bi-Lipschitz map.

4.1 Some key ideas for the strategy

In order to deal with Lipschitz bijections, we need to perform slight modifications for some Lemmas

and Propositions of [6]: the bi-Lipschitz condition on D will be replaced by a Lipschitz condition

together with the existence of a lower bi-Lipschitz constant on an appropriate subset of D (namely,

on a suitable set of marked points xk
i,j). The proofs of these modifications follow similar arguments

to those of [6].

The crucial idea of the construction in [6] is that, given an L-bi-Lipschitz map and a positive

integer P , if a non-expansiveness condition holds for all the pairs (xk
i+1,j , x

k
i,j), then there must

exist a square SP
k for which the extension map f̂ is coarsely-differentiable at every point of SP

k .

This is the content of Proposition 4 of [6]. Below we state a slight variation of it, the proof of

which follows the very same lines. The key point here is that we are asking for the map to be only

Lipschitz yet bi-Lipschitz over a small subset of the involved Delone set.

Proposition 4.3:

Given L ≥ 1, a positive ε < 1 and a positive integer P , there exist λ > 0 and positive integers

M0, N0 such that the following holds: Given a subset D ⊂ RM,N satisfying the 2Z-property, with

N ≥ N0 and M ≥ M0 a multiple of 2P , let f : D → Z
2 be an injective L-Lipschitz map that

is L-bi-Lipschitz when restricted to the set of points of the form xk
i,j. Assume that, for all these

points,

||f(xk
i+1,j)− f(xk

i,j)||
M/P

≤ (1 + λ)
||vfM,N ||
2MN

.

Then there is a subset

S = SP
k :=

{(

(k − 1)M + i
M

P
, j

M

P

)

: 0 ≤ i ≤ P, 0 ≤ j ≤ P

}
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such that every x ∈ S satisfies

∣

∣

∣

∣

∣

∣

∣

∣

f(x+ (M, 0))− f(x)

M
− f(2MN, 0)− f(0, 0)

2MN

∣

∣

∣

∣

∣

∣

∣

∣

≤ ε. (4.1.1)

Assume that f : D → Z
2 is an L-Lipschitz bijection defined on a Delone set D ⊂ Z

2 satisfying the

2Z-property that is bi-Lipschitz on a set S = SP
k ⊂ RM,N for a positive integer P that divides

M . Let γ∗ be the curve obtained by connecting points in f̂(∂S) (using line segments) coming

from consecutive points in ∂S. The curve γ∗ is closed though not necessarily simple. However, it

contains the simple curve γ = γS obtained by “deleting short loops”. We denote by int(γ) (resp.

ext(γ)) the closed, bounded (resp. unbounded) region of the plane determined by γ.

Given a sequence of (translated) squares Sm ⊂ D of the form SP
k , we consider the map f |Sm

defined from Sm into Z
2. By normalizing and passing to the limit, we obtain a Lipschitz map

F : I2 → R
2. The next lemma can be seen as a slightly generalized version of Lemma 6 in [6].

Lemma 4.4:

Let D ⊂ Z
2 be a Delone set satisfying the 2Z-property. Given L ≥ 1, ε > 0 and a positive integer

P , let Sm ⊂ D be a sequence of (translated) squares of the form SP
k , with M is a multiple of 2P .

Then there exists m0 such that the following holds: if m ≥ m0 and f : D → Z
2 is an L-Lipschitz

bijection that is L-bi-Lipschitz on Sm and for which the limit map F above is an homeomorphism,

then for S = Sm we have that

i) no point of f̂(Z2 \ (1 + ε)Ŝ) lies in int(γ);

ii) all points in f̂((1− ε)Ŝ) are contained in int(γ).

Proof. By contradiction, after renormalizing and passing to the limit, we obtain:

• In case i), a point in the exterior of (1 + ε)I2 which is mapped by F inside F (I2);

• In case ii), a point in (1− ε)I2 which is mapped by F into a point outside F (I2).

This is impossible in each case, since F is an homeomorphism.

The next step in the construction relies on that the coarse-differentiability provided by Proposition

4.3 implies that there are two neighboring squares SP
k , SP

k+1 whose images under f have very

close densities. This is reflected by the next claim, which corresponds to a extended version of

Proposition 9 in [6].

Proposition 4.5:

Given L ≥ 1 and 1 ≥ d > d′ > 0, there exist a positive ε < 1 and integers P1,M1 such that

27



the following holds: Let D be a Delone set satisfying the 2Z-property, and let f : D → Z
2 be a

bijection. Assume that for P ≥ P1, N ≥ 1 and M ≥ M1 being a multiple of 2P , some square

S := SP
k ⊂ RM,N , with 1 ≤ k < 2M , is such that every x ∈ S satisfies (4.1.1). Denote

S′ := SP
k+1. If Ŝ ∩ D contains ≥ dM2 (resp. ≤ d′M2) points and Ŝ′ ∩ D contains ≤ d′M2 (resp.

≥ dM2 points), then f cannot be L-Lipschitz and, simultaneously, L-bi-Lipschitz when restricted

to the set of points of the form xk
i,j.

Propositions 4.3 and 4.5 can be put together into the next claim, which is a slight extension of

Proposition 10 in [6].

Proposition 4.6:

Given L ≥ 1 and 1 ≥ d > d′ > 0, there exist a positive ε < 1 and integers P∗,M∗, N∗ such that

the following holds: let D be a Delone set satisfying the 2Z-property, and let f : D → Z
2 be an

L-Lipschitz bijection. Moreover, for P ≥ P∗, N ≥ N∗ and M ≥ M∗ being a multiple of 2P assume

that the map f satisfies the following:

i) for every xk
i,j , x

l
s,t ∈ RM,N , we have that ||f(xk

i,j)− f(xl
s,t)|| ≥ 1

L
||xk

i,j − xl
s,t||,

ii) f satisfies the conclusions of Lemma 4.4 for S.

With the same notation of the Proposition 4.5, suppose that Ŝ ∩ D contains ≥ dM2 (resp. ≤
d′M2) points and Ŝ′ ∩ D contains ≤ d′M2 (resp. ≥ dM2 points). Then there must exist a point

x ∈ D ∩RM,N of the form xk
i,j such that either

||f(x+ (M/P, 0))− f(x)||
M/P

> (1 + λ)
||f(2MN, 0)− f(0, 0)||

2MN

if x+ (M/P, 0) belongs to D, or

||f(x+ (1 +M/P, 0))− f(x)||
1 +M/P

> (1 + λ)
||f(2MN, 0)− f(0, 0)||

2MN

otherwise.

Roughly speaking, Proposition 4.6 tell us that if a Delone set D satisfies the 2Z-property and

is mapped onto Z
2 by an L-Lipschitz bijection that is L-bi-Lipschitz on some marked points,

then variations of the local density of D force to stretch the distances of certain points when

passing from a certain scale to a smaller one. By an inductive process, we eventually overcome

any prescribed Lipschitz constant of f for a convenient construction of D.
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4.2 On Cortez-Navas’ examples

We describe how Cortez and Navas produce a non bi-Lipschitz rectifiable Delone set. Fix a

constant L ≥ 1 (which will be the Lipschitz constant to discard). Consider two square patches

P1,P2 with equal and even side-length so that they contain a different number of points. We let

di be the density of points in the lower-left corner of Pi (hence d2 > d1). Additionally, assume

that both patches are centered at the origin, satisfy the 2Z-property, and contain all boundary

integer points.

Given these data, fix d′1, d
′
2 such that d1 < d′1 < d′2 < d2, and let λ,M∗, N∗, P∗ be the constants

provided in the Proposition 4.6 for L, d := d′2 and d′ := d′1. Fix an integer l ≥ 1 such that

(1 + λ)l

L
> L. (4.2.1)

Let 2M be the side-length of the patches Pi := P0
i ⊂ [[−M,M ]]2, i = 1, 2. The construction of

new patches P1
1 and P1

2 can be sketched as follows:

Step 1: Fix an odd positive integer m so that 2mP∗M ≥ M∗ and construct a square centered at

the origin made of (mP∗)
2 copies of P1 matching left sides to right sides and lower sides to

upper sides (see Figure 1).

P1 P1 P1 P1

P1 P1 P1 P1

P1 P1

P1 P1 P1 P1

P1 P1

· · ·

· · ·

...
...

2mP∗M

2mP∗M

Figure 4.1: Description of Step 1.

Step 2: Match to the right a square block consisting of (mP∗)
2 copies of P2. After this, match to

the right a square block consisting of (mP∗)
2 copies of P1. Proceed similarly up to having

matched N blocks made of pieces P1 and P2 in an alternate way, where the integer N ≥ N∗

is to be fixed below (see Figure 2).

Step 3: Proceed similarly to the left of the centered-at-the-origin block made of pieces P1. In this

way, we form a rectangle of sides 2mP∗(2N + 1) and 2mP∗M filled by alternate blocks of

copies of P1 and P2.

Step 4: To complete P1
1 , fill up the whole square of side 2mP∗M(2N + 1) centered at the origin
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P1 P1 P1 P1

P1 P1 P1 P1

P1 P1

P1 P1 P1 P1

P1 P1

· · ·

· · ·

...
...

2mP∗M

2mP∗M

P2 P2 P2 P2

P2 P2 P2 P2

P2 P2

P2 P2P2 P2

P2 P2

· · ·

· · ·

...
...

2mP∗M

Figure 4.2: Gluing two blocks of different densities.

by matching copies of P1 at all places, except for those in the lower rectangle constructed

above.

Step 5: Finally, to construct P1
2 , proceed similarly as for P1

1 switching the roles of P1 and P2 (see

Figure 3).

P1

Zoom

P2

Zoom

...
...

...
...

· · ·

· · ·

· · ·

· · ·

Figure 4.3: Patches P1
1 (left) and P1

2 (right).

The integer N ≥ N∗ is taken in such a way that the density of points in the lower-left corner of P1
1

(respectively P1
2 ) is less than d′1 (respectively greater than d′2). Now, by starting with the patches

P1
1 and P1

2 and the same constants L, d′1, d
′
2, construct with the same procedure new patches P2

1

and P2
2 with densities < d′1 and > d′2 respectively. By repeating this procedure l times (where l

is taken as in (1.1)), we obtain new patches denoted by Pnew
1 and Pnew

2 . For these patches, by

applying l times Proposition 4.6, one obtains the following (see Lemma 13 in [6] for the details).

Proposition 4.7:

If D is a Delone set that satisfies the 2Z-property and contains translated copies of either Pnew
1

or Pnew
2 , then D cannot be mapped onto Z

2 by an L-bi-Lipschitz map.
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By the above modifications, we have the following reformulation of the Proposition 4.7 concerning

to Delone sets containing copies of Pnew
1 and Pnew

2 .

Proposition 4.8:

Let D be a Delone set satisfying the 2Z-property, which contains translated copies of either Pnew
1

or Pnew
2 as building blocks, where the parameters M and P of these patches are as in the Propo-

sition 4.6. Then D cannot be mapped onto Z
2 by an L-Lipschitz bijection which is L-bi-Lipschitz

restricted to the marked points xk
i,j .

Now, let (Ln)n∈N be an increasing sequence of real numbers greater than 1, and start with patches

Q1,1 and Q1,2 as in Figure 4. Assuming that the patches Qn,1, Qn,2 are given, define two new

patches Qnew
1 := Qn+1,1 and Qnew

2 := Qn+1,2 as in the above procedure. Hence we obtain a

sequences of patches Qn,1 and Qn,2 contained in D as in the previous procedure. Thence, by the

Proposition 4.7, the Delone set D cannot be Ln-bi-Lipschitz equivalent to Z
2. Since Ln → +∞,

D is a repetitive Delone set which cannot be rectifiable.

Q1,1 Q1,2

b

b

b

b

b b b b b

b

b

b

bb b b

b

b

b

b

b

b

b

b b b b b

b

b

b

bbbb

b b b

b

bbb

b b

Figure 4.4: Initial patches Q1,1 and Q1,2 to construct a repetitive, non-rectifiable Delone set D.

Remark 4.9:

For more details about the repetitiveness of D, see Lemma 12 in [6].

4.3 Rescaling up to the limit and Lipschitz regularity

In this section we are interested in some implications of having Lipschitz maps defined on Delone

sets satisfying the 2Z-property, with values in Z
2. More precisely, we will show, after renormalize

and passing to the limit, that such a function induces a Lipschitz regular map from the standard

square to R
2. Moreover, by pursuing the bi-Lipschitz decomposition of Lipschitz regular maps

recently introduced by Dymond, Kaluža and Kopecká in [15] (see Chapter 3, section 3.2), we show

that the preceding Lipschitz map is actually bi-Lipschitz in the marked points belonging to some

suitable set.

The following result deals with maps defined on discrete sets of points. It asserts that every

Lipschitz bijection defined from a Delone set that satisfies the 2Z-property onto the integer lattice
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must be Lipschitz regular. Actually, the next Proposition follows from the property that densities

of points in any Delone set are everywhere bounded from below (away from zero); we use the

2Z-property to simplify computations. Given x ∈ R
2, r > 0 and a subset L of R2, we will denote

the set B(x, r) ∩ L by BL(x, r).

Proposition 4.10:

Let D ⊂ Z
2 be a Delone set satisfying the 2Z-property. If f : D → Z

2 is an L-Lipschitz bijection,

then f is Lipschitz regular, with Reg(f) ≤ C (L+ 1)2 for some universal constant C > 0.

Proof. Let y ∈ Z
2 and r > 0. Consider Γ ⊂ f−1(B(y, r)) a maximal r-separated set, and write

Γ := {x1, . . . x|Γ|}. Then, by the L-Lipschitz condition we have that

f





|Γ|
⋃

i=1

BD(xi, r)



 ⊂ BZ2(y, r + rL).

Observe that, for i = 1, . . . , |Γ|, the open balls B(xi, r) are pairwise disjoint. Since f is a bijection

we obtain that, for a certain constant C1 ≥ 1,

|Γ|
∑

i=1

|BD(xi, r)| =

∣

∣

∣

∣

∣

∣

f





|Γ|
⋃

i=1

BD(xi, r)





∣

∣

∣

∣

∣

∣

≤
∣

∣BZ2(y, r + rL)
∣

∣ ≤ C1r
2(L+ 1)2. (4.3.1)

Now, by the 2Z-property, the cardinality |BD(xi, r)| is at least C2r
2 for another universal constant

C2 > 0. (The value of C2 can be taken as 1/2− ε provided r is large enough.) Thus, by (4.3.1),

C2r
2|Γ| ≤ C1r

2(L+ 1)2.

We hence conclude that |Γ| ≤ C1(L + 1)2/C2. Therefore, by Lemma 3.3, f is Lipschitz regular

with regularity constant at most C1(L+ 1)2/C2.

From now on, let (Pn,1)n≥1 and (Pn,2)n≥1 be the two sequences of building-blocks given in the

Cortez-Navas’ construction from §4.2. Denote Pn := Pn,1, let Sn ⊂ R
2 be the square (patch)

that contains Pn, and let 2Mn be the side-length of Sn. We choose the sequence (Mn)n≥1 in

such a way that Mn is a multiple of 2Mn−1 and Mn+1/Mn is a multiple of Mn/Mn−1 for every

n ∈ N. Let φn : R2 → R
2 be the homothety that maps the square Sn into I2. In addition, define

Rn := φn(Pn).

Assume there is an L-Lipschitz bijection f : D → Z
2. As in [3], we proceed to normalize f to each

building-block Pn, that is, to consider the map fn : Rn → 1
2Mn

Z
2 defined by

fn(x) :=
1

2Mn

(f ◦ φ−1
n )(x).

32



Notice that Lip(fn) ≤ L for all n ≥ 1. By Kirszbraun’s extension theorem(1), each function fn

can be extended to an L-Lipschitz map f̂n : I2 → R
2. By the Arzelá-Ascoli’s theorem, there exists

a subsequence of (f̂nk
)k∈N of (f̂n)n≥1, converging to an L-Lipschitz map F : I2 → R

2.

Proposition 4.11:

The map F : I2 → R
2 built above is Lipschitz regular, with Reg(F ) ≤ 34 Reg(f).

Proof. Let y ∈ F (I2) and r > 0. Consider a maximal r-separated set Γ = {x1, . . . , x|Γ|} contained

in F−1(B(y, r)). Given

0 < ε < min

{

(
√

2 +
√
2− 1) r

√

2 +
√
2

, dist(Γ, ∂F−1(B(y, r)))

}

,

by the convergence of f̂n to F , there is a positive integer n0 = n0(ε) such that, for every n ≥ n0,

there exist p1, . . . , p|Γ| ∈ Dn for which the following hold:

• for every i = 1, . . . , |Γ|, we have that ||pi − xi|| < ε/2,

• the set Γn := {p1, . . . , p|Γ|} is contained in F−1(B(y, r)) and,

• fn(Γn) ⊂ B(y, r).

Observe that Γn is (r − ε)-separated, since Γ is r-separated.

We will delete some points in Γn in an appropriate way in order to obtain a set Γ′
n ⊂ f−1

n (B(y, r))

that is r-separated and such that |Γ′
n| ≥ |Γ|/17. By Lemma 3.3, this will imply that

|Γ| ≤ 17 |Γ′
n| ≤ 34Reg(f),

hence F is Lipschitz-regular with Reg(F ) ≤ 34Reg(f).

To build the set Γ′
n, we consider the angle

α = arccos

(

(r)2 + (r − ε)2 − (r − ε)2

2(r)(r − ε)

)

= arccos

(

r

2(r − ε)

)

≥ arccos

(√

2 +
√
2

2

)

=
π

8
,

where the inequality follows from the condition

ε <
(
√

2 +
√
2− 1) r

√

2 +
√
2

.

This is the angle that appears in the picture below. In the area depicted in black, no pair of points

is at distance > r − ε. The same happens in a similar region with angle π/8. Since 16 of these

(1)Actually, we do not really need to keep the same Lipschitz constant L for the extension map, but just another
(larger) constant that depends only on L, and a weaker form of Kirszbraum’s theorem proving this is much easier
to establish.
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regions cover exactly the anular region between a circle of radius r − ε and another of radius r

(with the same center), we deduce -by the pigeonhole principle- that no more than 16 points in

this anular region can be (r − ǫ)-separated.

α

r

r − ε r − ε

b

Figure 4.5:

Now, for each i ∈ {1, . . . , |Γ|}, let Γi
n be the set of all points p ∈ Γn such that r−ε ≤ ||pi−p|| ≤ r.

We have shown that this set contains at most 16 points. We erase those corresponding to p1, then

those corresponding to the pi with minimal index that survive after the first delection (i ≥ 2),

and so on. At the end, we get the subset Γ′
n with the desired properties.

Since f̂n converges to F and each set Rn is finite, we may choose a subsequence f̂nk
such that,

for every x ∈ ⋃n≥1 Rn, the sequence (fnk
(x))k≥1 converges to F (x) with any prescribed rate of

convergence. The next lemma (whose proof is straightforward) provides us with the necessary

rate for our purposes.

Lemma 4.12:

There exists a subsequence (fnk
)k≥1 of (fn)n≥1 such that, for every x ∈ ⋃n≥1 Rn, we have

∥

∥fnk
(x) − F (x)

∥

∥ ≤ 1

8 · 342Reg(f)2Mnk−1

(4.3.2)

From now, the subsequence (fnk
)k≥1 will be just denoted (fn)n≥1. Since F : I2 → R

2 is Lipschitz

regular, Proposition 3.13 implies that there exist a non-empty open set W ⊂ F (I2) and open

disjoint subsets V1, . . . , VN ⊂ I2, where N ≤ Reg(F ), so that
⋃N

i=1 Vi = F−1(W ) and, for every

i ∈ [[1, N ]], the map F |Vi
: Vi → W is bi-Lipschitz, with lower bi-Lipschitz constant b = 1

2Reg(F )2 .

Using this, we next prove that the L-Lipschitz map f is actually bi-Lipschitz when restricted to an

appropriate subset of marked points lying in D ∩ φ−1
n (V1), namely, the points in φ−1

n (Rn−1 ∩ V1)

(these can be seen as marked points for M = Mn and P = Mn−1).
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Lemma 4.13:

There exists n0 ∈ N such that, for every n ≥ n0, the map f |φ−1
n (Rn−1∩V1)

is bi-Lipschitz, with

lower bi-Lipschitz constant smaller than or equal to 1/4Reg(F )2.

Proof. By Proposition 3.13, for every x, y in V1,

||F (x)− F (y)|| ≥ ||x− y||
2Reg(F )2

.

By the triangle inequality, for every x, y in Rn−1 ∩ V1,

||fn(x) − fn(y)|| ≥
||x− y||
2Reg(F )2

− ||fn(x) − F (x)|| − ||fn(y)− F (y)||.

By Lemma 4.12 and the estimation of Reg(F ) in Proposition 4.11 we have that

||fn(x)− fn(y)|| ≥
||x− y||
2Reg(F )2

− 1

4 · 342Reg(f)2 · 2Mn−1

≥ ||x− y||
2Reg(F )2

− ||x− y||
4Reg(F )2

=
1

4Reg(F )2
||x− y||

Therefore, after rescaling, we obtain that for every z, w in φ−1
n (Rn−1 ∩ V1),

||f(z)− f(w)|| ≥ ||z − w||
4Reg(F )2

,

as we wanted to show.

4.4 Some remarks on Question 4.1

In this section we discuss the problem that appears when we try to apply directly the Cortez-

Navas’ examples in the Lipschitz setting. We consider the function f : Z2 → Z
2 that “stretches

and folds” Z
2 as is depicted in the figure below.

f
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b
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b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
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b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b

b

b

b

Figure 4.6: stretching and folding Z
2 horizontally
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Figure 4.7: The limit map F that stretches and folds (from left to right).

This map is 3-Lipschitz and the pre-image of any ball in R
2 under F is composed by 3 “pieces”

(it is not necessary to perform precise computations to describe the phenomenon). This situation

imposes some issues to the Cortez-Navas’ examples for Lipschitz maps, where variations of densities

can be compensated from points coming from different pieces. Nevertheless, we think that such

a situation can be avoided by “discretizing” the non-realizable densities obtained in [15] (see

Theorem 3.18) and by using the results obtained in the preceding sections of this Chapter.
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Chapter 5

Conclusions

Along this thesis we obtain some original results on non-rectifiable Delone sets. On the one

hand, it was demonstrated that “almost all” bounded, positive continuous functions defined on

the unit cube [0, 1]d can be used to produce Delone sets Dd ⊂ R
d, d ≥ 2, for which there are

no bi-Lipschitz bijections from Dd to Z
d. For this purpose, it was key the ideas introduced by

Burago and Kleiner in [3]. On the other hand, in Chapter 4 we contribute some advances on the

resolution of Question 4.1, where was key to develop extensions for the results obtained by Cortez

and Navas in [6]. Moreover, for some Propositions in Chapter 4 it was necessary the bi-Lipschitz

decomposition of Lipschitz regular maps, obtained recently by Dymond, Kaluža and Kopecká in

[15].

5.1 Open Problems

On Lipschitz-rectifiability. From the work developed in Chapter 4 on Lipschitz-rectifiability,

the following question arises naturally.

Question 5.1:

Does there exists a non-rectifiable Delone set in R
d, d ≥ 2, which can be mapped onto Z

d by a

Lipschitz bijection?

A related problem to Question 5.1 is motivated from the work of Dymond, Kaluža and Kopecká,

which fits in the “discrete-continuous” relation of non-rectifiable Delone sets and non-realizable

densities.

Problem 5.2:

Find an explicit example of a bounded positive continuous (or measurable) function ρ : [0, 1]d → R

for which there are no Lipschitz solutions of the equation

f#(ρλ) = λ|f(Id). (5.1.1)
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We think that a solution of Problem 5.2 could be the non-realizable functions constructed by

Burago and Kleiner in [3], or the McMullen’s densitty constructed in [21]. These functions are

bad-behaved (non-realizable) in any small scale in I2.

On Feige’s Question. We can ask for solutions to Feige’s question in non-euclidean spaces. For

instance, let F2 be the free group with two generators equipped with the word metric. Denote by

B2(n) be the ball in F2 centered in e with radius n ∈ N. It is known that

|B2(n)| = 4(1 + 3 + 9 + . . .+ 3n−1) + 1

= 4

(

3n − 1

2

)

+ 1

= 2(3n − 1) + 1 = 2 · 3n − 1.

Thus, in this context we pose the following non-Euclidean (Feige’s) question.

Question 5.3 (Feige’s question in F2):

Is there a constant L ≥ 1 such that for every n ∈ N and every set S ⊂ F2, with cardinality

|S| = 2 · 3n − 1, there exists a bijection f : S → B2(n) ⊂ F2 with Lip(f) ≤ L?
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Appendix

The aim of this appendix is to provide some basics on Lipschitz maps (section A.1) and Measure

Theory (section A.2) which are used along this thesis. The results of section A.1 are rather

classical and can be found, for instance, in [11], while the results in section A.2 are discussed in

the appendix D of [15].

A.1 Lipschitz maps

Given two metric spaces (X, dX) and (Y, dY ) and a constant L > 0, we say that a map f : X → Y

is L-Lipschitz if for every x, y ∈ X :

dY (f(x), f(y)) ≤ LdX(x, y)

A map f : X → Y is called Lipschitz if there exists L > 0 such that f is L-Lipschitz. Metric

spaces are plenty of Lipschitz maps; for instance, given a metric space (X, d) and a fixed point

x0 ∈ X , the map f(x) = d(x, x0) is 1-Lipschitz, because of the triangle inequality. Geometrically,

a Lipschitz map does not stretch the distances more than a factor L, but the distances can be

shrinked by f too much (even f can collapse several points into a single point).

A kind of mappings that do not distort too much the distances are the so-called bi-Lipschitz

mappings. Given two metric spaces (X, dX), (Y, dY ) and two positive real numbers α < β, we say

that a map f : X → Y is (α, β)-bi-Lipschitz if for every x, y ∈ X :

αdX(x, y) ≤ dY (f(x), f(y)) ≤ βdX(x, y).

A map f : X → Y is called bi-Lipschitz if there exist positive numbers α < β such that f is

(α, β)-bi-Lipschitz. Note that a bi-Lipschitz map is injective but not necessarily surjective. We

say that (X, dX) and (Y, dY ) are bi-Lipschitz equivalent (BL) if there exists a bi-Lipschitz

bijection from X to Y . By an L-bi-Lipschitz map we mean an
(

1
L
, L
)

-bi-Lipschitz map. For

instance, the spaces Z and 2Z with the induced metric in R are bi-Lipschitz equivalents via the

map given by multiplication by 2. Informally speaking, a bi-Lipschitz map stretches and shrinks

all the distances at most by a constant factor.
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The definition of Lipschitz and bi-Lipschitz maps depends obviously in the metrics defined on the

domain and in the range of a given map. Since we will work mainly in R
d, we use in the whole

thesis the Euclidean distance in R
d.

We continue this section with three classical results about Lipschitz Analysis. The first result is

the so-called Kirzbraun-Valentine’s extension theorem. This theorem is an important tool since

it can be used to extend Lipschitz maps defined on subsets of Rd (see, for instance [11], Theorem

2.10.43).

Theorem A.1 (Kirszbraun)

Let f : A ⊂ R
d → R

n be an L-Lipschitz map. Then f extends to an L-Lipschitz map f̂ : Rd → R
n,

i.e, f̂ |A = f .

We point out that Kirszbraun’s extension theorem does not necessarily hold if we modify the

ambient and the target space where the Lipschitz map is defined. For instance, let X be the tripod

graph as in Figure 1.1, with set of vertices being {u0, u1, u2, u3} equipped with the shortest-path

metric. The map f : {u1, u2, u3} → ∆(ω1, ω2, ω3) given by f(ui) = ωi for every i = 1, 2, 3, where

∆(ω1, ω2, ω3) ⊂ R
2 is an equilateral triangle with side-length equals to 2, is an 1-Lipschitz map

(actually an isometry). Observe that this map cannot be extended to a 1-Lipschitz map f̂ defined

on X onto ∆(ω1, ω2, ω3) (see Figure 6.1).

u0 ?

u0

u1

u2

u3

bc

bc

bc bc bcω2

bc
ω1

bc ω3

Figure 5.1: mapping a tripod onto an equilateral triangle does not admit Lipschitz extension.

Along this thesis, we work with the Jacobian of a Lipschitz map from R
d to itself. Differentia-

bility makes sense for Lipschitz maps in R
d because the following well-known theorem, due to

Rademacher. This classical result may be found in an Appendix of [14].

Theorem A.2 (Rademacher)

Every Lipschitz function on an open set in R
n is differentiable almost everywhere.

In geometric measure theory, the following Euclidean Area formula appears as an important

tool, which relates the measure of the image of a measurable set under a Lipschitz map between

Euclidean spaces and its Jacobian (see TTheorem 3.2.3 in [11]).
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Theorem A.3 (Euclidean Area Formula)

Let A ⊂ R
d be a measurable set, let f : A → R

n be a Lipschitz map, with n ≥ d. Then:

∫

A

|Jac(f)(x)|dλd(x) =

∫

Rn

N(f,A, y)dλn(y),

where Jac(f) is the Jacobian of f , λd is the d-dimensional Lebesgue measure and N(f,A, y) :=

|{x ∈ A : f(x) = y}|.

A.2 Some results in Measure Theory

In this section we enunciate some results on Measure Theory which are required to understand the

convergence of some counting measure in Chapters 1 and 3. The proof of the following lemmas

can be found in the Appendix D of [15].

Definition A.4:

Let (µk)k∈N be a sequence of finite Borel measures in X. We say that (µk)k∈N weakly converges to

a measure µ if for every ϕ ∈ Cb(K) we have that

lim
k→+∞

∫

X

ϕdµk =

∫

X

ϕdµ.

Lemma A.5 (Lemma 5.5 in [15]):

Let µ and (µk)k∈N be finite Borel measures on a compact metric space K. Suppose that there

exists, for each k ∈ N, a finite collection Qk of Borel subsets of K such that cover µ-almost all of

K and satisfying the following properties:

i)
∑

Q∈Qk

µ(Q) = µ(K),

ii) lim
k→+∞

max
Q∈Qk

diam(Q) = 0,

iii) max
Q∈Qk

|µk(Q)− µ(Q)| = o

(

1

|Qk|

)

.

Then µk weakly converges to µ.

Given a measurable space (X,µ), we can “push” the measure µ into a measurable space Y by a

measurable function from X to Y as follows.

Definition A.6:

Let µ be a measure in a space X, and g : X → Y me a measurable map. We define the pushforward
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measure g#µ by letting

g#µ(A) := µ(g−1(A)), for every A ∈ Y.

Lemma A.7 (Lemma 5.6 in [15]):

Let K be a compact space and (µk)k∈N be a sequence of finite, Borel measures on K weakly

converging to a finite Borel measure µ. Let X be a metric space and hk : K → X be a sequence

of continuous mappings converging uniformly to h. Then (hk)#(µk) weakly converges to h#(µ).
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