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Abstract

In this Thesis we investigate properties of certain commutative differential graded algebras natu-
rally associated to some submanifolds of a infinite Jet manifold which is determined by a finite
system of finite-order PDEs, particularly those inspired by the study of linear gauge complexes and
by one-forms associated to equations of pseudo-spherical type. More explicitly, we identify linear
gauge complexes as a particular type of certain twisted complexes and we will generate Sullivan
decomposable algebras using the hierarchies of equations of pseudo-spherical type. Finally, we
will relate this process with the Apy, functor and spatial realization functor, taking advantage of its
important properties which relate Sullivan algebras to topological spaces.

This work was funded by the Mecesup2 project PUC0711.
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Introduction

Dennis Sullivan in [25] defined a Sullivan Decomposable algebra as a free commutative differen-
tial graded algebra (cdga) generated by a graded vector space V = {V'},>( of the form (AV,d),
where the differential satisfies the condition dV C AV=2V. Sullivan also proved that this notion
can be described in terms of a Lie algebra and a sequence of twisted cohomology classes.

Subsequently he refines this notion and defines a Sullivan minimal algebra free commutative diffe-
rential graded algebra generated by a graded vector space V', which admits a well-ordered homo-
geneous basis {v, },cr compatible with the degree [that is, if 8 < «, then |vg| < |v,| in which |V, |
denotes the degree of V.] and such that the differential d satisfies d(v,) € AV, for each a € I,
where AV, denotes the subspace of V' generated by {vg}s<a.

Inspired by the construction of De Rham complex of differential forms on a manifold, Sullivan
introduces the so-called minimal model of a given topological space. For this purpose, first he
builds the cdga of polynomial differential forms Apy(X) of a given topological space X. Then, for
any cdga A such that H°(A) = Q Sullivan builds its minimal model, this is, a quasi-isomorphism
p: (AV,d) — A where (AV,d) is a Sullivan minimal algebra. The minimal model of X is, by defini-
tion the minimal model of Apy,(X). As show in[7], Ap(X) encodes important (rational) homotopic
information of X

The purpose of this paper is to identify properties cdga’s generated by differential equations, par-
ticularly those related with the study of linear gauge complex (see [12] and [13]) and differential
equations of pseudo-spherical type (see [17], [19] and [20]). These two theories allow us to gene-
rate Sullivan decomposable algebras, minimal Sullivan algebras and minimal models. We interpret
these algebras as determining (via the functor Apy) topological models for differential equations

The thesis is organised as follows:

Chapter 1.

This chapter is devoted to studying in detail some notation and results about graded algebras and
algebraic systems of coefficients in a cdga. These structure are needed to describe the main no-
tion of a Sullivan decomposable algebra and its relation to twisting matrix and twisting cohomology

in hom version.

Chapter 2.

We introduce the definition of a Sullivan minimal algebra, and we also consider one of the most
important concepts in rational homotopy theory, the notion of minimal model of a cdga. The ex-
istence of a minimal model is guaranteed by Sullivan’s Theorem [25]. We remark that in spite of
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its important a fully general proof of Sullivan’s theorem is hard to find in the literature. This is why
we have decided to present one in full detail. We give the definition of extensions of a dga, which
permits us to prove Sullivan’s theorem in full generality, we present a detailed proof following [25],
[8], [10], and [15]. We remark that spite of its importance a fully general proof of Sullivan’s theorem
is hard to find in the literature. This is why we have decided to present one in full detail. We finish
this chapter relating this demonstration (in the case that the homology of the cdga is of finite type
i.e., all homology space are of finite dimension) with the twisting matrices and twisted cohomology,
such a relation is possible since a Sullivan minimal algebra is a Sullivan decomposable algebra.

Chapter 3.

The third part of the thesis contains our next main result: We prove that the horizontal Gauge
cohomology studied for Marvan in [12] and [13] is the twisted cohomology with coefficients in g
a lie algebra. For this purpose, we study basic facts about Geometry of Infinite Jet manifold and
the Variational Bicomplex. Furthermore, since the linear Gauge complex use g-valued differential
forms as elements and considers submanifolds of a infinite Jet bundle determined by PDEs, we
introduce the concept of g-valued differential forms in the second section, and in the third section
we present some basic constructions about submanifolds of infinite Jet manifolds determined by a
finite system of finite-order PDEs, following the works of Anderson and Kamran in [2] and Reyes

in [21].

Inathe last section we give an example of Marvan [12] about the nonlinear Klein-Gordon equation
u

0xdy
a twisting matrix and we give a element that satisfies the Maurer-Cartan condition by the vertical

g(u), for which he finds an sl(2)-valued zero curvature representation, and we generate

differential.

Chapter 4.

We apply our results to the construction of twisting matrices, and we generate Sullivan decompo-
sable algebras by certain forms determined by a manifold of pseudo-spherical type on a subman-
ifold of a infinite Jet bundle. We use the Burgers’ equation and Sine-Gordon equation (Examples
that appear in [18]) and we interpret our results as a way to generate Sullivan decomposable alge-
bras. We also introduce the notion of gauge transformation, we show that these transformations
can be used to obtain new twisting matrices, and also that the Sullivan decomposable algebra
generated are not necessarily isomorphic to the original.

Finally, we present a Sullivan decomposable algebra generated by a hierarchy of pseudo-spherical
type using twisting matrices, this allows us to generalize the construction of algebra generated
by a single equation. We close our work with a short section about the functors, Apy and the
spatial realization of a cdga, and we relate its important properties with our study of Sullivan
descomposable algebras generated by manifolds of pseudo-spherical type.



Chapter 1

Preliminaries

In this chapter, we first include some notation and basic facts on graded algebras. This mate-
rial is required to introduce the notion of Sullivan decomposable algebras, also called by Sullivan
in the article [25] minimal algebras, which are determined by a Lie algebra and a sequence of
twisted cohomology classes. We also consider an algebraic system of coefficients in a commu-
tative differential graded algebra [9], and afterwards relate this notion to twisting matrices and
twisting cohomology in tensor and Hom version.

1.1 Graded module over aring &

Definition 1.1.1. A (non-negatively) graded module over a ring k is a family of modules over k :
M = {M*};>0, indexed by non-negative integers. Elements belonging to M* are called homoge-
neous elements of degree i, and if € M*, we denote its degree as |x| = i. We say that M is
concentrated in degrees i € I if M =0, i ¢ I, in this case, we write M = {M*};c;.

We will consider some typical constructions of graded linear algebra. We always assume that
M = {M"};>¢ is a graded module.

1. The direct sum of two graded modules M, N over the same ring, is the graded module
M @ N with the grading: (M & N)" = M" & N".

2. A graded submodule B C M is a graded module B = {B"},;>¢, such that, for all i > 0, B
is a submodule of M.

3. Given a graded submodule B C M, the quotient module of M by B is the graded module
M/B = {M*?/B%};>0 with |z + B'| = |z|.

4. The tensor product of two graded modules M, N over the same ring, is again a graded
module whose degree r component is given by:

(M@N) =  MP N
ptg=r

5. A linear map of degree i between graded modules f: M — P is a family of linear maps
f7: MJ — NIt Also, each linear map f determines graded submodules:

Ker(f) C M and Im(f) C N, where (Ker(f)) = Ker(f?) and (Im(f)) = Im(f7~%).

6. Hom(M, N) is the graded module whose elements of degree i are the linear maps from M
to N of degree 1.



In particular, if M (7) is the graded module defined by

N VL
M(i) =

0, otherwise,

then, M (i) is concentrated in degree i. And M = B, M(:); it is usual to write M = €P,, M?.
It is important to note there is no addition defined for M* and M/ if i # j; when M is seen as the
direct sum M = @,., M" the addition z + y is always defined as a formal sum.

If k is a field and M is a graded module over k, we say that M is a graded vector space; M is
said to be of finite type if each M is finite dimensional. A graded vector space is finite dimen-
sional if each M is finite dimensional and M is concentrated in finitely many degrees. In this
case dimM =, dimM".

Definition 1.1.2. A differential on a graded module M s a linear map d,,: M — M of degree
1, for which d*** o d% = 0 for any n > 0. We call (M,d,,), or simply M abusing of language, a
differential graded module (dgm for short).

A dgm is also known as a cochain complex. Any differential graded module (M, d,,) has an
associated graded module H (M, d,,) defined by:
H"(M,d,,) = Ker(dy,)/Im(dy, ), for each n>1 and H°(M,d,,) = Ker(d%,).

The elements of Ker(d?,) are called n-cocycles and the elements of Im/(d?,) are called n-coboun-
daries. The graded module H (M, dy) is called the cohomology of M.

Note that Hom (M, N) has two structures of dgm:

(Hom(M,N),dy,), where dy,,.(f)=dyof, } (1.1.1)

(Hom(M,N),dy,.), where dy..(f)=dyof—(—D)fod,.

We will see in Example (1.3.2) that d,,.,, has an useful property which d,,,,. does not always satisfy.

1.2 Commutative differential graded algebras

Definition 1.2.1. A graded algebra A is a graded module equipped with a linearmap A® A — A
of degree zero, called multiplication and defined by x @ y — xy, together with an identity element
1 € A%, such that for all z,y, z € A:

(zy)z =2z(yz) and lz =2zl ==z.
A graded algebra A is commutative (in the graded sense) if yz = (—1)1*ll¥lzy for all z,y € A. A

left ideal I of A is a graded submodule, such that if z € A and y € I, then xy € I; aright ideal is
defined analogously, and we refer to a two sided ideal as an ideal.



Examples 1.2.1.
1. Given A and B graded algebras, the tensor product A® B admits a graded algebra structure.
We define the multiplication as

(a@b)(a V)= (-1 laa’ @ bb', for a,bc A and d',b' € B. (1.2.1)
Also, we can define other multiplications as:
(a®b)(a @b)=ad @bV or(a®b)(a @b)=daxbb.

The sign convention in (1.2.1) ensures that the tensor product of two commutative graded
algebras is also commutative.

2. The ring k can be regarded as a graded algebra concentrated in degree 0, in the following

k, ifn=20
k" =
0, ifn#0

3. LetV be a graded vector space; the tensor algebra of V is defined by

way: k = {k"},>0 such that:

V)=@T1"(V), where T°(V) =k, and T"(V) =V @---@V forr > 1.

r20 r—times

The multiplication is given as follows: ifx € T"(V) andy € T'(V), thenxy = x@y € T"T{(V);
the identity is 1 € T°(V), and the degree of a generic elementv, @ --- ®wv, € T" (V') of word
length r is defined to be Z |v;]. If (T"(V'))™ denotes all elements of degree n in T"(V'), then

the degree n component ofT( )is(T(V)" = @,5o(T"(V))".

4. The elements = @ y — (—1)1*1lly ® 2, with = and y homogeneous elements of V, generate
an ideal I in T(V). Thus, the quotient A\V = T(V')/I inherits a structure of graded algebra,
which is commutative by construction; it is called the free commutative graded algebra on
V. We denote its multiplication by x Ny for xz,y € AV. In particularv Av = 0 if |v| is odd: in
fact from the commutativity of AV, v Av = (—1)!*lI*ly v, hence 2v Av = 0 (here we consider
k a field of characteristic different from 2).

We may write AV = @,~,(A"V) in which A"V = =n(T"(V)) with =: T(V) — AV the cano-
nical projection. Note th:at A"V stands for all elements of word length r. It will cause no
confusion with the notation (AV)", which stands for all elements in AV of degree r. Let us
denote AV by A(v,,v,,...) if{v,,v,,...} is basis of V.

5. LetV be a graded vector space concentrated in degree 1 (or in an odd degree). Then, we
can construct AV = T(V)/I, the free commutative graded algebra on V' as above. We note
that I is the ideal in T(V') generated by the set of elements of the formv @ v forv € V. In
fact, by construction I is generated by elements of the form z @ y — (—1)1*IIvly ® x with z, y
homogeneous elements in V' (since V is concentrated in degree 1, it suffices to consider the
elements of degree 1), in particular for x = y with |x| = 1, we obtain x ® x € I; now if we



consider the ideal generated by elements of the form v @ v forv € V, then if x,y € V with
|z| = |y| = 1, we have (x + y) ® (v + y) € I, and therefore

(z+y)@@+y) —rzr+tyRy=2Qy+tyxzcl.

So when V is a (not graded) vector space then we can consider it as being concentrated
in degree 1. The corresponding AV is known as the exterior graded algebra of V, and
the multiplication A is called the wedge or exterior product. If we consider the subspace
L(V)=INT"(V) then A"V = T"(V)/I.(V).

We also observe, after [26], that the Universal property of AV establishes a natural isomor-

phism (A"V)* = A, (V) where A, (V) is the vector space of all alternating r-multilinear maps,
that is, the space of r-multilinear maps

h: VxVx---xV-o>R
N————
r—copies
such that for all o in the permutation group S,: h(ve(1y, - - -, Vo)) = (sgno)h(vy,...,v.), in
which sgno is the sign of o.

On the other hand using a pairing we can establish an isomorphism between A" (V*) and
A" (V)*, and so we have an isomorphism A" (V*) =2 A, (V).

Definition 1.2.2. A morphism of graded algebras o: A — B is a linear map of degree zero such
that p(zy) = p(x)p(y) forallx,y € A and (1) = 1.

Definition 1.2.3. A derivation of degree i in a graded algebra A is a linear map d: A — A of
degree i such that:
d(zy) = d(z)y + (—1)1®lzd(y), forall z,yec A

The last equality when i = 1 is called the graded Leibnitz rule.

Any linearmap f: V — A from a graded vector space V to a graded algebra A extends to a unique
morphism f of graded algebras:

fi T(V) - A
@y — f(@)f(y)

and, any linear map g: V' — T'(V) of degree i, extends to a unique derivation ¢ of degree i in T'(V)
by:
g: T(V) —= T(V) (1.2.2)
rey — g@)@y+(-1)lzegy).

Furthermore, let us assume that A is a commutative graded algebra and V' a graded vector space:
Any linear map f: V — A of degree 0 extends to a unique morphism fof commutative graded



algebras, f:AV — A, and any linear map g: V. — AV of degree i extends to a unique derivation
of degree i in AV.

Definition 1.2.4. A differential graded algebra (dga for short) is a graded algebra A equipped
with a differential d,: A — A (where A is considered a graded module) which is also a derivation
of degree 1, this is d, satisfies the graded Leibnitz rule:

da(zy) = da(z)y + (-1)®lzd,(y), forall z,ye A (1.2.3)
and moreoverd, od, = 0.

We often denote a cdga A by the pair (A,d,). If A is commutative, we call it a commutative
differential graded algebra (cdga for short)

A morphism of (c)dga’s ¢: (A,d,) — (B,ds) is a graded algebra morphism such that fd; = d.f.

Let A be a (c)dga; a graded submodule which is closed under the maps multiplication and differen-
tial is called a subalgebra of A. So Ker(d,) is a subalgebra of A and I'm(d,) is an ideal of
this subalgebra, hence H(A,d,) = Ker(d,)/Im(d,) is also a graded algebra with multiplication
[a][a'] = [ad'] for a,a’ € Ker(d,). We will say that a is a cocycle if a € Ker(d,). A morphism f of
(c)dga’s induces a homomorphism in cohomology:

H(f): H(A,d,) — H(B,ds)
[z] = [f(z)]
Definition 1.2.5. Amorphism f: (A,d,) — (B,d) between (c)dga’s is called quasi-isomorphism
if the induced homomorphism in cohomology H (f) is an isomorphism.

Examples 1.2.2.
1. Let(A,d,) be adga, thenk c H°(A,d,). Indeed, by the graded Leibnitz rule, for the identity
element 1 € A° we have that d(1) = d(1.1) = d(1) + d(1), therefore d(1) = 0 (here we
consider k a field of characteristic different from 2 ).

2. Given two (c)dga’s (A,d,) and (B,d;), then A ® B is also a (c)dga with differential
dla®@b) =di(a) @b+ (—1)l"a @ dys(b)
and multiplication given in (1.2.1).
3. Thering k is a cdga with differential the null map.

4. Let X be a smooth manifold; the space of differential forms, denoted by Q(X) = {Q%(X)}i>o,
where Q'(X) denote the real vector space of all smooth i-forms on X, with the exterior
product N and exterior differential d (see [26]) is a cdga. The cohomology of this cdga is
called the deRham cohomology, the i-th deRham cohomology group of X is denoted by
Hip(X) = Ker(d')/Im(d'™1).



5. Adifferential on T (V') is completely characterized by its values on V' and the graded Leibnitz
rule, since the restriction of d to V' is a linear map of degree 1 and so it extends to a derivation
inT(V), as explained in the expression (1.2.2)

6. As in the previous example, a differential on AV is completely characterized by its values on
V' and the graded Leibnitz rule. We call the cdga (AV, d) the free commutative differential
graded algebra (free cdga) on V, with differential d.

Below, we present two properties of the differential in (AV, d):

| Ifw e (A"V)™ (recall that A"V stands for all elements in AV of word length r and (AV)"
stands for all elements in AV of degree n), then d(w) € (A="V)"+1L,
We observe that, (A°V)° = k and (A°V)" = {0} ifn > 1. So, forw € (A°V)",
then d(w) € (AV)"+1 = (AZ°V)"+! and for w € (A'V)", then d(w) € (AV)"+!, as
(A°V)n*! = {0}, we have d(w) € (AZ1V)"*L. Now, ifw = = Ay, where z € (A*V)? and
y € (A'V)4 (this is =,y are homogeneous elements of V) then, we obtain of the above
that d(w) € (A=2V)P+atl jn fact d(w) = d(z) Ay + (=1)1%lz A d(y).
By induction on the length of the word, and equality (1.2.3) and the linearity of d, this
property is obtained.
So, we have that if w € (A"V)", then d(w) = (d(w)), + (d(w))rg1 + - + (d(w))m, for
some m € N where (d(w)); € (A'V)"*, forr <i < m.

Il The differential d can always be written as a sumd = d,+d, +d,+---+d, forsomep € N,
where d, is a derivation of degree 1.
To prove this property, we consider w € (AV)", according to the length of words that
form w, then w = wo + wy + - - - + w; for some j € N, where w; € (A*V)" for0 <i < j.
Hence, d(w) = d(wo) + d(w1) + - - - + d(w;) and by the first property we have:

&
£
I
&
=
(=}
=
+
=3
=

0)1 + -+ d(wo)pe+
d(w1)1 +d(wi)g + -+ d(wi)p, + -+
d(w;); +d(w1); + 1+ + d(wj)p,

J

Letp = max{po, ...,p;}. We define d(w;)p,+» = 0, for p; < p; +n < p and according to
the columns of the previous sum, we denote:

do(w) = d(wo)o + d(w1)1 + -+ + d(w;)
dl(w) = d(w0)1 + d(w1)2 + -+ d(wj)j_H,

d,(w) = d(wo)p + d(w1)p + -+ + d(w;) j+p

Then, d(w) = do(w) + d,(w) + - -+ + d,(w). In particular for w = w, this is, w is formed
by a element of length t, then d,(w) = d(w);++¢.



Furthermore, we can define the following linear maps:
d,: AV — AV
w = d(w)
so, d, increases the of length word by exactly i, this is, d,(A"V) C A"V,

Also, d; is a derivation of degree 1, since, for x,y homogeneous elements of V we have:

di(z Ny) = (d(x A y))ite
(d(@) A Ytz + (1)@ A d(y))iye
(d(@))isr Ay + (D)2 A (dy)iga

(

di(z) Ny + (=1)lz A di(y).

Now, if (A,d) be a free cdga, then we call d, the linear part of the differential and d, the
quadratic part of the differential.

7. Let(A,d,) be a dga; the opposite differential graded algebra (A°P? d) is the dga defined
by A°P? = A, d = d, and multiplication given by a e, b = (—1)llelba, for homogeneous
elements a,b € A. So, d(a e,,, b) = d(a) e,,, b+ (—1)l%la e, d(b) and if A is commutative,
then (A°rP,d,) = (A,d,) as cdga’s.

1.3 Modules over a differential graded algebra

Definition 1.3.1. Let A be a graded algebra. A (left)A-module is a graded module M over k
together with a linear map of degree zero A ® M — M, x ® m — xm, such that z(ym) = (xy)m
and1lm =m, forallx,y € Aandm € M.

We can define a (right)A-module in an analogous manner. We say that M is an A-module if M
is a (left) A-module and a (right)A-module such that ma = (—1)!*l™lzm, forall z € Aand m € M.
Also, An A-module M satisfies the following equalities, for all z,a € Aand m € M:

z(ma) = (=1)m(za)ym = (—1)lellml(—1)l=alimlp (2q) = (=DM (ma)a = (2m)a.
Now, each (left)A-module M can be seen as a (right) A°PP-module, with linear map
M@ APP 5 M, m®z— me=(—1)FMmgm,

Moreover, from Example (1.2.2-7) we see that if A is a commutative graded algebra, the (left)A-
module M is also a (right) A-module; in this case M is an A-module.

Examples 1.3.1.
1. Let A be a commutative graded algebra. An A-linear map f: M — N of degree i between
(left) A-modules M and N, is a linear map of degree i of graded modules such that

flam) = (=1)l*Mlgf(m), forall ac A and m € M.



These maps form a graded submodule Hom (M, N) C Hom(M, N). Moreover Hom o(M, N)
is an A-module with operation given by the linear map:

A® Homa(M,N) — Homa(M,N)
a® f = af: M — N

m = af(m).

2. Let M be a (right)A-module and let N be a (leff)A-module; then we define the module
M®, N = (M ® N)/I, where I is the submodule of M @ N spanned by elements of
the formma ®n —m ® an witha € A. So M @, N admits a structure of (left) A-module with
operation given by the linear map x(m ®, n) = (—1)I™*lmz @, n = (=1)I™*lm @, 2n for
zxeAandm®,n € M ®, N. If Ais commutative we can define z(m ® , n) = xm &, n,
since xm = (—1)I"l=lmz,

Definition 1.3.2. Let (A,d,) be a dga. A (left)A-differential graded module ((left)A-dgm for
short), is a (left)A-module M together with a differential d,, in M satisfying:

dy(am) = ds(a)ym + (1) ad, (m), for ac A and m € M. (1.3.1)

Moreover, if M is an A-module, we call M an A-differential graded module (A-dgm for short).
Note that if M is a dga, then M is itself a (left)M-dgm and (1.3.1) is equivalent to the property of
the differential (1.2.3).

If (A,d,) is a cdga, we have:

)l (dy (@) m + (=1)1*lady (m)
)IaHml ((fl)(lalﬂ)lmlmdA(a) + (fl)IaHIaI(ImIH)dM(m)a)

dy(ma) = (—
= (7
dy(m)a+ (—1)‘m|m d,(a).

1
1

A morphism of A-dgm’s, f: (M,dy) — (N,dy) is an A-linear map of degree 0, such that
dy f = fdx.

Examples 1.3.2.

1. Let us recall that we pointed out in (1.1.1) that Hom(M, N) has two differentials, d.,,. and
dy10m- We remark that the map d,.., is a differential for Hom (M, N) butd,,.., is not, because
dy o f does not necessarily belong to Hom (M, N). Indeed,

dy o flam) = dx((=1)*Vlaf(m)) = (=1)Vld,(a) (f(m)) + (=) Vad (f(m)),
while, (—1)lelldneflg (dy o f(m)) = (=1)!U Vg dy (f(m)).

2. Let A be acdga and letV be a graded vector space over a field k. Then A® V' is an A-dgm.
It is enough to define the linear map x(a®v) = za®v and the differential d(a®v) = d,(a) @v
forre Aanda®@ve AR V.
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3. Let A be a cdga and let V be a graded vector space over a field k concentrated in degree
zero. We observe that End(V) = Hom(V,V) is a graded algebra concentrated in degree
zero with multiplication given by composition of maps. Then A® End(V) is a graded algebra
with component of degree n given by

(A® End(V))" = A" @ (End(V))? = A" @ End(V)
and with multiplication defined by:
(a® flo(b®g)=ab®go f.

We can define a trivial differential on End(V'), that is, dg,.(f) = 0, for all f € End(V'); it
follows that A ® End(V') has differential d(a ® f) = d.(a) ® f. Thus, A® End(V) is a A-dgm
with operation given by the linear map

z(a® f)=za® f.

1.4 Algebraic Systems of Coefficients

1.4.1 Tensor version of the cohomology of a module with values in an algebraic system of
coefficients

Definition 1.4.1. An algebraic system of coefficients in a cdga over a field k A = {A'},>¢ is a
pair (8, V) consisting of a k-vector space V (a graded vector space concentrated in degree zero)
and an element ©, of degree 1, in the A-dgm A ® End(V') such that:

d® - 606 =0. (1.4.1)

The dimension of the system is the dimension of the vector space V.

Note that the element © € A' ® (End(V)) can be expressed as:

0=Ya.of. (1.4.2)

a€cA

where |a.| = 1, f. is a linear function of V into V and A is a finitely indexed set.

Thus, recalling Example (1.3.2-3) we have © 0 © € A! ® (End(V)) and dO© € A! @ (End(V)), we

have:
000=(> a.®f)o(D a;®f) =Y > a.a,® fs0 fa,
a€EA BEA a€A BEA
A0 =Y " da(a.)® f..
a€EN

Hence, if we write © as in the expression (1.4.2), a system (©, V') can be seen as a linear map of
Vinto A'®V,
0: V - AV
v ) a.® fu(v),

aEN

11



and we can also consider © o © and d© as the linear maps:

BoO: V — A2V
v Y Y 4.0, ® fpo fu(v),
aEN BEA

o: V. - A2V
v 3 da(al) ® fo(v).

a€A

Now, let (©, V') be a system of coefficients on A and let (Y, d, ) be a A-dgm; then the module Y @ V'
inherits a structure of A-dgm with operation and differential given by the following linear maps,

a(ly®v) =ay v, }

(1.4.3)
do(y ®@v) = dy(y) @ v+ (-1)1Y'W, 0 O(0),

where for a given element y € Y, U, is the linear map of degree |y| between graded modules
defined by:
U,: AQV — YV
a®@v — yaRo.

Moreover ¥, is an A-linear map of degree |y|, and satisfies:
Uy =V, +,; forz,y €Y,
Uy, =AV,; forAekandyc,
Uy, = bV,; forb e A.

We write ¥, (a ® v) = y(a ® v) and we prove that d, is a differential. In fact:

de 0 de(y ®v) = do(dy(y) ®v + (*l)lqujy °©(v))

= dy(dy(y)) @ v+ (=)W () 0 O() + (=1) " (do (T © O(v)))

— (—1)llHig, (Z“ ® fu(v ) \y\d(Za ® falv )

aEA a€A

|y|+1(zd Ja. ® f.( )) (- 1)\y‘<2(dy(yaa)®fa(v)+

a€A aEN

(=)0, o0 @(fa(v)))
“DPH(Y dy ), ® £.0) + (DX (dv () © L. (0)+

aEA a€A

(~1)"yda(a.) @ () + <—1>'y‘“yaa@<fa<v>>>)
= > yda(a) @ fu(v) = Y ya.O(fu(v)
aEA acA

= y(dO(v) — © 0 O(v)) (1.4.4)
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The last equality holds because:

5 0,000 = X . (X ase £l£.0)

acA a€EA BEA

= Z(Z amaﬁ & f/i(fa(v)))

aEN BEA

—000(). (1.4.5)

Thus, the equation de o de = 0 reduces to equation (1.4.1) above. Moreover d, does satisfy the
equality (1.3.1):

do(a(y ® v)) = de(ay © v)
=dy(ay) @ v + (1)1, 0 O(v)
= (da(a)y + (=1)a(dy (y)) @ v+ (D)W, 0 O(0)
= da(a)(y ®v) + (~=1)lad, (y) @ v+ (-1)¥a ¥, 0 O(v)
=da(a)(y®v) + (-1)1"ade(y @ v).

The cohomology of the A-dgm (Y ® V, d) is called the cohomology of (Y, d) with values in the
system (0,V) (tensor version).

1.4.2 Hom version of the cohomology of a module with values in an algebraic system of
coefficients

Instead of the differential module (Y ® V,ds), we now consider the module Hom(V,Y"). It also
inherits a structure of A-dgm:

(ag)(v) = ag(v), } (1.4.6)

de(g9) =dy og— Py00,
where @, is the linear map of degree |g| on A ® V' given by:

¢, AV — Y
a®v — ag(v).

This map satisfies the following properties:

Dy =P, + Uy, forg,h € Hom(V,Y),
D)y = A0y; for A€ kand g € Hom(V,Y),

Doy(z @) = (~1)ll1ad, (z @ v); forac Aandz®@ve A V.
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Furthermore:
de 0 de(g)(v) = (de(dy 0 g — P4 00))(v)
=dy ody 0g— Payog0O(v) —dy 0Py 00(v) + P00 0 O(v)

= —Bayog (D e @ fa())=dy 0 By(D aa ® fa(v))+Pa,00 (D aa ® fu(v))

aEA a€EA a€A

= > (—aady 0 g(fa(v)) = d (a0g(fa(®)) ) + (3 a2 © @, 0 (£ (1))

a€cl aEA

= (—ady 0 g(fa(v)) = D [da(aa)g(fa(®)) + (=1)'*aady o g(fa(v))]+

aclA aEA
> an®y (3 as @ fo(fu0)
aEA BEA
:—Z (da(aa)Pg(1® fal(v +Zzanaﬁ¢‘ (1® fg o fa(v))
a€EA aEA BEA
:¢g(—2(dA (ao) fo +Zzaaaﬁ (fs © fa(v)))
a€EA a€AN BEA

= Dy (—dO(v) + © 0 O(v))
= 0.

Thus, the equation de o do = 0 reduces to equation (1.4.1) above. Moreover, we can check that
(1.3.1) also holds:

do(ag)(v) = (dy © ag — ®ag © ©)(v)

= dy (ag(v)) = Pag (D aa @ fu(v))

acA

= da(a)g(v) + (=1)"lady (9(v)) = Y (~1)"**"la®y (a0 © fu(v))

a€EA

= da(a)g(v) + (—1)"a (dy (g(v)) — B4 0 O(v))
= (da(a)g + (-1)"ladeg)(v),

The cohomology of the A-dgm (Hom(V,Y'),d,) is called the cohomology of (Y, d, ) with values
in the system (©,V) (Hom version).

Remark 1.4.1. The graded module A @ End(V') also has a multiplication defined by:

(e f)b®g)=ab® fog.

If we consider this multiplication, for © as in (1.4.2) we have

000=0"a.0f)oD a.®f)=> > aa.®fiof..

BEA a€A BEA aEA
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We can define an action and a map de as in (1.4.3), but then the equality (1.4.4) becomes
de 0 de(y ®v) = y(dO + © 0 O)(v),

because the equality (1.4.5)is Y a,O(f.(v)) = —000. So, we could change the Definition (1.4.1)
aEA

replacing the equality (1.4.1) by d® + © o © = 0, and we would obtain analogous cohomologies of
(Y ®V,do) and (Hom(V,Y),do).

1.4.3 Twisting matrix and twisting cohomology
Now we consider the element © appearing in the Definition (1.4.1) as a linear transformation

©:V — A' @ V such that O(v,) = . 6., ® v;, where dim(V') < oo with {v;};c; a basis for V and
i€l

0.. € A, Infact: if dim(V) = n < oo and if {v,,v,,...,v, } is a basis for V, then £, (v,) = 3 A0,
=1
where Ay, € k, and hence
O: V - AV
Ve D Y AL Q0
i=1a€cA
for a, € A! as in the expression (1.4.2). We denote by 0,, = > a, A2, 50 O(v,,) = > 6., @ ;.
a€EA i=1
Now, using the equality (1.4.5):
©oO(vy) = > > anag® fa(falvi)) = > > aaaﬂ@’fﬁ(z)\ v;)
aEN BEA acA BEA
=2 X aaaﬂ®ZA 50)= X T awap® Y. ZAfAi s
aEN BEA aEN BEA i=1j=
=2 2 aa gAY A @ v Z Z > ey, D aghl ®v,
i=1j=1a€A BEA i=1j=1a€cA BEA
= > > b, ®vy,
i=1j5=1
and
dO(,) = X dalaa) ® fa(ve) = 22 da(aa) ® Z Anvs = Z da( 22 %) ®@vi =32 da(0) ® ..
acA a€EA aEA i=1
We can certainly define by any linear transformation ©: V — A! @ V the following maps:
OoB: V — A2V doO: V. — A2V (1.4.7)
Ve = > 300, ®v; ve = S da(0) @ ;.
i€l jel i€l
= > 0..0(vi)
iel

This motivates the following definition:
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Definition 1.4.2. Let A be a cdga and V' a vector space of finite dimension. A linear transformation
0:V — A ®V is called a twisting matrix if d© — © 0 © = 0.

The following theorem states that if V' is a vector space of finite dimension, an algebraic system of
coefficient determines a twisting matrix and the converse is also true.

Theorem 1.4.1. Let A be a cdga and V' a graded vector space concentrated in degree zero with
dim(V) < co. Then (©,V) is an algebraic system of coefficients in A if and only if © is a twisting
matrix.

Proof. We observed at the beginning of this subsection that © holds the maps in (1.4.7) and
therefore dO© — © 0 © = 0. Thus, an algebraic system of coefficients determines a twisting matrix.

On the other hand, let ©: V — A! ® V a linear map such that O(v,) = 3 6,, ® v;, and assume
=1
that this map satisfies (1.4.7). We want to express © as in the expression (1.4.2), such that
O(v,) = > a, ® f.(vg). Thus, we can consider A =1 x I, andforl € I, i € I we define a,;, = 0,,
a€EA

v, If k=I,
fii(vg) =
0, if k#£L

and the linear map given by

Therefore © = > a,® f, and O(v,) = > a; @ fri(ve) = > 0, ® v,. Thus, a twisting matrix ©
aclxI i=1 1=1
determines an algebraic system of coefficients in A, (©,V).

O

As in the previous section, if (Y, dy) is an A-dgm, then the module Y ® V inherits a structure of
A-module via the linear map of degree 0 appearing in (1.4.3). Moreover, Y ® V is a A-dgm with
de as in (1.4.3) by the following result:

Theorem 1.4.2. d, is a differential onY @ V if only if © is a twisting matrix.

Proof. We note that:

do o do(y ® vi) = de (dy (y) ® v, + (—1)"1, (O (vy)))

= (=) @lwy, () (O(wi) + (—1)"de (D ybi @ v:)

iel

= (DY e )0 @ v+ (<)M (D (00) © 004 (<) W, (O(02)))

iel i€l

= y(ZdA(O,”-) Qv; — ZZG’M@U ®Uj)

i€l i€l jel

= y(dO(vi) — © 0 O(vi)).
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Now, if de o de = 0 then y(d® — © 0 ©) = 0 for all y € Y; in particular if y = 1 € Y?, then
d® — 0B 060 = 0 and O is twisting matrix. On the other hand, if © is twisting matrix then de, 0 dg = 0.
Moreover d,, satisfies the condition de (a(y ® v)) = d.(a) (y @ v) + (=1)l%ads(y @ v) as before.

O
The cohomology of the A-dgm (Y ® V,d,) is called the twisted cohomology of Y with coeffi-
cients in V (tensor version); we denote it by Hg o(Y; V).

If (Y, d, ) is an A-dgm and we consider the module Hom(V,Y) = {g: V — Y : g is a linear map }
(since V is concentrated in degree zero), via the linear map of degree 0 in (1.4.6), then Hom(V,Y")
has a structure of A-dgm with dg as in (1.4.6), by the following result, analogous to theorem (1.4.2):

Theorem 1.4.3. d,, is a differential on Hom(V,Y) if only if © is a twisting matrix.

Proof. Observe that:
do 0 de(g)(vk) = do(dy 0 g — B, 0 ©)(vy)
= ~®ay o 0 O(v) — dy 0 Dg(O(vr)) + Par, 00 (O(v4))

= =3 budy 0 9) () — o (3 Brg(v)) + 3 01i(By 0 ©) (v2)

= =2 Ouidy (9(0)) = (3 da(Ori)g(ve) + (=) Ouad (9(v:))) + 304 D 013 (v;)

= ®,(—dO(vi) + © 0 O(vy)).

Therefore, if dg 0de = 0then ®,(—d©+0©00) =0forall g € Hom(V,Y); in particular if g = 1 (this
isg(v) =1¢€Y forallv € V), then d® — © 0 © = 0; and if © is twisting matrix then d, o de = 0.
Also d, meets the condition de (ag) = d.(a) g + (—1)!*lads(g) as before.

O

The cohomology of the A-dgm (Hom(V,Y),ds) is called the twisted cohomology of Y with
coefficients in V(Hom version); we denote it by Hyrom,o(V;Y).

The next section, we use the twisting cohomology (Hom version ) to determine a Sullivan Decom-
posable Algebra of finite type and the concept of minimal model, see Theorems (1.5.1), (1.5.4)
and section 2.3.

As we shall see in the section 3.4 and the chapter 4, we will relate the notions of twisting matrix and
twisting cohomology (tensor version) to linear gauge complexes and manifolds of pseudo-spherical

type.
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1.5 Sullivan Decomposable Algebra

To end this preliminary section we enunciate the definition of a Sullivan Decomposable algebra
and its characterization as a Lie algebra and a sequence of twisted cohomology classes. We
recall from Example (1.2.1-5):

Let V = {V'};>¢ be a graded vector space over a field k; then A = AV satisfies that:
A=AV =ka Vo (VOAV) e (VOAVIATV) - (1.5.1)
And forn > 1:
A" = (AV)" = V" © (@11 j=n VA V) @ (@it jun=nV AVIAV @ ... (1.5.2)

Moreover (AV)? = k if and only if V9 = {0}.

Definition 1.5.1. A Sullivan decomposable algebra is a free commutative differential graded
algebra A = (AV,d) which is connected (this is, A° = k) and such that dV C A=2V, where A=2V
stands for all elements of word length > 2.

For instance (A(z,y,2),d) with |2| = |y| = |z| =1landdz =y Az, dy = x ANz dz =z Ay, and
(A(z,y,2),d) with |z] = |y| = 2and |z| = 3, dz = dy = 0 and dz = © Az — y Ay are Sullivan
decomposable algebras. Observe that if A is a Sullivan decomposable algebra then, by Example
(1.2.2-1) ker(d°) = k and H°(A) = k.

The following theorem can be found in [25]. Here we present a detailed version of this result
because its converse will be one of our main objects of study. We will relate it to manifolds of
pseudo-spherical type in chapter 4.

Theorem 1.5.1. A Sullivan decomposable algebra A = (AV,d) of finite type determines a Lie
algebra and a sequence of twisted cohomology classes (Hom version).

Proof. Suppose that A is a Sullivan decomposable algebra (thus, V° = {0}, see (1.5.1); we denote
by A. , the space
Aoy =AVI®---aVF) for k>1,

That is, AL, is the subalgebra of A generated by elements of degree < k.

The proof of Theorem (1.5.1) consists in constructing a Lie algebra by means of the subalgebra
A.,, and in constructing a twisted cohomology class by means of the subalgebras A. , for k > 2.

We first construct the Lie algebra. To this end, let us consider A., = A(V!) and let us fix a
basis {v,}acs Of V1. Then, since A is a Sullivan decomposable algebra, the differential of these
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elements are necessarily of the form
d(v,) = AZv; ANy, (1.5.3)
i<j
where A\, € k and A # 0 for a finite number of indices 4, j such that (i, j) € I x I and i < j, since

v; Av; =0and v, Av; = —v; Av,. We conclude that d(A. ;) C A. ,A_,. We denote by L the vector
space dual of V! with dual basis {v;};c7, and define a bracket in L by:

[,]: LxL — L

o707, i<,
(U?,Uj) = —{vj7vf], if 4 > 7,
0, if i = ;.

where
[v50]: V. — kK

irYj

Vo > AL

a

Now, according to our description of the differential d in (1.5.3), we only have coefficients \,; for
1 < j; therefore, to facilitate the calculations related to the bracket let us denote by

A% ==

37

fori < j. (1.5.4)

The bracket [ , | is a linear map, since if v = > f%v,, then [v},v7](v) = > B*A®, besides, by
acl acl
definition the bracket [, ] satisfies the antisymmetric property. We need to verify the Jacobi identity.

We first observe that [v}, v¥] = > A%vZ, and

ij Yar

acl

CNCAHIES TS BPINED PP RINED PP PP (15.5)

acl acl ael rel

With the notation J := [v}, [vF, vy]] + [v], [v), vf]] + [v), [vF, v7]] and the last equality, we have that

h? ¥i

T =) (AGAL +ARAL FAGAL )Y

acl rel
thus
J(0,) =Y ABAT A AZAT AN (1.5.6)
acl
Therefore

T(,) = QNI 4+ AN + O AL 4D AIA) + ()AL + D AT,

p<i i<q p<j i<q p<h h<q
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We will denote:

J(Wn)jn = — Z A AT, + Z Ala Adno
p<i 1<q

T )i = — 3 AT 43 AL (1.5.7)
p<j J<q

T(Wn)ij == Y ARAL 4+ Y ATRAL.
p<h h<q

Thus,
J(n) = J (Vi) jn + J (V) ni + T (V)i (1.5.8)

On the other hand, we compute:

dod(v,,) = d(z A, A Uq)

r<q

= A (d(v,) Av, — v, Ad(v,))

p<q

= Z /\ZLI(Z Ao, Av) A, — Z)\:;vp A (Z Adv, Av,)
r<q s<t p<q s<t

= Z Z AR v AN, N, — Z Z AL v, ANug A,
s<t p<q s<t p<q

Fori < j < h given, we find the term v, A v; A v, taking into account possible choices of s,¢ and
D, q-
dod(v,)ijh = Z AN v Ny Ay, — Z A AL v, Aoy Ao+

p<h h<q

Z AP v, Av, Aoy — Z ALY Avg A vyt

pji’tih
p<j Ji<q

Z/\m)\p v; Av, Av; — Z)\’,")\q v; Av; A,

pi’ jh iq” jh
p<q p<q
= (Z AN — Z ARALY v Av; A v+
p<h h<q
O AN =S XA ) v, Av, Avj+
p<j J<q
O AT, =N AN ) v, A, A,
p<i 1<q

Thus, equalities (1.5.4) and (1.5.7), imply that:

dod(v,,)ijn = (=J(m)ij — J(M)pi — J(M)jn) v, Av; Av, = J(v,,) v Av; Av,. (1.5.9)

Now, since d is a differential, then d o d(v,.) = 0, and therefore the component d o d(v,.)i;r = 0. In
a similar manner we obtain the following equalities:
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0=d(v,)in; = (J(Um)ni + J(Vn)ij + J(Um)jn) v; Av, Avy, fori <h <y,
0=d(v.)jin = (J(0n)ij + J (V) jn + J(Vn)ni) v; Av, Avy, forj <i <h;
0=d(vn)jni = (=T (W) jn — J(Vm)ij — J(Vo)ni) v; Avy Aw,, forj <h<i
0=d(vn)nij = (=J(V)hi — J(Vn)jn — J(Vm)ij) v Av; Av;, fOrh <i<j
0=d(v,)nij; = (J(Um)jn + T (V) ni + J(Vn)ij) va Av; Avy, fOrh < j <.

Thus, replacing in to equation (1.5.8), we have that J(v,,) = 0, and therefore J = 0.

We now turnto the case k # 1,80 A, = A(VI @ - @ V¥), and we let {z,} s be a basis of V*.
Since d(x,) € A=2V then d(z,) € A'A_, ® A, _,A_,_,, forz;, € V¥; because, by (1.5.2)

(A ) =V ® (@i i1 VIAV) & (@igjin—kt VAVIAV @
. Also, as A, _, is a subalgebra, we conclude that: d(z;) € A'V* + A_, _,, that is, we can write
d(z,)=> 0% Nzg+a;, where a; € AR | and 0%, € A", (1.5.10)
BEB
We regard V* as a graded vector space concentrated in degree zero, and we define a linear
transformation
k. vk o AlgVk

;g =Y 0 @,
BeB

It follows that can write (1.5.10) in the form:
(d|yr —mo©F)(z,) = a,, (1.5.11)
where m is the multiplication in the cdga A, this is

m: AQA — A
TRy = TAY.

Furthermore, we have the following equalities:

0=dod(z,) = 3 d(6*, Aw,) +d(a,)
BEB
= (d ) Az, — 05 Ad(,)) + d(a,)
e (1.5.12)
= Z(d k) Ay — 0%, Zﬁm/\x,—kaﬁ))—kd( ;)
BeEB leB
:Z(d ZekAe’“)Axﬁ—ZefBAaﬂer(aj)
BEB leB BEB

Since A is free of relations, we have:

> (k) - Yok A6k ) nws =0, (1.5.13)

BeB leB
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> =65 Na,+d(a,) = 0. (1.5.14)
BeB

From (1.5.13) we conclude that © is a twisting matrix (with V' replaced by V* and A by A, in
Definition 1.4.2) and we can consider Hom(V*; A- , _,) as a A. ,-dgm with differential dx(g) =
dog—®,00"forallg e Hom(V*; A_, _,) (see 1.4.6 and Theorem 1.4.3).

Finally, we construct a d,» cohomology class. If we consider the linear map fi = d|y+ —m o OF
given by the equality (1.5.11), this is:

fk: vko— Agk71

xr; = ay,
then, from the equality (1.5.14) we have that
dor (fi)(x;) = (do fi. = @5, 0 OF)(z,) = D05 A filws)

BeB

Therefore [fi] € Hy!! oo (VR Ay 1)

O

Now we state the converse of the last Theorem. First we observe that the above proof allows us to
establish a bijection between free cdga’s on V! with dim(V'!) < oo and the Lie algebra structures
on the dual vector space of V!. In fact, as above we denote by L the vector space dual of V!
with dual basis {v; };c;, and we denote the bracket of L by: [v},v](v.) = A, and we define of

differential d by d(v..) := > A%v, Av; and extended by linearity and so that Leibnitz rule is satisfied.
1<J

Therefore, by the Jacobi identity we have J(v,,) = 0in (1.5.6) then d o d(v,,) = 0in (1.5.9).

By the above observation, the following theorem is the converse of Theorem (1.5.3), We construct
a Sullivan decomposable algebra. We consider V' = {V*},>, a graded vector space of finite type
such that V° = {0}, and we denote by V=* the graded vector subspace V=F = {V},.;; we wish

to find a differential d,,, on AV such that it is compatible with d_ , a given differential on AV, this

|S dAV')\VS 1= dg 1.

Theorem 1.5.2. LetV = {V*},~ be a graded vector space of finite type such that V° = {0}. Let
us assume that (AV',d. ,) is a cdga. Then for k > 2 the free commutative graded algebra AV =F
has structure of cdga via the linear maps d. » defined recursively by

dvki Vk — AVS’“

T; = mo @k(xj) + fr(z;)

where {x,} sc p« is a basis of V¥, ©F is a twisting matrix givenby ©%: VF — (AV=R)lgoVF |

k
X — Z 9][3@1:[3
BeBk
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m is the exterior product on graded algebra AV=F givenby m: AV=F@ AV — AVSE
TRy = TAY

and fi.: V¥ — AV=F=Lis such that [fi] € Hyt) o (VE AVSETD),

Moreover AV = |, A(V*2°) is a Sullivan decomposable algebra.

Proof. First we define the linear map d. , and by induction on k we show that (AV=F, d<+) is a
cdga. The case k = 2 is similar to the general case, for this reason we assume that this proposition
is true for £ = ¢ — 1 and we prove that it is true for k& = i.

We define d. ;: V<! — AV=! by
d d,(v), ifveVi, for j<i—1,
 |de), feevt

This is a linear map of degree 1, and therefore d. , can be extended to a unique derivation d_ ,
of degree 1 on AV=’ (see 1.2.2) and this derivation is compatible with differential cfsi, , this is
d- |ay<: = d-,_, and this property can be reduced to d.,

(1.2.3) and since
( V<11 @ @ VJI/\/\V]T

1<r<n 0<j1,...,jr<t—1
Jjit+ir=n

v<i = d-,_,, by the Leibnitz rule

For the last equality see (1.5.2).

Again by the Leibnitz rule the derivation d. , is completely characterized by elements in V=%, since

(AVSHm @ @ VItA - AV
1<r<n 0<j1,...,3r<t
it ip=n

To check that d- , o d-, = 0, it is sufficient to show this property for a basis of V* and since for
ve VIl d, JS (v) =d<;_,0d<,_,(v) =0. Let {z,}sep: be a basis of Vi:

J JS,(a:j) =d. i(mOGi(xj)—Ffi(a:j))

= Z (d< 1(91 )ATs — ejﬁ /\Js 'i(mﬁ)) "‘dg i (filw;))

BeB?
= > (de () Ay =0 A (D 06, Aw,) + fi(w,)) +de (i)
BeEB? vyEB?
= de (O ) Nwa— Y D 0L N0 A
BeEB? BEB! yeB?
= 3 0L A (i) +de (i)
BEB?
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The last equality holds, because ©' is a twisting matrix (see 1.4.7) and [f;] is a class of cohomology
in Hjl o (Vi A(VSi=1); then d. , is a differential and therefore (AV=',d<.) is a cdgaand itis a
Sullivan decomposable algebra. In fact:

fi(v) € (AVEITHHLC AZ2VST and 00, Az, € VIAVI CAPVEY
then d< :(v) € AZ2V =1,
Now we have the linear map d,, : AV — AV defined by d,|,, <+ = JS ., soforveVk
dyy (V) = mo OF(v) + fr(v),

as fr(v) € AV=F-1 and has degree k + 1, then fi.(v) € AZ2V and, m o ©%(v) € VI AVF C A2V,
therefore AV is a Sullivan decomposable algebra.
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Chapter 2
Minimal model

In this chapter we introduce one of the most important concepts in rational homotopy theory, the
notion of minimal model of a cdga. This minimal model is a Sullivan minimal algebra (a special
case of a Sullivan decomposable algebra, see Definition 2.1.2 below) which is quasi-isomorphic
to the original cdga A

The existence of a minimal model is guaranteed by Sullivan’s Theorem of which he presented
a constructive proof. Here we give a detailed proof following [25], [8], [10], and [15]. In these
papers there appear proofs of Sullivan’s Theorem under certain technical assumptions which do
not always hold. For example, in last reference we find the case in which the homology of the
cdga is of finite type and in degree one not zero. We do not make these assumptions. The proof
in [15] is made via “Hirsch extensions”that are a particular case of our definition of extensions of a
dga (Definition 2.1.1). This definition permits us to prove Sullivan’s theorem in full generality. We
finish this chapter relating this demonstration with the twisting matrices and twisted cohomology of
chapter 1.

2.1 Sullivan Minimal Algebra

If V and W are graded vector spaces, we have that
AVeW)=ko(VeW)e{(VeW)A(VeW)}d---

where we recall that (V & W)™» = V" @ W7, this is, if (v,w) € V& W then |v| = |w|, and we also
note that (v, w) A (v/,w') € (A(V @ W)Y with v,0' € V and w,w’ € W. Let {v;} and {w,}
be homogeneous base of V and W respectively, so |(v;,0)| = |v;| =10}, |(0,w;)| = |w,| = |0]; this
notation allows us to write:

(v,w) = (v,0) + (0, w)

(v, w) A (v, w') = ((v,0) + (0,w)) A ((v',0) + (0, w"))
= (v,0) A (v,0) 4+ (v,0) A (0,w") + (0,w) A (v/,0) + (0,w) A (0,w)

There exists a canonical isomorphism ¢ of cga’s
AV @ W) 2 AV @ AW, (2.1.1)

defined by (v,0) — v® 1 forany v € V and (0,w) — 1 ® w for any w € W. We note that indeed, if
p: VoW — AV @ AW is the linear map of degree zero determined by the extending linearly the
assignment ¢(v;,0) = v; ® 1 and ¢(0,w;) = 1 ® w,, via

e(v,w) = ((v,0) + (0,w)) = p(v,0) + P(0,w) =vR 1+ 1Qw,
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then we can extend ¢ to a unique morphism ¢ of commutative graded algebras (see section 1.2).
By the multiplication rule in AV ® AW (see equation 1.2.1) we have:

o) =121, §((v,0)A(0,0) =W @1)=vAv®1, for v,o' eV
2(0,w) A (0,w")=(1ow)(le®w)=10wAw', for w,w €W,
(v, )N O,w)=we)(1ew)=v®w, for veVandw e W.

The inverse morphism of ¢ is such that v ® 1 — (v,0) forany v € V and 1 ® w — (0,w) for any
we W.

Definition 2.1.1. A degree n extension of a cdga (A, d), is a cdga of the form A ®. (AV'), where
V' is a vector space considered as a graded vector space concentrated in degree n, and

e VA

is a linear map of degree 1 such thatdoe =0. A®. (AV) = A® AV as graded algebras, but the

9933

differential is “twisted” by ¢, this is, it is defined by linearity and the multiplication rules

dla®1l)=d(a)®1, dl®v)=c(v)® 1.

From last definition we can deduce that:

dla®v) =d((a®1)(1®v))
=da®1)1®v)+ (-1)I®(a®1)(e(v) ® 1)
=da®@v+ (-1l (acv)®1).

In a similar manner we have:

dlad ®1) =d((a®1)(d ®1)) =dad)®1,

d1®@ wAv))=d(1®v)(1®v)) =)@ + (-1)lv @ e(v’) and

da® (wAw)=d((a®@v)(1@w)) =da® (vAw)+ (—1)ae(v) @ w + (~1)1 @I g ¢ (1) @ v,

When V is a finite dimensional vector space, A ®. (AV) is called a Hirsch extension of A or an
elementary extension of A (see [15] and [10]).

We define a particular extension which we will use in the proof of Sullivan’s Theorem on the
existence of minimal models: We assume that V' == {V'},>( is a graded vector, we take A =
A(VSt=1)yand V = V* in Definition 2.1.1. The extension of degree ¢ of a cdga A(V=t—1) is

AVETH @, AV,

where V! is consider as a graded vector space concentrated in degree t. This extension (as a
graded algebra, see 2.1.1) satisfies that

[126)

AVE e, V) 2 AVETY e, AV, (2.1.2)
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in the which @. means that we assume that the differential d in A(V<{=1 @ V') is determined by:
d(v,0) = (d(v),0) for veV and d(0,w)= (¢(w),0) for weV
and extended by linearity and so that Leibnitz rule is satisfied.

Remember that e(w) € A(V<!1), then & is an isomorphism of cdga’s because for v,v’ € A(V<t1)

with |v| = n, [v'| =m and w,w’ € V' we have:
o dn(v,0) = 37 (A (), 0) = d*(v) @ 1 = d 0 3 (v, 0),
o dh(0,w) = P (e(w),0) = e(w) ® 1 = d' o p(0,w),

gm0 dntm((v,0) A (v/,0)) = @ (d"(v,0) A (v),0) + (=1)!*I(v,0) A d™ (v, 0))
A o " ((v,0) A (v, 0))

FH o d2((0,w) A (0,w)) = @FL(e(w), 0) A (0, ) + (~1)¥I(0,w) A ((w'), 0)
(ew) ® VA @ W) + (-1l ® w)(e(w)) ® 1))
- P ((1ew)(lsw))

— d2t o ta(w A w/)

Lo @ (0, 0) A (0,w)) = @A (v, 0) A (0,w) + (—=1)1¥ (v, 0) A d(0, w))
= PMHHL((d™(v),0) A (0,w)) + (—=1)1"I((v,0) A ((w),0))
(@(0) © (1 ® w) + (—1) (v @ 1)(e(w) @ 1)
R (CL R TD)
= A" o " ((v,0) A (0, w)).

Definition 2.1.2. A Sullivan Minimal Algebra is a cdga (AV,d) for whichV = {V"},>1 admits
a basis {v, }ncr1, indexed by a well-ordered set I, of homogeneous elements, where the order of I
is compatible with the degree (that is, if § < «a, then |vg| < |v,|), and such that

d(vy) € AV.,, foreachael.

Here V., denotes the subspace of V' spanned by {vs}s<q-

Remark 2.1.1.

e We observe that in the last Definition, If V. = span{vi,ve,vs} With |v1| = |va| = 5,|vs| = 9
and I = {1,2,3} with order 1 < 2 < 3; the compatibility between of the well-order set I
and the degree of the homogeneous elements is satisfied. In particular for1 < 2, |v1| = |vg]
and 2 < 3, |ve| < |vs|. Butif|vi| = 3,|v2| = 1 and |vs| = 2 this compatibility is not satisfies
because while 1 < 2, we have that |vi| > |va].

e A Sullivan minimal algebra is a Sullivan decomposable algebra. Indeed let us assume that
V' admits a basis {v, }acr as in Definition (2.1.2); then |d(v,)| = |va| + 1 and d(vy) € AV,
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such that d(v,,) is not a word of length 1, this is d(v,) ¢ A'V., since A*V_, = V., and the
elements of V., has elements degree less or equal that |v.| (see compatibility). Therefore,

|d(va)| = [va] +1 and d(vs) € AV, then|d(v,) € AZ2V. (2.1.3)
This is, d(V) C A=2V.

A Sullivan decomposable algebra with V° = V1 = {0} is a Sullivan minimal algebra. In fact
ifv, € V, then |v,| =r > 2 and by (1.5.2)

Ayt =vrtig (@i+j:r+1vi AVI) @ (@i+j+h:7‘+1vi AVIA Vh) @,

then d(v,) € VI AV™ @ AVS"—L. Since V! = {0}, we have that d(v,) € AVS""1 C AV,
(Recall that V., has elements of degree less or equal to the degree of |v,]).

Let us assume that V. = span{vi,ve,vs} With |v1| = |v2| = |vs| = 1 and I = {1,2,3} with
order 1 < 2 < 3. We have that (A(vi,va,v3),d) with d(vi) = va A vs, d(va) = v1 A vs,
d(vs) = v1 A we, is not a Sullivan minimal algebra, because d(v1) ¢ V.1 (In this case d(v;)
must be 0) and d(vy) ¢ V.o since vs ¢ V<o, but it is a Sullivan decomposable algebra. On
the other hand, (A(vy,vs,v3),d) with |vi| = |vz2| = 2 and |vs| = 3, d(v1) = d(ve) = 0 and
d(vs) = v1 A vy — va A e is Sullivan minimal algebra.

If A is a Sullivan minimal algebra, then d, = 0 where d, is the linear part of d (see Example
1.2.2-6), because for all v € V', d(v) must have length greater than or equal to 2.

If (AV,d) is a Sullivan minimal algebra, then (AV, d,) (where d, is quadratic part of d) is also a
Sullivan minimal algebra. In fact, we can prove that d, satisfies d,od, = 0: since ifd, od, # 0,
then d, o d, increases word length by exactly 2, and since d = d, + --- + d, forsome p € N,
thendod — d, o d, increases word length at least 3, but, as d o d = 0 then d, o d, increases
word length by at least 3, a contradiction; therefore d, o d, = 0. Also, since d(vy) € AV.,,
then d; (vy) € AZ2V_,,.

In some works as [8], we find the definition of a “Sullivan cdga” as a cdga (AV, d) whose underling

algebra is free commutative, with V' = {VV"},,~1, and such that V' admits a basis {v, }.cr indexed

by a well-ordered set I, satisfying that d(v,) € A(vg);s < .. And define a Sullivan minimal cdga as

a Sullivan cdga (AV,d) satisfying the additional property that d(V) ¢ AZ2V. Our definition of a

Sullivan minimal algebra is different in what we require the basis {v,} to be compatible with the

graduation; this allows us to recognize in an easier way the algebra A(vg); - ., since we do not

need exclude the terms vg with |vg| > |v.|+ 1 and it allows us to prove that the minimality property

is satisfied ( see 2.1.3).

Definition 2.1.3. Let A be a dga and let i be a non-negative integer. A morphism of dga’s

pecit Mo, — A,
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where M_ , is a Sullivan minimal algebra generated by elements of degrees smaller than or equal
to i, is called an i-minimal model of A if H*(p.,): H*(M. ;) — H*(A) is an isomorphism for
x < 1, and it is injective for x = i + 1.

Definition 2.1.4. Let A be a dga; a morphism p: M — A is a minimal model of A if M is a
Sullivan minimal algebra and p is a quasi-isomorphism.

The existence of an i-minimal model and a minimal model of a dga and also the relation between
these definitions, will be proven later. Now we present a preliminary result:

Definition 2.1.5. Let f: A — B be a morphism of dga’s. We define the dgm called dgm-cone of
f, denoted C(f), as follows: C™(f) = A ® B"~* and

ar: CM(f) — C™(f)
(z,y) = (=di(@),d;™ " (y) + [ (2)).

According to the above, we have d”*' o d"(z,y) = (0,0) since d"+' f"(x) = f~*'d"(x). Note that
the dgm-cone of f is not a dga because multiplication is not defined in it. We denote the cohomo-
logy H(C(f)) of the dgm-cone of f by H(A, B).

Theorem 2.1.1. Let f: A — B a morphism of dga’s and let C(f) be its dgm-cone. Then we have
the following exact sequence:

H"(—p1)

.. H*(A, B) H*(A) D, gy 202, et By

where p, and i, denote the projection to the first factor and the inclusion to the second factor
respectively.

Proof. It is sufficient to note the following equalities:
H*(A, B) = {[(z,y)] : di(z) = 0, di; ' (y) = —f*(2)}
Im(H*(=py)) = {[~2] : 3y | d; ' (y) = —f*(x)} = ker ((H*(f))

ker(H*(i,)) = {[b] : z,y) € C*(f), d*(z,y) = (0,b)}
) =0 and d% (y) + f*(x) = b}

~
=
QU
¥
—~ o~
=
|
o
Q
>
o
=
*
—~
=5
|
=
—

Now we can state Sullivan’s theorem on minimal models.
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Theorem 2.1.2. Let A be a dga such that H°(A) = k, then there exists a i-minimal model, for any
1 > 0 and a minimal model of A.

We note that H°(A) = k is the restriction which allows the existence of the 0-minimal of A. This
proof is a little laborious, so, for the Readers’ convenience, we will present below a sketch of proof;
we show a full proof in the next section.

Sketch of proof: We show first the existence of i-minimal models of A of the form p.,: M., - A
where M_, = A(V @ V'@ VZ& .- ® V*). The minimal model of A willbe M = J;°, M-, and

P<i :p|Mgz"

We need to identify appropriate vector spaces VO, V1 V2 ... Vi Fori = 0 we set V' = {0},
since HY(A) = k we obtain that k¥ C A and we define p_, as the inclusion therefore H°(p.,) is
an isomorphism and H*(p. ,) is injective for x > 1. Then k = AV? = M_,. By induction on i,
assuming that there is a ¢ — 1-minimal model of A and we apply the exact sequence of Theorem
(2.1.1) to the t — 1 minimal model p., _,: M., _, — A. This exact sequence allows us to identify
a vector space V¢~ 1.0 that we add to M_, _,. We set

t—1
Mo, o= St—l@sov -0
and p.,_, . is a extension of p., _,, where:

VIR s B (Mo A) = Ker(H™ (p< 1)) @ Coker(H' (p< 1 - 1)) 2 (@](ne, we)]) & (@[(0,u,)]),

where Ker(H'"*(p.,_,)) has basis {[n:]}, ws is determined by p'** | () = d',(wx) and

Coker(H'(p<,_,)) = H*(A)/Im(H"(p<, _.)) has basis {[u;]}.

If we assume that H'(A) = 0, then it follows from that H'*'(p-,_, ) is an injective mapping.
Therefore M., = M., _, ,and p., is a extension of p. , _,, so we denote V=10 = V¢,

On the other hand, in the case that H'(A) # 0 the mapping H'*!(p- , _, ,) need not be injective.
We need add elements to M., _, ,, in order to kill the kernel of H'*1(p_, _, ,) S0, we again use the
exact sequence in the Theorem (2.1.1) with f = p_, _, ,, and we obtain the vector space V¢~ 1:!
that we add to M_, _, , for obtaining M_ ,. In the proof we denote this extensionby M., _, , =
Mo, ,,®., Vi=tlandp.,_,,isaextensionof p, _, ,.

If H**1(p-,_,.) is injective then we set M_, = M_, _, , but if this is not true, we must continue.
This process as above, in order to kill the kernel of H**1(p., _, ,), this process can be finite and
in this case the M., = M., _,, for some n € N, or it may nor stop; in this case we define
Mo, =Uj2gM<, . ;and pc, suchthat po, ; = p< e, ;-
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2.2 Proof of Sullivan Theorem
In this section, we prove the fundamental theorem on existence of i-minimal and minimal models.
Proof. First we show the existence of i-minimal models. The proof is by induction on i. If i = 0,

we consider k as a dga concentrated in degree zero; we obtain that k¥ C A and we define p., as
the inclusion. We have the diagrams

d d
k dn 0 dn 0 k M 0 M 0
P ol P ol Pz ol HO(p o{ HY(p o)l H2(P< o)
A0 A _da e HO(A) —y H1(A) =25 H2(4)
Figure 2.1.

Since H°(A) = k we conclude that, H%(p_ ,,) is an isomorphism and H*(p- ,) is injective for x > 1.
Moreover k = AV, where V0 = {0}.

Now, we assume that ¢ = ¢ — 1, ¢t > 1. Our induction hypothesis is that (as in Definition 2.1.3),
M., _, is generated by elements of degrees smaller than or equal to ¢ — 1 this is, (as in Definition
2.1.2) there is a graded vector space V'@ V'®---@Vi~tsuchthat M., , = A(V Vi@ - .@Vit)
and there exists a morphism p., _,: M., _, — A which is an (¢ — 1)-minimal model of A.

We will construct p.,_,: M., _, — A, a t-minimal model of A. By the last theorem applied to
the morphism p_,: M., — A, with domain M., and codomain A, we have the exact sequence
of Figure 2.2, where p, and i, denote the projection to the first factor and the inclusion into the
second factor respectively.

We have H! (M., _,, A) = 0. Infact, by hypothesis ker(H!~1(i,)) = Im(H" 1 (p.,_,)) = H'"1(A),
so ker(H'(—p,)) = 0, moreover ImH*(—p,) = Ker(H'(p<,_,)) = 0.

We need to add cohomology to M. ,_, ( if necessary ), so that the extension of the map
H'(p<,_,): H"Y(M.,_,) — H'1(A) become surjective; but at the same time, these added
variables must kill the kernel on cohomology in degree ¢ + 1, so that the extension of H*(p_, _,)
becomes injective.

The question now is:

What are the elements that we have to add to M., _,, and how do we add them? From the long
exact sequence (Figure 2.2) coming from Theorem (2.1.1) we get a short exact sequence:

Hi(i Hit(—
0 —— Coker(H'(p< . ) =2 merar., o A) S Ker (1 (o, 1)) —— 0

S

(2.2.1)
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t—1 — .
i A g0 HE 1 (ig) . HY(—p1) .
- —> H (Jwgt—l) _— H*(A)4>H(M§t71,A)4>H(M§t71)

Ht(Pg t—1)
HE(A)

H(ig)

Y
Ht“(MS 1, A)
Hi L (—py)
Y

=Yg, )

HH—I("g t—1)

LAy

Figure 2.2.

As indicated in (2.2.1), this sequence splits. Indeed, let us consider:

s: Ker(H™(p.,_ ) — HYY(M.,_,,A)
] = [(=n, w)]

where 7 and w are determined by pL*,' | (n) = d',(w). This function is well defined, since

[n] = [m] :>m=n+d;{§t_l(x), forsome x € M., _,
= pht(m) =p () + o (dh, (7))
= p L (m) = dy(w+pe, _,(2))

= s([m]) = [(=m,w +pL, . (2))],

and so [(—n,w)] = [(—=m,w + pL, _,(x))]; in fact (z,0) € C*(p< . _.) such that

(=m,w+pl, _(2)) +d'(=,0)
= (=mw+pL, ,(z)+ (=d; (=2), 0t 1(=2) = (=m+d;,_, (), w) = (=n,w).

Mgy

Besides, if we change w by w + d',” * (@) we have that [(—n, w)] = [(—m,w + d',” *(@))]. In fact:

(=n,w +dy” (@) + d'(0, ) = (—n,w + d;” (@) + (0, —d (@) + pL, - ,(0)) = (=n, w).

Moreover H'*1(—p,) o s([n]) = H* 1 (—p,)([(—=n, w)]) = [n]. Therefore

H' (M1, A) 2 Ker(H™ (p< o 1)) ® Coker(H' (p< + - 1)) = (@[(ne, wi)]) @ ([(0,u,))),  (2.2.2)

where Ker(H'™(p-, _,)) has basis {[nx]} and Coker(H'(p<,_,)) = H'(A)/Im(H'(p<,_.)) has

basis {[u;]}.
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Now we consider V*~1:0 as a graded vector space concentrated in degree ¢ with basis

{1, wr)], [(0, )1} s,
and we add elements to M., _, by means of the following extension:

MS t—1,0 — MS t_1 ®50 V=10 in which

£o - thl,O — MSt,l
(&, wr)] — Mk
[(0,u)] = 0

As we saw in Definition (2.1.1) we consider an extension of degree ¢ of M., _, of the form
M., , ®., (AV'~10) and we have the identification (2.1.2) this is

10 ~ A(vl D---P Vt—l o Vt—l,o) and dMg . 1.0|Vt—1’0 = €p.

Note that M_, _, , is a Sullivan minimal algebra, because by the inductive hypothesis sois M, _,
and d(v) € (AVt@---@ Vi1 forallv e V=19 Now, we defineamap p ., o: Mo, _,, — A4,
which is an extension of degree ¢ of morphism p., _,, so for the degree ¢:

ptgtfl,o([(nkvwk)]):wk and ptgtfl,o([(oﬂuj)}):uj'

Then p., _ . , is @ morphism of dga’s, in fact:
dix © ptg t— 1,0([(77k7wk)]) = dix(wk) = ptgtt 1(7Ik) = ptgtlf 1,0° d?\/{g . 1’0([(77k'7wk)])’

dy o ps,_y o([(0,u)]) = diy(uy) = 0= pft ,(0) = pfl, gody_, , ([(0,u)]).
We observe that:
ML, =M., ,@k=AV'& -0V foral i<t—1,
ML, 4 o=kaVYe ML, @k)=AV'e oV HAVITtY) =AWV ¢ o VITHO),

ML o= (ke AVITEO)T Y e ML, @ Vit e (ML ®@k) = AV @ e VITLO) (2.23)

<t-—1,0
Then HY (M., _,,) = H(M.,_,)foralli <t—1and

Ker(dy,_, | ) =Ker(d,_, )& @[0,u)), Im(d, " )=Imd )
this implies that H* (M., _, ,) = H'(M<;—1) ® (&[(0,u;)]), and we have the following Figure:

H'(p< ¢ — 1)

H'(M<,-n) — H'(A)

H*(i1) .
H'(p< t —1,0)

H'(M<:-1.0)

Figure 2.3.
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Since H'(p.,_,) is injective and H'(p., . ,)([(0,u;)]) = [u;], where {[u;]} is a basis of
Coker(H'(p<,_,)) s0, [u;] ¢ H'(A), therefore H'(p., _, ,) is an isomorphism.

Now we need that H'*!(p., _, ,) be injective:

H'  p< s 1)

Ht+1(M§t71) Ht+1(A)

Ht+1(MS t— 1,0)

Figure 2.4.
First, note that H**1(i,)([nx]) = 0 for each [nx] € Ker(H™(p~,_,)), since

dZ () =0 and dy_, ([0, we)]) = eo([(m, wr)]) = e (2.2.4)

Therefore the map H'™!(p-, _, ,) restricted to the image of H'*!(i,) is injective: if [m], [n] belong
to Im(H'*1(i,)), they are differentand [p- , _, o(m)] = [p= . _1.0(n)], then [p-, _,(m —n)] = 0, this
is [m —n] € Ker(H**'(p-,_,)), and for the last affirmation [m] = [n] which is a contradiction.

In the case of t = 1, we have
H*(M<,, A) = Ker(H*(p< ,)) @ Coker(H' (p<,)) = H'(A),
then V09 = H'(A).

Now we assume that H'(A) = 0. Then M_, , = M_,® A({0}) as A({0}) = k, and it follows that
M_,,= M., =kisa1-minimal model of A, (this is in M., there is not elements of degree 1)
and therefore V! = {0}.
Then by construction M., _, , does not have elements of degree 1, so by (2.2.3)

MU =M @k=AV @ oV

<t—1,0

Therefore H'*Y(M.,_,,) = H™'(M_,_,). For this equality H**!(i,) is surjective, and it is
sufficient to show that H'*(p., _, ,) is injective (as we saw above).

This guarantees that p , _, , is a t-minimal model of A. We denote V! = V=10 M_, = M_, _, ,,
and p<, = p<._1.0. By the induction hypothesis and the foregoing construction:

k:MSO:MglCMSQC"'CMgt,—lCMStC"'

We conclude that for each i there exists a i-minimal model of A. Now we define M = [ J;°, M. .,
so that M* = |J;2) ML, = ML .

What is the differential in M?

d\,: M' — M'"*! suchthat d,|,_, =d

Moy
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What is the multiplication in M? if z € M* and y € M7 then z € M., and y € M., itis
xANye Mt ,soxNye M T,

Now, we define p: M — A such that p(m) = p..(m), f m € M*as M., c M., thenpisa

i1
morphism since:
diyop'(m) = dopl (m)
= d Opiswl(m)
ptly ody_ (m)

= phody(m)
Thus we get H (M) = H'(M. ) and H'(p) = H'(p< ;) then p is a quasi-isomorphism, therefore
p: M — Ais a minimal model of A.

In the case H'(A) # 0. We cannot guarantee that H**!(p_, _, ,) be injective in the diagram of
the Figure 2.4.

We have seen that H**(p_, _ 1 o)|rm(m+1(1)) I8 injective, but in this case (namely, H*(A) # 0)
the map H'*!(i,) is not necessarily surjective. We need to add elements to M_, _, , of degree ¢
to obtain a ¢-minimal model of A by means of extensions we proceed as follows:

If the map H**'(p-,_,,) is injective, we have that p_, _, , is a t-minimal model of A, but if
H'™(p.,_,,) is not injective, then we need add elements to M., _, , in order to kill the ker-
nel of H*Y(p_, _, ,), this is, we need to construct an extension p_,_,, of p_,_, , such that
H%(p., )|l rm(Et+1 iy 18 injective (see the following Figure). For this construction we apply
the exact sequence in the Theorem (2.1.1) with f = p_, _, , and we obtain the short exact splitting
sequence

H (3 HtH1(—
0 e COke’I’(Ht(pS t — 17())) ﬂ Ht+1(M§ t — l,OaA) *(;JI>K€T(H£+1([)S t — 1,0)) —_— 0

s

reasoning as in (2.2.1).

As H'(p.,_, ) is an isomorphism then Coker(H'(p-,_,,)) = 0 and we set
VIR = HU N (M 1,00 A) 2 Ker(H™  (p s 100)) = (@] (e, wi)])-

As above we add elements to M., _, , by means of the following extension:

Mo, ,,=M., ,,®., Vi~lland

. t—1,1
e1: V - M., 1,

[k, wi)] = 0k

As we saw in (2.1.1) this is:

Mo, ,=AV'® -V eV eVt and d', , ([ we)]) =,
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and we definethe map p., _,.,: M.._, , — A, which is an extension of degree ¢ of p., _,, such
that in degree ¢, we have p% , _, ([(nk, wr)]) = wy is @ morphism of dga’s.

If H**1(p.,_, ) is injective then p_,_, , is a t-minimal model of A, but if this is not true, then
we must continue this process: If for some n we have that p., _, .: M.,_, , — A satisfies the
property that H'*'(p_,_, ,) is injective, then p_,_, , is a t-minimal model of 4; if there is not
such n, then, we define M., = U;Z, M., ; and p., such that p..; = p<.lm., _, . Thus
obtain the diagram of the Figure 2.5.

Htil(ﬂg t—1)
_—

H™ Y (M, ) H'™(4)

H*™ (i)

Y

H™H (Mo, 1)

t4+1,.
H (Zl) Ht+1(ﬂ<t,—1,1)

Y

HT N (Mo, -1 4)

Ht+1(M< t)

Figure 2.5.

We note that this problem occurs already from M., to obtain M. ,. Now we see that the map
HFY(p_ ) HY (M. ,) — H'TY(A) is injective:

[o<.(m)]=0= Thereis j suchthat [p<, , ,(m)]=0
= [m] € Ker(H ™ (p<, -1.,))
= [m] € Ker(H'"™'(i,)) (see 2.2.4)
= [m]e H" (M, _, ,.,) and [m] =0
= [m] € H"™"*(M,) and [m] = 0.

Moreover, H(p~, _, ;) is a isomorphism for all j > 0, so is H'(p.,). In fact if H*(p-,)(m]) =0
then [p<, _, ;(m)] = 0 and therefore [m] = 0; on the other hand, if [a] € H'(A), then there exists
[m] € H'(M<,_, ;) suchthat p. ., ;([m]) = [a], 50 p< ([m]) = [a].
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We conclude that, p. .: M., — Ais a t-minimal model:

Moy=kCM.yyCMcoo, CorC Moy = | My,

Jjo=0

o0
Mo, CMoy o C Moy, C-CMoy= ] My,
J1=0

o0
M§t71CM§t71,0CM§t71,1C“'CMgtfl,nC“'CMSt:UMStfl,j
J

Finally, the union M = (J;° M., of all these i-minimal models becomes a Sullivan minimal algebra,
as we saw in the case H!(A) = 0.

2.3 Minimal model and Twisting cohomology

From the proof of Theorem (2.1.2) (section 2.2) we obtain a minimal model of A denoted by
p: M — A, so that M is a Sullivan minimal algebra. In Remark (2.1.1) we showed that a Sullivan
minimal algebra is a Sullivan decomposable algebra. It follows that, if M is of finite type from
Theorem (1.5.1) we can determine M by a Lie algebra and a sequence of the twisted cohomology
class.

Now we remark that, from the definition of minimal model of A, if H(A) is of finite type then H(M)
is of finite type. Moreover by the construction carried out in the proof of Sullivan’'s Theorem for
the case H'(A) = 0 each extension as in Definition (2.1.1) is a Hirsch extension, we have the
following Theorem.

Theorem 2.3.1. Let A be a dga such that H(A) is of finite type, with H°(A) = k and H*(A) = 0;
then there is p: M — A, a minimal model of A, such that M is of finite type.

Proof. From the proof of Sullivan Theorem, we have M = A(V' @ --- @ Vi@ ---) with M = {0}.
Now, we must show that each V* is finite dimensional.

We argue by induction on i > 0. For i = 0 or i = 1, we proved that V° = V! = {0}. Let us now
suppose that the result holds for every ¢ < ¢t—1, with ¢ > 1 and prove it when i = ¢. By construction
peci_1: Mo,_, — Ais at— 1-minimal model of A where M_,_, = A(V'&® . --® Vi~1). By the
induction hypothesis we have (M., _,)!*! is finite dimensional, then Ker(H'™(p_,_,)) is finite
dimensional; also H'(p., _,) is injective then Coker(p-,_,) is finite dimensional. Therefore, by
isomorphism (2.2.2) V! = Ker(H'™'(p. , _,)) & Coker(H'(p, _,)) is finite dimensional.
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With the hypothesis of above Theorem, we conclude that M is a Sullivan decomposable algebra,
for which the Lie algebra is the trivial algebra. Thus the ¢-twisting matrix is:
o: vt - MV
v —= 0

and the t-twisted cohomology class is [f] € Huom.et(Vi; AV & -+ & VI~1)) where f; = o with
the notation in the proof of Sullivan Theorem:

I vt - A(Vi@...@Vi-b)+l
(e, wi)] — Mk
[(07 uj)] — 0

in this case f; = .

Remark 2.3.1. From the proof of Sullivan Theorem for the case H'(A) # 0 such that H(A) is of
finite type, we observe that M = AV o Vi@ - o Via---), where M # 0 and

Visyit0gyi-blg...gVvi-bn forsomeneN or (2.3.1)
Vi=vilgyilg... (2.3.2)

Letus assumethat M., ,=AV'@® V2@ ..-® V1) isat — 1-minimal model of finite type, this
is, each V' with i < t —1 is finite dimensional by the construction in the of proof of Theorem (2.1.2)
we already know that:

o VimL0 = Ker(H™™ (p., _,)) ® Coker(H'(p-,_,)) and so V=19 js finite dimensional (as in
the last proof). Moreover If v € V=19 then d(v) € ML | thisisd(v) € M-, M., _,

because M., _, is generated by elements of degrees smaller than or equal to t.

e For j # 0 the vector space V'=1J = Ker(H*'(p.,_, ;_.)) and so V=17 js finite dimen-
sional, since by construction M_ , _, ; _, is finite dimensional. Also, ifv € V'=13 with j # 0,
then

dv)e ML =2AVI eV TtV g Vi),

this means that d(v) € ML, _ \Vi=h<i=1 4+ ML Therefore

d(v) = 295/\”74'%

yeEB
where {v,},cp is a basis of V!=1:<i=1 9t € ML, |, anda, € ML .
We recall that V=10, ... Vi=LJi=1 are disjunct vector spaces, because by construction
1
H ™ o<1 ) im0

is injective, fork =1,...,j —1
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For the case in which V' becomes finite dimensional as (2.3.1) we have the twisting matrix ©*

given by:
e : Vi - M., _ oV
ve VL0l 0

veVirli s Yoo,
yEB
and the t-twisted cohomology class is [fi]| € Hyom.et(V'; M., _,) where:

fe: Vvt — (M., _,)tH
veVi=ho s d(v)

veVibi & q,.

The above two statements, since: forv € V=19, we have
0! 0O (v) = dO'(v) =0, and de: (fi)(v) = (do fr — @y, 0 O")(v) = d(d(v)) = 0.
And, forv, € V%I a basic element

0=dod(v,) = Zd&t Av,) + d(ay,)
yEB

= > (6L Av, 0L, Ad(v,) + d(ay,)

yEB

= Z (d(@iw) Av, =00 A (Z 0!, A, + avw)) +d(ay,)
veB leB

:Z(d(@ Zat /\9’f>/\v7 ZG Ay, + d(ay,)
YEB leB yeB

Since M., _, is free of relations, we have:
3 (d(@iv) -3 0}7) Avsy =0,
yeB leB

then, ©t is a twisting matrix and

dot (fi)(v) = (do fr — By, 00" )(v,) = > —0F Aay, +d(ay,) =0.
yeB

then, [ft] S HHom.,@t (Vt;Mg t— 1)-

We have the following Theorem.

(2.3.3)

(2.3.4)

Theorem 2.3.2. Let A be a dga such that H(A) is of finite type, with H°(A) = k and H*(A) # 0;

then there is p: M — A, a minimal model of A, suchthat M = A(V'@ V2 e aoVie

--). Ifeach

V't is finite dimensional, finite type, then M is characterized by the Lie algebra over the dual space

of V! and the sequence of twisted cohomology class [fi] € Huom.et (Vi AV &
above.

e Vi) as
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Example 2.3.1. An example of an algebra satisfying the hypothesis of Theorem (2.3.1) is the
algebra of smooth forms on a simply connected compact manifold X (see Example 1.2.2-4). In-
deed, if A = Q*(X) and X is connected then Ker®(A) is the set of constant functions f: X — R.
Furthermore, by the deRham Theorem H},,(X) = H*(X,R), where H*(X,R) is the singular co-
homology with real coefficients of X then, if X is simply connected H'(A) = 0. The compactness
of X guarantees that H}, ,(X) is of finite type; for more information on this topic see [4] and [23].

The minimal model M x of A is called the (real) minimal model for the manifold X, the morphism
p: Mx — A induces the isomorphism H(p): H(Mx) — H(X,R) (by the deRham Theorem).

We present other example of an algebra satisfying the hypothesis of Theorem (2.3.1) in the chapter
4, section 4.4 (The sine-Gordon Equation) and Theorem (4.4.1).
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Chapter 3

Gauge cohomology and Twisted cohomology

The aim of this chapter is to find properties about twisting matrices determined by certain PDEs
using the fact that they generate a submanifold of a infinite Jet bundle. For this reason we have
compiled in the first section some basic facts about Geometry of Infinite Jets manifold and the Vari-
ational Bicomplex; for this part we refer the reader to [22], [21] and [1]. Besides we introduce the
notion of g-valued differential forms in which g is a Lie algebra. Then, we consider a submanifold
of a infinite Jet bundle determined by PDEs, to finally prove that the horizontal gauge cohomology
studied for Marvan in [12] and [13] is twisted cohomology with coefficients in g. Also we introduce
the notion of a double dgm and we relate it with elements that satisfy a Maurer-Cartan condition.
The last section we give a example of the s[(2)-valued zero curvature representation and generate
the twisting matrix. In the next chapter, we conclude that gauge cohomology of PDEs generate
Sullivan decomposable algebras.

3.1 Geometry of Infinite Jets and the Variational bicomplex

Definition 3.1.1. Let r: E — M be a smooth onto map of manifolds, where dimM = m and
dimE = m +n. Then, 7 is a bundle if for every p € M there exists a neighborhood W C M of
p, @ manifold F' (called a typical fibre of ) and a diffeomorphismt: 7=*(W) — W x F such that
piot =7l . Wherep,: W x F — W denote the projection onto the first component.

We call E the total space, M the basis, 7—*(p) the fiber over p and t a local trivialization. The
map = partitions the domain thus: E = |J E, where E, = 7~ *(p).

The last definition tell us that E has a local product structure. Let y: U — R™*" be a coordinate
system on the open set U C FE; then y is called an adapted coordinate system if, whenever
a,b € U and w(a) = w(b) = p then pi(y(a)) = p1(y(b)) (where p,: R™T" — R™ denote as always
projection onto the first component). It is important to underline that an adapted coordinate system
can be constructed from the local product structure, since if z: N — R™ and v: V. — R" are
coordinates system in M and F respectively, where N c WandV C F,andt: 7=} (W) = W x F
is a local trivialization then

y: tTH(NxV)cr {(W) — Rmtn
z — (xop,ot(z),vop,ot(z))
(zom(z),v0p, 0t(2))
is an adapted coordinate system.

We can write y = (z o m,u), where u = vop,otand p,: W x F — F denote the projection onto
the second component.
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Conversely, any adapted coordinate system y: U — R™™ on E yields a coordinate system
z: m(U) — R™ by setting z(p) = p, o y(a), where a € E, NU; this is independent of the choice of
a, since y is adapted coordinate system; thus, in terms of coordinate function of x and y, we have
that (2 o 7)(a) = y'(a), for 1 < i < m. The following diagram describes the maps in the above
argument:
Uc Emtn — pm
|

Rm+n

xT

p1 Rm
We adopt the following notation: If z are the coordinates functions on M, then the coordinates

functions on E will denoted:

(z%,u*): UcC E™ — RmM (3.1.1)

a = (2" om(a),u(a))
where 1 <i <mand1 < a < n. So, the same symbol x* will be used both for a function =(U) — R

and for the composition U — «(U) — R. The functions x; are called independent variables and
the functions u dependent variables of the typical fiber.

The following definition is a particular case of a bundle:

Definition 3.1.2. Letn: E — M be a smooth onto map of manifolds. Then = is a trivial bundle if
there exists a manifold F' and a diffeomorphismt: £ — M x F such thatp, ot = .

The functions z; are called independent variables and the functions u* dependent variables of the
typical fiber.

Definition 3.1.3. A local section of 7 is a smooth map ¢: W — E, where W is an open subma-
nifold of M, satisfying the condition = o ¢ = Idy . The set of all local sections of = whose domains
containp € M will be denoted T, ().

A map ¢: W — FE is called a section or a global section if W = M, and the set of all sections
of 7 is denoted by I'(). It may happen that a bundle does not have sections, for example the slit
tangent bundle of S? (see following Remark, item 4).

The set I'(n) is a real vector space by defining addition and scalar multiplication as follows: for
¢, € T'(w) and a € R,
(¢ +¢)() = ¢(p) +¢¥(p), ad(p) = ad(p).

For ¢ € I'(w) and for f € C>° (M), we can defined (f¢)(p) = f(p)¢(p) making I'(r) into a module
over the ring C*°(M).

A section of 7 may be described in terms of coordinates as follows. If ¢ € T'(w) and (z,u) is a
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system of coordinates in E with (z*, u®) coordinate functions around ¢(a) € E, then
2'(¢(a)) = (2" o m)(¢(a)) = 2'(a), for 1<i<m

so the first m coordinates of ¢(a) are determined by the coordinates of a. Hence only the last n
coordinates determine ¢ in this coordinate system; these are the real-valued functions

P =u®o¢, for 1 <a<mn,

where in this equality ¢ actually represents the restriction of the section ¢ to the domain of the
appropriate coordinate system in M.

As with sections, a local section may be represented in coordinates by the functions u® o ¢ for
1 < a < n, in which we restrict the section ¢ € I',,(7) to the domain of the appropriate coordinate
system in W, this is (N N W, z|yaw), if z: N — R™ is a coordinate system in M. We have the

diagram
Ee——""5WCM
(z'iyua)l ¢ lw
R™ T R™
Remark 3.1.1.

1. If(E,m, M) is a bundle. A bundle (E',n', M) is a sub-bundle of = if E' C E is a submanifold
such that the fibers satisfies that E, C E,, for eachp € M.

2. If M and F are manifolds then (M x F,p,, M) is a trivial bundle and we denote it by E =
M x F; the fiber over p is E, = {p} x F. Any smooth map ¢: M — E which is a section is
the graph of the map f = p, o ¢. Thus sections of = are in a natural bijective correspondence
with continuous functions M — F'.

3. LetTM = J,,, TpM be the tangent manifold of the m-dimensional manifold ), and let
us define the natural projection map p;(v,) = p, withv, € T,M. Then, (T M, Ty, M) form a
bundle such that ;' (p) = T,,M is the fiber; T M is called the tangent bundle and the typical
fiber is R™. A section of the tangent bundle TM — M is a vector field on M.

Now let us consider a bundle (E,w, M) and a adapted coordinate system (z*,u®) on E; then
a vector field X on E (a section in (TE, g, E) ) is expressed locally by

m Za n N a
X:;X axiJerY et

where X and Y are the coordinates of X. As we saw above, these are defined on a

coordinate domain U of E. Therefore if (x%,u®) are coordinates functions define on U then,

0 0
@), @)
{81’1 Ou> 1<i<m, 1<a<n

becomes a basis of the tangent space T, E.

for any pointa € U,
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4. Let S? be the 2-sphere and let T°S? be the open subset of T'S? containing all non-zero
tangent vectors. The triple (T°S, Ts2|70g52,S?) is a bundle called the slit tangent bundle of
S2 with typical fibre R? — {0}. If ¢ were a section of this bundle then it would define a vector
field on S? which was never zero, contradicting the well know theorem stating that all vector
field on S? must be zero at some point in S?.

5. Associated with the tangent bundle, there is a dual bundle (T*M,t};, M) called the cotan-
gent bundle. Its fibers are the vector spaces T, M = Hom(T,M,R). The sections of r;, are
precisely the differential 1-forms on M

c: M — T*M
p = op:T,M — R
Locally, a 1-form w € Q'(E) (the set of sections in (T*E, 5, E)) is expressed (in an adapted
basis) by
o= Zoidmi + Z eadu®.
=1 a=1
where o; and ¢, are the coordinates of o, this is smooth maps defined in the domain U of
system coordinate (x*,u®) in E, so for any pointa € U,
{dmi(a), du"‘(a)}
1<i<m, 1<a<n

becomes a basis of T E.

6. Let (T"M, Ty, M) be the cotangent bundle with fibres T;; M. The bundle with fibres A"T; M
(see Example (1.2.1)-5) denoted by (A" (T* M), A" (13;), M) where A" (73;)(w,) = p forw, €
A"T; M, is called it the r-exterior bundle. A section of this bundle is a differential r-form
in M,

w: M — A (T*M)
P = Wy
We denote the set of all differential r-forms in M by Q" (M). Ifw € Q" (E) (the set of sections
in(A"(T*E),A"(t*E), E)). w is expressed locally by (in an adapted basis)

w= E filmikalmaldmil Ao Adat A du®t A A du,
1< <ig
oy <---<aq
k+l=r
where f;. i a...a: U — R is a smooth function in the domain U of a system coordinate
1 kA1 1

(', u®) in E.

Definition 3.1.4. Letn: E — M be a bundle. The k-th Jet manifold of « is the set:

Jhr={jké:pe M, ¢ €T(m)}
where j}’;qb is the equivalence class of the equivalence relation in T',(w) given by ¢ ~ i iff
#(p) = ¥(p) and if (z*,u®) is a adapted coordinate system around ¢(p) then
M (u® o ¢) B M (u® o))
Ox! Ox!

p p
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forall1 < |I| <k, where I is a multi-index.

We recall that a multi-index is an m-tuple of natural numbers; the components of I are denoted
by I(i) where 1 < i < m,so (I £ J)(i) =13+ J@E); I! = [[(I3%))!, and |I| = > I(i). The
] i=1

=1
11|

symbol 9 is defined by 8 0.1 where the symbol [] is composition. We denote by 1, the
al‘I i ox 3

=1
multi-index such that 1(j) = 1 and 1;(i) = 0 for all i # j.
It may be proven that Definition (3.1.4) does not depend on the coordinate system used [22].

Let (U, y) be an adapted coordinate system on E, where y = (2%, u®)for1 <i <mand1 < a <n.
It induces a coordinate system (U*,4*) on J*r defined by:

UF={ji¢:o(p) €U}, y"= (' uuf) for1<i<m,1<a<nand 1<|I|<k (3.1.2)

where:

2. UF -5 R w: U =5 R uw: U = R
. i . a K alll (uog)
ir¢ = @'(p) i = u*(6(p)) é = T

P

In multi-index notation uf = uf; ) () Where the component /(i) represents the number of

.

occasions that u® o ¢ is derived with respect to zi. In the following example, we introduce the
notation symmetric indices that will also we use for convenience in some cases.

Example 3.1.1. Let « be the trivial bundle (R® x R?,p,, R) with coordinates (z', 2%, 2%;u', u?); the
first derivative coordinates on J?p, are:
UlLo0) U010 %0.0,1)> %1000 %010 %001

and the second derivative are

1 1 1 1 1 1 2 2 2 2 2 2
U(2,0,0)» ¥(1,1,0)> %(1,0,1)> %(0,2,0)» ¥(0,1,1)> %(0,0,2)> %(2,0,0)» ¥(1,1,0)» %(1,0,1)> ¥(0,2,0)> ¥(0,1,1)> ¥(0,0,2):

In some cases, we will use the notation of symmetric indices, so the first derivative coordinates
would be written as

1 1 1 2 2 2
Upry Uy2z, Ugz, Uz, Uy, Ugs,

an the second derivative coordinates as

1 1 1 1 1 1 2 2 2 2 2 2
Uprgrs Uprpz, Ugigs, Upaga, Up2,s, Ugses, Upigi, Ugige, Ugpigs, Upega, Ugegs, Ugsgs.

In general, the coordinate u¢ can be written as,

[eY . k
Ui gin . i * U - R
.k o' (u®o¢)
‘]P(b = dxz19xi2.-- Ozl P
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for0 <1 <k,wherel <i; <is <--- <4 <m. Then, the coordinate functions in (3.1.2) can be

written as:
yk:(xi,uo‘,ua o u’ ) forl1<i<m, 1<a<n and 1<i; <ig < - <ip <m.

(3.1.3)

Jkm is a manifold of dimension m + n + n(("*) — 1). The projection m;: J*= — M such that
Jjr¢ — pinduces a fiber bundle structure (J*=, ), M). We also have the projections (for 1 <1 < k):

Tk,0 : Jr > E Tl - Jtr = Jx
ire = (D) ird = po

which allow us to consider the bundle (J*r, 7, Jim) if 0 < 1 < k.

Definition 3.1.5. Letw: E — M be a bundle. The infinite Jet manifold of = is the set
Jon={j7¢:pe M, ¢ €Tp(n)},
where j°¢ is the equivalence class of the equivalence relation in T',(m) given by ¢ ~ 1 if
é(p) = ¥(p) and if (%, u®) is a adapted coordinate system around ¢(p) then
Muog)| _ M(u o)
ox! N ox!

p p

foralll <|I|<occandl<a<n.

It is possible to show that the particular choice of coordinate system in the last definition does not
matter, we refer the reader to reference [22].

Let (U, y) be an adapted coordinate system on E, where y = (z¢,u®). We induce a coordinate
system (U, y>°) on J>° as follows:

U* ={j,"¢:6(p) €U, € Tp(m)}, y>® = (2 uuy) fort<i<m,1<a<n and 1<|I|<oo

(3.1.4)

where:

2. U® — R u*: U® — R ug: U — R
‘ 00 1] (0
e~ a'(p) o = u(6() e = et

Then, the coordinate functions y>° in (3.1.4) can be represented by:

Y™ = (mi,u“,ugi,...,ugilmigmxik,...) fori1<i<m,1<a<nand 1<i; <ix<--- < <m
(3.1.5)

J>®m is an infinite-dimensional manifold, for this generalization see [3]; the projection
Too: S = M, jo°¢ — p makes (J>m, mo, M) @ bundle. As above, we also have the projections:

Teo0: Jm — FE Moot : JOom — Jw
ire = ) I

46



Let f: J°m — R be a real-valued function on J>°7. We say that f is smooth if f is factored
through some finite-order Jet bundle J*, that is, if there is a function f Jkr — R such that f =
f o oo, Where mo 1 J°m — JEr is such that Too e (J3°0) = jEo. Therefore, if f € C>°(J°7) and
= fo Too, i fOF fon Jk, then on each coordinate neighborhood U and each point j>°¢ € U™
with k-jet coordinates given by the expression in (3.1.2), we have

~

) = f(@',u®,ug), where |I| <k.
We call k the order of f. if f is of order k, then it also is of any order greater that &
Let ¢ be a local section of = with domain W C M; the infinite prolongation of ¢ is the map:
i W — J®r
F s S a3

Note that j>°¢ is a local section of (J*°m, 7., M). We say that j>°¢ is an holonomic section,
to distinguish it from arbitrary section which do not need to be prolongations of local sections of
(E,m, M). To find the coordinate representation of j°°¢, we must examine its composition with the
coordinate functions v and u¢ for 1 < |I| < oc:

u® 0 j=o(p) = u®(j,°¢) = u” o é(p),

Ml(u* 0 ¢)
ox!

uf 0 j*o(p) = ui (j,°¢) =

p
| ‘ u - o
The coordinate representation of j°¢ is therefore (u o b, L,‘”) for 1 < |I] < cc.

Henceforth, if |I| = 0 then % is the identity operator. Thus, in (3.1.2) and (3.1.4) the coordinate
functions would be written respectively as:

y* = (' ug) for0<|I| <k, o> =(2%u$) for0<|I| < occ.

A smooth vector field X on J>°r is a formal series of the form:
X = ZA -+ Z Z
[I]=0a=1

in which 4;, B¢ are smooth functions on U*, where (U>,y) is a coordinate system on J>r.

A differential r-form w on J°°x has not necessarily a finite number of terms [22] (Page 206, Exam-
ple 7.2.13), but we will use a more restricted notion of differential forms (which is in agreement
with our notion of smooth functions). We say that w is called a r-form of finite order k, if it is the
pull-back of a differential form on J*r this is w € w;’k(QT(J’%)) for some k € N, in which

Mook - Qr(Jkr) —  Qn(J>®7)
W = i p@) s Jor = AT(TT )

p = @p(DWoo,k(j;O@(Ul)v RRR DWOO,k(j;oﬁb)(UT))-
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where Dr i is the differential of 7. , it is calculated formally, writing v; as the derivative of a
curve, v; € Tj;o(bjoow forl <i<r..

In local coordinates a 1-form o on J°°x of order k, for instance, takes the form:
J—Zmdx + Z Zg du$, (3.1.6)
|[I|=0 a=1

where o; and €. are smooth functions on U of order < k and |I| < k.
Also, a p-form w on J>°w of order k in local coordinates, is a finite sum of terms of the type:
Adz™ A -+ Nda'e AduGt A A du$?,

where a + b = p and the coefficient A is a smooth function on U which depends of z* and u¢,
with |[I| <k and |I;| <k for 1 <j <b.

For example, if the coordinates of J>°m are y™ = (z, u, Uy, Uz, - - - Ugzg-- -z - - -) thEN, Uzpda A du,
is a 2-form and u,du., A dz is a 2-form of order 3.

The exterior differentiation d: Q7 (J>°r) — QPT1(J>r) is defined via representatives: If w is a p-
form on J>°r represented by & on J*7 for some k, then dw is the (p+ 1)-form on J>°r represented
by d&. In local coordinates, the differential df of a function f of order & is given by:

m

Z

i=1 0=t ?

(3.1.7)

If o € Q(J>°r), we say that o is a contact form if the pull-back of o by holonomic sections j>°¢
satisfies that

(J7¢)* (o) =0 (3.1.8)
for all local section ¢ of E. In local coordinates a contact one-form may be written as a finite sum
of the following kind:

k n m
o= Z Z el (du§ — Zu?Jrlidx’)
|I|=0 a=1 i=1
for some smooth functions ¢ on U°. In fact,

RN Y T P’

Dj°°¢(p)<%

i

(@t 0joat) 9 = & 9§ 0 jTgoat) 2

i=1 e |I1=0 a=1 e
0 ug o ¢) 0
I Z Z amﬂ ( T ) us is

g |I|=0a=1

=3 S i, 670

JigPe  |I1=0a=1

J°°¢
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We have from equality (3.1.6) and property (3.1.8) that:

- )
) = 0’j;°¢(DJ ¢(p)<3zj )

0= 01O 55

v )) =0+ i iai (ufa, (G°0));

|1|=0 a=1

therefore,

m k n k n
= Z(— 2.2 %% (u?ﬂi(j;%)))dzi DIDIAT

i=1 N |I|=0a=1 |T]=0 a=1
k n

= E E I (du$ — g ufiq, da?)
|7]=0 a=1

m

We define the basic contact one-forms: 09 as 0 = du} — Y uf,, dz', where [I| = 0,1,2,.. .,
i=1

and we call || the order of the contact form ¢, even though this form is defined on a coordinate

neighborhood of JI/I*17. So, we have:

d(09) = d(du — Zu, 1, dT?)

(3 duf ) A

= ()02, + > ufyq, 40, d27) A da)
=1 j=1

m m m

= Z 071, A da® — Z Zu?+1i+1jdarj A da
i=1

i=1 j=1
m ‘
== 60, Nda'.
=1
The last equality is a consequence of the fact that u; 41,41, = ur41,41, and da? Ada' = —da* Ada?.

For example, with respect to the coordinates (x,y,u) on p, : R?* — R2, the contact 1-forms of order
zero and one are:

In multi-index notation: 6 = du — w0y dz — u(,1)dy and

9(1,0) = du(l,o) — U(2,0) dr — U(1,1) dy; 9(0,1) = du(o,1) — U(1,1) dr — U(0,2) dy.
And in symmetric indices notation: § = du — u, do — u, dy; and

Oy = duy — Ugy dT — Ugy dy; 0y = dty — Ugy dT — Uy, dy.

We define the variational bicomplex after [1]. We consider Q™*(J>°w) as the subspace of
QP (J°°r) such that if w € Q™*(J°°7) then it can be written as a finite sum of term of the form

Adz™ A~ Nda'm NOTE A AT with r 45 = p, (3.1.9)
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where A is a smooth function over U°.

We have the direct sum decomposition QP (J>m) = €, , ., 2"*(J>n), and for any non-negative
integers r and s such that r + s = p, we let #™%: QP (J>°7) — Q"*(J>°7) be the projection map.
Moreover, the substitution of du¢ = 6% + > uf,, dz" into the equality (3.1.7) leads to:

i=1

m

df = Z(amﬂrzz u1+1 )d;r +ZZ of =0 =dp f+dy f (3.1.10)

[I]=0 a=1 |I]=0 a=1 uy

dp (f)eQt-0(Joom) dy (f)eQv1(Joom)

The component of dy (f) with respect to dz?, denoted by D,,(f) is called the total derivative of f
with respect to =¢. Thus,

m

du(f) = _ D,i(f)da’ and D, =

i=1 |I|=0a=1

(3.1.11)

180¢

In symmetric indices notation:

. a 9 o 0 ...
Dy 6L1 + Z (Uaﬂ ou™ + Z Ui zit Pu. + Z Ui gin gia Ou Siy g +
1<i; <m z*1 1<i1<ia<m 1at2

(3.1.12)
+ Z ugixil zi2 .. .zt Ou®™ 2 )
1<1 <2< < <m 2122 2tk
and
L) g
dv(f) =3 (Zeom+ > glen+ y  gen .+
a=1 1<i1<m  «* 1<i1§12§m @il a2
(3.1.13)

- > T 1

u ; rtxtlx'2...x
1< <2< <, <m 2¥12%2 .. 2"k

We have d(Q"™%(J>°n)) C Q"tLs(Jn) @ Qst1(J>°x) and therefore we can write d = dy + dy, in
which:
dip . QUs(J®rm) —  Qrths(Joor)
w o T (d(w))

dy : Qs(J®m) — Qnsti(Jon)

w st (d(w))
Of course, d o d = 0 implies that dg odyg = dy ody = 0 and dg ody + dy odyg = 0. The
operators dy and dy are differentials called horizontal and vertical differentials respectively As
d(dz") = 0, we have dg (dz*) = 0 and also dy (dz") = 0; on the other hand dy (6%) = Z dz' AT 4.,

i=1
m

dy(07) = 0and dy (uf) = 3 uf,, dz’, dy(uf) = 0F.
i=1

We conclude that, if w = fdz"* A--- Adx’r AT A--- A 67 then its differential satisfies:
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dw) = (du(f)+dv(f))A(dz™ A Adz'™ AOTE A AOT) + f Ad(da™ A= Ada™™ AOTE A AOTF)

=du(f) A @ A Ad' ™ AOTE A NOTE) + F Ada (da™ A Ada'T AOTE A AT

dp (w)eQr+ls(Jjoor)

+dv(f)A(da™t A Ada' AOTEA - AOTT)

dy (w)eQmst1l(Jjoom)

Now we introduce two algebraic structures that we will use later:

Definition 3.1.6. A bigraded dgm over a ring k is a dgm (M, d) over k, together with a direct
sum decomposition M = @ M4 such that d(MP%) C MPTH4 @ MPatL,

The bidegree of x € MP9 is |x| = (p,q), and its total degree is |x| = p + q. A bigraded
dga over a ring k is a dga (A,d) over k, which is a bigraded dgm over k and satisfies that
AP A4 Arte'atd’ The base ring k is consider as a bigraded dga of bidegree(0,0).

Definition 3.1.7. A double dgm is a bigraded dgm (M, d) over k equipped with two differentials
d': MP4 — MPYLa and d”: MP9 — MP9t! suchthatd = d' +d" and d'd” + d"d =0

In this way, a double (c)dga is a bigraded (c)dga which is a double dgm.

Let 7: E — M be a bundle and let J>°x be the infinite Jet manifold of 7. The space of the diffe-
rential forms on J°°7 with exterior product and exterior differential is a bigraded cdga (Q(J*°~), d)
over R with Q7 (J>°7) = P, ., 2"*(J>n); this bigraded cdga equipped with the horizontal diffe-
rential di and the vertical differential dy- is a double dgm, which is denoted by (Q**(J*°x), dg, dv)
and this is called The variational bicomplex for the bundle 7: E — M. We have the diagram

dy dy dy dy dy
dp dpg dp dy dpy
0 — Q%2(J®°7n) —— Q12 (J®7r) ——— Q*2(J®71) —— - ——— Q"L (J®n) ———— Q™2 (J®7)
dy dy dy dy dy
dp dp dp dpr dp
0 QO,l(Jaoﬂ,) ) Ql,l(Jooﬁ) Q2,1(Jooﬂ_) anl,l(‘]ooﬂ,) Qn.l(JOQﬂ_)
dy dy dy dy dy
dy dy dp dy dp ,
0 R Q00 (%) QL0 (J%°r) Q20 (J%x) . Q10 (g% Q0 (J%m)
Figure 3.1.
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3.2 V-Valued Differential Form

Now we are interested in relating the so-called Linear Gauge Complex [12, 13] to the twisting ma-
trices of the chapter 2. This complex uses g-valued differential forms as elements, where g is a Lie
algebra. Precise definitions follow.

Definition 3.2.1. Let E, M be smooth manifolds, and n: E — M a surjective smooth function. We
say (E,w, M) is a vector bundle of rank n if for every p € M
1. E, = n~1(p) has the structure of an n-dimensional real vector space.
2. Foreach p € M there exists an open neighborhood U of p and a diffeomorphism
ty: 7 HU) - U x R"
such that for each point q € U its restriction to == (p) gives a linear isomorphism:

tu(m~'(p)) = {p} x R™.

Note that a vector bundle is a bundle, and ¢;; is a local trivialization. Then we have the definition
of sections as in Definition (3.1.3).

Now suppose there are given two open sets U,,Ug with p € U, N Ug, and local trivializations
to: Y (Uy) = Uy x R, tg: 77 1(Ug) — Up x R™; then the composition map:

taoty': (UaNUg) X R" = (U, NU3) x R”
can be written in the form:

ta ot (p,0) = (1, gap(P)(v))-

Here go5: Uy NUs — GL(n,R), this is t, o t;lz {p} x R™ — {p} x R" is a linear isomorphism
(where GL(n,R) is the Lie group of invertible real matrices n x n). The map g,z is smooth and
expresses the “shift” of the two trivializations on U, N Ug. It is called a transition function.

Definition 3.2.2. Let M be a smooth manifold and V a fixed real vector space of dimension n.
(M x V,p,, M) is a trivial vector bundle of rank n over M.

As we saw in the Remark (3.1.1-2), we can identify the set of all sections of p, with C>(M, V),
the set of continuous functions M — V. Besides, if g € C*(M,V) then g(p) = > \i(p)vi,
i=1

1=

where \;(p) € R. Thus we define smooth functions X;: M — R such that A;(p) = X\;(p) for each

i =1,...,n;therefore .
9=>_ A (3.2.1)
By identification of v; with the constant map g::zjl\/[ — V such that g;(p) = v; fori = 1,...,n, we

can write N
g= Z)‘igi' (3.2.2)

i=1
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Theorem 3.2.1. Let V be a real vector space of dimension n and M be a smooth manifold of
dimensionm. Then C*°(M,V) = C*®(M) @ V.

Proof. This isomorphism can be obtained as follows: for every p € M, let us define the map

v COM)xV — C®°(M)R.V
(f,v) = y(fiv): M =V
p = flp)v
since C>°(M,V) is a real vector space and ~ is a bilinear map, then by applying the universal

property of the tensor product for vector space, there exists a unique linear map 5 such that the
following diagram is commutative:

C®(M) x V—L 0°(M) &, V

T

C>(M,V)

let g € C>°(M,V); then, from the equation (3.2.1) g = > A,u; and 7 is an isomorphism with
=1
inverse

p: C®(M)V) — C®(M)®,V

n
g DA ®u;.
i=1

Indeed, p is linear map and satisfies that: 7 o p(g) = ﬁ(f: A ®uv;) = znj v(Ai,v;) = g, the last
i=1 i=1
equality since v(\;,v;)(p) = Ai(p)vi. And, poF(f @ v;) = p (fvi) = f @ v;.

O

This Theorem allows us to conclude, that for the trivial bundle (M x V, p,, M) the set of all sections
of p, satisfy that T'(p,) = C>°(M) @, V.

Remark 3.2.1.

1. The tangent bundle T, : TM — M and the cotangent bundle t;,: T*M — M (see Remark
3.1.1) are vector bundles, with local trivializations ty; and ty given respectively as follows: If
we have a coordinate system ¢: U — R™ and coordinate functions p;: U — R then

ty: TJ\_41(U) — UxR™
Up = (T (vp), Dpp(vp))

and
ty: () '(U) — UxR™
Mp = (T (M), Op (1))
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where
dp: TyU — R™

of

0
o = o1 [

T e |,

)

for f: U — R a smooth function such that D,f = n and g—j’ = Dy (f o9 ') (ei). For
“lp

example if n, = 6;;: T,U — R", this is 6;j(5%:(p)) = 1 and 6;;(5%;(p)) = 0 fori # j, then
=i

2. Let (E,nm, M) and (F,p, M) be vector bundles with fibres E,, F, respectively. The tensor
bundle of  and p is the vector bundle with fibres E, ® F,, and it is denoted (E @ F,m®p, M).
Moreover, the r-fold alternating product of w is the vector bundle with fibres A™(E,) (see
1.2.1-5) and it is denoted by (A" (E), A" (n), M). So, as in the Remark (3.1.1), the r-exterior
bundle (A"(T*M), A" (t3;), M) is a vector bundle.

Definition 3.2.3. LetV be an-dimensional real vector space, and (M xV,p,, M) be a trivial vector
bundle of rank n over a m-dimensional manifold M. A r-form on M with values inV, or a V -valued
differential form of degree r, is a section of the vector bundle

(A"(T*M) @ (M x V),A"(75;) ® p,, M).
The set of all »-forms with values in V' is denoted by Q" (M, V). This is a generalization of the set
of the sections of the vector bundle (A"(T*M), A"(7;;), M) which we denoted by Q" (M).

We now introduce a new notation: for W, V vector spaces, A,.(W,V) is the vector space of all
alternating r-multilinear maps, that is, the space of r-multilinear maps f: W xW x --- x W — V

r—times

such that for all ¢ in the permutation group S,.,
f(Wo(1), - -+, Wo(r)) = (sgno) f(wr, ..., wr),
in which sgno is the sign of o.
In the case V' = R, we denoted this set in the Example (1.2.1) item 5, by A,.(W).

With respect to the notations introduced so far, we prove the following theorem, which describes
the r-forms on M with values in V in terms of the r-forms on M and the sections of the trivial
bundle (M x V,p,, M).

Theorem 3.2.2. Let V be a real vector space of dimension n and M be a smooth manifold of
dimension m. Then, for every p € M, we have:

1. A, (T,M)oV = A.(T,M,V) of real vector spaces,

2. Q" (M) ®@cgeony C(M, V) =2 Q" (M, V) of C>*(M)-modules,

3. Q" (M) ®:. V=Q"(M,V) of real vector spaces.
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Proof. The first isomorphism can be obtained as follows: for every p € M, let us define the map

v: A(L,M)xV — A(T,M,V)
(h,v) — o) T,Mx---xT,M — V
(51a"'7£7’) = h(€17..-,€7«)’l}.

Since A,.(T,M, V) is a vector space and ¢ is a bilinear map, then by applying the universal property
of the tensor product for vector spaces, there exists a unique linear map ¢ such that the following
diagram is commutative:

A (T,M) x V-5 A(T,M) &V

where II(h,v) = h @ v.
Now, let {v;}?* , be a fixed basis of V.. If f € A,(T,M,V), then

glv“'agr Zaz fl?"'vfr (%7 Where ai(§1,~~~7§r)€R

Thus we define for each i =1, ..., n, the maps

fi: TpM X+ X TpM — R, such that fz(fl» ;fr) = Ozi(gl,...,gr);

r—times
therefore

f= Z fivs, (3.2.3)
i=1
where each f; € A,.(T,M). Infact, as f is an alternating map

F(&oq)s - &omy)) = (sgno) f(&a, ..., &), foreach &,y ..., 6oy € TpM X - X T, M;

r—times

n

then, ; FilEoy o bo)ti = 2 (sgm0)filEr, - &)

=1

Hence! fi(ga(l)a s 750’(7“)) = (897’10’)]‘}(61, o ,67‘)'

We are able to show that & is an isomorphism. From the last fact we define the map + by property
(3.2.3):
O A(T,M V) = A(T,M)QV

f =Y fi®u
=1
this map is linear and it satisfies: @ o J(f) = @(an fi®u) = an o(fi,v;) = f; the last equality
= =1

holds Z e(fi,vi) (&1, 60) = Zn: il & vie And, o G(h @ v;) = Y(ip(h, vi)) = h @ v, since
o(h, )(51,---7&«) _h(gl,...,@)vZ Therefore, » = ()=, and A,(T,M,V) = A (T,M) ® V.
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On the other hand, by definition of vector tensor bundle
A(T*M)@ (M x V)= | A"(T; M) @ ({p} x V)
peEM

and as A"(T; M) = A,(T,M), we have A"(T"M) @ (M x V) =, Ar(T, M) ® V'; moreover by
the isomorphism ¢ we can identify

A(T*M) @ (M x V) = | ] A (T, M, V). (3.2.4)

peM
For the second part of the theorem, we define the following map:
n: Q(M)xC®(M,V) — Q(M,V)

("-’79) — 77(‘*’79)3M - UngAT(Tvav)
p = nwgp:TyMx---xT,M — V

(617"'757‘) = wp(glv"'aé"")g(p)'

This map is C>°(M)-bilinear. Hence, by the universal property of the tensor product for modules
there exists a unique linear map 77 such that the following is a commutative diagram:

QT (M) x C®(M, V) —2 Q" (M) @coo as, C°(M, V)

Now, let © € Q7"(M,V); then, from equality (3.2.3) ©, = > (0,);v; where (©,); € A.(T,M).
Thus, we can define the r-form on M
©i: M — Uy Ar(T,M)

By identification of v; with the constant map ¢;: M — V such that g;(p) = v; fori = 1,... n, we
can write

i=1
Finally, we can deduce that 77 is an isomorphism with inverse

B: QMY) — QM) @ C(M,V)
C] = Z@L®gl7
i=1

since, 1 is C*°(M)-linear map and satisfies that 7o 1(©) = 7(>° ©; ® ¢;) = > 1(0;,9:) = O,
=1 =1

the last equality following from the fact that Z (04, 9:)p(1, .-, &) = fj( ©:)p(&1y---,&)(9:) (D).

We note that (6,), = (6,); and g;(p) = v;. From the property (3.2. 1) we have iofj(w ® g) =

Lon(d w®Ngi),and sothen rofj(w®g) = Z Aif(n(w, g;)) = w ® g, the last equality, holding
=1 =1
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since n(w, ;) = wg;.

The thirst part of theorem follows from the second part and the Theorem (3.2.1):
Q' (M, V) Z Q" (M) @cooary C(M, V) Z Q" (M) @coouny (C(M)Qr V) 2 Q" (M) ;. V.

The last isomorphism is a consequence of the fact that R is a sub-ring of C°°(M) via the constant
functions and thus this isomorphism is obtained by mappings:

wR(fRv)rwfeu, forwe (fev) e Q" (M) cwen, (C*(M)®r V), and
wRvw® (1®wv), forweve Q" (M)®: V and 1 is the constant map.

This ends the proof. O

The isomorphism given in (3.2.4) implies that a V-valued differential form of degree r say w can
be described as a map

w: M = UyenAr(TpM, V) (3.2.5)
p = wp:LLMx---xT,M—=V

Moreover, the last theorem permits us to state that an element in Q" (M, V) is a finite linear combi-
nation of tensors of the form w ® v where w € Q"(M) and v € V. We define the degree of w ® v as
the degree of w.

It is possible to define the wedge product of two V-valued forms

AN QPM, V) x QUM V) — QPYI(M,VV) (3.2.6)
(w,m) — wAn: M = U,en A(IGM,V V)
3 = (WA,
where

(wAn);  TyMx---xTyM — VeV
(51; cee agp—‘rq) = m Z SgTL(CT)UJé (fo(l)? cee aga(p)) ® 5 (ga(p+1)> cee 7§J(p+q))'

0EOptq
For any vector space V there is a natural exterior differential on the space of V -valued forms,
Thus, if p@v € QP(M,V)
dlpov)=d(p)®@v € PTHM,V). (8.2.7)

The exterior differential on V-valued forms is completely characterized by the usual relations for
w,n € QM,V):
d(d(w)) =0, d(w+n)=d(w)+d(n).
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g-valued differential forms

If V= g is a Lie algebra one can define a bilinear operation on Q*(M,g) by the composite
OP(M,g) x QUM,g) — QPTIY(M,g® g) — QPTI(M,g). Here the first map is the above defined
exterior product, and the second map is induced by the bracket g ® g — g of the Lie algebra. Thus,
using (3.2.6), we set

[, ]: Q°(M,g) x Q1(M,g) — QPY(M,g) (3.2.8)
(p®a,f@b) = (pAB)® [a,b].
Since, for3 € M

1
[wa 7]]3(51’ s 7§p+q) = o\ Z Sgn(g)[wé (go(l)a cee 7£U(p))a U (ga(p-&-l)v cee 7§U(p+q))]'
r+at
Thus,
[p2a, BRb); (&1, -+ - Eptq) = (» +a) 9! ZSWL Mos(Eoys - 80)) M5 Eapr1)s - - -5 Eapra))b] = (PAB);a, b].
ocESptq

Furthermore, for w € Q'(M, g), 3 € M and &, & € T, M we have

[w, wl;(81,62) = ([w;,(&) w;(€2)] — [w;(&2),w;(&1)]) = [w;(£1), w; (&2)]. (3.2.9)

Forw,n,~v € Q(M, g), this bilinear operation on Q(M, g) satisfies:
[w,n] = (=) [, ], (3.2.10)

(=), [, 4] + (=)0, [y, w]] + (1) [y, [w, 7)) = 0. (3.2.11)

The first equality, since:

p@a,Bob = (pAp)a,b]
(~1)WII(8 A p)lb,a
(=1)l+1 3@ b, p @ al.

And, the second equality because:

A=(-DMpaBebeod = (-D)MpoaBAp b
= (=D)PPlI¥lp A (BA @)@ [a, [b,c]]

—DIl B &b, A p@ [c,a]]

B=(-1)"l[pabp@cpad] = )
—D)IBIPIB A (o A p) @ [b, [c, d]]
—1)
)

Bllel(—1)lellel B A (p A @) @ [b, [c, al]
-1 Wlep N (ﬁ A QD) [b; [Ca CLH

C

(=D)p @ c,pA B [a,b]
= ()Wl (pAB) @ e, [a,b]
= (- 1)\w\|ﬁ\( )(\pHIBI)IwI(pAg)Np@[c’[a’bn
(=D)lelelp A (B A @) @ [c, [a, b]]

(~)jp@cpoa,Beb] =
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A+B+C=(—1)Flel(p A (BA@) @ ([a, b, c]] + b, [¢,a]] + [c, [a, b])) = 0.

As in the equality (3.2.7) we define the exterior differential on the space of g-valued forms. It
satisfies that:
d([w,n]) = [d(w), 7] + (=1)[w,d(n)], where w,n € (M, g). (3.2.12)

Indeed,

d([p®a,®0])

d(p A\ B) @ [a,b]

(d(p) A B+ (—1)lPlp Ad(B)) @ [a,b]

= d(p) ANB&@a,b]+ (—1)lp A d(B) © [a, b]
= [d(p)@a,B@b]+(-1)"I[p @ a,d(B) @b].

On the other hand, we note that Q(M, g) is not a differential graded algebra because the property
(8.2.11) tells us that [ , ] is not associative. But it is a differential graded Lie algebra, because it
satisfies the following definition.

Definition 3.2.4. Let L = {L'};>0 be a graded vector space over k. A differential graded Lie algebra is a
graded module M together with a bilinear map of degree zero [, |: L' ® LY — L', 2 ® y — [z,9], and a
differential d: L' — L' satisfying:

(i) [z, y] = (—1)lIWH ]y o),

(i) (=)=, [y, )] + (1)1 y, [z, 2]] + (=) [z, [z, 9] = 0,

(i) and the graded Leibnitz rule d([z,y]) = [d(z),y] + (=1)*![z, d(y)].

Matrix-valued differential form

If V' is a subalgebra of the space of all n x n real matrices M., «», (the Lie algebra of GL(n,R), the Lie group of
invertible n x n matrices over R), then Q(M, V') has a multiplication induced by ordinary matrix multiplication:

A QP(M, V) x QI(M, V) — QPYI(M,V)
(p®A,B®B) — (pAB)® AB.

Here, we interpret the function A as the composite of exterior product given by in (3.2.6) and the map induced
by the matrix multiplication, this is QP (M, V) x Q4(M, V) — QPTI(M,V ® V) — QPT9(M, V). In fact,

Z sgn(a) wga(l), . 750(1))) ’175 (£U(p+1)7 ey .fa(p+q)). (3213)

o€Sp+tq

(w/\n)s(fl,...y'ﬁp+‘Z) = (p+q)|

Thus,

1
(p+q)!

((p®A)/\(/B®B))3(£17 cee :§p+q) = ZSgn(U)pé (50(1)7 s 750(1)))‘4773 (€0(p+1)7 cee 7£U(p+q))B = (p/\B)BAB

0€Sptq

We note that A is associative and it has identity element 1 ® I, where 1 € Q°(M) is a function
constant, but this multiplication is not necessarily commutative

(p®A)A(B®B)=pAB®AB=(-1)IFIgApc AB.
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Thus with the exterior differential defined in the equation (3.2.8) we have (Q2(M, V), A,d) is a dga,

since:
dwAn) =dw)An+ (=1)lw A d(n). (3.2.14)
Indeed,
dlpAAn®B) = d(pAp)® AB

= (d(p)AB+ (-1)lPlpAd(B)) ® AB
= d(pAA(BeB)+ (-1 (pe A)Ad(Be B).

In this case, we can also define the Lie bracket on V by [A, B] := AB — BA where AB and
BA denote the usual matrix multiplication. Moreover (Q(M, V), A,d) is a differential graded Lie
algebra. And the bracket on Q(M, V') defined by the function (3.2.8) satisfies

[w,n] =wAn—(=1)Iy Aw, (3.2.15)

[row A = by wl A+ (=D)Mlw A [y, 7. (3.2.16)
Therefore, If w € QY(M, V) then [w,w] = 2(w A w).
The first equality holds because,

p@A BB =pAB®I[A, B

pAB®(AB — BA)

= pAB®AB—pAB®BA

= (p@AA(BeB)—(-1)IFIFI(BAp) @ BA

= (peA)ABeB) - ()P B)A(pe A).

And, using (3.2.15), we have the second equality:
ownn = yAwAn) = (=1l an) Ay

(v Aw) A — (=1)Pleralw A (7 A )
([y,w] + ( D@l Ay A — (=1)PA<HD G A ([7,4] + (=1) 111y A )

[v,w] A — (=1)U@l+D g A [, 4]
[y, w] An — (= 1)"”(“"“"’7')(—1)|”||'Y|+1w/\['y,n]
= [%w]AnJr( DMl A [y, )

Remark 3.2.2. IfV is a subalgebra of M, «.,,A matrix-valued differential form can be expressed as
a matrix whose entries are differential forms on some manifold M, in the following precise sense:
Let(a;j) e Vandp € Q(M); ifw = p® (a;;) € QM, V), then the component w;; = pa;;. Therefore
the components ij of the matrix exterior product and the matrix differential are respectively

(w A\ 7))1k = Zwij A\ Nik and (dw)ij = (dwm)
J
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3.3 Submanifolds of /7w determined by a finite system of PDEs of ith or-
der

In this section we observe that a kth order differential equation (hereafter understood as either a

scalar equation or finite system) = = 0, in which = depends on independent variable 1, ..., 2y,
dependent variables u!, . ..,u™ and a finite number of partial derivatives 8‘%, determinate a mani-
fold.

Now, we present some basic constructions following the works of Anderson and Kamran in [2]
and Reyes in [21], for determining this manifold. We start with a second order partial differential
equation, and we end up presenting a generalization of this construction to a system of PDEs of
order kth.

Le us consider a given second-order partial differential equation

_ ou Oou O*u  0%u  *u
S\T, Y, Uy s 7 ) 9 = 07
Oz’ 0y Ox0x’ 0Oxdy Jydy

(3.3.1)

in two independent variables z, y and one depend variable .

Now, we consider the trivial bundle 7: R? x R — R2, m(z,y,u) = (z,y), then the coordinates on
J?(m) are denoted by y? = (, y, u, Uy, Uy, Uy, Uzy, Uy ) (SEE EXPression 3.1.3).

The equation (3.3.1) define a locus in J?m
Lp= {(xayauvuwvuyvuzwvuwyvuyy) € J2(7T> | E(x7y>u7uwvuyauwwauwyauyy) = 0}

We restrict this locus to a submanifold S(2) of J27, and we assume that the function = is smooth
on a neighbourhood of S(2). We further ask that m: S(2) — R? be a sub-bundle of the bundle

m:  Jm = R2

ip® = (p9)

and that the following diagram commutes:

:(2)
SR —— J2n

id

R? R?

We can assume that Z(z,y, ..., u,,) = 0 can be solved for one of the variables vz, tay, tyy, SO
S(2) is defined by a subset of the locus of the equation, for example

Uga + F(T, Y, Uy Uz, Uy, Ugy, Uyy) = 0. (3.3.2)

Then S®) is a 7-dimensional submanifold of J(r). This sub-bundle m: S?) — R? is called the
equation manifold of = = 0.

61



The successive prolongations of S? are defined by the total derivatives of Z(z, u, ws, ty, Uz, Uy, Uyy)
that is
S = {j?p,qw | j(2p,q)¢ € 5% and (DIE)(j(gp,q)@ - (DyE)(j(gp,q)) = O}

and

SW = {j?p,q@ | Gy € S and (DawZ) (i, ) 0) = (Day2) (i, 0) = (Dyy D) (i 00) = 0}

and so on. We assume that each SU+1) (I > 2) is a submanifold of .J*7 which fiber over SO,
that is, the following diagram is commutative:

-
SUAD —— Jltig

TI4+1,1 Ti+1,1

MO

S0 Jir

Leti: S(>) — J°°7 be the infinite prolongation of S():
,ﬂm>={j§@¢ |ﬁﬁw¢e:ﬂ“andULEXﬁﬁ®¢):OﬂxaHH|20}

Locally, S is the set of infinite jets in J>°r satisfying Z(z, y, u, Uy, Uy, Urz, Uy, Uyy) = 0 and all its
total derivatives. And 7. : S(°) — R? is a sub-bundle of 7., : J>°7m — R?, called the full equation
manifold of = =

Let u be a local solution to (3.3.1) then we obtain a section of 7 : R? x R — R given by the graph
of u,

o: W —= WxR

(:a) = (p,qulp,q)
Thus, a local solution of = is a local section of 7, : S — R? which is the 2-prolongation of a local
section ¢.
2 W = 2
(r,q) — j(zp’q)ﬁb

since j7, o € S3) | in fact:

r: J# — R y: Jm — R
j(2p7q)¢ = w(pg)=p j(zp,q)Qs =y =4
u: J*m = R ug:  J*mr — R
; . A (uo w
iLp® = uodp.q)=upq) 20— At = vy )
Uy : J?r - R Ugy @ J2T - R
. d(uo . O(uo u
Bt — M52 = Hup.o) 32,0 — 250 = Du(p,q)
Ugy Jr - R Uyy J’r > R
3] O(uop) _ du -2 I(uog) _ du
Tpa® " Towy = oy (P 90) Ta® 7 gy = gy (220
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A local smooth solution of = is a local section of the full equation manifold of =, 7, : S(>) — R?,
which is the infinite prolongation of a local section of 7 : R? x R — R?

o: W —= WxR € W = J%r
(pq) = (P, ulp,q)) (pa) = GG p?

Finally, the vector fields and differential forms on S(*) and S(>°) are defined via pull-back by the
canonical inclusions i%) : §¥ — Jkz i : S§(>) — J°r. Thus, for instance, if o € J7 is a contact
form then i* () is a contact form in S(>). Then differential forms on S(>) can now be bi-graded as
in (3.1.9). And we have the following definition.

Definition 3.3.1. The variational bicomplex for the bundle 7..: S(>) — R? is the pull-back by
the inclusion i: S(°)=7= of the variational bicomplex (**(J>®),dy, dy) to S(>). We have the
diagram:

dy dy dy dy dy

2 du 2 du 2,2 4H dH 1,2 dH 2
00— Q02(5()) L L2 (s)) L, 022500 ... Ty gnot2(gle)) Ly qm2(g()
dy dy dy dy dy

dp dp dp

d d
0 ——— Q0150 Ly abi(s)) oy 2i(s5)) Ly T gnobi(sle)) Ty gri(5(09))

dy dy dy % dy
d d d d d
00— 3R — 30050y s oro(gleo)y _TH yg20(g(e0)y TH 0 TH gn-1.0(gG0)y T .0 (g(o0))
Figure 3.2.

If we write the differential equation as in (3.1.5), the natural coordinates for S(>) are
(T, Yy Uy Uy Uy Uy Uy -+ oy U1, U,y - - -)
The total derivatives with respect = and y on S(>) (see 3.1.12) are
Dy =g +usgy — foh + tayga — Dyfgie +Uayy g+

— 9 9 0 9 _0 _9 ...
Dy = gy + Uygy T Usyge; Uy guy T Uayygu,, T Uy o,

2 .
And basic contact one-forms are 0; = duy — > uyy1,dz’ where |I| =0,1,2,...
=1

1=
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In symmetric indices notation we have:

0 = du— uzdr — uydy
0, = dug — Upedr — Ugydy = dug + fdx — ugydy
0y, = duy — Upydr — Uyydy

Qxyk71 = duxyk—l — Uggyh— vdx — mykdy

dua;yk—l - Uyk—lzxdz - uwykdy

= dugyr-1 — Uys—1 (= f)dr — uyyrdy

= dugyr— + D’y“_l(f)dx — Ugyyrdy.

If g = g(x,u, Up, Uy, Uy, Uyy, . . ., Ugyr—1, U,k ) iS @ SMOOtH function on 5(°) the horizontal derivative
of g (see 3.1.11) is

dr(g) = (Dag)dz 4 (Dyg)dy
and the vertical differential (see 3.1.13) is

0 dg dg dg dg
3 8Z9+80+8u0 ay@

The differentials dy and dy satisfy: dy (dz?) = 0, dy (dz?) = 0, dy (6%) = 0, and

dv(g) = Z9+ oy T yy T
A (Orgr) = dpa(diyys + DS () — e dy)

= du(dptgye— + dyugy—r + (Dy =) (f)dz — ug,rdy)

= dpudy (ugye—1) + du(DE(f)dz) — dpg (ugysdy)

= dydy(ugye-1) + Dy(DEH(f))dy A do — uyyr da A dy

= dydy (ugye—1) + (DE(f))dy A dz — wye,,da A dy

= dudy (ugyp—) + (Dy(f))dy A dz + (D (f))da A dy

= dydy(ugyr-1)

= —dydpy(ugyk-1)

= —dy (Uggyr—1dT + Ugyyrdy)

= dV(D’y“*l(f))dx — Oyrdy.

Now we consider the generalization of last construction to a finite system of kth order system of

PDEs )
(q; e, 9 ,‘9“_) -0, (3.3.3)

—_
=
[l

oz’ Ozt ... Oxte
where [ = 1,...,r, 2%, (1 < i < m) are the independent variables, and u®, (1 < a < n) are
unknown functions.

This system determines a submanifold S*) of 7%=, in which 7: R™ x R™ — R™ and the functions
=z, u®, u$) = 0 are smooth on a neighbourhood of S*), where I is a multi-index with |I| < &
(see discussion after the Definition 3.1.4).
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We also define S(°°) as the submanifold of J>°7 constructed thus:
SEHD) = (kg € JhHir . jkg € S®) and (D;EY) (¢ =0, forall i=1,2,..,m}

S+ = [jk+2g ¢ Jh+2r . jktlg € SBHY and (D;EY) (¢ =0, forall |1 <2}

S = {jeo(p) € J=m: jkp € S®) and (D;E")(j5°¢) =0, forall |I| >0}

We assume that the tower is well defined, that is, St+1), (1 > k) is a submanifold of .J'*! () which
fibers over S, 4
; v
S(k+1) Jk'+1( )
7Tk+1,ki lﬂ'k+1,k
54— ()

e

M

Below, we present two examples:

Example 3.3.1. Let %—7; = F(z,t,u,..., axk) be an evolution equation of order k, in two inde-
pendent variables. This equation determines a submanifold S**) of J*r, with 7 the trivial bundle
7: R? x R — R? The coordinates on S* are (z,t,u, u, ,ux), and the coordinates on S(>) are

(a:,t,u, Ug,y ) Ugg--zy - - )

The total derivatives restricted to S(>) are:

D, = m +ux0u +“mau +“xmaf +ee
D, = %Jrut(%JrUzta%m +uzzt3%m+"’
= 2+ FZ+D,(F)ye +D2(F)y2+-
and the basic contact forms on S(>) become:
0 = du — uydr — wdt = du — ugdr — Fdt
O = duge — UgkrdT — Ughi1,dt = dugs — ugrirde — DEFL(F)dt

Example 3.3.2. We consider the system:

8%u 8%u _
0z22 + dzdy +u = 0
ou ou _
a9 T ot =0
%Z —u? = 0
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This system defines a locus in J*n, where n: R* x R — R* s de trivial bundle, such that:

Usy +Ugy +u = 0

Uy + Ut
2

uy —Uu =
Thus, S®® and S> have coordinates respectively given by

(:177 y’ t? Z’ /U/, um? uZ? ul‘l)? qu‘Z)

(xvyatv ZyUyUg y Uz y Uggy Ugzy Uz, Ugazy Uzzzry Uzazzzy - - -y Ughy, Ugh—14, .« )

And, the basic contact one-forms on S are:
0 = du — ugdr — uydy — udt — u,dz = du — uydr — wldy + uzdt — u.dz
0k = dugr — Upht1dT — Uy dy — Upkydt — Ugk ,d2
= dugr — Ugkr1dr — DF(u?)dy — DF(—u,)dt — ugr,dz
O = dughos, — o — gy — e, odz — ugnsydi

= dugr—1 — Ugkdx — D, D¥(u?)dy + (DET1y + uye)dz — DE(2uu,)

3.4 Linear Gauge Complex and Twisting matrix

Now we let g be a Lie algebra; we can consider the g-valued forms Q(J>°m,g) = Q(J®°7) Q= ¢,
and we have a new double dgm given by Q(J>*x, g) = @ Q™ (J>°r, g) with differentials:

du: QW (J%mg) — QLo g)
pRa = du(p) ®a,

dy: Qn(J%®mg) — QnsHL(J®rg)
pRa — dy(p) ®a.

By the property (3.2.12) dg([w,n]) = [du(w), n]+(—1)1*[w, du(n)], and therefore (2(J>®x, g), [, ], dg)
is a differential graded Lie algebra.

Moreover, if g is a subalgebra of M,,,,, from (3.2.14) we have
du(w An) =da(w) An+ (-1)“lw A du(n),
therefore (2(M, g), A, dg) is a dga which is not necessary commutative.

The same is true for the differential dv,.

Remark 3.4.1. By the Remark (3.2.2-1) if g is a subalgebra of M.,
du(w);r = (du(wj)).
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In particular if f € Q°(J>r,g), we have

m

du(f) ;= (Da(fir))da'.

i=1

In [12] and [13] Michael Marvan define the pth (linear) Gauge complex, considering a submanifold
S() C J°°7 which is determined by a finite system of PDEs kth order. For this, Michael Marvan
uses the double dgm Q(S(>), g) = @ Q™*(S(>), g). In this section we use the notation ¢ instead
of §(=),

Definition 3.4.1. A form o € Q'9(¢, g) is called a g-valued zero curvature representation for =
(for short zcr for ¢) if a is a Maurer-Cartan element, this is:

Give a fixed zcr a, we can consider the linear maps:

ady : Qe,g) — Qe 9) Oa: Qe,g) — Qe,9)

w — o, w] w —  dg(w) — o, W]

Then ad,(QP(e,g)) C QP+ha(e, g) for fixed ¢ > 0, 9, is a differential on the graded module
QPa(e, g) = {Q%9(e, g) }i>0 because:

On 0 0 (w) = 0p(da(w) — [, w])

= —du([o,w]) — [a,dg(w)] + [o, [a, W]

= —[du(a),w] + [o, du(w)] — [a,dr(w)] + [o; (o, W]
= [dn(a).o] + 3 lla,al.]

= [~du(a) + %[a,a],w}

The fifth equality is obtained by means of the properties (3.2.10) and (3.2.11). In fact:

0= (1)l o, [, w]] + (1) [a, [w, o]

) + (-1, o, o]
(_1)|w|[a’ [a,w}] - [av (_1)‘“}”&‘-’_1[@1‘”]]

(_1)‘“}‘ [wv [a’ O‘H

+
+

(=) ([, [, w]] + [ev, [, )] + [w, [, ).

Therefore, 2], [o, w]] = —[w, [a, a]] = —(=1)Ilel+laDF 1[0 o] W] = [[a, a], w].

For a fixed ¢ > 0, the complex (Q™9(¢,g),d,) is called qth-linear complex of ¢, or the qth-
differential graded module of . The the homology groups (p > 0) H29(e,g) = Kerd?,/Imor,~*
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are called the ¢-horizontal Gauge cohomology groups with respect to « .

Q%4 (e, g) —s L, g) —w Q24(c, g)

Remark 3.4.2.

o (Q99(e,g),0,) is a graded Lie algebra, in fact:

o ([w; n]) = du([w, n]) — [a [w, 7]

= [de(w), 1] + (=" w, du()] — (=)o, o, ] = [fv, w], 7]
u(w) — [a,wln] + (=1)*(w, du () — [a,7]])
[0 (@), 1] + (= 1)/, B (m)].

=3

The second equality is obtained from properties (3.2.10) and (3.2.11); since (—1)1" [, [w, n]]+
(=) [w, [, al] + (1)1l [o,w]] = 0, then

—lav, [w, 7]
= (=) w, [, a]] + (1) D, [, w]] ~ [a, [w, )]
= (=)l (=1)Inllel+D(q, g]] + (=1)U«+D (—)ml(el+w D (o, w], 5] — [, [w,7]]
= —(=D)"w, [, n)] = [[or, ], 7).
e IfV is a subalgebra of M, ,,, we saw that (Q(e,g),N,d) is a dga. Moreover we have that
(Qe,8), N, 04) is adga. In fact:

da(wAn) =du(wAn) —[a,wAn
du(w) A+ (=1)¥lw A du(n) = (o, 0] An+ (=1)“lw A o, n]) (by 3.2.15)

([dm( A+ (=1)lw A (da(n) — o, 7))
= Da(w) A+ (=D)I¥lw A 8, (n).

w) — [, w])
)
Our goal is to represent the horizontal Gauge cohomology groups HS4(e, g) using twisted coho-

mology of Q™9(¢) with coefficients in g. That is, we wish to write 0, = dp . for some twisting
matrix ©,, on g into Q'0(¢, g).

Theorem 3.4.1. Let us assume that o in Q'°(e, g) is a zcr for . For a fixed q > 0, the horizontal
cohomology HY"(¢,g) is the twisted cohomology of Q™:9(¢) with coefficients in g and twisting
matrix

On: g — Qe g) (3.4.1)
a = Y o;®[a,aq,

where o = 3" «; ® a; Is the zcr for e, with o; € Q40(¢e) and a; € g.

Proof. First we recall that Q*°(c) = {Q%(¢, g) }iso , Q9(e) = {Q89(e, g) }iso and (2*0(e), A, dgr)
is a dga. Now, (Q94(e),dy) is a Q*°(e)-dgm. In fact the following linear map of degree zero
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satisfies the Definition (1.3.1)

PO @0F1e) — QtHa(e)
TR w = Y Aw.

Thus (Q79(e) ® g,dne, ) is @ *°(c)-dgm (see equation(1.4.3)) with:

dio, (p®a) =du(p) ®a+ (~1)1¥, 06, (a)
=du(p@a) + (1)1, (3 a; @0, ai])

= dH(p ® a) + (*1)"0‘ Z(P A ai) ® [aa ai]

=du(p®a) - Z(ai Ap) ® lai,al

)

:dH(p®a)—[Zai®auP®a]

3

— du(p® ) — [0, p®a
=da(p®a).

Therefore O, is a twisting matrix, for the Theorem (1.4.2), and we conclude that the horizontal
gauge cohomology HZ4(¢, g) is the twisted cohomology of Q74(¢) with coefficients in g, this is
HZ(e,9) = H 0, ((€); 0)- O

Similarly, we can define the pth-differential graded module (Q7'~ (g, g), §5) with 3 € Q%1 (¢, g) satis-
fying dv(8) = 1[3, 8] and 65 = dv(w) — adg. As (2~ (¢),dy) is a dga and QP () is a Q% (¢)-
dgm, we have that (2"~ (¢, g), ) = (2"~ (¢, 9),dve,) Where:

Os: g — Qle)®g
a — > pi®|a,b]

with 3 =35~ p; ®@b; for p; € Q%1 (£) and b; € g. So, we have two twisted differentials dy_ and dve,

in the follozwing diagram:

ey ey veg

dHe, dHe, IH o,

dHe,
e, 9)0? ——— o=, 912 e ) ——

ey ey Weg
dHo, dHo,

dHo, dHo,
0,1 1,1 n,1
Qe, 90)"" — Q(e, 0) > o Qe 9) ———

ey ey eg
dHe, dHO, dHO, AH 0,
Qe, )00 —— 3y (e, )0 — =5 ... S, g)n0
Figure 3.3.
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We want to find conditions assuming that d e, dve, +dve,dre, = 0. Since Q(e, g) = B Q(e, 9)
we would then conclude that (2(e, 9), dre, + dve,) is a double dgm.

Theorem 3.4.2. Ifdu(B) + dv(a) = [a, 8] then (Q(e, 9),dne, + dve,) is a double dgm.

Proof. Note that:

dre,dve, +dve,due,(p® a)
=due, (dv(p) ®a—[B,p@a]) +dve,(du(p) ® a—[a, p©a))
=du(dv(p)®a—[B,p®a]) = [a,dv(p) ®a—[B,p®al] + dv(du(p) ® a—[a, p @ a])—
[8,du(p) ® a—[a, p @ al]
=dudy(p) ®a—du([8,p®a]) = o, dv(p) ® a] + [a,[B,p® a]] + dvdu(p) ® a — dv([e, p @ a])—
(8, du(p) @ a] + B, [, p @ a]]
—[du(B),p®al + [8,du(p) ® a] — [, dv (p) ® a] + [a, [B, p @ a]] = [dv (a), p® a] + [, dv (p) @ a]—
[8,du(p) ® a] + B, [ov, p ® al]
—[du(B),p®a] = [dv(a),p®a] + [, [, p ® a]] + [B, [a, p @ a]]
=[-du(B) —dv(a),p®a] + [[o, ], p @ a]
= [[o, 8] = (dr(B) + dv (@), p @ d]

Where we have used that [«, [3, p ® a]] + [, [o, p ® a]] = [[a, B], p ® a], for the properties (3.2.10)
and (3.2.11).

3.4.1 Special Case

Let SL(2) be the Lie group of all 2 x 2 real matrices with determinant 1. We consider the Lie algebra
g = sl(2) of SL(2), that is s[(2) consists of traceless 2 x 2 matrices with entries in R; the Lie bracket
is defined by [X,Y] := XY — Y X, where XY and Y X denote the usual matrix multiplication. The

elements:
0 1 1 0 0 0
X = , H = , Y =
0 0 0 -1 1 0

constitute the standard basis and the Lie bracket with respect to the standard basis is given by:

[H,X]=2X, [X,Y]=H, [HY]=-2Y.

In the article [12] Marvan gives an example about non linear Klein-Gordon equation

= g(u). (3.4.2)
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The manifold ¢ has coordinates (z,y, u, Uy, Uz, ..., Uy, Uyy, -..), @and the total derivatives become

D 9 +u 9 +u 9 + .t 9 + 9 +
Oz ) Ouy Y du, Y Ouy,
D —g—ku 9 +u 9 + ... tu 0 +u 9 — +
Buxy o _ OUxy g
where gy, = = ¢ (w)uy and ugy, = ot = g (u)uy.

In order to admit zero curvature representation Marvan found that for M, N, K, ¢ constants, the
function ¢ must be of the form 2(Ne®* — Me=“*). then a, the sl(2)-valued one-form zcr for ¢, is
given by the following formula:

a=Nede®X + Ke “dz @Y + & dy®H+%dy®X+dy®Y (3.4.3)
Recall that for the property (3.1.11) we have dy (f) = D, (f)dz + D, (f)dy, then:
dri(a) = Dy(Ne®™)dy Adz ® X + Dy(Ke™)dy Adz ® Y + D, ( )dx/\dy@H
= Ne“cuydy Nde @ X + (—Ke™ cuy)dy/\dx®Y+ zydx/\dy@H

= —Ne““cuydr Ndy @ X + Ke™¢ cuyd:v/\dy@)Y-i- zyd:c/\dy@H
and on the other hand
M
[a,a] = Necuyde Ndy ® [ X, H| + 2Necufdx ANdy @ [ X, X]+2Ne“de ANdy @ [X, Y]+
Ke cuyde Ndy @ [Y,H] + 2Me “dz ANdy @ [Y, X] + 2Ke ““dz Ndy ® [Y, Y]
= —2Ne“cuydx Ndy @ X +2Ke “cuyde Ndy @Y + (2Ne®™ — 2Me™“)dz Ndy @ H

= —2Ne“cuydr Ndy ® X +2Ke™ “cuydz Ndy @Y + cugydz ANdy @ H.
Therefore, du(a) = 1[a, o] on the full equation manifold of (3.4.2). Therefore from Theorem (3.4.1)
we have the twisting matrix:

On: sl(2) = Q%) ®sl(2)
Ao Nedr®[A,X] + Ke dr © [A, Y] + “aldy @ [A, H] + Sody © [4, X] + dy 9 [4, Y],

Substituting the matrices X, H,Y in last map, we have:
Ou(X)=Ke “dz @ H — cuydy® X +dy ® H,
. . 2M
O4,(H) =2Ne®dx @ X — 2Ke “dx @Y + fdy ®X —2dy®Y, (3.4.4)

M
0,Y)=—-Ne“dz®@ H + cu,dy® Y — fdy@) H.
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In terms of s((2)-valued forms (see Remark 3.2.2) the element « in equality (3.4.3) can be repre-
sented by the following matrices:

0 Ne 0 0 Lew,d 0 0 Mg 0 0
o= e X " " 5 ClUyAY N 7 dy N .
0 0 Ke dx 0 0 —Lcu,dy 0 0 dy 0

Thus « can be written as:

0 Ne—cu 1 M
a= ¢ dx + 2%y K dy (3.4.5)
Ke 0 1 flcuy

2

A B

where, A, B € Q% (¢, 5[(2)), Moreover, with the last equality and Remarks (3.2.2, 3.4.1) and equality
(3.2.15):

du (o) = du(Ader + Bdy) = (DyA)dy Adz + (D, B)dz AN dy = (DyA — D, B)dy A dx,
ila,a]l = a N = ABdx Ady + BAdx AN dy = (AB — BA)dx A dy = [A, Bldz A dy.
Therefore D,A — D, B + [A, B] = 0, the usual “zero curvature representation” of (3.4.2).

We find that our twisting matrix satisfies (see 3.4.4):

O : sl(2) = QY0 ®sl(2)

0 1 Ke™e® 0 1 —cuy

> dx + dy
0 0 0 —Ke™ 0 -1
10 0 2Nee 0o 2¥

— dx + dy
0 -1 —2Ke™ 0 -2 0
00 —Ne* 0 -0

> dx + dy.
10 0 Nett Clly %

We find an element 8 € Q%1 (e, g) such that dv (3) = %[, 8], as saw after of the Theorem (3.4.1).
Let us write the general form of aterm 3, with p,q € N
B = (1004 a110s + a12050 + 0130000 + -+ a1 p0p0 + 0110y + - + b1 g0ya) @ X+
(a2,00 4 a2,10, + 22020 + 0230000 + -+ a2 plun + 0210y + -+ + by g0ya) @Y +
(a3,00 + a3 10, + 32055 + 330500 + - + a3 pOzn + b3 10y + -+ + b3 40ya) @ H
= a®@X+bY +e® H,

thus
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18,8] = 2{ab@[X,Y]+ae® [X,H|+ba®[Y,X]|+be® [Y,H]+ea®[H,X]|+eb® [H, Y]}
= 2{ab®H+ae® (-2X)+ba® (—H) +be® (2Y) + ea ® (2X) + eb ® (—2Y)}
= 1{(ab—ba) ® H+ (—ae+ea) ® X + (be — eb) ® Y'}
= 3{20b® H +4ea® X + 4be @ Y}
= ab® H+2ea® X +2®Y.

We consider the element:

N NC’U. cu cu
6:<Ce+ ° 9x>®X+(2§V9—e 9x>®Y+(—e 9m)®H,

2 4 AN 4
then
dv() = N n 0, 0 x - N9 n 0, 0y - gno, 0 H
4N 4
On the other hand:
et cNO#  Ne cNe
2 = 2(-—— P T —
ea ( 49w)/\< 5 + 1 9,;) 1 ON0O,
c et ecy cecu
cN Net c et ce ™ ce™ cet

Therefore, dv(3) = (3, ).
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Chapter 4

Manifold of Pseudo-spherical type and Generation of Sullivan
decomposable Algebras

In this chapter we wish to find twisting matrices and to generate Sullivan decomposable algebras
starting from certain forms w?, i = 1,2, 3 determined by a manifold of pseudo-spherical type, this
is, a special kind of submanifold of a infinite Jet bundle.

4.1 Manifold of Pseudo-spherical type and twisting matrix

Definition 4.1.1. Let = = 0 be a scalar differential equation
ou ou

dx 7 dxnm
in two independent variables x,t. The full equation manifold S(>) of (4.1.1) is called of pseudo-

E(x, t, u,

)=0 (4.1.1)

spherical type if there exist one-forms w', i = 1,2, 3,
(/Ji = fiﬁl(l’, t, Uy ... ,umntm)dﬂf + fig(fﬂ, t, Uy ... ,'U/zstq)dt (41 2)

whose coefficients f;; are smooth functions on (a neighborhood of) S(°), such that they satisfy
the independence condition w' A w? # 0 and the equations

dp(wh) =w? Aw?, dy(w?) =w AW?, dpw?) = w! Aw? (4.1.3)
The class of differential equations of pseudo-spherical type was introduced by S.S.Chern and K.

Teneblat [6] in terms of solution of differential equation = = 0. If the equalities in S(>) in (4.1.3)
are replaced by one-forms @w = w(u(z,t)) we obtain:

d@) =@ A, d@*) =a' AT, d@®) =@ AT

whenever u(z,t) is a solution of = = 0. If u: M C R? — R satisfies (w! A w?)(u(z,t)) # 0 then M
is called pseudo-spherical surface.

The purpose of this section is to relate the S(>°) manifold determined by a differential equation
and Sullivan descomposable algebras, so we privilege the structure defined in (4.1.1) instead of
the definition introduced by Chern and Teneblat, since they give structure of a pseudo-spherical
surface of open subset of R2.

The one-forms w® allow us to construct a form a € Q19(¢, 51(2));

a:%{w2®H+(w1—w3)®X+(w1+w3)®Y}, (4.1.4)

o (N T A R (]

where
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By Remark (3.2.2-1) « can be written as:

2 1,3
A (4.1.5)
2\t + w? —w?

or even

a:1< S f11—f31) dm+1< fa2 f12—f32> dt = Xdz + Tdt, (4.1.6)
2\ fu+ fa —fa1 2 \ fi2 + fa2 —f22

X T

where X, T € Q%(g,s[(2)). Remarks (3.2.2-1) and (3.4.1) imply:

aANa=XTdx Ndt+TXdt ANde = —[X,T|dt A dz,

d(a) = (D X)dt Ndx + (D, T)dzx Adt = (D:X — D,T)dt A de,

therefore D; X — D, T + [X,T] = 0.

The following theorem shows that « is a sl(2)-valued zero curvature representation for .

Theorem 4.1.1. Let ¢ be a manifold of pseudo-spherical type determined by a scalar differential
equation Z(x,t,u, 2, ..., 524} = 0 with one-forms w', i = 1,2,3; then

Y Oxntm
1 w? wl —w?
a= - )
2\t + w? —w

is a sl(2)-valued zero curvature representation for e.

Proof. Here we use the property (3.2.15), thus [a, o] = 2(a A ) and by the Remark (3.2.2-1), we
have the following computations:

WA+ (W =) A (W +w?) WA (W= w?) = (W - w?) Aw?
“lyal=aNha= -
2 W+ W) Aw? —wW? A (Wl +w?) (W +wd) A (W —wd) +w? Aw?

whAw® Wi Aw?—w! Aw?
2 2
u.z‘q’/\o.)z-i-u.:l/\o.z2 —o.Jl/\u.z3
2 2

d ( ) . 1 dH(wQ) dH(wl _w3) 7 % M
T dg(W'+w?)  —dp(w?) o\ Loetene? —w!Ae®

2 2

Therefore du(a) = 3[a, o]. This proves that « is a s[(2)-valued zero curvature representation for
by Definition (3.4.1). O
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Since « is a sl(2)-valued zcr for €, by Theorem (3.4.1), for a fixed ¢ > 0 the gth-linear complex of
e (QP9(e,9),04) = (Q9(e,9),dpo, ) is a Q*(e)-dgm and by Theorem (1.4.2), ©, constructed in
(4.1.7) below is a twisting matrix:

O.: sl(2) — QY9e)®sl(2)
in which
A o %(wQ @A, H] + (' —?) @ [4, X] + (' +w?) ® [A,Y])
w1+w3 7(.4)2
X = 7w2®X+%(w1+wd)®H: ( (2) _(w1+w3)> (4.1.7)
(w!—w®) 20
Y = Y -Lw -w)eH= 2 13
2 L2 @)
2
0 1_,.3
H = (W-w)eX—(w+®)eY = v
—wl —wd 0

Let us describe the miltiplication operation and differential of (2™4(¢) ® s((2), dr, ) as a 0+ (e)-
dgm, (see equalities 1.4.3). They are given by the linear maps:

p(n®A)=pAn® A,
—1)Inl
dira,1® 4) = dig() © A+ "D nw? @ (A H] £ 0 A (@ — o) @ [ X] A @ + ) @ [4,Y])
Thus,

10,19 X) = ()& X + T (A w @ (22X) + 1 (01 +%) @ 1)

_ (“J'” MA@+ ) daln) — (-1l Aw?)

0 —7(_12)“” nA (Wl + w?)

_1\Inl
diro.(®Y) = du(n) © ¥ + I

(nAw2 ®2Y)+nA (W —w?) ® (—H))
B O LIPS 0
di() + (~D)"pAw? ST A ! - o)

—1)Inl
die,(N®H)=dp(n) @ H + =Y

(n AW =)@ 2X) + A (W + W) ® (—2Y))

_ ( dr(n) (—1)\77\ nA (w! — wg))
~(=D)My A (" +0?) ~dp(n)

On the other hand, by Theorem (1.4.3) the module Hom(sl(2),Q4(¢)) is a Q~°(¢)-dgm (see
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equalities 1.4.6) with linear maps:

(pg)(v) = p A g(v),

dita, (9) = dira, 9 — {2 A gl H]) + (& — &%) A g(14, X)) + (" + %) A g([A,¥])}
Then,
Ao, (9)(X) = due, 0 g(X) +w? Ag(X) — 3(w! +w?) A g(H),
dito, (9)(Y) = dito, 0 g(Y) —w? A g(Y) + (@' —?) A g(H),

dhe, (9)(H) = due, © g(H) — (w' —w®) A g(X) + (w' +w’) A g(Y).

4.2 Generation of Sullivan decomposable algebras

Using the twisting matrix ©,, defined in (4.1.7), now we shall construct a Sullivan decomposable
algebra by means of Theorem (1.5.2).

As in the last section, let € be the manifold of pseudo-spherical type determined by a scalar diffe-
rential equation Z(z, t, u, 2% —Ou_

s By oy gaag) = 0, with one-forms w®, o = 1,2, 3, and let
1
a= §{w2®H—|—(w1 —W)RX + (W)Y}
in Q40(e, s1(2)) be a zer for e.

Now, we consider henceforth
W = spanz{w",w? w?} (4.2.1)

the real subspace of Q10(¢).
Therefore, we can define the cdga (AW, d) with differential given by:
dw') =w? Aw?, dW?) =w Awd, dW?) = w AW (4.2.2)

It is important to note that the sign A in (4.2.2) is the operation in the algebra AW and not the
operation in the algebra Q0(e).

Then, we restrict the codomain of the twisting matrix ©,, in (4.1.7) induced by the one form « to
Oq: sl(2) —» Wesl(2) (4.2.3)

A = LWeAH + (W -w)®[4 X]+ (w +w?) ®[A4,Y]).

This restriction allows us to obtain for the cdga (AW, d) and the vector space s[(2) a new twisting
matrix by Definition (1.4.2). Since dO,, + 0, 0 ©, = 0. Indeed, by the maps in (1.4.7):
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dO,: s

=
K
1
—
=
=
[\v]
®
=
=
K

= (WA R [AH 4 (WP Aw? —w Aw?) @ [4, X]+ (W3 Aw? + w Aw?) ®[A,Y])
AP O X + LW+ w) AW ®H

= WA RY - (W —w) AW H

S
I

= (W-wH AW X — (W +w)Aw?®Y)

A = (W e06(4 H)) + (w! - w?) ® Oa([4, X]) + (w! +w?) ® O4([A,Y])

Then,
00 004 (X) = —w?0,(X) + %(wl +w?)O0,(H)
= - (e X+ 1(o.)l +w) @ H) + 1(wl + (W - X — (W +uW)eY)

2 2
1
:—wl/\w3®X+§(w3+w1)/\w2®H

—_

04 00,(Y) =w?0,(Y) - §(w1 —w?)O,(H)
= (WY — %(w1 ~ W)@ H) - %( Lo (W =)o X — (W +w®)®Y)

1
:wl/\w3®Yf§(w3fwl)/\w2®H

©,00,(H) = (wl — w?’)@a(X) — (wl —|—w3)®a(Y)
= (@' ) (P @ X+ 5( +67) @ H) — (! +6)) (R BY ~ (' ~ ) © H)

=W —wHA?* X — (WP +wH AW Y).

Theorem 4.2.1. Let V = {V*},5( be a graded vector space of finite type such that V° = {0},
V=W, V2 =sl(2) and V¥ = {0} for all k > 3. Then, algebra A(W & sl(2)) has structure of cdga
via the linear map d. 2y defined by

dog): sl(2) — AW e@sl(2)) (4.2.4)
A = moOu(A)+ fo(A)

where m is the exterior product on graded algebra A(W @ sl(2)) and fo: sl(2) — (AW)3 is a linear
map. Moreover AV = A(W @ s1(2)) is a Sullivan decomposable algebra.

Proof. Since (AW, d) is a cdga the Theorem (1.5.2) states that for k = 2, the free commutative
graded algebra A(W @ sl(2)) has structure of cdga via the linear map d, 2y, where the function
fa:8l(2) — (AW)? is a linear map such that [fo] € H},,, o (5/(2), AW).
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In this case, any linear map f, satisfies the last property. To prove the previous assertion, first
we recall some the notation introduced in the section (1.4.2): (Hom(sl(2), AW) is a AW-dgm with
differential for g € Hom(sl(2), AW) given by de_ (g9) = dp o fo — 40 O, Where

O, AW®sl(2) — AW
w®A — wAg(A).

Thus, [f2] € H, (s1(2), AW) if for each A € sl(2) is satisfied that:

om,04
de, (f2)(A) = d(f2(A)) — %(w2 A fo([A H)) + (W = w®) A fo[A, X)) + (W +w®) A f2([A,Y]) = 0.

Now, we observe that (AW)3 = span,{w! A w? Aw3} and (AW)?* = {0}, as de, (f2)(A) € (AW)?
then do_ (f2) = 0, for any f, linear map.

Therefore, AV = A(W @ sl(2)) is a Sullivan decomposable algebra.
O

The following examples appear in [20]; we apply the above results to the Burgers’ equation and to
the Sine-Gordon equation.

4.3 Burgers’ Equation

Let ¢ be the manifold determined by the scalar differential equation

ou 2 ou

ot Oxdx +u%.

This equation is a manifold of pseudo-spherical type because there exist one-forms w?, i =
1,2,3,

w! = (%u - g) dzr + %(ux + %uQ) dt  w?=\dx+ (%u—i—ﬂ) dt W =—w? (4.3.1)

in which X is a nonzero parameter and : ¢ — R is defined by Ipa® B(p), where B(x) is a
solution to the equation 3% — A3, = 0, therefore the coefficients of w! are smooth functions, such
that satisfy the independence condition w! A w? # 0 and the structure equations (4.1.3). In fact:

whAw? = (3u-— g)(%u—&—ﬁ) do Adt + 5 (up + Su?) dt Ada
— (Lu2X — &) do Adt — (Ahu, + Su2)) do A dt

— (=& — Lw,) dx Adt,
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dt) = Dilbu—£) dtnds+ 4D, (s + 1) do p
= ($w) dt A dx + % (ugy + ugu) dt A dz
= 07

dw?) =D,(3u+B)dzAdt
= (u, + ﬁ—;) dx A dt,

Then, by the Theorem (4.1.1) we have the sl(2)-valued zero curvature representation for £ given

by:
1 w? wl + w?
(6% = 5
wl — w? —w?

=H?oH+ (W +uw) X+ (W —w?) Y}
= %{(/\dm—&- (3u+pB)dt) ® H + ((%u—§+)\)da:+ (%um+iu2+gu+6)dt) ® X
+(

In this case W = span;{w',w?} and from the Theorem (4.2.1), we have that A(W & s((2)) has

Ly—8 _Ndz+ Lup +iu? - 2u—pB)dt) @Y §.
2 X 2 1 2

structure of cdga via the linear map d,(,), defined by equation (4.2.4), which is:

dei2y : sl(2) — AW @sl(2))
X = = AX+ W —w) AT+ f(X)
Y = W AY — (W) AL+ fo(X)
H = (W+w)AX = (0w =) AY + fo(X).

On the other hand, since (AW)? = 0, we have that f>: sl(2) — (AW)? is the null map and:
(AW @sl(2)° =R
(AW @sl2))! =W
(AW @sl(2)2 =W AW @sl(2)

(AW @ 51(2)))2" 1 = W Asl(2)) A--- Asl(2)), for n>1

n—times
(AW @51(2)))2" = W AW AsI(2)) A Asl(2)) @5I(2)) A--- Asl(2)), for n > 2.
(n—1)—times n—times

Let us denote ¢ the differential in the algebra A(W @ s1(2)), that is §(w?) = d(w?), fori = 1,2 and
0(A) = dgy2)(A), for A € s1(2). We observe that:

o Ker(6') =R

80



o Ker(8') = {aw' : a € R} 2 R. Indeed, for a,b € R:
S awy +bw?) = —bw' Aw?=02b=0

o Ker(6?) = W AW. Infact, 62(w! Aw?) = d(w!) Aw? —w! Ad(w?) = w! Aw! Aw? =0, and
for a,b,c € R we have:

5?(aX +bY +cH) =

W ANX +(c—a)w? ANX —cw ANY + (b+c)w? AY + (a—bw' AL — (a+b)w? AL,

since {Ww!' A X, W AH, WP AY, w2 A X, W AH, w2 AY}is abasis of W A s5((2), then
2@X +bY +cH)=0=a=b=c=0.

Moreover, Im(6°) = {0} and Im(s') =W AW,

then HO(A(W @51(2)),8) =R, HY(A(W @s1(2)),0) =R and H?(A(W @ sl(2)),5) = {0}.
Remark 4.3.1.

1. If A € sl(2)), then 3> (AN---NANA)=nS2(A)ANAAN---NANA, forn > 2.
—_— —_—

n—times (n—1)—times

In fact, since |A| = 2, then §*(A N A) = §%(A) N A+ ANG%(A) = 26%(A) A A, and

(AN NANA)
L S 2

n—times
=02 DAN - ANANANAFAN---NANAN?(A)
— —
(n—1)—times (n—1)—times
=n—-1)2A)AN AN ANANAYNA+AN---NANANS?(A) by inductive hypothesis
——— —

(n—2)—times (n—1)—times
=nd2(A)NAN---NANA
—_—

(n—1)—times

Thus, for A € s1(2), such that A # 0 and 6*(A) # 0, then (AN --- N AN A) & Ker(5°").
—_———
n—times

2. LetA; €sl(2), fori=1,2...,n, then §*"*2(A; AN Ag A+ A A, Awt Aw?) =0, since
(52n(A1 NAg N /\An) € W/\E[(2)

this means that W AW A sl(2)) A--- Asl(2)) C Ker(8*"2).

n—times

4.4 The sine-Gordon Equation

Let ¢ be the manifold determined by the scalar differential equation
0%u
dzxdt

This equation is of pseudo-spherical type, because there exist one-forms w?, i = 1,2, 3,

= sinu.

1 1
wl = X sinu dt, w? = Ndx + 3, cosu dt, W = uy d. (4.4.1)
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These differential forms satisfy the independence condition w!Aw? # 0 and the structure equations
(4.1.3). In fact:

wrAw? = —sinu dx A dt,
wAw? = —%um sinu dx A dt,
WwIAw? = %uw cosu dx A dt,

d(w') = Dy(5sinu) dz Adt = Fug, cosu dx A dt

d(w2) _ Dm(% cosu) dx A dt = —%um sinu dx A dt
d(w?) = Di(ug) dt Ndx = uyy dt Adw = —sinu dz A dt

Then, by the Theorem (4.1.1) we have the sl(2)-valued zero curvature representation for £ given
by:
1 1 1 1
o= 5{()\dx + X cosudt) @ H + (X sinudt — uzdr) @ X + (X sin udt + u,dz) @ Y}

In this case W = span,{w',w? w3} and from the Theorem (4.2.1) we have that A(W @ s[(2)) has
structure of cdga via the linear map d;(2), defined by equation (4.2.4):

daiz) : sl(2) — AW @sl(2))
X = = AX 4 (W )AL+ f(X)
Y = W AY = (w =) AL+ oY)
H = W—=u)AX — (W +)AY + fo(H)

On the other hand, since (AW)3 = span.{w! Aw? Aw?3}, the linear map f»: sl(2) — (AW)? satisfies
that fo(A4) = yw! Aw? Aw?, for some v € R. Moreover, as (AW)* = 0, we have:

(A(W @ 51(2)))° = R
(AW @ sl(2))! =W
(AW @sl(2)2=W AW @sl(2)

(A(W @5l(2))% =W Asl(2) & W AW AW,

(AW @ sl(2)2 T =W Asl(2)) A~ Asl(2) W AW AW Asl(2)) A--- Asl(2)), for n>2
(

n—times n—1)—times

(AW @sl(2)2 =W AW Asl(2)) A--- Asl(2) @sl(2)) A--- Asl(2)), for n>2

(n—1)—times n—times

Let us denote § the differential in the algebra A(W @ s[(2)), that is 6(w?) = d(w?), fori = 1,2,3 and
0(A) = ds(2)(A), for A € s1(2). We observe that:

o Ker(6%) =R
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o Ker(6') = {0}, since {w? A w?, w! Aw?, w! Aw?} is abasis of W AW. Thus, a,b,c € R:

S aw' + bw? + caw?) = awd Aw? Fbwr Awd et Aw? =0 a,b,c=0

o Ker(6%) = W2. Infact,
P Aw?) =dw) Aw? —w Ad(w?) = w3 Aw? Aw? —wl Aw Awd =0,
FPwAw?) =dw) Awd —w Adw?) = w3 Aw? Aw? —wt Awl Aw? =0,

PP Aw?) =dwW) Aw? —wd Ad(w?) = w Aw? Aw? —wd Awl Awd =0.

And for a,b, c € R, we have:
6% (aX +bY + cH) =w?A(—aX +bY) +w' A (e —bZ +cX —cY)
4w A (@ + b2 — X —cY) + afo(X) + bfo(Y) + cfo(H).

Since {w!' A X, W' AH, WP AY,W?AX, W2AH, WPAY, w3 A X, w3 AH, v \Y} is abasis
of W Asl(2) and afa(X) + bfa(Y) + cfo(H) = ywt A w? Aw?, for some v € R, then

2(@X +bY +cH)=0ca=b=c=0.

Moreover, Im(5°) = {0} and Im(s') =W AW,

then HO(A(W @ sl(2)),8) = R, H'(A(W @s(2)),6) = {0} and HZ(A(W @sl(2)),5) = {0}.

In this case the item 1 of Remark (4.3.1) is true, but the item 2 is not satisfied, here are some

calculations for §*:
3 H
54(w1/\w2/\X):w1/\w2/\w3/\5
H
64(w1/\w2/\Y):w1/\w2/\w3/\5
SH W' AW AH) = -0 AP AP A (X +Y)
W ABAX) = - A AW AX
W AW AY) =W AW AW AY
SHw AW AH) =0

H
54(w3/\w2/\X):w3/\w2/\w1/\5

H
64(w3/\w2/\Y):—w3/\w2/\w1/\5

S WP APAH) =B AP AW A (X —Y)

The following theorem allows us to identify some homologies for the algebra A(W @ sl(2)). We
recall that W = span,{w!,w? w3} asin (4.2.1).

Theorem 4.4.1. If {w',w? w3} are linearly independent, then

HO(A(W @5((2)),6) =R, HY(A(W @©5sl(2)),6) =0 and H*(A(W @ sl(2)),5) = 0.
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And if {w',w? w3} are linearly dependent, this is w® = A\w! + Bw?, then

HY(A(Wsl(2)),6) 2R, HY(A(Wasl(2)),6) 2R whenA=0orp =0 and H*(A(Wsl(2)),5) =0.

Proof. The first part of theorem is obtained by observing that Ker(6°) = R, Ker(é') = {0},
Ker(6%) =W AW, Im(8°) = {0} and Im(§') = W A W. as in the sine-Gordon equation.

The second part is a generalization of the Burgers’ equation case. For this we note that:
o Ker(6') =R
o Ker(6') = {aw' : a € R} @ R. Indeed,
S (wh) = Ow! + Bu?) Aw? = Aw! Aw?
SHwh) = wh A Qw! + Bw?) = Bw! Aw?
and for a, b, c € R:
St(aw +bw?) = (aA +bB)w Aw? =0 aX+ b8 =0
Observe that A = 8 = 0 is impossible, since d(w?) = w! Aw? = 0.
If A\ =0and 3 # 0, then Ker(6') = {aw' : a € R} 2 R.
If 3=0and X # 0, then Ker(6') = {bw? : b € R} 2 R.
If A # 0and 8 # 0, then Ker(s') = {=L2w! + bw? : b € R}.
o Ker(6?) =W AW. In fact,
52w Aw?) = d(w!) Aw? — w Adw?) = Ow! Aw?) Aw? +w! A (Bw! Aw?) =0,
and for a, b, c € R, we have:

5%(aX +bY +cH) =
(c— MW AX + (—a—cB)w? AX +(—c— AWl AY
+(b—cB)w? AY + (a+ar—b+bNw! AL + (aB+b8)w? A L.

Since {w' A X, W' AH, W' AY, w2 A X, w?AH, w?AY}is abasis of W A W; then, for any
case of A, 3:
2@X +bY +cH)=0=a=b=c=0.

Therefore Ker(62) =W AW.

On the other hand Im(6°) = {0} and I'm(§') = W A W. This proves the theorem.

84



4.5 Gauge transformation

The main goal of this work is to generate Sullivan decomposable algebras and we saw that this
can be achieved by using a twisting matrix. We introduce the notion of gauge transformation in
such a way that the structure equation (4.1.3) are invariant under the gauge transformation. In this
way, we have new twisting matrices, although the algebra the Sullivan decomposable generated
are not isomorphic to the original.

Below we review some aspect of Lie groups with the goal of arriving to expression (4.5.8).

Definition 4.5.1. Let G be a Lie group and R, the right multiplication for each g € G, given by
Ry: G = G
h +— hg.
The g-valued 1-form over G
welg): T,G — g=T.G
vg TgR;1 (vg),

is called the right Maurer-Cartan form.

Let us see the right Maurer-Cartan form for the particular case in that G is a subgroup of GL(n,R),
the Lie group of invertible real matrices n x n). We consider the inclusion map

Ji G — Muxn (4.5.1)
A = [a;]
where M, «,, is the set of n x n matrices. Then we have the differential dj: TG — M, «,, and two

right multiplications R,: G — G and
Rg : Mnxn — Man
h — hg

for ¢ € G. Moreover, we have the following commutative diagrams:
R.q ThR_q

G G ThG TghG
J J dj|n djlhg
Ry DR,
Mnxn - Mnxn Mnxn - Mnxn

for any h € G. Since R is linear, DR,(A) = R, for all A € M, «,, then for v, € T,G
dj|e(WG(Ug)) = dj‘e(TgRg*Wg)
= Ry (dj|g(vg))
(4.5.2)
= dj‘g(vg)g_l

= dj(vy) (Fom(vg)) ™"
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where m: TG — G is the tangent bundle projection, this is:

TG T G 5 M.,

Vg +— g = g

We note that the effect of dj|. is simply to interpret elements of T.G as matrices, and so can
suppressed it from equality (4.5.2). Taking this into account, and applying a reasonable abbrevia-

tion for

wa(vg) = dj(vg) (j o 77(”9))_1 )

we can write that
we =djj L. (4.5.3)

But notice that if 2} are the coordinate functions on M, ., defined by z%(A) = a; where A = [a?],
then j is none other that the map [z]: A — [2%(A)] = [a}]. So j~" is the map [z}]7": A — [a}]~"
and dj(A) = [dz’(A)], since:

dri(A): TaG — R
0 d(idoxlop™!)
ook | 4
. m
where ©* are coordinates functions on G, then dzi(A) = > ———2——
On the other hand
d](A) : TAG — T[a;]Man &~ RXxn

8(37; 60 _1) %
(M(w(@))

J

0
BN

dp =

)

A

therefore dj(A)(va) = [dz’(A)(va)]. So that of (4.5.3) we arrive to the expression:

wa(A) = [dz(A)][z%] 1 (A) = dAA™! (4.5.4)

Example 4.5.1. The Right Maurer-Cartan form of G = SO(2), the Lie group of real orthogonal
matrices with determinant 1, is given by:

(2]
j : 50(2) —_— M2><2

w{ Jp—(xﬁ)

R R4

3071 : R — SO(?) p: Moo - R
cosf) —sinf Ty
0 — = (2,9, z,w)
( sinf  cos6 > ( z w >
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LletAc€ G, s0A= (COS(VJ(A)) B Sin(dA))) and

sin(p(4))  cos(p(A4))

umm_<$m<»ww cM%MWMﬁ(m@W)smwm>_<o ~dp(A))
cos(p(A))dp(A)  —sin(p(A))dp(A) ) \—sin(p(A4)) cos(p(A)) dp

Now we consider the smooth map f: M — G, where M is a manifold of dimension n, so for the
g-valued one-form w¢g on M, the pullback f*(w¢) is given by

fre QNGg) — QY(M,9)
wa = [ (we),
where
fflwe)p): TL,M — g
& = (Wa) e A (P)(Ep)-

Again let us consider the case where G is a subgroup of GL(n,R) with the goal of arriving at the
expression f*(wg) = d(f)f~*. We use the map j defined in (4.5.1),

jof: M — Muxn
p = [f®)}
As we saw before, and j = [z?], therefore:
d(zfo f)(p): T,M — R

9 d(ido o foyp™t)
k|, ouF

(¥(A)),

where " are coordinates functions on M.
m dido o foyp)
k=1 IP*
Therefore, d(j o f)(p)(&p) = [d(x} o f)(p)(§)] € G, and by the rule chain,

Then d(z o f)(p) = (¥ (A)dv* (p).

d(j o f)(P)(&) = [d(5)(f()(A(F)(P)(E))] (4.5.5)

Using the expression in (4.5.4), we have

(we) (s (@A) () () = [da(f () (d(F)(R) (€ [25] 7 ( (),

and for the equality (4.5.5), we have the following identification:
(we) (5o [d(H) ) (&) = (d(G o F)p) (&) o )™ (p)-
Thus, f*(we) (s = d(f)(P)(f(p))~" and
fflwe) =d(f)f (4.5.6)
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On the other hand, for some fixed g € G the map

Cy: G — G

xr gscgfl

is a Lie group automorphism called the conjugation map, and the tangent map
T.Cy: T.G — T.G

ve = T.Cy4(ve)

T.C,: g — g by the isomorphism T.G = g, is called the adjoint map and it is denoted Ad,,. In our
case in which G ¢ GL(n,R), we have Ad4(B) = ABA~1,for Ac€ G and B € g (see [11]).

Let o € QY(M,g). Then (jo fla(jo f)~t € QY (M, M, ), in which we consider o and j o f as
M, «-valued one-forms over M, so

(GofaGo ) p): TpyM — Myxn
p = [m; © f(p)]ap(gp)[xé‘ o f(p)]_l'

By the adjoint map of a Lie group G, we can ensure that for each p € M the term

[z} o f(D)]aplzf o f(p)] € g
and therefore (j o f)a(jo f)~! € Q' (M, g), which can be identified with fa f~1.

In general, we obtain the last form, in the following manner: For a fixed element g in G, Ad, induces
the map

*Ady: QY(M,g) — QY M,g)

! —  *xAdg(a)
where, forp e M
*Adg(a)(p): T,M — g
& Adg(op(&))

Finally, us define the g-valued 1-form over M:

Adg(e)(p): QY(M,g) — Q' (M,g)
o = Ad¢(a)

Adg(a)(p): T,M — g
& = Adg)(ap(ép))
In the case of linear Lie Groups G C GL(n,R), we can write

Adg(e)(p): T,M — g
& o [2ho f(p)ap(&p)lah o f(p)] T

So, we arrive at the identification
Ads(a) = faf™t (4.5.7)
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Therefore, for a Lie group G with Lie algebra g, from (4.5.6) and (4.5.7), we have the g-valued
one-form over M
faf~t+d(f)ft, for G c GL(n,R)

Ady(a) + f*(wg), forany G group of Lie .

We can write the following definition:

Definition 4.5.2. Let G be a group of lie such that G € GL(n,R), with lie algebrag and f: M — G
in C>° (M, G). Define the g-valued 1-form over M :

faf~t+d(f)f! (4.5.8)
This form is known as a gauge transformation on o by the map f.

Now we apply the above remarks to equations of pseudo-spherical type. We assume that f €

b
C>(e,SL(2)), then f = (a > where a,b,c,e € C*(¢,R). For the last identification of f as
cC e

jofe COO(E7M2><2) then

and we denoted

d —
i) (dH(C) dH(€)>

And if we consider M- as Lie algebra and exterior derivative on the M,y »-valued form, then
by Remark (3.4.1), we have that d(f) = df and dy(f) = duaf. Under these identifications we
enunciate the following theorem:

Theorem 4.5.1. Let be ¢ a pseudo-spherical manifold with associated one forms w' (i = 1,2,3)
and s\(2)-valued zero curvature representation

1 2 1,3
a:( “ “ ;>eQw@ﬂ@)

2\t +ud —w
If f € C=(e,SL(2)), thena = faf~t +du(f)f~* € Q40(e,sl(2)) and a is also a s(2)-valued zero
curvature representation for e.
Proof. For the last definition @ = faf~'+d(f)f~! € Q'(e,sl(2)). So, we can calculate the exterior

derivative on the sl(2)-valued form @, this is d(a@).

Now, we observe that by applying the Leibnitz rule and using the constant map h: ¢ — G such
that h(e) = I where I is the identity matrix we have, this map can be obtained by the map f by the
expression d(ff~1) =d(h) =0,and so d(f)f~* + fd(f~!) =0, so

d(f~h) =—fa(nHf (4.5.9)
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and we have:
d@) =d(f)Aaf '+ fAdaf ) +dd(f) A fH=d(f) Ad(F)

d(f) Naf T+ fAad@AfTH = FAaand(fh) —d(f) Ad(f)
d(f) Naf7t+ fd(e)f7 = fand(f7h) —d(f) Ad(fT).

On the other hand, using the properties of exterior product and (4.5.9)

ana=(faf YA (faf )+ (Faf ) A@AST) +@NFHAFaf™)
+dNFHA@AN
= fanaf~ + faf TP Ad(N) T A Aaf T+ d() T AA)
= fanaf™t = fand(fh) +d(f) AafTt+d(f) Ad(fH).
Moreover, a € Q10(e, Mayo) then faf~t +du(f)f~ € Q10(e, May2) and
d@) =du(f) Aaf '+ fdu(a)f '+ fandu(f") + da(f) Adu(f).

By hypothesis dg(a) = a A «, therefore dig (@) = a A a, this is, a is a sl(2)-valued zero curvature
representation for ¢ (see Definition 3.4.1).

b
Let us observe explicitly a for f: ¢ — SL(2) such that f = (a > where a, b, c,e € C*(e,R)
cC €

a=faf ' +du(f)f!

where

a1 = (ae + be)w? + (be — ac)w* + (be + ac)w® + 2(dg(a)e — dp (b))

G12 = —2abw? + (% — B’ — (B + a®)w® — 2(dpr(a)b — dr(b)a)

Qo1 = 2cew? + (€2 — ?)w! — (€2 + )w? + 2(dg(c)e — dp(e)c)

Qo = —(ae + be)w? — (be — ac)w! — (be + ac)w?® — 2(dg(c)b — dy(€)a)
Since, f € C*(g,SL(2)) then ae — ¢b = 1, therefore dy (ae — ¢b) = 0 and

dg(a)e — dg(b)e = dy(c)b — dg(e)a,
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therefore as above a € 2°(¢, s[(2)). Moreover @ induces one-forms @, i = 1,2, 3 such that

1 2 ol -3
a=z ~ ~3 ~2 :
2 w1+w —W

Where,
o' = —2(ab—ce)w?+(a® —b* +e* —A)w' — (0* +a® —e* —H)w® —2(dy (a)b—dy (b)a—d (c)e+dy (e)c)
02 = (ae + be)w? + (be — ac)w' + (be + ac)w® + 2(dy (a)e — dp (b)c)

0% = 2(ab+ce)w? —(a* —b* —e* +c*)w' — (b +a* +e* +c*)w? —2(dy (a)b—dp (b)a+dp (c)e—dp (e)c)

From the last theorem, since du(a) = & A @, then:

dp (@) = &% A &2
dp (@?) = o' A &
dp (@%) = o' A G2,

Examples 4.5.1. We present some case for the function f: ¢ — G where p: ¢ — R is a smooth
function:
1

! = sin(p) w? + cos(p) w
Wl

(COS(i) - Sin(z))> @* = cos(p) w? — sin(p)
2 & =w’ +du(p)

) @2 = cosh(p) w? + sinh(p) w?
@? = sinh(p) w? + cosh(p) w?

w! = cosh(p) w! — sinh(p) w?

(cosh(g) + sinh(%) 0 ) w? =w?+du(p)

[N)ps}

0 cosh(£) — sinh(£
(2) (2) @3 = —sinh(p) w! + cosh(p) w3

Thus, in our terminology of twisting matrices, ©5; determines a Sullivan decomposable algebra

A(spany{@t, 2, @3} & s1(2)).

Given a sl(2)-valued zero curvature representation for € say «, we introduce the following notations:
W, = spang{w', w?, W},

(AW, d) := (Wy,dy), (see 4.2.2),
Ay = AW, @ 51(2),04)

and the map ds(o) defined in (4.2.4) by dy(2),,-
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Theorem 4.5.2. Assume « is a zcr for e and @ is a zcr for g and consider the subvector spaces W,
¢1
and Wz of Q1.%(e) and Q'°(z) respectively. There is a isomorphism of vector spaces W, = Wy if

¢
and only if ¢* induces a isomorphism of cdga’s A, = Ay, where
ds[(2)a =mo B, + f2 and dﬁ[@)a =mo0, + no an

with fo: sl(2) — (AW)? a linear map and n: (AW,)? — (AWx)? such that

Proof. Suppose that there is a isomorphism ¢'. We define the isomorphism ¢ = {¢!,$?} of
graded vector spaces W, @ sl(2) and W5 @ sl(2), such that ¢! (w?) = &%, i = 1,2,3 and ¢* = Id.

Since, ¢ extend to $ a morphism of commutative graded algebras, $: A, — Az such that $
satisfies:

o~

¢ ody(w') =dgo $(wi), fori=1,2,3;infact, if i = 1,

$(da(w")) = S’ Aw?) =& AT = dal(d(w")).

~

50 dun,(4) = (3 (2 © 14, H] + (& =) @ [4, X] + (& +%) & [4,Y]) + fo(4))

N = )

(@ @A H + @ 7% @ [A4,X]+ (@ +3°) @ [4,Y]) + ¢ o f2(A)

= ds[(2)a © QE(A)

therefore, $ is a isomorphism of cdga’s.

Now suppose that there is a isomorphismo of cdga’s A, Az, then we have Al =~ Al and

AL =W,, thisis W, = W5

O

Examples 4.5.2. 1. The sine-Gordon equation determines the manifold  of pseudo-spherical
type then {w*,w?, w3} are linearly independent (see 4.4), anda = faf~'+dg(f)f~') where
f <cos(’2') —sin(§

) induces the forms {w", %%, w3} which also are linearly independent
sin(4)  cos(%)

2 2

¢
(see Example 4.5.1). By last theorem A, = Aj.

2. The Burgers’ equation u; = u., + uu, determines the manifold ¢ of pseudo-spherical type
then {w',w?} are linearly independent and w3 = —w? (see 4.3), anda = faf ' +dy(f)f*

h(2 inh(2
where f = <COS (3) sin (2)> induces the forms {&*', &%} which also are linearly indepen-
dent and w? = —w? (see Example 4.5.1). Indeed,

sinh(4) cosh(%)
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ol =w! +du(p)

@? = cosh(p) w? — sinh(p) w?
@? = sinh(p) w? — cosh(p) w?.
¢
By last theorem A, = Aj.

cos(§) —sin(§)
sin(§)  cos(§)

are linearly independent, since

3. But, the last example if f = ( ) where p is not constant, then {&', &%, 53}

1 1

o' = sin(p) w? + cos(p)

2 1

w
2 —sin(p) w

w* = cos(p) w
0% = —w?+ dH(p)
This allows us to conclude that the gauge transformations o — & does not always induce an

isomorphism of algebras A, = A

4.6 Hierarchies of evolution equations of pseudo-spherical type

Hierarchies of evolution equations of pseudo-spherical type are introduced in [19] and [20]; this
definition generalize the notion of a manifold of pseudo-spherical type determined by a single
equation.

We present a Sullivan decomposable algebra generated by a hierarchy of pseudo-spherical type
using the twisting matrix and Theorem (1.5.2), generalizing Theorem (4.2.1).
Definition 4.6.1. A countable system of evolution equations of finite order

ou Ou Iu
or, = Fln Tt G )

(4.6.1)

in two independent variables x,t; is a hierarchy pseudo-spherical type if there exist one-forms
w0 =1,2,3,n>0
Wl = foida + faodt € £l

n (4.6.2)
wg”] = fordx + foodt + Z haordt, € eln]
k=1

where ¢!l is a manifold determines by the system u,, = F;, 1 =0,1,...,n, whose coefficients
fat1, fa2, har are differential functions, such that for eachn > 0,

n

degn] _ w:[))n] /\wén]7 d wgn] _ wgn] /\wz[))n]’ de:[))n] _ U)gn] /\Wg .

H
By this definition, we have for n > 0 the following forms in Q0 (cl") 51(2)):
w1 Wt Wy 1 ml | In] ml _In]
=51 m [n) [n] :§{w2 OH+ (w +wy ) @X + (wy —wy )@Y}
Wi T Wy —W

Moreover dgz(al™) = o[l A ol?! as in the proof of Theorem (4.1.1).
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We can define the twisting matrix for n > 0
o si(2) - QM) si(2)

A = Yo H ¢ @ - ol e 4, X+ @Ml @14, v])

Thus, there is a cdga (AW, d[*)), for each n > 0 as in (4.2.2), where

Wil = spank{wgn] , wgn] , wgn] }
d (™) = wi A vl
dwy) = wi Ay,
Iy =

and, we obtain the twisting matrix on W™ (not on Q'9(cl*)) for each n > 1 given by:

ol . si2) —» Wk esl(2) (4.6.3)

A o el oA H + @ - o) @ (4, X] + (@ +wl) @ [4,7])
Now, we define the cdga (AW =", d<["]), for each n > 0 fixed, where
w=lnl = spamg{wgo], wg)], wgo}, ... ,o.)g"] , wé"] , w:[gn]},

d= (Wil = @YY, forall j<n and a=1,2,3.

By means of Theorem (1.5.2) for n > 0 fixed, we have the following Sullivan decomposable alge-
bra: AV = AW=IM @ sl(2) @ --- @ sl(2)), where:

n—times

V= {0}
V! = w<sinl
V2 =5sl(2)

vl = 51(2)
V2 = 51(2)
Vk={0}, fork>n+3;

via the linear maps dy~ defined by

dyn: sl(2) — AWM @sl(2) (4.6.4)
A mool(A) + fuia(A)

where m is the exterior product on graded algebra AV, and we consider f,,o: sl(2) — (AVSnFl)nts
the null map for n > 0. Thus, we have that given a a hierarchy

4 F; of pseudo-spherical type

3
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with associated one forms

Wil = forde + fandt € &%, and Wi = fo1da + faodt + Y hardr, € €,

k=1

we obtain a Sullivan decomposable algebra.

Now, let us express the matrix o[} as in (4.1.5) and calculate dy (o)), L[, al"]:
fordx + foodt + 5 hopdry, (f11 — fa1)dx + (fi12 — f32)dt+
k=1 n
> (hir — hag)dTy
am] _ % k=1 N
(i1 + for)de + (frz + fs2)dt+ —( forda + fopdt + 3 hgkdm>
n k=1
> (hir — hag)dTy,
k=1
1 — 1 -
_ 1 ( fa1 fu f31> dr 4 L fa2 fi2 — faz &t
2\ fu + fa —fa 2 \ fiz + fa2 —fa2
X T
1 h hi1 — h 1 h hi9 — h:
I < 21 11 31) dr 4 L ( 22 12 32) dry
2 \h11 + bz —hoy 2 \ hi2 + hao —hag
my 71
1 h hiz — h 1 hon hin — hay,
1 23 13 — h33 PR 2 1 3 dr.
2 \h13 + ha3 —has 2 \hin + han —hap
L H
— Xdz+Tdt+ Y H"dr,
E=1
We have:

dyg (a[”])

du (Xda: +Tdt+ >, HM drn)
k=1
D Xdt Ndx + > Dy, Xdri ANdz + DTdx ANdt + Y, Dy, Tdri A dt+
k=1 k=1

D, H{"\dx A dry + DyH{"Mdt Adry + 35 Dy H"dr A dry+
k=1

D, Hda A dry + Dy HMdE A dry + S Dy HMdry A drot
k=1

D HMdx A dr, + DH dE A dro + Y Dy HY dry A dry
k=1

(DeX — DyT)dt Adz + 3 (DTkX - DIH,E”]) dri A da+
k=1

M=

(DTkT - DtH,L"]) dri Adt + Y (Dr, Hy — Do Hy) dry A dri,

k=1 k<j
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D=

[, o] =3 {Xd“’ +Tdt+ Y, Hdn, |, Xdo+Tdt+ 3 H,E"]drk]
k=1 k=1

- {XTdm/\dt+[TX]dt/\d:u+Z[ ,H,Ln]]dxAdi+
k

> [HIE"],X} drp Nde+ 3 [T,HL"]] dt A dre+
k=1

k=

=

\gE

k

[Hg‘], T] dre Adt+ S [H,E"J, H]["]] dri A de}
1 kj=1

I
)=
—N

—2[X,T)dt Adx —2 % [X, H,L”l] dri A dz
k=1

n

2% [T, H,L"]] dri Adt — 2 kgj [H,E”], H;"l] drj A dm}

= {[XT]thdx+z[XH ]di/\dm+
ZnZ[T, ]di/\dt+Z[ H[n]]de/\di}.

k=1 k<j

Then,

=0, for k={1,...,n}

]
D, T — D;H™ + [T, Hk"]] =0, for k={1,..,n}
]

D, Hy — Dy, H; +[H,£"1,H"]

J

=0, for k={1,...,n}, j={1,...,n}k<j

thus we is conclude that:

1. The equation % = F, describes a manifold of pseudo-spherical type with associated one-
forms wl¥ = fordz + fasdt € €19, with zer for £l given by al% = Xdx + Tdt € Q10(%) as
we saw earlier.

2. The equation 3%, = F; describes a manifold of pseudo-spherical type with associated one-
forms

w¥ = fordz + hoidr; € et

with zcr for €' given by o = Xdx + H;dr;. gT = F; of (4.6.1),
we have by Theorem (4.2.1) the Sullivan decomposable algebras: AV = A(W’@s[( )) where
Ve ={0}
Vi = spans{wi, wh, wi}
V2 =sl(2)

vk ={0}fork >3
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via the linear map d(2) defined by
de2y : sl(2) — AW sl(2)) (4.6.5)
A = moB,,(A)+ f2(A),

where m is the exterior product on graded algebra A(W ©sl[(2)) and f: sl(2) — (AW?)3 is a
linear map.

3. The ones-forms o = faadt + hajdr; (j fixed) and of = haid7i + hajdry, (i,5) fixed i # j
satisfy the equations (4.1.3).

Example 4.6.1. In the paper [20] by Reyes, he presents the Korteweg-de Vries hierarchy of
pseudo-spherical type; this example follows from the seminal paper by Chern and Peng [5]. The
associated functions are:

fiu=1—u, fio = Mg — Uz — 202 + 2u — N2u + N2,

far=A, fo2 = A3 + 22w — 2uy;
fai=—1—u, f30=Aup—Ugy — N2u—2u% — A2 — 2u;
and
hy = %)\Bg(ciJrl) . %Bfffl) — wBU+D) 4 B(i+1);
hyi = ABGHD — BUTD.
hsi = $ABITY - 1BUHY —up+D — g+,
in which

BW =3 "B;)07) = B\ + BN 4o+ B 1A+ B,
j=0

and the functions B; are defined recursively by means of the equations

BO,CD = 07
Bj+1,ac = B],TTT + 4UBj7m + 2uxBj, j Z O

The functions F;, i > 0, are given by
F; = %Biﬂ,wm +ugBit1 + 2uBit1 , = %Bi+2,x
or, equivalently in terms of the functions B™ , by
F = %Bg(czl) +u, B 42y BUTD %)\2B£i+l)
For instance, if By = 1 and all integration constants are set to zero, then
Big =2u, = B; =2u
B3 » = 2Uyaq + 12uu = By = 2ug, + 6u?
B3, = 2uzzrrr + 40uy Uz, + 20Ulyey + 60u?uy = B3 = 2Upgps + 2003 + 10u§ + 20Uty

BO =1, BM = X2+ 2u, B® =\ 4+ 2)%u 4 2uy, + 6u?
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and the equation u., = Fy is the standard K-dV equation u; = 4, +6uu,, the equations w,, = Fy
andwu,, = Fy can be also found easily. They are:

Ur, = Uggrar + 20UzUgy + 100U L, + 3Ou2u$

4.7 Algebra of polynomial differential forms

In this section section, we briefly explain some aspects for the construction of the Algebra of poly-
nomial differential forms; this algebra allows us to define a functor Ap;, which construction is
originally due to Sullivan [24], [25] we will apply this construction to our differential equations in the
next section.

Definition 4.7.1. A simplicial object S with values in a category C is a sequence {S,},>o of
objects in C, together with C-morphisms 0; : Sp4+1 — Sy, for0 <i<mn-+1ands; : S, = Sp41, for
0 < j < n, satisfying the following relations:

® 0,0; =0;_10;, i<}

® 5;5; = 5;415;, 1<
5j-10;, J <1

e 0;55 =< id, i=j, j+1
5j0;—1, 1>j+1

A simplicial morphism ¢: . — K between two such simplicial objects is a sequence of C-
morphisms ¢: L, — K,, commuting with the 9; and s;, this is, for each n > 0:
n0F =0 ops1, for 0<i<n+1, and sFp, = @uq1s), for 0<j<n.

In other words, we have the diagrams

L sL
7 J
L, ~—— Lpu1 L, —— Ln1
©n Pnt1 on Ont1
o 55
K, — K, K, — K11

A simplicial set K = {K,, },>( is a simplicial object in the category of sets. In this case each K, is
aset, and 9; and s; are functions between sets. We denote by sSET the category of simplicial sets.

Example 4.7.1. Let A™ be a standard n-simplex, this is A™ is the convex hull of the canonical
basis eq, ..., e, of R*+1:

A" = {En:tiei; 0 S ti S ]., En:tz = 1},
=0 =0
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and let X be a topological space; a singular n-simplex in X is a smooth functiono: A™ — X. The
set of singular n-simpleces in X will be denoted by S, (X). The sequence S(X) = {S,(X)}n>0
constitutes a simplicial set with operators 0; and s; defined by the functions \; and q; respectively:

Oi: Sp1(X) = Su(X) and sjt Sp = Spm

4 = oo\, o = o0ogj,
where
A A™ —  Antl
(to, .. tn) > (tos.. i tic1,0,ti ooitn).
e Antl — A"
(to, .- tnt1) (to,...,tj+tj+1,tj+2...,tn+1)

In terms of category this assignation of X to S(X) is the singular simplexes functor.

A simplicial dga A = {A,,},>0 is a simplicial object in the category of dga’s. In this case each 4,
is a dga and 0; and s; are morphisms of dga’s. We will denote by sDGA the category of simplicial
aga’s .

Let us consider the free commutative graded algebra on the graded vector space over a field k,
={v» }n>0, where VO = (tg,...,t,), V! = (yo,...,y,) and V"™ = {0}, for n > 2. Hence, from
the isomorphism given in (2.1.1):

A(to,...,tn,yo,...,yn> gA(t0,7tn)®A(y0,7yn>
Moreover, we note that:

Ato, - tn) = A({to) © -+~ @ (tn))

= Klto,...,tn]
ThUS, A((fo7 . ;tn;y07 . 7yn) = K[to, . 7tn] %9 A(yo, . 7yn)

There is a unique differential in this algebra specified by d¢; — y; and dy] — 0. Now, we consider

the ideal T of A(to,-.-,tn,%o0,---,Ys) generated by the two elements Z t; —1 and Z y;, this is
=0 7=0

I= (Z ti—1,> yj> . Observe that
=0 j=0
Is = A(th e atna Yo, - yn)k(ztl - ]-) + A(th e 7tn7y0a R yn)k71 (Z y])
i=0 =0
Moreover I,, is stable under the differential d. In fact, if o € I,,, then « has the form:

«eu (gtil) +y (gyj)
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when z € A(to, ... tn, Yo, yn)? @nd y € Ato, ..., tn,Yos - - Yn )P L.

Thus,

o) = ) (1= 1) + (1pwa( St —1) +aly (Zy) yd<§_:y>

=0 =0

_ d(x)<_n0 . 1>

x)(;ti—l)-i- 1Pz +d(y (Zyj>

Therefore, d(a) € 12+,

+

(=1)Pz <2i:0 yj> +d(y) (2_;) yj)

So, we can define the quotient differential algebra for each n > 0:

A(to,...,tn,y07...,yn)/<zti — 1’Zyj)'
i=0 j=0

This algebras allow us to define de following simplicial cdga.

Definition 4.7.2. The algebra of polynomial differential forms with coefficient in k. , denoted
Apr = {(ApL)n}, > , is the simplicial cdga given by

(APL)n = A(t()a"'7tn7y0a"'ayn)/(zti - 1722/]’)7
i=0 j=0

in which the basis elements t; have degree zero and the basis elements y; have degree 1 and the
derivation is determined by dt; = y;,dy; = 0 for all i, j, and the operators 0; and s; are specified

by:

0 :(App)n+1 — (Ap)n and  s; :(Apr)n — (Apr)nt1
t, k<71 tr, k<7
ik — 0, k = i; k. ty + ter1, k=7;
th—1, k>i. tht1, k>3

We note that the definition is complete as written, since the differential must commute with 9;, s;,
then is sufficient to define these functions in terms of ¢, in fact

9i(yx) = 0i(d(tr)) = (9; 0 d)(tr) = (d 0 0;)(tx) = d(0i(tx))
and
sj(yr) = s;j(d(ty)) = (sj o d)(tr) = (dos;)(tx) = d(s;(tk))-

Remark 4.7.1. The elements of (Apy),, are called Polynomial differential forms with coeffi-
cients in k, for the following reason. When k = Q, the algebra (Apt),, is isomorphic to the
algebra of Q-polynomial forms on A™, the last algebra is defined below:
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Definition 4.7.3.

1. The restriction of any C> differential form on R"*! to A" is called a C> form on it. They are
expressed as
W= Z firapdbiy A2 Adi, (4.7.1)

I:(il <"-<7;,,~)
where f;,.. ;. is a smooth function on an open subset of R"*+1 containing A™.

2. If fi, i.(to,.-.,tn) € Qlto,...,ts) in (4.7.1) this is f;, ., are polynomial with rational coeffi-
cients on A", then w is called a Q polynomial r-form.

This definition is used to define differential forms on a simplicial complex, see [15] and [16].

We denote by A*(A™) and A (A™) the algebras of all C> forms and Q polynomial forms on A™.

It is important, for polynomial forms over Q, that the formd( >  fi,..i, dtiy A--- Adt; ) can be
11 < <ip
expressed on terms of the partial derivatives of the polynomial f;,...;., which are also polynomials

with rational coefficients on A™. First, we observe that:
(APL)E,)I :A(th'"atnay07"'7yn)0/(z tz_lazy]>
i=1 j=1

:A(to,...,tn)/<§:1ti—1>

g@[to,...,tn}/<i

= A (A™).

Moreover, since Aja @ B/b = A® B/(a ®b), we have:

(ApL)n = Q[to,...,tn]®A(yo,...,yn)/<<zt _1)®1 18 é >
Q[to,...,tn}/<§:1ti—1> @AYo, - -+ Yn) /(Z%)

= (ApL)2®A(yo,---7y7z)/<i yj)

Jj=1

Il

> OF(A™) @ A(dto, ..., dty)
= A3(Am)

Thus, A*(A™) 2 C%(A™) @(apy0 (Apr)n-

4.8 From topology to algebra and from algebra to topology

First, let us fix some notacion from category theory, since we will be using functors. Denote by TOP
the category of spaces and continuous maps, and denote by CDGA the category of cdga’s over a
field £ and morphisms of cdga’s. Now we will present see the transition from the category of TOP
to CDGA by the functor Apr. These results allow us to relate our study of Sullivan descomposable
algebras to the manifold of pseudo-spherical type.
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Let Apr, = {(Ar.)n}n>0 be a simplicial cdga. Then for each fixed p, we have that A7, =
{(Apr)? }n>0 is a simplicial set. We set

F: sSET — CDGA
E = {Ap (K)}p>o

where A}, (K) = {¢: K — A%, : ¢ is a morphism of simplicial sets }. Then, ¢ is a mapping that
assigns to each n-simplex o € K, an element ¢, € (Apy)?, and A%, (K) is a cdga with operations
given by as follows:

the addition is (¢ + ¥), = ¢ + ¥, scalar multiplication (A¢), = Ao, differential (d¢), = d(¢,)
and multiplication (¢¢), = ¢s)s.

By composition of the last functor and the singular simplexes functor (see Example 4.7.1) we
obtain the following functor:

App, : TOP — SsSET — CDGA
X ~» SX) — F(S5(X))

For any topological space X, the algebra Ap.(X) = F(S(X)), is called the cdga of piecewise-
linear de Rham forms on X. Therefore, an element of (Ap(X))4, this is a ¢g-form w, is a corres-
4, such that the

n?

pondence that assigns to each singular n-simplex ¢ of X, an element w, € (Apyr)
following compatibility criteria is satisfied: wp,, = J;w, and w,,, = sjw,. Moreover, if f : X — Y
is any continuous map, then there is a morphism of cdga’s Apr(f) : Apr(Y) — Apr(X). All the
details of the construction of Ap;, can be found in chapter 10 of [7].

The functor Apy has the following important property: For any space X, the cohomology of
Apr(X) is isomorphic to the rational singular cohomology of X, i.e.

H*(X;k) = H*(ApL(X)). (4.8.1)
For the proof to consult ([7]-corollary 10.10)

Conversely, there is a spatial realization functor CDGA — TOP. |t is obtained by composition
of Sullivan’s simplicial realization functor from CDGA — sSET (introduced in [25]) and Milnor’s
realization functor from simplicial sets, to TOP, sSET — TOP (introduced in [14]).

The Sullivan’s simplicial realization is the functor:

(): CDGA — SsSET
(A, d) — (Ad)

where, (A, d), = {f: A — (A,.)n : [ is a cdga morphism} and the operators 9; and 5; are given
by:

0; - (A, i1 — (Ad, and §: (A, d)n — (A, d)nia
c: A= (Ap)nt1 — 0O;o0 0:A— (ApL)n +— sjo0
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The Milnor Realization of a simplicial set is the functor:

||: sSET — TOP
K = (L, Kn x A™)/ ~

where,
o K ={K,}n>0
e Each K, is given the discrete topology,
e |], K, x A™is the disjoint union of spaces K, x A",
e ~ is the equivalence relation generated by the relations:
o€ Ky, ©eA”, (0;0,2) ~ (0, \ix)

c€K, A" (sj0,2)~ (0,q;).
Remark 4.8.1.

e The relation (o, \;x) ~ (0,0, x) identifies common faces:

Glue

i
{o} x ~ {0} x

So the identification just described takes the n-simplex corresponding to 0;(c) in K, x A™
and glues it as the i — th face of the (n + 1)-simplex assigned to o in K, 11 x A"t

e The relation (o, q;x) ~ (sjo,x) Suppresses the degenerate simplex (a simplex T € K, is
degenerate, if T = S;o forsome o € K,, ).

Glue

{0} x '—qj'x—O ~ {sjo} x

This relation tell us that given a degenerate (n+1)-simplex corresponding to s; (o) and a point
x in the “pre-collapse” n-simplex A™, we should glue x to the (n — 1)-simplex represented by
o at the point q;(x) in the image of the “collapse map”o.

The spatial realization of a cdga is the composition:
CDGA — SsSET — TOP

A — (A, d) — |(4,d)]
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This functor has the following important property:

Theorem 4.8.1. If (AV,d) is a 1-connected and of finite type Sullivan algebra on a field k, then
|(AV, d)| is simply connected and for each n > 2, there is a isomorphism of abelian groups:

T ([(AV, d)|) = Homy, (V" k)
Moreover, If k = Q, then for each n > 1 there is a vector space isomorphism
T ([(AV; d)|) = Homg(V", Q)
and there always exists a quasi-isomorphismm : (AV,d) = Apr(|(AV,d)]).
We refer the reader to theorem 17.10 of [7] for the details of the proof.

We can now make the crucial definition that relates Sullivan algebras to topological spaces.

Definition 4.8.1. A Sullivan model of a path-connected space X is a Sullivan model for the cdga
Apr(X); in other words, itis a quasi-isomorphismm: (AV,d) = Apy(X) for some Sullivan algebra
(AV,d).

Often we, just refer to (AV,d) as the algebraic model of X. And by the isomorphism given in
(4.8.1), if (AV,d) is a Sullivan model of X then H*(AV,d) = H*(X; Q).

It follows from Theorem (2.3.1) that if X is simply connected, and if every H;(X; Q) is finite dimen-
sional, then the minimal model (AV, d) of X has the property that V' = V722 and every V' is finite
dimensional.

We finish this work relating the Sullivan decomposable algebras generated by the Theorem (4.2.1)
when {w;,ws,ws} are linearly independent with the previous theorem.

By Sullivan’s Theorem (2.3.1) there exists p: M — A(W @ sl(2)) a minimal model of A(W @ sl(2)),
such that M = A(V) is a Sullivan minimal algebra of finite type and simply connected (this is
H'(M) = 0. Then, the space |(M, d)| is simply connected, and there is an isomorphism of abelian
groups for n > 2:

m(|((M, d))|) = Homg(V",R).

Then mo(|((M, d))|) = {0} since V2 = H2(A(W @ sl(2))) = {0}.
If we assume that W and s((2) are Q-vector spaces then there is a quasi-isomorphism
(M,d) 5 Apr(|(M,d)|)

This means that our simply connected Sullivan minimal algebra of finite type constructed via the
study of equations of pseudo-spherical type is the minimal model of a topological space such that:

H*(Apr((M,d)|); Q) = H*(M,d) and m, (|{(M, d))|) = Homg(V", Q).
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Conclusions

The study of the concepts of twisting matrices and twisted cohomology (Hom version) in the
Theorem (1.5.1), and the explicit proof of the converse (Theorem 1.5.2), has allowed us to esta-
blish a constructive way of generating Sullivan decomposable algebras. Moreover, in our general
proof of Sullivan’s Theorem (we stress the fact that we did not find such a detailed proof in the
literature), we have related the concepts of minimal model and twisting cohomology.

On the other hand, we have applied the above mentioned homological tools in the context of
submanifolds of infinite jet bundles generated by certain PDEs. The concept of twisted cohomology
(tensor version) has allowed us to prove that the “horizontal gauge cohomology” studied for M.
Marvan in [12] and [13] as an elaboration of the more standard theory of the variational bicomplex,
is a twisted cohomology with coefficients in a Lie algebra g (see Theorem )3.4.1)). This means
that we should be able to investigate the Marvan cohomology via Sullivan theory. We have indeed
investigated some relations between differential equations and Sullivan theory in the special case
of equations of pseudo-spherical type (which generate what we call a manifold of pseudo-spherical
type embedded in a manifold of infinite jets). We have shown that Theorem (4.1.1) and the twisting
matrix (4.1.7) allow us to generate Sullivan decomposable algebras. More generally, we have been
able to present a Sullivan decomposable algebra generated by a hierarchy of pseudo-spherical
type using a sequence of twisting matrices.

We have left as an open problem to generate Sullivan decomposable algebras via gauge coho-
mology, this is, to generalize Theorem (4.2.1). Besides, we leave pending the development of
minimal models based on modules over the ring of smooth functions of submanifolds of an in-
finite jet bundle. We would hope that such a development may capture analytical properties of
equations related to overdetermined linear problems such as the equations studied by Marvan in
[12] and [13], or the equations of pseudo-spherical type. We also leave as an open problem to
investigate in detail the minimal model of a Sullivan decomposable algebra generated by a man-
ifold of pseudo-spherical type, and to further exploit the properties of the functor Apy, in order to
investigate topological aspects of this (in general infinite-dimensional) manifold.
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