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Introduction

The thesis focuses on the following two topics: global attractors of vector fields in R™
and quartic differential forms on surfaces associated to couples of transversal nets with

common singularities.

The first topic is related to the Markus—Yamabe Conjecture. We say that a
square matrix is Hurwitz if all its eigenvalues have negative real part. Let X : R" — R"

be a C'— vector field with X (0) = 0. Consider the differential system
i = X(z). (0.0.1)

We say that 0 is a local attractor of the dynamical system (0.0.1) or the vector field
X if ¢(t, z) is defined for all £ > 0 and tends to 0 as ¢ tends to infinity, for each z in a
neighborhood U of 0 in R™. When U = R", we say that 0 is a global attractor. Here
¢(t, x) is the solution of (0.0.1) with initial condition ¢(0,x) = x.

If X(0) = 0 and DX(0) is Hurwitz, then the origin is a local attractor by the
Hartman—Grobman Theorem [C1-22]. The problem is what hypotheses do we have to
add to X to ensure that the origin is a global attractor. In [C1-17], L. Markus and H.

Yamabe state their well-known global stability conjecture.

The Markus—Yamabe Conjecture (MYC). Let X be a Hurwitz C'— vector field
in R", that is, DX(p) is Hurwitz for all p € R™ If X(0) = 0, then 0 is a global
attractor of the system & = X(x).

In [C1-17], this conjecture is shown in two special cases. One case is for n = 2,

X(z,y) = (f(z,y),9(x,y)), X(0) = 0, and when one of the four partial derivatives
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fes fys Gz, gy vanishes in all R% The other is the triangular case, or in other words when
X = (fi,fo, -+, fn), X(0) = 0, and for every = = (1,29, -+ ,x,) € R", we have
ng;(a:) =0 for j < i and g—ﬁ(x) <0,eachi=1,2--- n.

In [C1-21], C. Olech shows that when n = 2, the injectivity of X is equivalent to
proving that 0 is a global attractor of the system & = X (x) under the assumption that
X is Hurwitz. Following this idea, the conjecture is proved for planar polynomial maps
by G.H. Meisters and C. Olech [C1-19]. For planar C'—maps, C. Gutiérrez [C1-14],
R. Fefller [C1-12], and A. A. Glutsyuk [C1-13] prove the conjecture independently. N.
E. Barabanov [C1-2] and, subsequently, J. Bernat and J. Llibre [C1-4] give examples
of smooth Hurwitz—vector fields defined on R", for n > 4, having a periodic orbit.
A. Cima et al. [C1-8] show an example of a Hurwitz—polynomial vector field defined
on R", for each n > 3, having orbits which scape to infinity. Further, a more general
family of polynomial counterexamples is given in [C1-9]. Finally, F. Mafiosas and D.
Peralta—Salas [C1-16] show that if a Hurwitz—vector field X is gradient, or in other
words X = Vf (f of class C?), then the basin of attraction of the singular point 0 is
R", and therefore implying that the Markus—Yamabe Conjecture is true for this class

of vector fields.

Since the counterexamples that we know have orbits which tend to infinity, we may
consider the additional assumption that infinity is a repellor. However, this assump-
tion is not good enough, at least for the differentiable cases. In fact, we prove that
the Bernat-Llibre Counterexample [C1-4] may be modified so as to obtain smooth
counterexamples having a periodic orbit and infinity as a repellor.

In Chapter 1 of the Thesis we also consider a special class of Hurwitz—polynomial
vector fields. For a negative real number A and a positive integer n, we denote by
N (), n) the set consisting of the polynomial vector fields in R™ of the form X = AN+ H,
where [ is the identity map and H is a vector field with nilpotent Jacobian matrix at
every point. Observe that the counterexamples of [C1-9] are vector fields X = A\ + H
in N(\,n), with n >3, where H is a quasi-homogeneous vector field of degree one.

Here we find a more general family of counterexamples for the MYC, consisting of



the vector fields of the form X = A + H in M (A,3) where H is not necessarily a
quasi—homogeneous vector field of degree one, which contains the family constructed
in [C1-9]. In addition, we show that the vector fields X = A\ + H in N'(),3), with
H = H, + H,,, where H, and H,, are homogeneous of degree k and m, respectively,
with 1 < k < m, are linearly triangularizable and, therefore, the origin is a global
attractor.

Chapter 1 is organized as follows:

Section 1.1 contains an overview of the relevant results about the Markus—Yamabe
Conjecture in the literature. We discuss the proofs of the conjecture in the case of
C'—planar vector fields due to C. Gutiérrez [C1-14], R. FeBler [C1-12], and A. A.
Glutsyuk [C1-13].

Section 1.2 studies the triangular case. We reproduce the main result of [C1-17]
where the conjecture for this class of vector fields is proved.

In Section 1.3, we outline the results of [C1-4] where J. Bernat and J. Llibre find a
counterexample to the conjecture in R* which has a periodic orbit.

In Section 1.4, we recall the concept of bounded vector field, that is, a vector field
with infinity as a repellor. We establish conditions under which a smooth Hurwitz—
vector field can be modified outside of a given compact neighborhood in order to
obtain a bounded Hurwitz—vector field. We apply this result to the Bernat-Llibre
Counterexample [C1-4] in order to obtain a smooth Hurwitz—vector field in R* which
is bounded and has a periodic orbit.

Section 1.5 contains our second main result for the first topic. We find a more gen-
eral family of counterexamples for the MYC which contains the family constructed in
[C1-9].

Section 1.6 contains our third main result for the first topic. Vector fields of the form
X =X+ H in N(\, 3), with H = Hy + H,, where H} is homogeneous of degree k > 1
and H,, is homogeneous of degree m > k, are linearly triangularizable, and therefore

the origin is a global attractor.



Chapter 2 is devoted to our second topic of study. Given a smooth, connected,
oriented two—manifold M, we consider a class Q(M) consisting of all smooth quartic
differential forms w defined on M which have the following property. At each point p
in M, there exist a local chart (u,v) : U C M — R? and smooth maps E, F,G :
(u,v)(U) — R, with EG — F? positive everywhere, such that if

(u, )" (w) = asdv* + dazdv’du + 6aydvidu® + daydvdu® + agdu’, (0.0.2)

then
G (ag,a1,a9) — 2F (a1,a9,a3) + F(ag,a3,a4) =0. (0.0.3)

We associate to each w a pair of transversal nets, say N (w) and Ny(w), with common
singularities. These quartic forms are related to geometric objects such as curvature
lines, asymptotic lines of surfaces immersed in R*. (See [C2-3], [C2-6], [C2-7], [C2-8],
[C2-9], [C2-19] and [C2-20].)

Local problems around rank-2 singular points of the elements of Q(M), such as
stability, normal forms, finite determinacy, versal unfoldings, are studied in [C2-4].
Our principal contribution related to this topic is the study of a rank—1 singular point,
namely that of type Hys, which is the analogue of the saddle-node singularity of vector
fields. For this singular point, we find the local phase portrait of the corresponding
nets around the point , a normal form for the family w(p) in Q(M), with parameter
p € R¥ for which the origin is an H,s—singular point of w(0) and a versal unfolding
nd its corresponding bifurcation diagram.

Chapter 2 is organized as follows:

Section 2.1 defines the set Q(M) and the nets associated to each w € Q(M).

In Section 2.2, we prove that the set Q(M) is well defined, or in other words that
its definition is independent of charts chosen. We show that for any w € Q(M) and
any point p € M, there exists a local chart (u,v), namely a main chart, where the

quartic has the simple form

(u,v)*(w) = 4a(du® — dv*)dudv + b(du* — 6du*dv® + dv?).



In Section 2.3, we introduce the simple singular points. We show that they are both
generic and persistent under perturbations of the quartic differential form in Q(M).
We give the local configuration of the nets N (w) and N3 (w) around this type of points,
and we characterize those singular points which are locally stable.

In Section 2.4, we introduce the Hys—singular point. This is a rank—1 singular point
which is the analogue of both the saddle—node singularity of vector fields and the Do
singular point for positive quadratic differential forms (see [C2-5]). We determine the
local phase portrait of the corresponding nets around this point.

Section 2.5 considers smooth k—parameter families of quartic differential forms in
Q(R?), establishing the notion of equivalence for families. We find versal unfoldings
for the two different types of non-locally stable simple singular points, showing that
one type is of codimension one and the other is of codimension two. Further, we show
that the singular points of type Hsy4 are of codimension one.

Section 2.6 is devoted to proving a crucial result used in Section 2.5: the existence
of main charts for smooth k—parameter families of quartic differential forms in Q(R?).
Our proof was inspired by the one given by M. Spivak in [C2-21, Addendum 1] for the

existence of smooth isothermal coordinates (in the case where there are no parameters).
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Chapter 1

The Markus-Yamabe Conjecture

1.1 The Markus-Yamabe Conjecture

The purpose of this section is to present the Markus—Yamabe Conjecture. We give an
overview of known results on the subject.

Recall that a C'—vector field X : R® — R" is Hurwitz if for each p € R™, all of the
eigenvalues of the Jacobian matrix of X at p, denoted JX (p), have negative real part.

We record the conjecture which was first introduced in [C1-17].

The Markus—Yamabe Conjecture (MYC). Let X be a Hurwitz C'— vector field
in R™. If X(0) =0, then 0 is a global attractor of the system & = X(x).

There L. Markus and H. Yamabe establish the conjecture in the case of triangular
vector fields in R”.

An important result for this conjecture in the two—dimensional case is obtained by
C. Olech in [C1-21]. He first shows that the origin is a global attractor of any Hurwitz
C'—vector field X : R? — R?, with X(0) = 0, such that

[X@)[zp it zl=r (1.1.1)

for positive constants p and r. Next he shows that any injective Hurwitz C!—vector

field X : R? — R? satisfies condition (1.1.1). Therefore, in order to prove the Markus—



Yamabe Conjecture when n = 2, it suffices to show that any Hurwitz C'—vector field
X : R? — R? is injective.

In 1987, G. H. Meisters and C. Olech [C1-19] used Olech’s results to show the two—
dimensional Markus—Yamabe Conjecture in the case of polynomial vector fields. In
1993, after several years without significant progress on the subject, R. Fefller [C1-12],
C. Gutiérrez [C1-14], and A. A. Glutsyuk [C1-13] proved independently the conjecture
in the case of C'—vector fields in R%. The three authors showed the injectivity of any
Hurwitz C'—vector field X : R? — R2.

The assumption that a C'—vector field X : R? — R? is Hurwitz consists of two

inequalities: for all ¢ € R%, we have
(i) det JX(q) > 0,
(ii) traceJX(q) < 0.

Only A. A. Glutsyuk uses inequality (ii) explicitly. Assuming that Y is not injective, he
cleverly constructs a bounded regular region so that the flow of the vector field through
its boundary is positive. He thus contradicts inequality (ii).

However, the injectivity results are more general in the other two works. Fefiler’s

main result is the following.
Theorem 1.1.1. [C1-12, Theorem 1] Let X : R? — R? be a C'—vector field such that:
1. det JX(q) > 0 for all ¢ € R

2. There is a compact set K C R? such that DX (q)v # \v for all ¢ € R*\ K and
A€ [0,00].

Then X is injective.

The proof of Theorem 1.1.1 follows Theorem 1.1.3, and is consequence of the next

two results.



Theorem 1.1.2. [C1-12, Theorem 2] Let X : R* — R? be a C'—wvector field which is
not injective, and is such that det JX(q) > 0 for all ¢ € R?. Then, for every compact
set K C R?, there is a curve v : R — R\ K satisfying the following properties:

1. v is injective, proper, and reqular.

2. There is an € > 0 such that, for every s; < 0 and sy > 1, the rotation of (X o)’

from sy to sq is at least 3w + €.

Theorem 1.1.3. [C1-12, Theorem 3] Let v : R — R? be injective, proper, and reqular.
Then for every € > 0, there are s; < 0 and sy > 1 such that the rotation of v'(s) from

$1 to so is less than w + ¢.

Suppose that there were a C'—vector field X : R? — R? which is not injective
satisfying assertions 1 and 2 of Theorem 1.1.1. Then we could take the curve v and

€ > 0 of Theorem 1.1.2, and the s, s, of Theorem 1.1.3 to obtain the estimate

(£9'(s2) — £(X 07)(s2)) — (£ (s1) — £L(X 07)(s1))
= £ (s2) — £ (s1) — (L(X o07)(s2) = L(X 07)(s1))

< m+e — Bn+¢e) = 27,
Then, according to assumption 2 of Theorem 1.1.1, we would have
(X 09)(s) = DX(y(s)7'(s) #A7'(s) forall A>0.

This would mean that X o)'(s) and +/(s) never point in the same direction. Then
there must be an open interval of length 2, say |ag, g + 27[, such that Z+'(s) —
Z(X 07)(s) €]ap,p+27[ for all s, which contradicts the estimate above. Therefore,
X must be injective.

Two slightly more general results are proved by C. Gutiérrez in [C1-14], called The-
orem C and Theorem D. Here we reproduce only Theorem C because it is more related
with the Markus—Yamabe Conjecture. Let Hy denote the rotation of R? by an angle 6,
and let Yy = HyoY o Hy' = (£, gs). The result is the following.



Theorem 1.1.4. [C1-14, Theorem C] Let Y : R? — R? be a C'—map such that, for
all p € R%, DY (p) is invertible. Suppose that there exists v € R?, with ||v]| = 1, such
that the following (directional) obstruction property is satisfied: For all 0 € R and for
all p € R?, with ||p|| > p,

Vie(a) v # Vil -

Then, Y 1is injective.

A consequence of this Theorem is the following result. Given p € [0,00) and a
Cl—map Y : R? — R?, we say that Y satisfies the p—eigenvalue condition if, for all
q € R?, the determinant of DY (q) is positive and, for all p € R?, with ||p|| > p, the

spectrum of DY (p) is disjoint of the non—negative real half axis.

Theorem 1.1.5. [C1-14, Theorem A] If Y : R? — R? is a C*—map that satisfies the

p—eigenvalue condition, for some p € [0,00), then Y is injective.

Since, any Hurwitz C'—vector field Y : R? — R? satisfies the condition of Theo-
rem 1.1.5, the bi-dimesional Markus—Yamabe Conjecture follows of this result.

It was more or less known for some time that the conjecture is not true for n > 3.
The counterexamples usually claimed the existence of a non—trivial periodic trajectory
of the vector field in question, which made them rather difficult to construct and
sometimes more difficult to check or believe in (see [C1-2], [C1-4], as well as Section
1.3). Another way of constructing counterexamples is to find Hurwitz—vector fields with
unbounded orbits. In this context, an explicit polynomial counterexample to the MYC
in dimension 3 was announced by A. Cima, A. van den Essen, A. Gasull, E. Hubbers

and F. Manosas in 1995. They proved that for the vector field
Y(,CE, Y, Z) = (—23 + Z(Qf + yz)za -y - (33 + y2)27 _Z)a

all of the eigenvalues of DY are constant and equal to —1, while the vector field admits

the unbounded trajectory y(t) = (18, —12¢%* e7?).



1.2 The Triangular Case

A fundamental class of vector fields for which the Markus—Yamabe Conjecture is true
is that consisting of the triangular vector fields. Since these vector fields play a key
role in one of our main results (see Theorem 1.6.3), we reproduce in Theorem 1.2.1 the
original result of Markus—Yamabe together with its proof (see [C1-17][Theorem 3]).

Let us first recall two definitions.

Definition 1.2.1. A C'—wvector field X : R®™ — R" is said to be triangular if it has
the form

X(x1, 29, .. .,xn) = (filzr, @, .. x0), fa(Xo, .y xn), ooy ful(Tn)) (1.2.2)

In addition, X is said to be linearly triangularizable if there exists a linear change

of coordinates which makes X triangular.

Remark 1.2.1. Any triangular and any linearly triangularizable vector field is a Hurwitz—

vector field.

Theorem 1.2.1. Consider a C'—triangular vector field X : R* — R"™ of the form
(1.2.2) and the system

& = fi(z1,. ., m,), with i=1,2,...,n. (1.2.3)

Suppose that X (x) = 0 if and only if x = 0. Then each solution of system (1.2.83) is

defined for all large t and tends to the origin as t — oo.

Proof. The theorem is trivial if n = 1. Now we proceed by induction to prove the
theorem in the general case.
Suppose the theorem holds for differential systems in R"~! satisfying the hypotheses.
Consider the system
¥ = fi(z1,xe,...,2,)
o = folwa,x3,...,2y)

(1.2.4)



in R™ which satisfies the hypotheses of the theorem.

If (z9,29,...,2%) is a point in R™ at which
fa(29,29,...,20) = 0
fulan) = 0,

since f,(0) =0 and f/(z,) <0 for all z, € R, then we have that 2 = 0. Hence

fam1(25_1,0) =0
afn—l

< 0 we have 29 | = 0. Similarly
amn—l

and since f,,—1(0,0) = 0 and

0 _ .0 _ _,0_ 0 __
xn—Q_xn—S_”'_x2_xl_O'

Thus the last (n — 1) equations of 1.2.4 form a system

o = folwa,x3,...,2y)
(1.2.5)
Tn = fulzn)
which satisfies the hypothesis of the theorem in the R™~! space z; = 0.
Let S(t) with coordinates x;(t), x2(t),...,xz,(t) on 0 < ¢t < 7 < oo a solution of

1.2.4 in R”. Then x5(t),...z,(t) form a solution of 1.2.5 and so can be extend over

0<t< 0.

Moreover

w2 (0] + 23 ()] + -+ + (D) = p(1)?
is bounded on 0 <t < oo and

lim z9(t) = lim x3(t) = -+ = lim 2,,(t) =0

t—o0 t—o00 t—o00

by the induction hypothesis.

Set K be a compact subset of the R"! space x; = 0 which contains the curve

xo(t), x3(t), ..., xp(t) for 0 <t < 0.



0
Since | f1(0, xg, ..., x,)| is bounded in K and since a—fl < 0 in R", we find that ()
T
can be extended over 0 <t < 00, so solution S(t) of 1.2.4 exists on 0 < t < oo.
Now there is a ball B, centered at the origin of R™, such that S(¢) approaches the

origin if S(t) intersects B. Moreover there is a tube in R"
T:p(t) <po

such that S(t) intersects B if S(¢) intersects 7.

But
tlirgo xo(t) = tll)rgo z3(t) =+ = tli)rgo z,(t) = 0.
Hence S(t) must intersects 7. Therefore
frp () =0
and S(t) approaches the origin of R™ as t — oc. O]

An immediate consequence is

Corollary 1.2.1. Any linearly triangularizable vector field X : R™ — R", with X (0) =

0, has the origin as a global attractor.

1.3 The Bernat—Llibre Counterexample

In 1994, J. Bernat and J. Llibre [C1-4] spurred by an article of N. Barabanov [C1-2],
were able to construct a C'—Hurwitz vector field that has a periodic orbit. This is the
unique counterexample that we know which has a periodic orbit. Actually, all other
counterexamples does not verify the conjecture because they have orbits that scape
to infinity. Since we can not exclude that Bernat-Llibre vector field have orbits that
escape to infinity, in Theorem 1.4.3 we modify this counterexample to obtain a bounded
Hurwitz—vector field with a periodic orbit. In this section we will outline the procedure

they used to find its counterexample.



The Bernat—Llibre vector field belong to a special kind called linear control vector
fields which depend of a characteristic function ¢ : R — R. More precisely they

consider vector fields in R* of the form

Xgo<x17 I2,$3,I‘4) = (1’2, —Ty4,T1 — 2134 — ]{31 gO(I4), T+ T3 — Ty — kg QO(LL’4)) y (136)

_ 9181 g 1837

= 550 o - Lhey began with the piecewise characteristic function

where k;

—u sl r<-—u,
p(x) = r sio|z] <u, with ©w=-—0

u siox>u,

Observe that this vector field is Lipschitz and so the existence and uniqueness of so-
lutions works. They prove that the vector field X, has a stable periodic orbit. We
will outline the procedure they used to find the stable periodic orbit. Since p(—t) =
—p(t), the system is symmetric with respect to the origin of R*, that is, if x(t) =
(1(t), xo(t), x3(t), z4(t)) is a solution, then —z(t) is also a solution. Therefore if a solu-
tion z(t) pass through the points xg and —xg, then z(¢) is a symmetric periodic solution.
In this form it is sufficient to study two linear systems, the linear system in the region
|z4] < u and the linear system in the region x4 < —u. They prove the existence of a

symmetric periodic orbit (¢) through a point (ay, as, ag, —u) in the following way:

(1) Computing explicitly the solutions y(t) in the region |z4| < u and the solutions

m(t) in the region x4 < —u.

(2) Computing the time s > 0 which needs the solution m(t) of the system in the
region x, < —u for going in forward time from the point m(0) = (ay, as, az, —u)

to the hyperplane x4 = —u.

(3) Computing the time —7 < 0 which needs the solution y(¢) of the system in the
region |z4| < u for going in forward time from the point y(0) = (—ay, —ag, —asz, u)

to the hyperplane z, = —u.

(4) Finding ay, as,az,s > 0 and 7 > 0 such that m(s) = y(—7).
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Let T'_ (resp. I'y) denotes the hyperplane x4 = —u (resp. x4 = u). Let (29, —u) be
the initial point (ag, as, as, —u) € I'_ of the periodic orbit v(¢) constructed above. The
Poincaré map defined on a neighborhood of 7(t) is the composition of the following
four maps. Let (21, —u) be the first point of the periodic orbit on I'_ after the orbit

passes through the point (zg, —u). The maps are

T B (z)NT_- —=T_,

Ty © By(zn)NT- — T,

Ty B, (—=z)NTy —-T, and
T, : Bi(-z)ND; —T_,

where r > 0 is sufficiently small and B,(z) is the open ball in R* with center the point
(z, —u) and radius r. Due to the symmetry of the solutions with respect to the origin
we get that T3(z) = —T1(—z) and Ty(z) = —T2(—z2). Then the Poincaré map T in a
neighborhood of ¥(t) can be defined as

T = TyoT30T50T): Be(z)NT_ —T_.

Since the ordinary differential systems which define the Poincaré map 7} fori =1,... .4
are linear systems, the maps 7; and T are analytic. Then to prove that ~(¢) is locally
stable, the authors show that all the eigenvalues of DT'(z) are real and have modulus
smaller than 1. Since the point 2z, and the smallest time t, > 0 that the solution ~(t)

from (zp, —u) needs for to arrive I'_ are not know exactly, they find an specific point
Zo = (0.22275019594, —2.13366751029745, —1.395139155570) € T'_
with the following properties:
1) ||DT(20) — DT (Z0)|| <6.75-1073.

2) The eigenvalues of DT'(Z) are 0.30521, 0.00557788 and 9.11685 - 10°,
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3) The matrix D = P~ DT (%) P is diagonal, with

0.643732 0.646488  —0.689503
P=1 -0331955 —0.216012 —0.731705
—0.689503 —0.00999182  0.483755

Then to estimate the eigenvalues of DT(zy) the authors use the following result (see

[C1-23][Theorem 6.9.6]).

Proposition 1.3.1. If B is a diagonalizable n x n matriz, B = P D P~ and A is an
arbitrary n x n matriz, then for each eigenvalue A\(A) there is an eigenvalue \(B) such
that

A(4) = AB)| < IPI[|[P] 1A= BIl .

Here A = DT'(z), B = DT (%), || P|| < 2and ||[P7!|| < 16.6. Hence [A\(A) — A(B)| <
0.2241, it follows that the eigenvalues of DT'(zy) are real and with modulus smaller than

1.

Although, for |z4] > u the Jacobian matrix of X, has eigenvalues with zero real part,

91310

they prove that if the map ¢ is changed by any C'—map ¢ with 0 < ¢'(z4) < 2212,

then the vector field X is Hurwitz. In this form they prove that there exists a C*—map
1 such that the vector field X, is Hurwitz and has a periodic orbit. Also they remark
that the function ¢ can be chosen C" for all r > 1, C'*° or analytic.

To be more specific, they have the following results.

Proposition 1.3.2. [C1-4, Proposition 8.1] The vector field X4 is Hurwitz if the

characteristic function ¢ is C' and satisfies 0 < ¢'(x4) < 9515% .

Theorem 1.3.1. [C1-4, Section 9] Given ¢ > 0 and R > 0 and r € ZT U {0} there

exists a characteristic function ¢ with ¥(0) = 0 such that
a) 1 is of class C",

b) 0 <'(z) <10 for all x € R,
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c) |Y(x) —p(x)| < e forall x € [-R, R].

d) The Poincaré map Ty, defined by the flow of Xy in a neighborhood of zy € T with

I' a transversal section, has a stable fized point near zg.

Remark 1.3.1. (1) X, is a Hurwitz C"— wvector field such that X,(0) = 0 and

having an stable periodic orbit.

(2) The vector field X, can have orbits that scape to infinity.

1.4 Hurwitz—vector fields with periodic orbits

In this section we study the conditions under which a Hurwitz vector field X of class
C> in R™ can be arbitrarily approximate by bounded Hurwitz vector field in a compact
neighborhood. Hence, we apply the result to the Bernat—Llibre vector field to obtain
a bounded Hurwitz vector field which has a periodic orbit. We begin by definition of
bounded vector field.

Definition 1.4.1. Let X : R® — R" be a C*—vector field. We say that X is bounded
if there exists a compact set K C R™ such that for all x € R™ there exist t, € N such
that ¢(t,x) € K for allt > t,.

The Euclidean inner product of two vector p, ¢ € R” will denoted by < p,q >.

Remark 1.4.1. Any C'—vector field X : R® — R™ such that < X (p),p > < 0 for all
Ip|l > K, is bounded.

To simplify we introduce the following notation. Given a C'—vector field X : R* —

R™ we denote

S(X) = sup{max{R(\) : A is an eigenvalue of DX (p)}}.

peER”

Next we state the mail result of this section. Let r € Z1 U {o0}.
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Theorem 1.4.1. Let X : R — R" be a C"—wvector field such that S(X) < —co, for
some ¢y > 0. Suppose further that exist positive numbers C, R and o > 1 such that
|IDX(p)|| < C forallp € R" and < X(p),p > < «a <p,p> forall|p|| > R. Then,
giwen 0 < b < 1 and a compact neighborhood U of the origin , there exists a bounded
C"—wvector field, Y : R" — R™ with S(Y) < _TCO such that Y (p) = X(p) — bp for all
peU.

The following two Lemmas 1.4.1 and 1.4.2 are fundamental in the proof of Theorem

1.4.1.

Lemma 1.4.1. Given R > 0,0 < b < a and € > 0, there exists N € N and a smooth

function

¢ :[0,00) — [b,a]

such, that
(1) ¢(r) =b for allr € [0, R)
(2) ¢ (r)>0and| ¢ (r)-r|<e forallr >0.
(3) ¢(r)=a forallr >R+ N.

Proof. First we define ¢(r) = b, for all r € [0, R]. Hence, we consider the sequence

(S(n)) defined for all positive integer n by

el 1 1 1
S(n)_b+§<R+1+R+2+”'R+n) '

Observe that S(n) — oo as n — oo. Let N be the integer such that verifies S(n) < a

forn=1,...,N —1, and S(N) > a. For all positive integer n > 1 we define

p(R+n)=95(n), if 1<n<N-1
d(R+n) =a, if n>N
For each integer n such that 1 < n < N — 1 we consider a smooth map C* ¢ :

[R+n,R+n+1] — [S(n+1),S(n)] which is flat at R+ny R+ n+ 1 and defined
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as above and such that

2S(n+1)—S(n)) e

0o =1¢0) = i D —(Rtn)  IBintl)

Then the map ¢ satisfies the conditions because, forn =1,... N y R+n—1 <r < R+n

we have

[¢0) 7 |< 17

]

Lemma 1.4.2. Set M(n) be the space of n xn real matrices. Given ¢y > 0 and C > 0,

set A be the compact set
A={Aec M(n):[A| £CandS(A) < —co}.
Then, given € > 0 ezists § > 0 such that
S(A—B) < —c¢y+¢
forall A€ A and for all B=cl + E, withc >0y ||E] <.
Proof. Writting B =cl + E, we have A— B=A — ¢l — F and
det(A—B—-X)=det(A—FE—(AN+¢)l),

ie.,

A—ceSpec(A—B) <= Xe€Spec(A—-E),

which implies

S(A—B)< S(A-E).

Then, it is sufficient to choose § > 0 such that
S(A—FE) < —cy+e,

for all A€ Aand ||E| < 6. O
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Theorem 1.4.2. Let X : R — R" be a C"—vector field such that S(X) < —c¢y < 0.
Suppose that exists C > 0 such that || DX (p)|| < C for all p € R". Given R > 0 and
0 <b < a, there exist N € N and a C"— vector field Y : R — R" such that:

o) S) < —

b) Y(z)=X(x)—bx foral|z|| <R ,
c) Y(z)=X(x) —axz forall ||z|| > R+ N.

Proof. First choose ¢ > 0 such that S(A — B) < -2 forall Ac A= {A € M(n) :
|All < C and S(A) < —¢} and all B = ¢l + E, with ¢ > 0 and ||E|| < € (Lemma
1.4.2). Associated at thise > 0, R > 0 and 0 < b < a, we consider the function of class
c,

¢ :[0,00) — [b,d]

of the Lemma 1.4.1 that verifies
(1) ¢(r) =0 for all r € [0, R]
(2) ¢ (r)>0and | ¢ (r)-r|<e foralr>0.
(3) ¢(r) =a forall > R+ N.

Then the vector filed Y (z) = X(z) — ¢(||z|)) z is C" and verifies the conditions b)
and c). Finally if we define f(z) = ¢(||z||) z, we have Df(x) = ¢(||z||) I + E(z),

with ||E(x)| < |¢'(||=z||) |z]]] < €. Then the condition a) is consequence of Lemma

1.4.2. [l

Proof of Theorem 1.4.1. Set R > 0 such that || X (p)|| < Rforall p € U and a > «.
Since X verifies the conditions of Theorem 1.4.2, associated to the numbers R, b and

a, there exists N € N and a C"—vector field Y : R” — R" that verify

a) S(Y)< — |
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b) Y(z) = X(z) — bz forall ||z|| <R
c) Y(z)=X(z) —ax forall ||z]| > R+ N.
This vector field Y is also bounded. In fact, for ||p|| > R+ N we have

<Y(p),p> = <X(p)—ap,p>

= <X(p),p>—-a<pp>
<X(p),p>—-a<pp>
0,

IN A

and the proof is completed. O]
Consider now the Bernat-Llibre vector field X, of Theorem 1.3.1.

Proposition 1.4.1. There exists a Hurwitz C"—vector field X : R* — R* which has a

stable periodic orbit that satisfies the following conditions:
(1) S(X) < —cqy for some ¢y > 0.
(2) | DX (p)|| < C for all p € R* for some C' > 0.

(3) < X(p),p><a <p,p> forall|p|| > R, for some positive numbers o and R .

Proof. The vector field X, satisfies (2) and (3). In fact

9131 9131
DX =24+ —1) 24+ —
IDXy @ =2+ b () < 2.4 2L
and if p = (x1, o, x3,x4), then
< Xy(p),p> = 1@ — ToTy + T3T1 — T4T3 + T4T1 — T5 +

(9131 | 1837
900 ** " 180
< 208 <p,p>,

4) (14)

because |¢(z4)| < 10|x4]. Since it is not clear that X, satisfies condition (1), we
consider X = X, — eI, where [ is the identity map and ¢ > 0 is sufficiently small.
This vector field is a Hurwitz C"—vector field which has a stable periodic orbit that

verifies the three conditions. O
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Theorem 1.4.3. There ezists a bounded Hurwitz C™—vector field Y : R* — R* which

has a stable periodic orbit.

Proof. The vector field X of Proposition 1.4.1 satisfy all conditions of Theorem 1.4.1.
Then associated to a compact ball U C R* that contain the stable periodic orbit of X
and a small positive number b, there exists a bounded Hurwitz C"—vector field Y such

that Y (p) = X(p) — bp for all p € U. Such vector field satisfies our Theorem. O

1.5 A New Family of Counterexamples

In [C1-8], a polynomial counterexample for the Markus—Yamabe Conjecture for dimen-
sion n > 3 is given. Subsequently, in [C1-9], the authors explain a way for obtaining
a family of polynomial counterexamples containing the ones above. The construction
is based on results about quasi-homogeneous vector fields of degree one (see [C1-9,
Section 2]). We next record the resultl [C1-9, Theorem 3.2] for n = 3. We do not give

its proof.
Theorem 1.5.1. For each a,b, A € R and each k,l,m € N, the vector field
X(2,y,2) = Mx,y,2) + (az2’ + byz™)F (=b2™, a2',0) (1.5.7)
satisfies the following three properties:
(1) X is linear quasi—-homogeneous with weights

(o1, 0, 03) = (m+kl, I+ km,1 — k).

(2) For all X € R, with X\ < 0, the vector field X € N'(\,3), and

(8) for all X € R, with A < 0, k an even number, I, k,l —m € N other than zero, and
all a,b € R — {0}, the differential system & = X (x) has unbounded orbits.

Remark 1.5.1. 1) If m =1 and/or ab = 0, then the origin is a global attractor of
the vector field (1.5.7).



18

2) The unbounded orbits of assertion (3) may be found as follows. Consider the

olt) = (a(t), y(t), 2(1)) = (woe™, yoe™, z0e™)

with A = )\%]’ff, B = )\%. If xo, Yo, 20 satisfy

kl
)\xgnzi—k = Azg — bzl (amozh + byozg")*  and
k+k
Ao = l:z = Ay + azh(awozh + byozd")*,

then a(t) is an unbounded solution. Since these conditions are equivalent to the condi-

tions

_  bltkm—ltk
T T Mtk -1y kA
- _l+km—1+k(m+M—1+kY’Hm

abk (1 — k) (m-D1-k) ) °

the proof of assertion (3) of Theorem 1.5.1 follows.

The following, which is the main result of this section, gives an extension of the

family (1.5.7) and shows that assertion (3) of Theorem 1.5.1 may also hold for k& odd.

Theorem 1.5.2. For each a,b,\ € R, each k,[,m € N, and each polynomial map
f:R — R, the vector field

X(2,y,2) = Mw,y,2) + flazz' +byz™) (—b2™, az',0) (1.5.8)
satisfies the following two properties:

(1) For all X € R, with X\ < 0, the vector field X € N'(\,3), and

(2) for all X € R, with A <0, alll, k,l—m € N other than zero, and all a,b € R—{0}
such that either m + 1 is odd, or m +1 is even and (m —1)abAr < 0, the

differential system @ = X (x) has unbounded orbits.
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Proof. The proof of (1) is straightforward. Concerning assertion (2), since there cannot
be any unbounded orbits in the plane z = 0, outside of this plane we consider the

change of coordinates
(u,v,w) = (azz’ + byz", \(m — )byz™, A\(m — 1)abz™"") .
The system & = X (z) then becomes
(4, 0,0) = A+ Du+v,\(m+ 1)v+wf(u), \(m + Dw). (1.5.9)

In order to analyze the behavior of the solutions of (1.5.9) near infinity, we consider

the change of coordinates

(5,p,7) = (u™, vu™t, wu")
obtaining the system
§ = —sANl+1)+1],
p = pAm—1)—p] + r[Aes" +-- 4+ Ap)], (1.5.10)

(
o= rNlk+m+k—10)+(k—1)p]
where f(u) = Ag+ Ay u+ -+ A u®, with Ay # 0. The singularities in the plane s = 0
are (0,0,0), (0,\(m —1),0) and (0, po, 7o), where
“AMlk+m+Ek—1)

Do = ] and
N(mk+1+k—-D(Ik4+m+k—1)
ro = ‘
' (k= 1)°4,
Note that py > 0 and ry A, > 0. Moreover, the Jacobian matrix of the vector field at
(0, po, 70) has determinant —\ (I + m)rg Ay > 0, and eigenvalues p; = ’\gﬂ") < 0,

and o, pug with pg u3 < 0. Therefore, the singularity (0, pg, 79) has a stable manifold of
dimension 2 and an unstable manifold of dimension 1, which is contained in the plane
s = 0.
Therefore, system (1.5.10) has solutions (s(t), p(t), r(t)) such that s(¢) > 0, p(t) > 0,
and limy_, . (s(t), p(t),r(t)) = (0,po,70). Hence system (1.5.9) has solutions (u(t), v(t), w(t)),
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with u(t) and v(t) positive, so that lim; ., u(t) = limy . o v(t) = 4o00. Further,
limy 0o w(t) =07 (resp. 07) if Ay > 0 (resp. Ax <0).
In order to obtain unbounded solutions (z(t),y(t), z(t)) of our system & = X (x), we

must solve the system
u(t) = ax(t)z(t) +by(t) 2()"
A(m =1 by(t) z(t)™, (1.5.11)
wt) = A(m—1)abz(t)™".
If w(0) = wy, the third equation is reduced to finding a z, so that

wy = AN(m —1)abz".

Indeed, the conditions imposed on this theorem guarantee the existence of such a zy.

With this zy, we obtain

u(t) e Mt v(t
dy = MO )
azh (m—1)
v(t 6—/\mt
yy = e
A(m—1)bz]
2(t) = zel.
Thus lim;_., « |y(t)| = 0o, and we have the result. O
Remark 1.5.2. Setting Ag = Ay =--- = Ap_1 =0 and Ay = 1, we obtain the vector

field (1.5.7).

1.6 The Positive Case

In this section, given A < 0, we consider vector fields X = AT + Hy, + H,, € N(]),3),
where Hy and H,, are homogeneous of degree k and m, respectively, with 1 < k < m.
We will show that these vector fields are linearly triangularizable and, therefore, they
have the origin as a global attractor. By definition, a vector field F' : R* — R" is

triangular if it has the form

F(xy, 29, - ,x,) = (Fi(z1), Fo(z1,22), -+, Fo(21, T2, -, 20)) -
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In addition, F' is said to be linearly triangularizable if there exists a linear change of
coordinates which makes F' triangular. Recall that L. Markus and H. Yamabe show
that for Hurwitz—triangular vector fields which vanish at the origin, the origin is a
global attractor (see [C1-17]). Therefore, any linearly triangularizable Hurwitz—vector
field X, with X (0) = 0, has the origin as a global attractor.

Before giving our main result, we recall some definitions and preliminary results.

Let k be an arbitrary field of characteristic zero and let k[z| = k[zy,- -+ , 2, denote
the polynomial ring in the variables xy,--- ,x, over k. Associated to each polynomial
f € klz] and @ = 1,---,n, we denote by g—i the polynomial which is the formal
derivative of f with respect to x;.

A polynomial map is a map F = (Fy,--- | F,) : k" — £" of the form
(xla"' 7xn) - (Fl(xla'” awn)a"' 7Fn(x17"' 7~In))

where each F; belong to k[z]. Given a polynomial map F' = (Fy,--- , F,) , we denote by
JF the Jacobian of F'; that is the map which associate to each x € k" the n x n—matrix

JF(x) whose (7, j)—entries is ggf (x). Further, we said that JF is nilpotent if the matrix
J

JF(z) is nilpotent at every point x € x". Finally, we say that a polynomial map
F : k™ — K™ is homegeneous of degree k if F(tz) = t* F(z) for all z € k™ and all t € k.

Our principal tools are Theorems 1.6.1 and 1.6.2, whose proofs are contained in
[C1-6, Theorem 1.1] and [C1-7, Theorem 1.1], respectively. Recall that « is a field of
characteristic zero. The set consisting of all the linear isomorphisms 7" : k" — K" is

denoted Gl,,(k).

Theorem 1.6.1. Let H = (Hy, Ho, H3) : k3 — K3 be a homogeneous polynomial
map of degree d > 2. If JH 1is nilpotent, then there exists a T € Gls3(k) such that
THT Yz,y,2) = (0, ho(x), hs(x,y)), where the h; are homogeneous of degree d.

Theorem 1.6.2. Let A be a unique factorization domain of characteristic zero, and

let H= (Hy, Hy) € Alxy,29)?. Then J,, .,(H) is nilpotent if and only if

H(x1,12) = f(a1 21 + agw2)(az, —ar) + (c1,¢2)
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for some ay,as,c1,c0 € A and f(t) € Alt].

Remark 1.6.1. 1) A consequence of Theorem 1.6.1 is that if H = (Hy, Ho, H3) :
k3 — K3 is a homogeneous polynomial map of degree d > 2, then H,, Hy, H3 are

linearly dependent over k.

2) If X <0, then the origin is a global attractor for any vector field X = N + H €
N (N, 3), with H homogeneous of degree d > 2.

3) Let P(x,y,2),Q(z,y, z) be homogeneous polynomials of degree k such that J, , (P, Q)
is nilpotent at every point (x,y,z) € R®. Then Theorem 1.6.2 implies that

P(r,y,2) = —blax +by)(a1 2" 4+ apz""?(ax + by) +
s Foglaz +by) ) 4 28 and
Q(z,y,2) = alax +by)(a12" " + agz"2(az + by) +

o+ agax 4+ by)F ) 4 a2t

Now let
X =M+ H,+H, :R* - R> € N()\,3) (1.6.12)

be a polynomial vector field where H, and H,, are homogeneous of degree k and m,
respectively, with 2 < k < m. Since JHy and JH,, are necessarily nilpotent, we have

that, modulus a linear change of coordinates, the vector field X has the form
X(I7y7 Z) = A(‘Il7:y7 Z) + (P7 Q?R)('r7y7 Z) + (07 Axm7S(x7y)) (1'6'13>

where P, @, R are homogeneous polynomials of degree k and S(z,y) is a homogeneous
polynomial of degree m, with 2 < k < m. Moreover, there exists a triple («, 3,7) €
R? — {(0,0,0} such that

aP + Q + yR=0.

In addition, we must have

1) mAz™ 1P, 4+ Q.S, + P.S, =0,
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2) —P,Q.S, — P(mAz™ 'R, — Q.8,) + P.(mAz™ 'Ry + QuS, — Q,S.) = 0,
3) mAz™P,S, = 0.

In order to prove that the origin is a global attractor of the vector field (1.6.12), we
will assume that X has the form (1.6.13). First we consider the cases where P, @, or
R vanish (see Lemmas 1.6.1, 1.6.2, and 1.6.3). We next show that the general case can

be reduced to one of the preceding cases.

Lemma 1.6.1. For A\ <0, consider the polynomial vector field
X(@,y,2) =Xz, y,2) + (0,Q, R)(2,y,2) + (0, Az™, S(x,y)) € N (A, 3)

where Q(x,y, z) and R(x,y,z) are homogeneous polynomials of degree k, and S(x,y)
18 a homogeneous polynomial of degree m, with 1 < k < m. Then X is linearly trian-

gularizable.

Proof. The condition DX (p) — Al nilpotent at every point p € R? implies
Qy,+R.=Q,R.—Q.R,=Q.5,=0.
Hence J, .(Q, R) is nilpotent at every point (z,y,2) € R* and we have

Q(z,y,2) = —c(by + cz)(az™ + a2 (by + c2) +
oo ag(by + c2)" ) 4 aa
R(z,y,2) = bby + c2)(aqa™ ! + a2 (by + c2) +
o4 ap(by + c2)" ) + aga®  and
S(z,y) = Ba™+CyT(z,y),

with ¢cC (a2 + -+ 4+ a}) = 0 and T'(z,y) a homogeneous polynomial of degree m — 1.
Observe that X is triangular if c(a?+---+a2) =0, and if ¢ # 0 and b = C' = 0. When
¢ # 0 and b # 0, since C = 0, the vector field X is linearly triangularizable through

the change of coordinates (u, v, w) = (z,by + ¢z, z), which completes the proof. ]
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Lemma 1.6.2. For \ <0, consider the polynomial vector field
X(z,y,2) = A(z,y,2) + (P,0,R)(x,y,2) + (0, Az"™, 5(x,y)) € N(A,3)

where P(x,y,z), R(z,y,z) are homogeneous polynomials of degree k, and S(z,y) is a
homogeneous polynomial of degree m, with 1 < k < m. Then X s linearly triangular-

1zable.

Proof. The condition DX (p) — AI nilpotent at every point p € R?® implies that
P.+R,=P.R,— PR, =0 and

mAz™ P, + P.S, = A(P,R. — P.R,) = AP.S, = 0.

We suppose P # 0. The first two conditions imply

P(r,y,2) = —clax+ cz)(aqy"™ + gy *(az + cz) +
aglar + )" 4+ by* and
R(l‘, Y, Z) = CL(CLZ‘ + Cz)(alykil + Oé2yk72(aﬂf + CZ) +

aglar + c2)" ) 4 oyt

If ¢ = 0, then Ab; = 0 and the vector field X is triangular. If ¢ # 0 and A = 0, then
S(z,y) = Cy™. Further, if a = 0, then the vector field X is triangular. If a # 0, then,
performing the change of coordinates (u,v,w) = (y,azx + cz, z), the vector field X is
triangular in the new coordinates. Next if ¢ # 0 and A # 0, then S(x,y) = Da™
and ab, + cby = kAb; — ayDc? = (k — 1)Aay + 2cDay = - -+ = Aay,_y + keDay, = 0.
When D = 0, we have by = by = a3 = --- = a;_1 = 0, and consequently the vector

field X is triangular with the change of coordinates (u,v,w) = (ax + cz,z,y). When

D # 0, we have P(z,y,z) = bi(y — 2(ax + c2))*,R(z,y,2) = —2P(z,y,2), and
consequently the vector field X is triangular with the change of coordinates (u, v, w) =
(y — 25 (azx + cz), z, z). The proof is now complete. O

Lemma 1.6.3. For A\ <0, consider the polynomial vector field

X(z,y,2) = Mx,y,2) + (P,Q,0)(z,y,2) + (0, Ax™, S(z,y)) € N(),3)
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where P(x,y, z),Q(x,y,z) are homogeneous polynomials of degree k, and S(z,y) is a
homogeneous polynomial of degree m, with 1 < k < m. Then X 1is linearly triangular-

1zable.
Proof. The condition DX (p) — AI nilpotent at every point p € R? implies that
P, +Q,=PQ,— P,Q. =0
and that
mAz" P, + Q.S, + P.S; = (P,Q. — P.Q,)S, + (P.Q, — P,Q.)S, = AP.S, = 0.
We suppose P # 0 and @ # 0. The preceding conditions imply that

P(x,y,2) = —blax +by)(a12" " + apz"%(ax + by) +
cootagax 4+ by)Y) + 2
Q(z,y,2) = alax +by)(a12" " + a2 % (azx + by) +
oot ogaz + by) ) 4 2
(az + by)[-mb*Az™ 1 (200272 + - 4 kay(ax + by)"?) +
(aS, — bS.)((k — Dy 2" 2 + (k — 2)apz" 3 (ax + by) +

oo (az 4 by) )]+ [FmbP Aan ™ + k(erS, + e2S,)]2F T =0,

(acy + bey) [ar 2" + a2 2 (az + by) + - - + ag(az + by)**)(aS, — bS,) =0,

and
A[=blaz +by)((k — a1 2572 4+ (k — 2)anz" 3 (ax + by) +
SRR ozk_l(cm + by)k_z) + kclzk_l] Sy = 0.
If a =0b=0,or (a,b) # (0,0) and oy = g = -+ = a4 = 0, then cico # 0,

S(z,y) = B(cor — c1y)™, and AB = 0. When B = 0 the vector field X is triangular.
When B # 0, we have A = 0 and consequently, performing the linear change of
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coordinates (u,v,w) = (cox — 1y, z,x), the vector field X is triangular in the new
coordinates.

Suppose (a,b) # (0,0) and (g, g, -+ , ) # (0,0,---,0). When A = 0 and ac; +bcy =
0, we have that either S(z,y) = B(ax+0by)™, or S(x,y) # B(ar+by)™ and oy = --- =
ag_1 = ¢1 = c3 = 0. In the first case (resp. second case), if a # 0, then the vector field
X becomes triangular with the change of coordinates (u,v,w) = (az + by, z,y) (resp.
(u,v,w) = (ax + by,y, 2)); if b # 0, then the vector field X becomes triangular with
the change of coordinates (u,v,w) = (az + by, z,z) (resp. (u,v,w) = (ax + by, x, 2)).
When A = 0 and acy + bey # 0, we have S(z,y) = 0, and the result follows from
Remark 1.6.1.

If (a,b) # (0,0), (1,09, -+ ,a5) # (0,0,---,0), and A # 0, then S, = 0. Therefore,
S(z,y) = Ba", bB(ac1+bce) = 0, and b(2bas A+(k—1)a; B) = b(3bas A+ (k—2)asB) =
- = b(kbarA+ Bay_1) = —b*ayA+kBe; = 0. If b = 0, then B = 0, and consequently
the vector field X is triangular. If b # 0, then B # 0 and ac; + bcy = 0, with a # 0.
Moreover,

(P,Q)(x,y, 2) [B(ax + by) — Abz]k(b, —a),

~ 24B
consequently the vector field X becomes triangular after the change of coordinates

(u,v,w) = (B(azx + by) — Abz, x,y). The proof is now complete. ]

We conclude this section with our main result.

Theorem 1.6.3. For A\ < 0, consider a polynomial vector field X = A\ + H, + H,, €
N (N, 3), with Hy and H,, homogeneous polynomials of degree k and m, respectively,
and with 1 < k <m. Then X is linearly triangularizable, and therefore the origin is a

global attractor of X.

Proof. After a linear change of coordinates, we may suppose
H,(z,y,z) = (0,Az™ S(x,y)) and Hy=(P,Q,R)

such that a P+ 3Q +~ R = 0, for some (a, 3,7) € R* — {(0,0,0)}.
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When « # 0, after the change of coordinates (u,v,w) = (x,y,ax + By + 7z), the
vector field X takes the form

Y(u,v,w) = Mu,v,w) + (P,Q,0)(u,v, %(w —au — fv)) +
(0, Au™, BAU™ + vS(u,v)) .

The theorem now follows from Lemma 1.6.3. Now when v = 0 and (§ # 0, after the

change of coordinates (u,v,w) = (x,ax + By, z), the vector field X takes the form

Y (u,v,w) = Mu,v,w) + (P,0,R)(u, %(v —au)) + (0, Au™,~S(u, %(v —au))),

thus the theorem follows from Lemma 1.6.2. Finally, if v = = 0, then P = 0, and

the result follows from Lemma 1.6.1. O]



Chapter 2

Couples of Transversal Nets with

Singularities

2.1 A Class of Quartic Differential Forms

Let M be a connected, oriented two—manifold of class C*°. We let Q(M) denote the set
consisting of all smooth quartic differential forms defined on M which have the following
property. At each point p in M, there exist a local chart (u,v): U C M — R? and
smooth maps E, F,G : (u,v)(U) — R, with EG — F? positive everywhere, such that
if

(u,v)*(w) = agdv* + dasdvdu + 6ardv’du® + 4daydvdu® + agdu® (2.1.1)

then
G (ag,a1,ay) — 2F (ay,a9,a3) + E(as,a3,a4) =0. (2.1.2)
A remarkable example of a quartic in Q(R?) is

w = 4a(du® — dv*)dudv + b(du* — 6du*dv® + dv*) (2.1.3)

where F = G = 1 and F' = 0. We will show that, locally, any quartic in Q(M) may
be written in the form (2.1.3) in an appropriate coordinate chart, which we will call

main chart. (See Definition 2.2.1 and Proposition 2.2.3).

28
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For any quartic w in Q(M ), we have that either w(p) = 0 (in which case p is called a
singular point of w) or w(p)~!(0) is the union of four distinct lines L; (w)(p), La(w)(p),
Ls(w)(p) and Ls(w)(p) of the tangent space T,M (in which case p is called a regular
point of w). In general, these line fields do not define foliations over the set of regular
points of w. Nevertheless, they can be grouped in pairs, say N;(w) = {L;(w), L2(w)}
and N3(w) = {L3(w), Ly(w)}, so that each N;(w), with i = 1,2, defines a net.

Locally, each quartic w € Q(M) is the product of two positive quadratic forms. In

fact, if (2.1.1) is the local expression of w in a chart (u,v), then

ag - (u,v)*(w) = w-w”
with
wt = apdv® + 2 <a3:|:\/a§—a2a4) dudv + (ay &+ R) du?
and

. Q3G9 — a104 2F (p) (G 2F >
R(p) = lim ————(q) = —= — a2 — —apa; +a? .
(p) = lim e R—— (@) = Zoy (g%~ wmta )@

The quadratic forms w™ and w™ belong to a special class called positive. Recall that
a quadratic form 7 = a(u, v)dv? + 2b(u, v)dudv + c(u, v)du? is positive if, at each point
p, either (b* — ac)(p) > 0 or (a,b,c)(p) = (0,0,0). In the former case, the point p is a
regular point of 7, and in the latter case, p is a singular point of 7. Thus there is a triple
C(7) = {fi(7), fa(7), Sing(7)} associated with 7 which is called the configuration of T,
where Sing(7) is the set consisting of all singular points of 7, and where f,(7) and fo(7)
are the transversal one—dimensional foliations defined over the set of regular points of
7 which are, respectively, tangent to the vector fields X,(7) = (a,—b — v/ — ac)
and Xo(7) = (a,—b + vb*> —ac). (See for example [C2-10], [C2-11].) Observe that
the positive quadratic forms w™ and w™ are not differentiable at the singular points
of the quartic. Further generically, they have a semi—curve of singular points that are

not singular points of the quartic. The net Nj(w) (resp. Na(w)) corresponds to the
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configuration of w™ (resp. wt). To describe this correspondence, we consider a main

chart (u,v) where w takes the form
(u,v)*(w) = 4a(du® — dv*)dudv + b(du* — 6du*dv® + dv*).

We obtain

with
wE = b(dv® —du®) + 2(—a £ Va2 +b?)dudv.

The set Sing(w™) (resp. Sing(w™)) is the set consisting of all points where b vanishes and
a is non—positive (resp. non—negative). We obtain the net N;j(w) from the configuration
C(w™) as follows. Let p € Sing(w™) — Sing(w), and let V' be a small neighborhood of
p. Welet VT =V Nb71(]0,00[) and V- =V Nb~ (] — 00,0[). For i = 1,2, we denote
the leaf of f;(w™)/V™T (resp. of f;(w™)/V ™) which converges to p by ~;" (resp. ;). We
have that ;" (resp. ;) converges to p with slope (—1)* ( resp. —(—1)%). Further, if
oy and ay are the leaves of Aj(w)/V that contain p, then oy = ~; U {p} U~, and
az =75 U{p} U

The type of the quartics under study is related to the principal curvature lines of
surfaces immersed in R*. In fact, the principal directions at a point p are obtained by
solving an equation w(p) = 0, with w € Q(R?). (See [C2-8], [C2-6], [C2-T], [C2-3],
[C2-9], [C2-19], [C2-20].) Observe that the converse is locally true in the analytic case.
More precisely, given an w € Q(U), with real analytic coefficients ayg, -+ , a4 defined
in a neighborhood U C R? of a point p, there exists an immersion f : V — R* where
V' C U is some small open neighborhood of p such that the differential equation of
the lines of curvature of f is given by w = 0. (See [C2-6, Theorem 2.1] or [C2-3,
Proposition 2.4].) Thus all of the local results of [C2-6], [C2-7], [C2-3], [C2-9] hold for

the nets associated to an w € Q(M).
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2.2 Preliminaries

In that follws, f, will denote the partial derivative of a map f with respect to a variable

x.

Proposition 2.2.1. Let w € Q(M) have only isolated singular points. Then, for any
local chart (u,v) : U C M — R?, there exist smooth maps E,F,G : (u,v)(U) — R,
with EG — F? positive everywhere, such that if (u,v)*(w) = asdv® + dagdvddu +
Gasdv?du® + 4aydvdu® + agdu®, then G (ag,ar,as) — 2F (a1, as,a3) + E (ag, a3, a4) =
0.

Proof. For simplicity, a chart which satisfies the conditions of Proposition 2.2.1 will be

called a g—chart. The proof is consequence of the following.

1) Let (u,v) be a g—chart. If ¢ is the change of coordinates

(w,v) = ¢ (z,y) = (f(z,9),9(z,))
then (x,y) is a g—chart.

In fact, if
(z,y)*(w) = bydy* + 4bsdy*dx + 6bydy*dx* + 4bidydx® + boda*,
then

bo = [fi—(6f;Gg})/E — (8F[.Gg})/E*+
(G((—4F?)/E* + G/E*)g})] ag + [fi9. + 3Ff1g2)/E+
fo((4F?)/E® = G/E)g; + (F((2F?)/E° — G/E?)g,)] a

and

b = [4f3f, — (12f.f,Ga2)/E — 8F f,Gygy)/ E* — (12;Gg.9,) /| E
—(24F f,Gg2g,)/ E* + (4G((—4F*)/E* + G/ E)g}g,) | E] ag +
[3£2f,90 + (6F fu£,02)/ B + f,(4F*) [ E* = G/E)g} + fig,+
(6Ff29:9,)/E + 3f.((4F?)/ E* = G/E)g3g, +
(4F((2F*)/E* — G/E)g}g,)/ E] a: .
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Setting
E = E(fx)Q +2F fp9, + G(gm>2 )
F - Efmfy+F(fxgy+fygx)+nggy7
G = E(f,)*+2Ff,9,+ G(g,)

we obtain

Eé—ﬁa = (EG_F2)<fxgy_fygx)2'

Thus we again obtain the relationships

Gby — 2Fb, + Eby, = 0,
Gb, — 2Fby, + Eby = 0,

Gby — 2Fbs + Eby, = 0.

2) Suppose that associated to each g—chart (u,v) : U C M — R? with (u,v)*(w) =
asdvt + dazdvidu + 6axdvidu® + 4advdu® + apdu®, there are two triples of
smooth maps, F,F,G and E,F,G  sothatin (u,v)(U), we have EG—F2 >0,
EG — F? > 0, G(ag,a1,a2) — 2F(ay,as,a3) + Elaz,as,as) = 0, and
é(ao,al,ag) — 2F(a1,a2,a3) + E(ag,ag,a4) = 0. Then there exists a smooth
map A : (u,v)(U) — R such that (E,F,G) = \NE,F,G).

For this, it suffices to show that, for every regular point p of w, we have %(p) =

€(p) and £(p) = £(p)-
First, we assume that there exists a regular point p so that %(p) — %(p) # 0.
Then

(a0, a1,a2)(p) = H(p) (a1, az,as)(p)

ST

with H = 2 2 . This implies that ag, a1, as, a3 are non—vanishing at p, and

=Q
| Q=

ap = Hay and a9y = Ha; = H%a,.
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Therefore,

_ G 2F
ay = ECLO E aq
2F

G
= —EHQCLQ + HEQQ

implies that x = H(p) is a real solution of the equation

oF
Glp) o 200y

E(p) E(p)

which is impossible because E(p) G(p) — F(p)?> > 0.

st

Similarly, if there exists a regular point p so that %(p) — £(p) #0, then

(a1,az,a3)(p) = H(p) (ao, ai,az)(p)

=Q
[
=IQ

with H = 2 and = H(p) is a real solution of the equation

N |—=
Sl

|
[l

E(p) ,  2F(p)

Gp) " T G

z+ 1 =0,

which is impossible.

]

We next show that the coefficients ay, ..., as of the local expression of w € Q(M)
satisfy relationships similar to those of the case of principal curvature lines of surfaces

immersed in R*. (See [C2-9, Lemma 2.1].)

Proposition 2.2.2. Let w = asdv? + 4dasdvddu + 6asdv?du® + 4aidvdu® + agdu?
be a quartic in Q(R?). Let E, F,G : R? — R be smooth maps such that, for all p € R?,
we have (EG — F?)(p) > 0 and

G(p)(ap,a1,a2)(p) — 2F(p)(a,az,a3)(p) + E(p)(az,as,as)(p) = 0.
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Then

ECLQ = —Gao + 2FCL1,
E?a3 = —2FGay + (4F* — EG)a, , (2.2.4)

E’ay = G(EG —4F*ay + 4F(2F? — EG)a, .
Moreover, if p is a reqular point of w, we have

a a
Hp)=| > 7 |(®) <0 and I(p) = (asao — 4aras +3a2)(p) > 0.  (2.2.5)
as G4

Proof. For all p € R?, we have

Gao — 2F&1 -+ Eag =0 s
G(Il — 2FCL2 + Ea3 =0 s (226)
GCLQ - 2F6L3 + ECL4 = 0.
Observe that the first relationship of (2.2.6) corresponds to the first relationship of
(2.2.4), the second relationship of (2.2.6) multiplied by E' corresponds to the second

relationship of (2.2.4), and the last relationship of (2.2.6) multiplied by E? corresponds
to the last relationship of (2.2.4) .

We now work on the set of the regular points of the quartic. Using relationships (2.2.4),
we find

E*(H,I) = (Ea} — 2Fapa; + Ga3) (—G* 4(EG — F?)). (2.2.7)
Therefore EG — F? >0 imply H <0 and I > 0. O

We now show the existence of such main charts. In the case of curvature lines they

correspond to the isothermal coordinates.

Definition 2.2.1. Let w € Q(M) and p € M. A local chart (u,v) at p will be called

a main chart of w at p if

(u,v)*(w) = 4a(du* — dv*)dudv + b(du* — 6du*dv® + dv*).
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Proposition 2.2.3. Givenw € Q(M) and p € M, there exists a main chart of w at p.

Proof. Observe that taking F' =0 and £ = G in (2.2.6), the local expression (2.1.1)
already has the desired expression. Hence, given a local chart (u,v) at p and associated

maps F, F,G to the quartic differential form w, it suffices to find a coordinate change

u = f(xay)7 v :g(ZE,y>
so that, in a neighborhood of the origin, we have

Efxfy+F(fxgy+fygx)+Gggggy =0 and
E(fx)2 +2F fo9. + G(gw)z = E(fy)2 +2F f,9, + G(Qy)2 .

Therefore, the problem is equivalent to finding isothermal coordinates in a neighbor-
hood of a point of a surface. (See [Spi, Vol. IV, Addendum 1 of Chapter 9].) The

conclusion follows. O

Remark 2.2.1. Main charts are preserved by changes of coordinates of the form

(u,0) = (f(z,y), g(, y)) which verify

(for fy) = (9y,=92) or (fu, fy) = (=9y,92) -

2.3 Simple Singular Points

Let w be a quartic differential form in Q(M), and let p be a singular point of w.
Assume that (2.1.1) is the local expression of w in a chart (u,v) : (M,p) — (R?%0)
with coefficients ag, a1, as, as, ay satisfying relationships (2.2.6). The point p will be
called a simple singular point of w if the Jacobian matrix D(ag,a;)(0,0) is non—

singular.

Proposition 2.3.1. Let w € Q(M) and let p be a singular point of w. Then the

following properties are equivalent:

a) The point p is a simple singular point of w.
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b) Let (u,v): (M,p) — (R?,0) be a local chart. If
(u,v)* (W) = badv* + 4bgdv®du + 6bodv’du® + 4bidvdu® + bodu’,
then the Jacobian matriz D(bg, b1)(0,0) is non-singular.
c¢) Let (u,v): (M,p) — (R?,0) be a local chart. If
(u,v)* (W) = bydv* + 4bgdv®du + 6bodv’du® + 4bidvdu® + bodu’,
then the Jacobian matriz D(b;, b;11)(0,0) is non-singular, fori=0,1,2,3.

Proof. Let (z,y)*(w) = asdy* + dazdy*dz + 6asdy*dx® + aydydx® + agdz?
be the local expression of w in a chart (z,y) : (U,p) — (R?,(0,0)). Let ¢« = 0, 1,2, 3.
Using relationships (2.2.4), we see

a; ag
@41 ai

where M; is a square matrix with det M; = (%)Z # 0. Therefore, the curves {ag = 0}
and {a; = 0} are regular, meeting each other transversally at the origin if and only if
the curves {a; = 0} and {a;11 = 0} are regular meeting each other transversally at
the origin.

Consider the change of coordinates (z,y) = (f(u,v), g(u,v)), with £(0,0) = ¢(0,0) =
0, and let

(u,v)* (W) = bydv* + 4bydv’du + 6bodv’du® + 4bydvdu® + bodu® .

Again, using relationships (2.2.4), we obtain

bo . boo  bo1 Qo
by bio bn ay
with
boo  bo1 9 9
det = (Ef; + 2F fugy + Gg;) det D(f,q).
bio b

The proof now follows. O
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The next result is [C2-6, Lemma 3.2], so we give the lemma without proof.

Lemma 2.3.1. Let w € Q(M), and let p € M be a simple singular point of w. There

is a main chart (u,v) : (M, p) — (R% 0) such that the local expression of w is

(u,v)*(w) = 4(Au+ Bv+ S(u,v))(du?® — dv?)dudv +

(2.3.8)
(v + R(u,v))(du* — 6du?dv? + dv*)

where A # 0 and B are real numbers, and S and R are real-valued functions which

satisfy

oS oS OR OR

For the rest of this article, we endow the set Q(M) with the smooth Whitney topol-
ogy.

Simple singular points are persistent under perturbations of the quartic differential
form in Q(M) because they are defined by transversal conditions. We explain this fact

in the next Proposition.

Proposition 2.3.2. Let py be a simple singular point of a quartic differential form
wo € Q(M). Then there exist a neighborhood U of p in M, a neighborhood V of wy in
Q(M), and a smooth map p : V — U which associates each w € V with the unique

singular point of w in U. Moreover, the singular point p(w) is simple.

Proof. The local expression of a quartic differential form w in Q(M) associated to an

arbitrary chart (u,v) is given by

(u,v) % (W) = (Agoao + Agar)dv* + (Azpap + Aziar)dvidu (23.9)
+(Agag + Azray)dvidu® + ajdvdu® + agdu? o

where ap = ap(u,v), a1 = a1(u,v), and A;; = A;;(u,v), for i =2,3,4and j =0,1,
are smooth functions. Moreover, the singular points of w are given by the equations

ag = a; = 0. Consider a local chart (u,v) : (M,p) — (R?0) such that the local

expression of wy has form (2.3.8). Therefore, A # 0. For w in a neighborhood V of
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wo in Q(M), the local expression in the same coordinates is of the form (2.3.9), where
ao(wo)(u,v) = v+ R(u,v) and ai(wo)(u,v) = 4(Au+ Bv + S(u,v)). Next consider
the smooth map F :V x R? — R? defined by

F(w, (u,v)) = (ao(w)(u,v), ar(w)(u,v)) .
Since F'(wo, (0,0)) = (0,0), and since the matrix

4A 4B
0 1

Dy F(wo, (0,0)) =

is non-singular, there exist a neighborhood U of (0,0) in R?, a neighborhood V C V
of wyin Q(M), and a smooth map ¢ : V — U such that ¢(wy) = (0,0) and F(w, ¢(w)) =
(0,0), for all w € V. The proof now follows. Il

The next two results are contained in [C2-3, Theorem 1.1]. We do not give their

proofs.

Theorem 2.3.1. Let w € Q(M), and let p € M be a simple singular point of w. Let
(u,v) : (M,p) — (R?,0) be a local chart such that

(u,v) * (W) = 4(Au + Bv + S)(du® — dv*)dudv + (v + R))(du* — 6du®dv® + dv*)

where A # 0 and B are real numbers, and S = S(u,v) and R = R(u,v) are real-valued

functions which satisfy

08 0S OR OR

Then, under each of the conditions (a) through (e), the corresponding phase portrait is
obtained by making into one, through a rigid translation, the pair of pictures (that is,

nets) of the indicated figure.
(a) Condition Hy : A <0. (Figure 1)

(b) Condition Hy : A >0, A<0and A# —1/4. (Figure 2)
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(¢) Condition Hs : A >0, A>0. (Figure3)
(d) Condition Hzy: A >0 and A= —1/4 and B #0. (Figure j)
(e) Condition Hy: A= —1/4 and B=0. (Figure5)

Here

A = 4(1+B*?+24(1 + B*)?A+8(5 - B)(1+ B*)A* + (2.3.10)

49+ B*)A® + (17 + 4B*) A" + 44° .

Figure 1

Figure 2

Figure 3
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Figure 4

Figure 5

Definition 2.3.1. Let p be a singular point of a quartic differential form w € Q(M).
We will say that w is locally topologically stable at p if both nets, N1(w) and Na(w),
are locally topologically stable at p.

Theorem 2.3.2. Let w € Q(M), and let p € M be a simple singular point of w.
Consider a local chart (u,v) : (M,p) — (R?,0) as in Theorem 2.3.1. Then w is
locally topologically stable at p if and only if either condition Hs, or condition Hy, or
condition Hy holds.

The next two results will be used in Subsection 2.5.1 to obtain versal unfoldings of
the singular points Hsq and Hj, thus showing that the former is of codimension one,

and the latter is of codimension two.

Proposition 2.3.3. Let p be a simple singular point of w € Q(M). Consider a main
local chart (u,v) : (M,p) — (R?,0) such that the local expression of w at p is of the

form

(u,v) * (W) = 4(Au+ Bv+ S(u,v))(du® — dv*)dudv +

(v + R(u,v))(du* — 6du*dv* + dv?). (2.3.11)
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Consider also the separatrixz polynomial

9(s) = =sQ(s) (2.3.12)

where
Q(s) = s* —4Bs® —2(3+2A)s> +4Bs + 1 +4A.

Then the point p is:

a) a locally stable singular point if the separatriz polynomial (2.3.12) only has simple

T001tS;

b) an Hszy—singular point if the separatriz polynomial (2.3.12) has a root of multi-
plicity two;

¢) an Hs—singular point if the separatriz polynomial (2.3.12) has a root of multi-
plicity three.

Proof. This is a direct consequence of Theorems 2.3.1 and 2.3.2, and the result [C2-3,
Theorem 5.3]. O

Our next result gives a characterization of the Hs, H, and Hj singularities better
suited for our needs.

Let w € Q(M). Given a main chart (z,y) : U — R?, if (z,y)*(w) = 4a(z,y)(dz* —
dy?)dxdy + b(z, y)(dz* — 6dz*dy?® + dy*), consider the maps g : (z,y)(U) C R? — R?
and A, H : (z,y)(U) C R? — R defined as follows:

1) g = (4a,b)

2) A(z,y) is the discriminant of the homogeneous degree five polynomial

4Da ) (u, v)(u® — v*)dudv + Dby (u, v)(u* — 6u*v® + v?).
3) H(z,y) is the determinant of the Jacobian matrix of the map g = (4a, b).

Proposition 2.3.4. Let p be a simple singular point of w € Q(M), and let (x,y) :
(U,p) — (R?,(0,0)) be a main chart. If A(0,0) # 0, then:
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1) p is of type Hs if and only if A(0,0) < 0.
2) pis of type Hy if and only if A(0,0) > 0 and H(0,0) < 0.
3) pis of type Hs if and only if A(0,0) > 0 and H(0,0) > 0.
Proof. In the case a main chart (u,v) : (U,p) — (R?,(0,0)) is such that

(u,v) * (w) = 4(Au+ Bv + S(u,v))(du® — dv*)dudv +
(v + R(u,v))(du* — 6du*dv? + dv?)

we have

A(0,0) = (1+4A)?[4(1+ B*)?+24(1+ B*)?A+8(5 — B*)(1 + B*)A?
+4(9 + B?)A® + (17 + 4B?) A* + 44)
and
H(0,0) = 4A.

The proof now follows from Theorem 2.3.1.

Consider now an arbitrary main chart (u,v) with
(u,v)*(w) = 4a(u,v)(du® — dv*)dudv + b(u,v)(du* — 6du’dv® + dv?).
Since the roots of the equation
4Da0)(u, v)(u? — v*)uv + Dby (u, v)(u! — 6uv* +v*) = 0

correspond to the possible directions of asymptotic convergence to the singular point
for the leaves of the nets, the sign of A(0,0) is invariant by coordinate changes. On
the other hand, H(0,0) is negative (resp. positive) if and only if the Poincaré index of
the singular point is % (resp. —1—11). Therefore, the sign of H(0,0) is also invariant by

coordinate changes. From these considerations the proof follows. O]
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2.4 A Non-simple Case

Definition 2.4.1. Let w € Q(M) and let p be a singular point of w. We will say
p is a rank—k singular point of w, with k = 0,1,2, if there exists a main chart
(z,y) : (U, p) — (R?,(0,0) such that

(z,y) * (w) = 4a(dz® — dy?)dzdy + b(dx* — 6dx*dy* + dy*)
and the Jacobian matriz D(a,b)(0,0) has rank—k.

Proposition 2.4.1. Let p be a rank—1 singular point of w € Q(M). Then there exists

a main chart (x,y) such that

(z,y) * (w) = 4a(dz® — dy?)dzdy + b(dx* — 6dz*dy* + dy*)
and ji(a,b)(0,0) = (By,y), with B > 0.
Proof. Without loss of generality, we may suppose that there is a main chart (z,y) so
that

(z,y) * (w) = 4a(dz® — dy?*)dzdy + b(dx* — 6dz*dy* + dy*)
with

71(a,0)(0,0) = (Az + By)(A, 1),

where \ (A% + B?) #0. For a, 8 € R, with a? + 3% # 0, we consider (z,y) = ¢(u,v) =
(cu — Bv, fu+ av). Then

¢*w = 4a(u,v)(du® — dv*)dudv + b(u,v)(du* — 6dudv? + dv*)

where

J1(a,0)(0,0) = (Ayo, Bio)u + (A1, Bo1) v
and
—403B + 4af? 4+ a* X — 6a25%N + BN,
—40°B + 4af? 4+ X — 6a25%N + BN,

ot — 60267 + B + 40BN — 4aBP)),

&
o
I
s
Q
+
Sy
~ E ~— ~—

ot — 60232 + B* + 43BN — 4aB3)).
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If A=0 (resp. B =0), then B # 0 (resp. A # 0). Weset § =0 and a = ?/LE (resp.

a=0and [ = —{:,/LAT), and we obtain Ajg = Bjg =0, Bpy =1 and Ag; # 0. If A #0
and B # 0, we set « = mf3 with m = —% to obtain By = 0, and we are under the

conditions of the preceding case. Finally, if the coefficient Ay; obtained is negative, it

suffices to consider the change of coordinates (u,v) = (—s,t). O

Proposition 2.4.2. Let p be an isolated rank—1 singular point of w € Q(M). Let
(z,y) : (U, p) — (R?,(0,0) be a local chart. Assume that
(z,9)"(w) = asdy* + 4dasdy®dr + 6aydy*da® + 4ay dyds® + agda®.
Then there ezist a pair (B1,52) # (0,0) and real constants ag, oy, g, sz, oy, with
(v, 1) # (0,0), such that
]l(az)(()?O) = ai(ﬁlx—i_ﬁQy)u fOT 7::071727374'
Proof. Let (u,v) : (V,p) — (R?(0,0)) be a main chart such that V' C U and
(u,v)*(w) = 4a(du® — dv*)dudv + b(du* — 6du?dv? + dv?), with j;(a,)(0,0) =
(Bv,v). Consider the changes of coordinates (u,v) = (f(z,y),g(x,y)). Then
ao(r,y) = Af} 9 — fog) alu,v) + (fy =6 £ 97+ g5) b(u,v),
al(a:, y) = (3f§fygx - fygi + fi’gy - 3fasgg%gy)a(ua U) +
(fg?fy - 3fxfygi - 3f;?gxgy + gigy)b(% U) )
az(z,y) = 2(fef39e + [ofygy — Ju9oy — fegagy) alu, v) +
(f2fy = 1792 — Afofy9:9y — f2g, + 929;) b(u, v),
(1,3(27, y) = (f;goc + 3fxfy29y - 3.fyg:cgz - fmgg) (I(U,U) +
(f:cfg? - 3f;gxgy - 3fwfyg§ + gxgg)) b(u, U) )
ag(z,y) = A(f)gy — fy9y) alu,v) + (f, —6f792 + g,) b(u,v).
Therefore, j(a:)(0,0) = ai (Biz + foy) where Sz + foy = ja(g)(0,0). Setting
oa; = Bo; + 7;, for i =0,1, we have

M — Op O1 _ P Q Q P

T0O T1 R S P _Q
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with P = (f:g - g:%)(070)7 Q = Q(fg;g;p)(O,O), R = (fzfy _ga:gy>(070), and S =
(fygz + f29,)(0,0) . Since

P Q
det = (f2 +92)(0,0) det D(f, 9)(0,0) # 0
R S

we have det M # 0, and therefore (ag, 1) # (0,0). O
Let p be a singular point of w € Q(M). At p, consider a main chart (u,v) such that
(u,v)*(w) = 4a(du® — dv®)dudv + b(du* — 6dudv® + dv?).

Observe that a simple singular point corresponds to the case where {a = 0} and
{b = 0} are regular curves meeting each other transversally at the origin. In this
section, we weaken this condition in the mildest way by considering the case where the

curves {a =0} and {b= 0} have quadratic contact at the origin. More precisely,

Definition 2.4.2. A rank-1 singular point p of w € Q(M) will be called an Hy5— singular
point if there exists a main chart (z,y) : (U,p) — (R?,(0,0) such that

(z,9)"(w) = 4a(d2z® — dy*)dzdy + b(dz* — 6dx?dy® + dy*)
and the curves {a =0} and {b =0} have quadratic contact at the origin.

Proposition 2.4.3. Let p be an Hy5—singular point of w € Q(M). Then there exists

a main chart (x,y) such that
(z,9)"(w) = 4a(d2z® — dy*)dxdy + b(dz* — 6dx*dy® + dy*)
where

CL((E, y) = By + (lgol'Q + anxry + a02y2 + R(l’, y) 9

b(z,y) = Y+ byor® +bizy + boay® + S(z,9)

with B > 0, agy — Bbay # 0, and ja(R, S)(0,0) = (0,0). Here ji(f)(q) denotes the k—jet
of the map f at the point q.
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Proof. This is a direct consequence of Proposition 2.4.1. Il

Our next result determines the phase portrait of the nets around an Hys—singular
point. In the study of the phase portrait of the nets around a simple singular point p (see
[C2-6, Lemma 5.1] and [C2-3, Theorem 5.3]), we consider the surface LM defined on
the projective line bundle PM over M by the solutions of equation 4a(dz?—dy?)dzdy +
b(dz* — 6dz*dy* + dy*) = 0. This surface is regular in P~!(p) (where P denotes the
projection of PM onto M) if and only if p is a simple singular point (see [C2-6, Lemma
4.1]). Thus, this procedure cannot be applied to obtain of the phase portrait of the nets

around an Hys—singular point. Therefore, we use the decomposition

bw = whw™

where

wt = b(dy* —d2?) + 2(—a+ Va2 +b?)drdy.

We subsequently study the foliations f;(w™) associated with w*, and the foliations
fi(w™) associated with w™, with ¢ = 1,2, by considering the relationships between the

leaves of f;j(w™) (resp. fi(w™)) and the leaves of the net N7 (w) (resp. Na(w)).

Theorem 2.4.1. Let p be an Hys—singular point of w € Q(M). The phase portraits

of the nets N1(w) and Nz(w) around p are homeomorphic to those shown in Figure 6.

Nl (w) . M(w)
Figure 6

Proof. Let (x,y) be a main chart such that

(z,9)*(w) = 4a(dz® — dy*)dzdy + b(da" — 6dz>dy® + dy*)
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where
a(r,y) = By + R(z,y), blx,y) = y+S(x,y)

with B > O, jQ(R, S) (O, O) = (ago, bzo) 1'2 + (an, bll) Ty + (aog, bog) y2, and &QO—BZ)QQ 7é

0. First, we suppose agy — Bbyy > 0.

We first study the configuration around the origin of the positive quadratic dif-
ferential form w* = b(dy® — d2z®) + 2(—a + Va2 +b2)drdy. Since a(z,y) =
(asp — Bby)2®> + -+ > 0, for (z,y) € b=1(0) — {(0,0)} sufficiently close to the
origin, the set Sing(w™) is a regular curve through the origin. Moreover, the roots of

the separatrix equation at the origin
S (w,y) = y(y* —2*) + 2(=By + V1+ B? |y |y,

which are the possible directions of asymptotic convergence to the origin for the leaves
of the foliations fi(w™) and fo(w™), are the following. The line y = 0 and the segments
y = v;x, with (=1)*z >0, for i = 1,2, 3,4, where
v, = B—VB*+1 + (—1)1'\/(B—¢BT1)2+1 it i=1,2,
(2.4.13)
vi = B+VB*+1 — (—1)1'\/(B+\/B27+1)2+1 if i=34.

Observe that vy < —1 < vy < 0 < vy <1 < w3. Consider the blowing—up
(5,9) = (wuv).
If (S, R)(u,uv) = u?(Si, Ry)(u,v), then (u,v)*(w") = wwi, with
wi = u?A;(u,v)dv? + 2uds(u, v)dudv + Az(u,v)du® .
For u # 0, we have
Ai(u,v) = v+uSi(u,v),
Ay(u,v) = v A (u,v) — {Bv +u Ry (u,v) — &Jm} :
As(u,v) = (v* —1)Ay(u,v) —2v {Bv +u Ry (u,v) — %K/m}
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with
H(u,v) = (Bv+uRi(u,v))*+ (v+uS(u,v))*.

The singular points of wy” on u = 0 correspond to the solutions of A3(0,v) = 0. Hence
the origin is a singular point; the other singular points are the following. For v > 0
(resp. u < 0), they are (0,v2) and (0,v4) (resp. (0,v1) and (0, v3)).

In order to obtain the local configuration of w;” around these singular points, we
consider the vector fields X; = X;(w;), V; = Y;(w]) and Z; = Z;(w]), with i = 1,2,
defined by

Xi(u,v) = (u2A1(u,v),—uA2(u,v)+(—1)i\/u2(A§—A1A3>(u,U)>,

Yi(u,v) = (uAl(u,v),—Az(u,UH(—l)i\/(Ag—A1A3>(u,U)>,

Zi(u,v) = (u {Ag(u,v)—k(—l)i \/u2(Ag—A1A3)(u,U)],—Ag(u,v)).

We know that X is tangent to the foliation f;(w;"), and that Y; is tangent to Z;. Now for
u positive (resp. u negative), Y; is also tangent to X; (resp. to X3_;). (See for example
[C2-12, Section 4].)

Since A(0,v;) = 3(1+v}) for i = 1,2,3,4, the point (0,v;) is a regular point
of Y] and a singular point of Y5. Moreover, since %(O,UZ-) > 0, the point (0,v;) is a
hyperbolic saddle of Z5. Since A2(0,0) = 0, in order to obtain the local configuration

around the origin, we consider the blowing—up

Let

a(z,y) = By + R(z,y) = By + anr® + anry + aey’ + Ry(z,y)
and

b(z,y) = y+S@y =y + boo 7 + by ay + beay® + So(z,y),

with jQ(Rg, SQ)(O, 0) = (0, O) N and (RQ, Sz)(s, 52 t) = 83 (Rg, Sg)(s, t) .
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Then (s,t)*(w™) = s?wy , with

wyi = s*Ni(s,t)dt* + 25% Ny(s,t)dsdt + Ns(s,t)ds*,

where

Ni(s,t) = by +t+ s(byit + boast® + Rs(s, 1)),

NQ(S,t) = 2StN1 —Ml(S,t)+ HQ(S,t),

Na(s,t) = (452 — 1)N, + dst [—Ml(s,t) + Hg(s,t)]
and

Mi(s,t) = a9+ Bt+ s(ant+ apast® + Ss(s,1)),

Hy(s,t) = Ny(s,t)* + My(s,t)*.

The unique singular point of wy on the line s = 0 is the point (0, —by) . For i = 1,2,

consider the vector fields

Xi(s,1) = <34N1(s,t),—52 No(s,) + (—1)1 s \/Ng(s,t)Q—Nl(s,t)Ng(s,t)>

and
(s o 32 N1<Sat) s (s
Y;( 7t) - Ml(S,t)—F HQ(S,t) (P( 7t)an( 7t))

where

P(s,t) = s (Ml(s,t) n Hz(s,t)> :
Qi(s,t) = —2st (Ml(s,t) + Hg(s,t)> — Ni(s,t) +

(=11 V2 \/ (s, ) + My(s, 1) /Hals, ) -

Then X; is tangent to the foliation f;(wy), for i = 1,2. Since M;(0, —by) > 0, the

vector fields Y; are well defined in a neighborhood of the point (0, —bsg) . Further, we
have Y; = X, (resp. Y; = X3_;) for Ny(s,t) positive (resp. negative). Observe that the
vector fields (P(s,t),Q;(s,t)), with ¢ = 1,2, are non—vanishing at the point (0, —bap).

To complete our analysis of the local configuration of w™, we consider the blowing—up
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(z,y) = (st,st?).
If (R,S9)(st,st?) = s?t*>(Ry, S4)(s,t), then (s,t)*(w") = st?wy , with
wi = s As(s,t)dt* + 2st Bs(s,t)dsdt + t*Cs(s,t)ds?

where, for s # 0, we have

s

Ag(s,t) = —1—4Bt+4> +4-""t\/Hs(s,t) —

s[Su(s,t) + 4tR4(s,t)S— 412 Sy(s,1)],
Bs(s,t) = —1—BBt+2t2+3|%t\/M—
s[S4(s,t) + 3t Ry(s,t) — 212 Sy(s,1)],
Cs(s,t) = —1—2Bt+t2+2t%\/m—
s[Su(s,t) + 2t Ry(s,t) — t* Sy(s, )]
with
Hs(s,t) = (B+sRy(s,1)* + (14 5S4(s,1))*.

The vector fields associated with ws are

Xi(wi)(s,t) = (s* As(s,t), —st Bs(s,t) + (—1)" \/32t2(3§ — A3C5)(s, 1)),

and

}/i(w;)(‘g?t) = (S AS(S’t)7 t[_B3<S7t) + (_1>Z \/(B?% - A3C3>(S’t)]>

with 7 = 1,2. As usual, for i = 1,2, the vector field X;(w7) is tangent to the foliation
fi(wd), and the vector field Y;(wy) is tangent to X;(wi) (resp. X3 ;) for st positive
(resp. negative). Since A3(0,0) = B3(0,0) = —1 and (B2 — A3C3)(s,t) = t* F(s,t) with
F(0,0) > 0, we conclude that the origin is a saddle singular point for Y;(wy ), with
i=1,2.

Therefore, the configuration of w;™ (resp. w™) around the line u = 0 (resp. the origin)
is the one shown in Figure 7 (resp. Figure 8), which proves that the phase portrait of

the net AVj(w) is homeomorphic to the one shown in Figure 6.
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filw) fa(wy)
Figure 7
fi(w™) fa(w™)
Figure 8
We now study the configuration around the origin of w= = b(dy* — dz*) +

2(—a — Va2 +0?)dedy. Since a(xr,y) = (agpy — Bby)z?* + --- >0 for (x,y) €
b=1(0) — {(0,0)} sufficiently close to the origin, the set Sing(w™) is reduced only to

the origin. The roots of the separatrix equation at the origin
Sw ) (@,y) =y(y* —2*) +2(-By — V1+ B | y |y

are the line y = 0 and the segments y = v; z, with (=1)"z <0, for i = 1,2, 3,4, where

the v}s are given by (2.4.13). Performing the blowing—up

(z,y) = (u,uv)

we obtain (u,v)*(w™) = wwj . Similarly, the origin is a singular point of w;; the
other singular points on u = 0 are (0,v;) and (0, v3), for u > 0, and (0, v2) and (0, v4),
for u < 0.

We now study the corresponding vector fields X; = X;(wy), V; = Yi(wy) and Z; =
Zi(wy ), with i = 1,2, obtaining the following. The points (0,v;), with i = 1,2,3,4,
are regular points of Y;, and are singular points of Y. Moreover, the points (0, v;) are

hyperbolic saddles of Z,.
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As before, to determine the local configuration around the origin, we perform the

blowing—up

Let

a(z,y) = By + R(x,y) = By + a2’ + anry + apy’ + Ruz,y)

and

b(z,y) = y+S@,y) =y + bya® + by + bey® + Sao(z,y),
with jo(R,52)(0,0) = (0,0) and (Rs, S2)(s,s*t) = s® (Rs, S3)(s,t).

Then (s,t)*(w™) = s’w, , with

wy = s'Ni(s,t)dt* + 2% Ny(s,t)dsdt + Ns(s,t)ds>

where

Nl(S, t) = bgo +1t+ S(bnt + bOQStQ + 53(87 t)),

NQ(S,t) = ZStNl — Ml(S,t) — Hg(S,t) s

Na(s,t) = (452 — 1)N, + 4dst [—Ml(s,t) - \/Hg(s,t)}
and

M (s,t) = ag+ Bt + s(ant + agst’R(s, b)),
H2(87t) = Nl(sat)2 + M1(87t)2'
The unique singular point of w, on the line s = 0 is the point (0, —bg) . Observe that

NQ(O, —bgo) = —2M, (0, —bgg) < 0 and Ny (O, —bQO) =
N3(0, —byg) = 0. For i = 1,2, consider the vector fields X;(s,t) = s?Y;(s,t), with

Yi(s,t) = (32 Ni(s,t), — Na(s, t) + (=1)’ wvz(s,t)z—Nl(s,t)zvg(s,t)> .

Then the point (0,—bg) is a singular point for Y, and is a regular point for Y5.

Moreover, the vector field Y; is tangent to the vector field

Zi(s,1) = (32 (— No(s,t) + /No(s,£)2 — Nl(s,t)Ng(s,t)> , Ny(s, t))
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which has a saddle node singular point at the point (0, —bgg) with parabolic sector in
s <0.
In order to complete our analysis of the local configuration of w™, we consider the
blowing—up
(z,y) = (st,st?).

If (R,S)(st,st?) = s*2?(Ry,S4)(s,t), then (s,t)*(w™) = st?w; , with
wy = s As(s,t)dt® + 2st Bs(s,t)dsdt + t*Cs(s,t)ds?

where, for s # 0 we have

As(s,t) = —1—4Bt+4t2—4|8—|t Hs(s,t) —
S

s[Si(s,t) + 4t Ry(s,t) — 4% Sy(s,1)],

By(s.t) = —1—3Bt+262—3 0 JIGD -
S

5[S4(s,t) + 3t Ry(s,t) — 21% Sy(s,1)]
Cs(s,t) = —1—2Bt+1t*— 21tm V Hs(s,t) —
s
s[S4(s,t) + 2t Ry(s,t) — t* Sy(s,1)]
with
Hj(s,t) = (B+sRy(s,1)* + (14 5S4(s,1))>.

The vector fields associated with w; are

Xi(w3)(s,t) = (s* As(s,t), —st Bs(s,t) + (—1) \/s2t2(B§ — A3C5)(s,1))

and

Yi(ws)(s,t) = (s As(s,t), t[—Bs(s,t) + (=1)' \/(B§ — A3C3)(s,1)])
with i = 1,2. As usual, for i = 1,2, the vector field X;(w5 ) is tangent to the foliation
filws), and the vector field Y;(w3) is tangent to X;(ws ) (resp. X3_;) for st positive
(resp. negative). Since A3(0,0) = B3(0,0) = —1 and (B2 — A3C3)(s,t) = t* F(s,t) with
F(0,0) > 0, we conclude that the origin is a saddle singular point for Y;(ws ), with
i=1,2.
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Therefore, the configuration of w; (resp. w™) around the line u = 0 (resp. the origin)
is the one shown in Figure 9 (resp. Figure 10), which proves that the phase portrait of

the net AV5(w) is homeomorphic to the one shown in Figure 6.

Si(wy) fa(wy)
Figure 9

fi(w™) fa(w™)
Figure 10
Finally, in the case asy — Bbyy < 0, the configuration obtained is the same as the one
already obtained, though with the nets interchanged. The proof of the theorem is now
complete. O

2.5 Smooth families in Q(R?)

In this section we deal with local problems around isolated singular points of rank
greater or equal than one of quartics in Q(M). Such problems are normal forms, finite
determinacy and versal unfoldings. Thus we will work with quartic differential forms
in Q(R?).

The notion of equivalence of families of quartic differential forms in Q(R?) used in

this article is the following.



95

Definition 2.5.1. Consider two smooth families (w,) and (v,) in Q(R?) with (the
same) parameter p € R*. Let Ni(w,) and Na(w,) (resp. Ni(v,) and Nz(v,)) be the
nets associated to w,, (resp. v,). The families (w,) and (v,) are called C°—equivalent
(over the identity) if there exist homeomorphisms hi, : R* — R® such that, for each
1 € R¥, we have that b, is a C°—equivalence between the nets Ni(w,) and N;(v,),
with i = 1,2,

Remark 2.5.1. For local families around the origin of R2xR¥ | we impose for i = 1,2,
the conditions that hj(0,0) = 0, that h!, only be defined for ((x,y), ) which belongs
to a neighborhood V- x W of ((0,0),0) in R*> x R*, and that {(h}(z,y),pn) € V x W
be a neighborhood of ((0,0),0).

Definition 2.5.2. Let U C R* and V C R' be neighborhoods of the origin. If ¢ :
(V,0) — (U,0) is a smooth map and (w,,) is a smooth family of quartics in Q(R?) with
parameter € U, the family (va) = We(a) , with parameter o € V', is called a family
C>®—induced by ¢.

Recall that an unfolding of a quartic w € Q(R?) is any smooth family (w,) in

Q(R?) with wg = w; thus we have the following Definition.

Definition 2.5.3. An unfolding (w,) of wy is called a versal unfolding of wy if all

unfoldings of wy are C°—equivalent to an unfolding C*°—induced from (w,).

Our principal tool is the following result, similar to Proposition 2.2.3, which assert the
existence of main charts for families of quartics in Q(R?). The proof is an adaptation
of the one presented in [C2-21, Addendum 1] for the existence of smooth isothermal

coordinates and it is presented in Section 2.6.

Proposition 2.5.1. Let (w(u)), with parameter i € R¥, be an arbitrary smooth family
in Q(R?). Given py € R?, there exits a local chart ¢ : (U x V,(py,0)) — (R?* x

R, ((0,0),0)) of the form ¢(p, ) = (u(p,p), v(p, p), 1), with ¢(p,0) = (u(p),v(p),0)
for all p € Uy, such that in the chart ¢, : (Uy,p(p)) — (R?,(0,0)) defined by ¢, (p) =
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d(p, ) for all € V., the local expression of w(p) is

¢ (w(p)) = 4alp) (du® — dv?) dudv + b(u) (du* — 6 du’dv® + dv*). (2.5.14)

2.5.1 Simple singular points

Our next result asserts that for a smooth family w(x) in Q(R?) such that w(0) has a
simple singular point at the origin, without loss of generality we may assume that the

origin is a singular point of w(u), for small | p |. Here is a precise statement.

Lemma 2.5.1. Let w(p), with parameter p € RX | be an arbitrary smooth family of
quartic differential forms in Q(R?) such that w(0) has a simple singular point at the
origin. Then there exists a change of coordinates of the form (z,y,p) = (h(u,v, 1), )

such that, for each p with small | p |, the origin is a singular point of the quartic
(@, y)" (w(p)) -
Proof. We may assume that
w(p) = 4a(u,v, p) (du® — dv®) dudv + b(u, v, p) (du* — 6 du®dv® + dv).
By hypothesis we have that (a(0,0,0),5(0,0,0))((0,0)) = (0,0), and that

Qp1 Qo2

D1 (a(0,0,0),b(0,0,0)) ((0,0)) =

a1 a2

is non-singular. Since the map (a,b) : R? x R¥ — R? is smooth, it follows from
the implicit function theorem that there exists a smooth map S defined on a small

neighborhood of 0 € R so that S(0) = (0,0) and

(ao,a1)(S(w), n) = (0,0)

for all p in such a neighborhood. Using the change of coordinates

(2,9, 1) = (u,v, 1) = (S(p), 0)

we obtain the Lemma. O
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Our next result shows that the normal form (2.3.8) also holds for families in Q(R?)

which pass through a quartic having a simple singular point.

Lemma 2.5.2. Let (w(p)), with parameter p € R¥, be an arbitrary smooth family
in Q(R?), such that w(0) has a simple singular point at the origin. Then there exits
a local chart ¢ : (U x V,((0,0),0)) — (R? x R* ((0,0),0)) of the form ¢(p,p) =
(u(p, ), v(p, p), 1), with ¢(p,0) = (u(p),v(p),0) for all p € Uy, such that in the chart
bu t (Uo,p() — (R2,(0,0)) defined by ¢,(p) = é(p,p) for all y € V, the local

expression of w(u) is

¢r(w(p) = 4(A(p)u+ B(p)v + R(p))(du® — dv®)dudv +
(v + S(p)(du* — 6dudv® + dv?),

with A(p) # 0 and j1(R(u), S(1))(0,0) = (0,0).

Proof. For u in a neighborhood V of the origin in R¥, there exists local chart (s,t, u1)

such that the local expression of w(u) is

(5,0)"(w(p)) = 4(A(w)s + B(p)t + R(w))(ds® — dt*)dsdt +
(C(p)s + D(u)t + S(p))(ds* — 6ds>dt® + dt*)

with ji(R(p), S(1))(0,0) = (0,0) and A(p)D(p) — B(p)C (1) # 0.

Let Lo : R* — R?, with parameter (o, 3) € R?, be the family of linear isomor-
phisms such that the inverse of L = L, g) is given by

L7 (s, t,p) = (1 +a)s—Bt,Bs+ (1 +a)t,u).

Observe that for all (o, 3) € R?, the map L, is a linear rotation at the first two

coordinates. Therefore, in the chart

(s,t,1) = (1 + a)u— Pv, Bu+ (1 +a)v, p)
the local expression of w(u) is given by

(u, v)*(w(p)) = 4(A(p)u + B(p)v + R)(du? — dv?)dudv
+(C(p)u+ D(p)v + S)(dut — 6dudv® + dv*) .
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To complete the proof, it suffices to show that there exists («, 5) = (a(p), 5(1)) so
that (C'(n), D(n)) = (0,1), for p € V sufficiently close to 0. In fact,

Clu) = 41+ a)*A(p)B+4(1+ a)’B(n)#* — 4(1 + a)*A(p) 3* —
41+ @)B(p)B* + (1 + ) BD(p) = 6(1 + a)*6°D(n) + 5°D () +
(14 a)°C(u) — 6(1 + a)*8°C(n) + (1 + @) B*C(n)

D(p) = 4(1+a)'B(u) —4(1+ a)’A(un)8* = 4(1 + a)*B(u)5* + 4(1 +
) A(p) 3t + (1 + @)’ D(u) = 6(1 + )’ 32D (p) + (1 + a)5* D() —
(14 @)*BC (1) + 6(1 + a)?*B°C(n) — B°C(p) -

If C(u) =0, then D(u) #0. Wemay set 5 =0 and 1+a = D(l)% + Then C(p) =0
B 1
and D(pu) = 1. If C(u) #0, weset 14+ a =mf, with m a real root of the equation

C(u)z® +2(2B(u) — 3C(n)a* + 2 (2B(u) — 3C(n)z* —
2 (2A(s1) + 3D())a? + (C(1x) — AB(u)x + D(p) = 0.
Then C(p) = 0, and we are under the condition of the first case. The proof now

follows. L

To obtain a versal unfolding for a simple singular point, we will need the following.

Lemma 2.5.3. Let (w(u)), with parameter u € R*, be an arbitrary smooth family in
Q(R?) such that w(0) has a simple singular point at the origin. Consider a local chart

(u,v, 1) such that

wlp) = 4(A(p)u+ B(p)v + R(p)(u,v))(du* — dv?)dudv +
(v + S(p)(u,v))(du* — 6du*dv? + dv?)

with j1(R(w), S(w))(0,0) = (0,0). Then, for small | u |, the family (w(p)) is equivalent
to the family

o(p) = 4(A(p)u + B(p)v)(du? — dv*)dudv + v(du* — 6dudv® + dv?).
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Proof. The Lemma is clear from the fact that both families have the same linear part

at the origin. O]
We next give a versal unfolding for singular points of type Hs, .

Theorem 2.5.1. A versal unfolding of an Hsy—singular point is the family of quartic

v(N), with A € R, given by

12 1
v(A) = 4 ((A - 3—25> U+ 2—2 U) (du? — dv*)dudv + v (du* — 6du®dv® + dv*) .

Proof. Let (w(u)), with parameter p € R*, be an arbitrary smooth family in Q(R?) so

that w(0) has an Hsy—singular point at the origin. By Lemma 2.5.3 we may suppose

that
wp) = 4(A(p)u + B(p)v)(du? — dv*)dudv + v(du* — 6du’dv® 4 dv?) (2.5.15)

with A(u) #0.

1
First we claim that we may suppose A(0) # —1 - In fact A(0) = ~1 if and only if

1
the root of multiplicity two of the separatrix polynomial g(s) is s = 0. Now if A = ~1

and sg is a simple root of ¢(s), then we make a rotation that in p = 0 sends sy on

s = 0. In the resulting chart, the local expression of w is also of the form (2.5.15).
1

Hence, the corresponding coefficient A(0) # e which completes the proof of the

claim.

Consider the real-valued function v defined on a neighborhood of the origin of R* by

() = 16[4(1+ B(p)*)® + 24(1 + B(p)*)* A(p) +
8(5 — B(1)?)(1 + B(p)*)A()? +4(9 + B()*) A(p)® +

(17 +4B(u)*) A(u)* + 4A(w)°] -

Then the unfolding induced by 9 from the family (v(\))rer is

12 1
o(p) = 4 ((w(,u) - 3—25) U+ 2—2 v) (du® — dv?)dudv + v (du® — 6du®dv® + dv?) .
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Since the discriminant (2.3.10) associated to the family (w(p)) is A(u) = ¥(u), and

since the discriminant associated to the family (0(u)) is of the form

where h(z) is a degree 4 polynomial with 2(0) > 0, both families are equivalent for

small |p|. The proof is now complete. O
We now consider the singular points of type Hj .

Theorem 2.5.2. A versal unfolding of an Hs—singular point is the family of quartic
v(\), with A = (A1, \2) € R?, given by

1
v(A) = 4 <()\1 — Z_l) U+ Ay v) (du® — dv*)dudv + v (du* — 6du®dv® + dv*) .

Proof. Let (w(u)), with parameter u € R¥, be an arbitrary smooth family in Q(R?)

so that w(0) has an Hs—singular point at the origin. By Lemma 2.5.3 we may suppose
w(p) = 4(A(p)u + B(p)v)(du? — dv*)dudv + v(du* — 6du*dv® + dv*)

with A(0) = —1 and B(0) = 0. Let us consider the real bi-valued function ¢ defined

on a neighborhood of the origin of R* by

Then the unfolding induced by v from the family (v(A))xer2 is
1
o(p) = 4 (<A(/L) - Zl) u+ B(p) v> (du? — dv®)dudv + v (du* — 6du*dv® + dv?).

Since the discriminant (2.3.10) associated to the family (w(u)) is equal to that associ-
ated to the family (0(u)), for every u, we conclude that both families are equivalent.

The proof is now complete. O

The next two theorems give the bifurcation diagrams of these types of singular points.
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Theorem 2.5.3. Consider the one—parameter family of quartic w(\) given by

12 1
w(A) = 4 ((A - 3—25> U+ 2—2 v) (du® — dv*)dudv + v (du* — 6du®dv® + dv*) .

Then, for all values of A, the origin is a singular point of w(\). Moreover, for small
| A |, the origin is of type Hs for A < 0, of type H3y for A = 0, and of type Hy for
A > 0.

Proof. Since the associated discriminant is

= 31092 (6640625 — 48348750\ + 30426304\ — 6680064\* 4 524288)\*)

the proof follows. |

Theorem 2.5.4. Consider the two—parameter family of quartic w(\), with X = (A1, X2) €
R2, given by

1
w(A) = 4 <()\1 - Zl) u+ Ao U) (du?® — dv*)dudv + v (du* — 6du*dv® + dv*) .

Then the origin is a singular point for all values of A = (A1, A2). Moreover, for small

| A|, we have that:
i) The origin is of type Hz if A < 0.
ii) The origin is of type Hsy if A =0 and Ay # 0, or if Ay =0 and \g # 0.
iii) The origin is of type Hy for A >0 and A\ # 0.
w) The origin is of type Hy for X = (A1, X2) = (0,0).
Here

1

A = Z(625 AL+ 1200 Ny + 1376 A3 + 768 AT 4+ 256 A2 + 1253 +
2080 A1 A3 + 1952 A7 A3 + 256 A7 A3 + 352\ + 1792\ A
—512A7 A3 + 256 A3).
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A<O A1

Figure 11

Proof. For the proof, it suffices to observe that the corresponding values of A and B

are

A=)\ —=- and B = ).

2.5.2 A non-simple case

Lemma 2.5.4. Let w(p), with parameter p € RX | be an arbitrary smooth family of
quartic differential forms in Q(R?) such that w(0) has a Hys—singular point at the
origin. Then there exits a local chart ¢ : (U x V,((0,0),0)) — (R? x R¥,((0,0),0)) of

the form ¢(p, p) = (u(p, 1), v(p, 1), 1), with ¢(p,0) = (u(p), v(p),0) for all p € Vo, such
that in the chart ¢, : (Up,p(p)) — (R%,(0,0)) defined by ¢, (p) = ¢(p, ) for all p €'V,

the local expression of w(u) is

¢ (w(p)) = 4a(p) (du® — dv?) dudv + b(u) (du* — 6 du®dv® + dv?), (2.5.16)

a(p)(u,v) = Ai(p)u+ Ax(p)v + R(u,v, 1)

b(p)(u,v) = no(p) +na(p)(Ar(p) u+ As(p) v) + S(u, 0, 1),

with A1(0) = ng(0) = 0 and ny(0) A2(0) = 1.
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Proof. Making a rotation if necessary we may assume (see Proposition ...)
(2, y) * (W) = 4a(p) (do® — dy*)dady + b(p) (dz* — 6 dz’dy* + dy*),
with

a(0)(z,y) = By + anr® + anwy + apy® + R(z,y),

bO0)(z,y) = y + bao 2 + by ay + bpay® + R(z,y),

and B > 0, agy — Bby # 0. Consider the map S : R¥ x (u,v)(U) — R? defined by

Sk, q) = (a(p)(q), det D(a(p), b(1))(q)) -
Thus S is smooth, S(0, (0,0)) = (0,0), and

0 B
2(@20 — B bgo) %

D,5(0,(0,0)) =

According to the Implicit Function Theorem, there exist neighborhoods V of 0 in R*

and Uy C (u,v)(U) of the origin and a smooth map s : V' — Uj such that s(0) = (0,0)
and S(u,s(p)) = (0,0) for all p € V. Using the change of coordinates

(U, v, M) - (JI, Y, M) - (8(M>7 6)
we obtain the Lemma. O

Lemma 2.5.5. Let (w(p)), with parameter p € R¥, be an arbitrary smooth family
in Q(R?), such that w(0) has a Hys—singular point at the origin. Then there exits
a local chart ¢ : (U x V,((0,0),0)) — (R? x R*¥,((0,0),0)) of the form ¢(p,pu) =
(u(p, ), v(p, p), 1), with ¢(p,0) = (u(p),v(p),0) for all p € Uy, such that in the chart
bu t (Uo,p() — (R2,(0,0)) defined by 6,(p) = é(p,p) for all y € V, the local

expression of w(u) is

o (w(p) = 4a(p) (du® — dv®) dudv + b(p) (du* — 6 du’dv® + dv?), (2.5.17)
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with
a(p)(u,v) = B(p)v + R(u,v, )
b(p)(u,v) = no(p) + v + S(u,v,p),
and no(0) = 0, B(0) = B > 0.
Proof. Without loss of generality we may suppose
(z,y) (w(p)) = 4a(p) (dz® — dy?) dedy + b(p) (dz* — 6da*dy® + dy*), (2.5.18)
where
a(p)(z,y) = Ai(p)z+ Ax(p) y + Rz, y, 1),
b(p)(z,y) = no(p) +n(p)(Ar(p) z + As(p) y) + S(z,y, 1),

Let L : R* — R3, with parameter (o, ) € R?, be the family of linear isomor-

phisms such that the inverse of L = L(, g) is given by
L™z, y, 1) = (1 + a)z = By, Bz + (1 + a)y, 1)
Observe that for all (o, 3) € R?, the map L(a,p) is a linear rotation at the first two
coordinates. Putting § = —A;(1 + «)/As, in the chart
(2,9, 1) = (L + a)u — v, Bu+ (1 + a)v, p)
the local expression of w(u) is given by

(1,0)* (1)) = Amo() + Bl -+ N o, v, 1) (du? — de?)duc
+ [no(p) + D(p)v + M (u, v, p)](du® — 6du’dv® + dv?) ,

where

(1) = —dno(p) Ar(p) (Ar(p)?* = Aa(p)?) (1 + ()" /(Az(p))?
(n) = P(p)(1+a(p)’,

no() = no(p) [Ai()?* — Ao (1)) (1 + a(p))*/(Aa(p))*

() = Q) (1 +a(p)’,
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with P(0) = A5(0) # 0 and Q(0) = n,(0) As(0) = 1.

Therefore, there exist o defined at a small neighborhood of the origin of R* such that

(u, )" (w(p)) = 4[mo(p) + B(p)v + N(u, v, p)](du® — dv?)dudv
+ [no(p) + v + M(u,v, p)](du* — 6dudv? + dv*) .
Finally, with a second change of coordinates of the form
(U, U, :u> = (Sv UO(M) + t7 :u) )

with vo(p) a suitable map, we obtain the desire result. O

Proposition 2.5.2. Let (w(u)), with parameter i € R¥, be an arbitrary smooth family
in Q(R?), such that w(0) has a Hys—singular point at the origin. Then there exist
r >0, a neighborhood U of the origin in R? and a smooth map f : B(0,r) C RF — R,
such that for every p € B(0,r), the following three properties are satisfied.

a) f(r) = 0 if and only if w(p) has a unique singular point in U, which is a

Hy5—singular point.

b) f(u) > 0 if and only if w(u) has only two singular points in U, one is a

Hy—singular point and the other a Hs—singular point.

c) f(u) <0 if and only if w(p) has no singular points in U.

Proof. Without loss of generality we may suppose
(z,9)"(w(n) = 4a(p) (dz® — dy®) dedy + b(p) (dz" — 6 da*dy® + dy"),
where
a(p)(z,y) = By + R(p)(z,y),
o) (z,y) = no(p) +y + Sp)(z,y),

Jo(R(1), S(11))(0,0) = (aso(p), boo(p)) 2* + (ara(),buz(p)) zy

+ (aoa (), bo2 (1))
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with ng(0) =0, B(p) > 0 and ag(p) — B(p)bao(p) # 0.

Without loss of generality, assume that ago(u) — B(u)bao(p) > 0.

Consider a neighborhood Uy C (z,y)(U) of the origin and a square Rs; = I5 X Is
where Is = [—4,6], with 6 > 0 such that R; C Uy. Taking ¢ sufficiently small if

necessary, we assume the following three properties for ||u|| small:

1) A(p)(z,y) # 0 in Rs, where A(u)(z,y) is the discriminant of the homogeneous
degree five polynomial 4 Da(p) () (u, v)(u? —v?)uv+Db() (44 (u, v) (u* —6uv® +

vh).

2) There exists a smooth map h(u) : Is — R such that a(p)(z,y) = B(u)(y —
h(p)(z)) My (z,y, 1)), with M;(0,0,0) = 1.

3) The curves y = h(p)(x) and H(p)(x,y) = 0, where H(u)(x,y) is the determi-
nant of the Jacobian matrix of the map (a(u),b(p)) at (z,y), have the point
(z,y)(p(r)) = (0,0) as the unique common point in Ry ; furthermore, the inter-

section is transversal.

We next show that the map f given by f(u) = b,(0,0) satisfies our Proposition. In
effect, the map f is smooth. For y fixed, we set m(z) = b,(z, h(p)(x)). Then

() = (2 o)) H ) ) )

Since ago(p) — B(1)bao (1) is positive, the map Ho(u)(z, h(p)(z)) is positive (resp.

negative) for —6 < z < 0 (resp. 0 < x < §). This implies that m(x) decreases strictly
in |—6,0)[ and increases strictly in ]0,0[. Assertions a), b) and c¢) now follow from

Proposition 2.3.4. 0
Lemma 2.5.6. Consider the family of quartics

w(p) = da(p)(du® — dv®)dudv + b(p) (du' — 6du’dv® + dv?),
where

a(p)(u,v) = B(p)v + azo(p) u® + an(p) uv + agz(p) v* + Ro(p) (u, v)

b(p)(u,v) = no(u) + v + bao(e) u® + bur (1) wo + boa (1) v° + Sa(p) (u,v)



67

with TLO(O) = O, B(O) =B > 0, ago(O) — Bbgo(O) # 0 and jg(Rg,SQ)(,U)(0,0) = (O, 0)
Then, for small | |, the family (w(p)) is equivalent to the family
O(p) = 4[B(uv + ag(p)v?] (du®* — dv?)dudv
+ [no() + v + bao(p) u?] (du* — 6du®dv® + dv?).

Proof. The map f(u) of Proposition 2.5.2 associated to this family is f(u) = no(p) .
Therefore there exists a neighborhood U of (0,0) and § > 0 such that for all ||| < §

we have
a) no(p) = 0 imply that w(p) and @(u) has a unique singular point in U, which is

a H,s—singular point.

b) no(p) >0 imply that w(p) and @(p) has only two singular points in U, one is

a H,—singular point and the other a Hs—singular point.

¢) no(p) <0 imply that w(u) and ©(p) has no singular points in U.

Furthermore, the local configuration of N;(w) and Ni(@) (resp. Ma(w) and Na(©))

at the origin is homeomorphic to the ones shown in Figure 12 (resp. Figure 13).

no(p) >0 no(p) =0 no(p) <0
Figure 12

no(p) >0 no(p) =0 no(p) <0
Figure 13
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From these considerations the proof follows. n

Theorem 2.5.5. A versal unfolding of an Hys—singular point is the family of quartic

v(\), with A € R, given by
v(A) = 4v[du® — dv*]dudv + (A +v—u?) [du® — 6du’dv® + dv].

Proof. The proof follows from Lemma 2.5.6 because any pair of family of quartics

(w(p)), with parameter u € R¥, of the form

wip) = 4[B(p)v + a(p)v?] (du® — dv?)dudv

+ [no(n) + v + byo(p) v?] (du* — 6du®dv® + dv?)

with n(0) =0, B(u) > 0, aso(p) — B(i) bao(p) > 0, are equivalent. O

2.6 Appendix

This section is devoted to prove the existence of main charts for families in Q(R?) (see
Proposition 2.5.1.) The proof is inspired on the one presented by M. Spivak in [C2-21,
Addendum 1] for the existence of smooth isothermal coordinates. The strategy is to
prove the same sequence of results for families with parameters in R*.

As in the case with no parameters, given a local chart (u,v) : (U, py) — (R?,(0,0))
and a family of smooth maps E()), F(\),G(A\) defined at a neighborhood V C
(u,v)(U) of the origin, with parameter \ in a neighborhood of the origin of R¥, that
verifies E(A)G(A\) — F(A\)? positive in V', we must find a coordinate change

(u7 U, )‘) = (f(x7 Y, )\), g(ZL‘, Y, /\)7 /\)
so that, in a neighborhood of the origin of R? x R¥, we have

EN)fofy + FN)(fagy + fy9:) + G(N)gogy = 0 and
EMN(fo)? +2F(N) fage + G(N)(92)* = EN)(fy)* +2F(N) fy9y + G(M)(gy)° -



69

Here, we introduce the notation of formal complex derivatives, identifying (z,y) with
z = x + 1y and considering

1 1
w, = é(wx—zwy) and w; = §(wx+zwy).

As in the case with no parameters, to find a solution (f(x,y,\), g(z,y,A)) of equa-

tions above is equivalent to find a solution w(z, A) of the complex equation
ws(z,A) = u(z, A w,(z,N), (2.6.19)
with
G(z,\) — E(z,\) — 21F(z, \)

G(2,\) + E(2,\) + 24/ E(2,\)G(z,A\) — F(z,)\)?

Therefore |u(z,\)| <1 and the equation (2.6.19) have the same class of differentia-
bility that the maps E(X), F'(A), G(\) .

n(z,A) =

Also, instead of solving the equation (2.6.19), we will instead solve the more general

equation
wz(z,A) = u(z, N w.(z,\) + 7(z, ) w(z,\) + d(z,A), (2.6.20)

where j1,7,0 are C* at z and |u(0,0)] < 1.

To be precise in the formulation of the results we introduce some definitions.

Definition 2.6.1. Given (2, \¢) € C x R¥, R >0, 0 < a < 1 and an integer n > 1,
we denote by D(zy, R) (resp. B(Xo, R)) the open ball in C (resp. in R*) with center at

29 (resp. Ao) and radius R. Also we define H., (o, R) as the set consisting of the
maps [ : D(z9, R) x B(X\g, R) — C such that

1) There exists K > 0 such that |f(z1,\) — f(22, )| < K |21 — 22]" , for all 21,2 €
D(zo, R) and for all X\ € B(\, R) .

2) For every z € D(z, R), the map X\ ~> f(z,A) is smooth in B(\g, R).

Finally, we recursively define H., . (n + o, R) as the set consisting of the maps f :
D(zy, R) x B(X\g, R) — C that verify condition 2) above and such that the derivatives
f> and [z exist and belong to H(.)(n — 14+ a, R).
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For simplicity we denote 0 = (0,0), where 0 is the origin of C and 0 is the origin of
R*. Also we put D(R) = D(0,R), B(R) = B(0,R) and H(n + o, R) = Hs(n + a, R).
We start establishing a proposition similar to [C2-21, Addendum 1, Proposition 24].

Proposition 2.6.1. Let f € H(w, R) such that
i) |f(z, )| <M forall (z,\) € D(R) x B(R).
i) |f(z1,\) — f(20, N)| < K |21 — 22|" for all 21,25 € D(R) and X\ € B(R).

Define

1 A
F(’ZOJ)\O) = __/ dedya
™ D(R) zZ — 20

for (z0,\0) € D(R) x B(R). Then F € H(1+ «, R) and
a) F:(z0,20) = (20, 0).

b) Fi(20,h0) = [0 T020) ey,

- % fD(R) (z—20

c) |F(zo0, M) <4RM, for all (20,X0) € D(R) X B(R).
d) |F.(20, M) < E5 R K, for all (20, \o) € D(R) x B(R).

e) |F.(z1,X0) — Fo(22, )| < CK |21 — 29" for all z1,20 € D(R) and Ay € B(R),

where C' is a constant that does not depend on R, or on the function f.

Proof. Similar to the one’s in the case with no parameters. O]

The next result show that there is no loss of generality in assuming that p(0) =0

in equation (2.6.20).

Lemma 2.6.1 (Lemmachen). Suppose that given maps pu,7y,0 in H(a, R) with
w(0) = 0, and arbitrary complex numbers a and b, there exists 0 < R < R such
that the equation (2.6.20) has a solution w € H(1 + o, R) that verify w(0) = a and
w,(0) = b. Then, given u,v,8 in H(a,R) with ‘,u(f))‘ < 1, and arbitrary complex
numbers a and b, there exists 0 < R < R such that the equation (2.6.20) has a solution
we H(l+a,R) that verify w(0) = a and w,(0) = b.
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Proof. Let u,v,d be maps in H(«, R) with |u((~])| < 1 and let a,b € C. Associated to

these maps we set

p(z — p(0)z, A) — p(0)
S RS
o) = 2EZ O —p0)p0)
L=plz =p(0)z,0)
I G p(0)z,\)(1 ~ u(f); p(0)

1—p(z — p(0)z, A
Therefore p,o,7 € H(a, Ry) with Ry = 1+| and |p(0)] = 0. Let w(z,\) € H(1+
o, Ry) such that

Ws(2,\) = p(z,\)0.(2,\) + o(z,\)@(z, ) + 7(z, ),

that verify ©(0) = a and @,(0) = (1 — u(0)u(0))b — w(0) (¢(0) a + 7(0)).

Then, straightforward calculations show that

w(z\) = & (L(_ ,A)
1= p(0)(0)
is a solution of equation (2.6.20) that belong to H(1+a, R), with R = Ry (1— |;/J((~))|) :

and that verifies w(0) = a and w,(0) = b. O

To find an integral equation equivalent to
wel2,0) = ple N w(2,0) + 95N @(EA) + 6N, ) =0, (26.21)

we put

Py = -1 [ M N 2 1CN) £ 0N
s D(R) zZ— 20

Proposition 2.6.1 gives
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if w satisfies (2.6.21), and hence (w— F); = 0, so that

1
wlzo,A) = —= /D(R) ety 22 dzdy —

s zZ— 20

[N gy,
D(R)

zZ— 20

Nl 2=

/ &N Gody + gz, ),
D(R)

zZ— 20

for some function g which is complex analytic in z.

By the same arguments used in the case with no parameters, we can see that it

suffices to show that we can solve the following equation for functions u,vy € H(a, R),

with 1(0) =0, and any function h € H(1 + «a, R):

w(zo, ) = —+ / HEN@A2N) G L / RICICICT I,
D(R) D(R)

s zZ— 2 s zZ— 2

Y G2 L PR g CECE. P
D(R) D(R)

™ z ™ z

+ZO{ 1 / PN L / 1z Nz ) dwdy}
D(R) T JD(R) &

T 22

+ h(z0,A) (2.6.22)

The integral equation (2.6.22) will be solved using the Contraction Lemma. On H («, R)

we consider the metric defined by the norm

o w(z1, A) — w(z9, A
lolg = s |o(=N)] + R sup ol A) = wlzs, M|
(2,A\)€eD(R)xB(R) 21,22€D(R),21#22,\€B(R) |Zl - Z2|

It is easy to see that H(«, R) is complete in this metric and that

lwrwallp < flwnllg - llwallg -
On H(1+ «a, R) we consider the metric defined by the norm

lwllg = sup w(z, )| + R-[lwllp + R-flwzllg -
(2,\)€D(R)x B(R)

Also, it easy to see that H(1 + «, R) is complete in this metric and that there is an
inequality of the form

|w||p < constant - [jw]| 5 . (2.6.23)

for we H(1+a, R).
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Proposition 2.6.2. Let u,v € H(a, Ry) with u(0) =0, and let h € H(1 + o, Ry) .
Then for sufficiently small R > 0 there is w € H(1 + «, R) satisfying the integral
equation (2.6.22) for all (zy,\) € D(R) x B(R).

Proof. Since the proof is similar to the case with no parameter (see [C2-21, Addendum
1, Proposition 26]) we reproduce here only the more significant part. We suppose that
w,y € H(a, Ry) for some Ry < 1, and we will henceforth consider only R < Ry. For
w € H(l 4+ a, R), define the function Sw on D(R) x B(R) by setting (Sw)(zo,\)
equal to the right side of (2.6.22) without the h(zg, ).

Claim: There is a constant C”, depending only on «, and not on R, such that
Sl < - B o] (2.6.24)

for all w e H(1+ a, R).
Assuming this claim, the remainder of the proof goes as follows. Since R* — 0 as

R — 0, there is R, such that for all R < R, we have
[Swllp < C" - wlg

where C” is a constant with

C" < min {1, Hh?)HR} .

Define T': H(1+ o, R) — H(1+ «, R) by
Tw = Sw + h.
If R < R,, then for all w with
3
Joll < 5 Il
we have

1Tl = 15w + hllg < lISwllg + [[2lg

HhHR . ”
3

1
> Il + 10l

IN

wWilp + 1Al

IN

3
= Slhlly -



74

Thus, for R < R, , the map T takes the complete metric space
3
M ={weHl+aR): |l <5 [hle}
into itself. Moreover, the map T : M — M is a contraction, for

[Twr — Twsll, = [|Swi — Swallp

= [S(w1 —wa)llg < C" |lwr —wallg -
By the contraction Lemma, there is some w € M with
w=Tw = Sw + h,

which is precisely the equation we want.

The proof of the Claim is omitted. m

Corollary 2.6.1. Let p,v,0 € H(a, Ry) with ‘,u(f))‘ <1, and let a,b € C be arbitrary
complex numbers. Then, there are 0 < R< R and w € H(1+ «,R) such that

w; = pw,+yw+6, w(0)=a, w,(0)=0>. (2.6.25)
Proof. Consequence of Proposition 2.6.2 and Lemma 2.6.1. n

Now we want to prove that if u,~,d in Corollary 2.6.1 belong to H(n+ «, R), then
there is a solution of (2.6.25) which is in H(n + 1+, R), for some 0 < R < R.

Lemma 2.6.2. If f € Hn+«,R) (n > 1) and we define for (z0,\) € D(R) x B(R)

F(207)‘) = _l/ f(zj)\) dl’dy,
T JD(R) Z— 20

then Fe Hn+1+a,R).

Proof. The proof is similar for the case with no parameters (see [C2-21, Addendum 1,

Lemma 28]) because clearly F' is smooth with respect to the parameter \. O
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Proposition 2.6.3. Let pu,7v,0 € H(n + a, R) with |,u((j)‘ < 1, and let a,b € C be
arbitrary complex numbers. Then, there are 0 < R<R and we H(n+1+a, R) such
that

ws; = pw,+yw+0, w(0)=a, w,(0)=0>.

Proof. Induction on n. The case n = 0 is Corollary 2.6.2. Now suppose the result is
true for n, and let pu,v,0 € H(n+1+ o, R).
Case1l. y=0.Let f€ Hn+ 1+ «a,Ry) satisfying

fe=nufle 4+ pf + 0., fO0) =b, fA(0)=0. (2.6.26)

Define W by

W(z0,\) = —l/D( 1) dzdy .

T JD(Ry) Z — %0

Then W € H(n + 2+ «, Ry) by Proposition 2.6.2 and by Proposition 2.6.1 we have
f_<20,)\) = Wg(ZO,)\) = WZ(Z(),)\) = f(20,>\) = WZ(ZU,/\) .
So

Wy, = W = f = ufo + . f +6. by (2.6.26)

= (,uf>z + 5z = (,U/WZ>Z + 5z-
Hence (W; — pW, — 4), = 0. This means that we can write
Wiz, A) — u(z, ) Wo(z,\) — 8(z,A) = g(Z, ), (2.6.27)

where ¢ is complex analytic in z and smooth in A. Let G be a function which is
complex analytic in z and smooth in A with G(0) = W((0) — @ and such that
G:(zZ,\) = g(z,\), and let

w(z,A) = W(z,A) — G(Z,)\).
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Then

w, = W, -0
wz(z, ) = Wiz, \) — g(Z,A) = p(z, ) Wo(z,A) + (2, \)by (2.6.27)
= wu(z, ) w,(z,\) + d(z,A).

Thus w is a solution of our equation which is in H(n + 2 + a, Ry) . We also have

W) = WEO) - GO = a

w.(0) = W.(0) = f(0) = b.

Case 2. General case. Let 5,0 € H(n+ 2+ «, Ry) satisfying

B: = b + 7; B0) = 0, B.(0) =0
o: = po, +e PS5, 00) =a, 0.(0) =b.

Then w = e’o € H(n+2+ a, Ry) satisfies

Wz :Nwz—i_/yw_"(sa w(()):a’ wz(o):b

U
Proposition 2.6.4. Let w € H(n + «,R) be a solution of w; = pw,. Consider
the map W(z,\) = (w(z,\),\) and a C'—complex valued map f defined at a

neighborhood of the set W(D(R) x B(R)). Then
a) If [ is analytic en z, then 0 = foW s also a solution.

b) Suppose that o = foW is a solution. If w, #0 and |u| <1 on D(R)x B(R),

then f is analytic in z.

Proof. a) Since f is analytic en z, we have f: =0 and

o, = (foW), = (f,oW)W, = (fooW)w.,
oz = (foW): = (fooW)Wz = (fooW)w:.
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Hence

0, = (fzoW)wz + (fEOW)(@)Z>
0 = (fpoW)w: + (fzoW)(¥):.

Since o is a solution we have

(feoW)wz + (fzoW)(@): = pl(fooW)w. + (fzoW)(@).].

Since w is a solution, this leads to

(froW)[(@): — p(@):] = 0. (2.6.28)

Since w; = pw, implies that

(@), = (wz) = fiw:) = (@),
we see that
@)z = p@): = @z — pi@)s = @):0—|uf) = (@) 0= [ul*).
Then, it follows from (2.6.28) that f; =0, i.e. f is analytic in 2. O
Proposition 2.6.5. Let € H(n+ «a, R) with |pu| <1. Let w be a solution of
v = pw, (2.6.29)

defined in D(Ry) x B(Ry) . If w is smooth in A then w € H(n+ 1+ «, Ry) . So, if p

is smooth, any solution w which is smooth in X of (2.6.29) is also smooth.

Proof. Let w be a solution smooth in A of (2.6.29) defined in D(Ry) x B(Ry) and let
(20, A\o) be a point in D(Ry) x B(Ry). We must prove that there exists o > 0 such
that w € H(zp, A\o)(n + 1+ a,19).
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Let r > 0 such that D(z,7) x B(Xo,7) C D(Ro) x B(Ry). For (z,\) € D(r) x B(r)
defines fi(z,A\) = pu(z+ 20, A+ Xo) . Then 1 € H(n+«,r), and taking r > 0 sufficiently
small, we can suppose that there exists a solution & € H(n + 1 + a, r) of the equation
6; = [, with 6, # 0. Then o defined by o(z,A) = (2 — 29, A — Ag) is in
Hzyx0)(n+ 14 a,r) and verifies 0z = po,.

Since we also have o, # 0, taking » > 0 sufficiently small, we can suppose that
Y(z,A) = (0(2,A),A) has an inverse X7 : 3(D(29,7) X B(Xo, 7)) — D(z0,7) x B(X,7)
and that the set X(D(zo,7) X B(Xo,r)) is open. Then, if we define f : ¥(D(zo,7) X
B(Xo,7)) — C by f(2,\) = w(X7!(z,\)), we have

w=fodX.

Since f is analytic in z (see Proposition 2.6.4,part b)) and smooth in A, we have that

w € Hiyng)(n+14+a,r). O
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