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Introduction

The thesis focuses on the following two topics: global attractors of vector fields in Rn

and quartic differential forms on surfaces associated to couples of transversal nets with

common singularities.

The first topic is related to the Markus–Yamabe Conjecture. We say that a

square matrix is Hurwitz if all its eigenvalues have negative real part. Let X : Rn → Rn

be a C1− vector field with X(0) = 0. Consider the differential system

ẋ = X(x) . (0.0.1)

We say that 0 is a local attractor of the dynamical system (0.0.1) or the vector field

X if φ(t, x) is defined for all t > 0 and tends to 0 as t tends to infinity, for each x in a

neighborhood U of 0 in Rn. When U = Rn, we say that 0 is a global attractor. Here

φ(t, x) is the solution of (0.0.1) with initial condition φ(0, x) = x.

If X(0) = 0 and DX(0) is Hurwitz, then the origin is a local attractor by the

Hartman–Grobman Theorem [C1–22]. The problem is what hypotheses do we have to

add to X to ensure that the origin is a global attractor. In [C1–17], L. Markus and H.

Yamabe state their well–known global stability conjecture.

The Markus–Yamabe Conjecture (MYC). Let X be a Hurwitz C1− vector field

in Rn, that is, DX(p) is Hurwitz for all p ∈ Rn. If X(0) = 0, then 0 is a global

attractor of the system ẋ = X(x).

In [C1–17], this conjecture is shown in two special cases. One case is for n = 2,

X(x, y) = (f(x, y), g(x, y)), X(0) = 0, and when one of the four partial derivatives

1



2

fx, fy, gx, gy vanishes in all R2. The other is the triangular case, or in other words when

X = (f1, f2, · · · , fn), X(0) = 0, and for every x = (x1, x2, · · · , xn) ∈ Rn, we have

∂fi

∂xj
(x) = 0 for j < i and ∂fi

∂xi
(x) < 0, each i = 1, 2, · · · , n.

In [C1–21], C. Olech shows that when n = 2, the injectivity of X is equivalent to

proving that 0 is a global attractor of the system ẋ = X(x) under the assumption that

X is Hurwitz. Following this idea, the conjecture is proved for planar polynomial maps

by G.H. Meisters and C. Olech [C1–19]. For planar C1−maps, C. Gutiérrez [C1–14],

R. Feßler [C1–12], and A. A. Glutsyuk [C1–13] prove the conjecture independently. N.

E. Barabanov [C1–2] and, subsequently, J. Bernat and J. Llibre [C1–4] give examples

of smooth Hurwitz–vector fields defined on Rn, for n ≥ 4, having a periodic orbit.

A. Cima et al. [C1–8] show an example of a Hurwitz–polynomial vector field defined

on Rn, for each n ≥ 3, having orbits which scape to infinity. Further, a more general

family of polynomial counterexamples is given in [C1–9]. Finally, F. Mañosas and D.

Peralta–Salas [C1–16] show that if a Hurwitz–vector field X is gradient, or in other

words X = ∇f (f of class C2), then the basin of attraction of the singular point 0 is

Rn, and therefore implying that the Markus–Yamabe Conjecture is true for this class

of vector fields.

Since the counterexamples that we know have orbits which tend to infinity, we may

consider the additional assumption that infinity is a repellor. However, this assump-

tion is not good enough, at least for the differentiable cases. In fact, we prove that

the Bernat–Llibre Counterexample [C1–4] may be modified so as to obtain smooth

counterexamples having a periodic orbit and infinity as a repellor.

In Chapter 1 of the Thesis we also consider a special class of Hurwitz–polynomial

vector fields. For a negative real number λ and a positive integer n, we denote by

N (λ, n) the set consisting of the polynomial vector fields in Rn of the form X = λI+H,

where I is the identity map and H is a vector field with nilpotent Jacobian matrix at

every point. Observe that the counterexamples of [C1–9] are vector fields X = λI + H

in N (λ, n) , with n ≥ 3 , where H is a quasi–homogeneous vector field of degree one.

Here we find a more general family of counterexamples for the MYC, consisting of
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the vector fields of the form X = λI + H in N (λ, 3) where H is not necessarily a

quasi–homogeneous vector field of degree one, which contains the family constructed

in [C1–9]. In addition, we show that the vector fields X = λI + H in N (λ, 3) , with

H = Hk + Hm , where Hk and Hm are homogeneous of degree k and m, respectively,

with 1 ≤ k < m, are linearly triangularizable and, therefore, the origin is a global

attractor.

Chapter 1 is organized as follows:

Section 1.1 contains an overview of the relevant results about the Markus–Yamabe

Conjecture in the literature. We discuss the proofs of the conjecture in the case of

C1−planar vector fields due to C. Gutiérrez [C1–14], R. Feßler [C1–12], and A. A.

Glutsyuk [C1–13].

Section 1.2 studies the triangular case. We reproduce the main result of [C1–17]

where the conjecture for this class of vector fields is proved.

In Section 1.3, we outline the results of [C1–4] where J. Bernat and J. Llibre find a

counterexample to the conjecture in R4 which has a periodic orbit.

In Section 1.4, we recall the concept of bounded vector field, that is, a vector field

with infinity as a repellor. We establish conditions under which a smooth Hurwitz–

vector field can be modified outside of a given compact neighborhood in order to

obtain a bounded Hurwitz–vector field. We apply this result to the Bernat–Llibre

Counterexample [C1–4] in order to obtain a smooth Hurwitz–vector field in R4 which

is bounded and has a periodic orbit.

Section 1.5 contains our second main result for the first topic. We find a more gen-

eral family of counterexamples for the MYC which contains the family constructed in

[C1–9].

Section 1.6 contains our third main result for the first topic. Vector fields of the form

X = λI + H in N (λ, 3), with H = Hk + Hm where Hk is homogeneous of degree k > 1

and Hm is homogeneous of degree m > k, are linearly triangularizable, and therefore

the origin is a global attractor.
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Chapter 2 is devoted to our second topic of study. Given a smooth, connected,

oriented two–manifold M , we consider a class Q(M) consisting of all smooth quartic

differential forms ω defined on M which have the following property. At each point p

in M , there exist a local chart (u, v) : U ⊂ M −→ R2 and smooth maps E, F, G :

(u, v)(U) → R, with EG− F 2 positive everywhere, such that if

(u, v)∗(ω) = a4dv4 + 4a3dv3du + 6a2dv2du2 + 4a1dvdu3 + a0du4 , (0.0.2)

then

G (a0, a1, a2) − 2F (a1, a2, a3) + E (a2, a3, a4) ≡ 0 . (0.0.3)

We associate to each ω a pair of transversal nets, say N1(ω) and N2(ω), with common

singularities. These quartic forms are related to geometric objects such as curvature

lines, asymptotic lines of surfaces immersed in R4. (See [C2–3], [C2–6], [C2–7], [C2–8],

[C2–9], [C2–19] and [C2–20].)

Local problems around rank–2 singular points of the elements of Q(M) , such as

stability, normal forms, finite determinacy, versal unfoldings, are studied in [C2–4].

Our principal contribution related to this topic is the study of a rank–1 singular point,

namely that of type H45, which is the analogue of the saddle–node singularity of vector

fields. For this singular point, we find the local phase portrait of the corresponding

nets around the point , a normal form for the family ω(µ) in Q(M) , with parameter

µ ∈ Rk, for which the origin is an H45−singular point of ω(0̄) and a versal unfolding

nd its corresponding bifurcation diagram.

Chapter 2 is organized as follows:

Section 2.1 defines the set Q(M) and the nets associated to each ω ∈ Q(M).

In Section 2.2, we prove that the set Q(M) is well defined, or in other words that

its definition is independent of charts chosen. We show that for any ω ∈ Q(M) and

any point p ∈ M, there exists a local chart (u, v), namely a main chart, where the

quartic has the simple form

(u, v)∗(ω) = 4a (du2 − dv2)dudv + b (du4 − 6du2dv2 + dv4) .
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In Section 2.3, we introduce the simple singular points. We show that they are both

generic and persistent under perturbations of the quartic differential form in Q(M).

We give the local configuration of the nets N1(ω) and N2(ω) around this type of points,

and we characterize those singular points which are locally stable.

In Section 2.4, we introduce the H45−singular point. This is a rank–1 singular point

which is the analogue of both the saddle–node singularity of vector fields and the D23

singular point for positive quadratic differential forms (see [C2–5]). We determine the

local phase portrait of the corresponding nets around this point.

Section 2.5 considers smooth k−parameter families of quartic differential forms in

Q(R2) , establishing the notion of equivalence for families. We find versal unfoldings

for the two different types of non–locally stable simple singular points, showing that

one type is of codimension one and the other is of codimension two. Further, we show

that the singular points of type H34 are of codimension one.

Section 2.6 is devoted to proving a crucial result used in Section 2.5: the existence

of main charts for smooth k−parameter families of quartic differential forms in Q(R2).

Our proof was inspired by the one given by M. Spivak in [C2–21, Addendum 1] for the

existence of smooth isothermal coordinates (in the case where there are no parameters).
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Chapter 1

The Markus-Yamabe Conjecture

1.1 The Markus-Yamabe Conjecture

The purpose of this section is to present the Markus–Yamabe Conjecture. We give an

overview of known results on the subject.

Recall that a C1−vector field X : Rn → Rn is Hurwitz if for each p ∈ Rn, all of the

eigenvalues of the Jacobian matrix of X at p, denoted JX(p), have negative real part.

We record the conjecture which was first introduced in [C1–17].

The Markus–Yamabe Conjecture (MYC). Let X be a Hurwitz C1− vector field

in Rn. If X(0) = 0, then 0 is a global attractor of the system ẋ = X(x).

There L. Markus and H. Yamabe establish the conjecture in the case of triangular

vector fields in Rn.

An important result for this conjecture in the two–dimensional case is obtained by

C. Olech in [C1–21]. He first shows that the origin is a global attractor of any Hurwitz

C1−vector field X : R2 → R2, with X(0) = 0, such that

‖X(x)‖ ≥ ρ if ‖x‖ ≥ r (1.1.1)

for positive constants ρ and r. Next he shows that any injective Hurwitz C1−vector

field X : R2 → R2 satisfies condition (1.1.1). Therefore, in order to prove the Markus–
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Yamabe Conjecture when n = 2, it suffices to show that any Hurwitz C1−vector field

X : R2 → R2 is injective.

In 1987, G. H. Meisters and C. Olech [C1–19] used Olech’s results to show the two–

dimensional Markus–Yamabe Conjecture in the case of polynomial vector fields. In

1993, after several years without significant progress on the subject, R. Feßler [C1–12],

C. Gutiérrez [C1–14], and A. A. Glutsyuk [C1–13] proved independently the conjecture

in the case of C1−vector fields in R2. The three authors showed the injectivity of any

Hurwitz C1−vector field X : R2 → R2.

The assumption that a C1−vector field X : R2 → R2 is Hurwitz consists of two

inequalities: for all q ∈ R2, we have

(i) det JX(q) > 0,

(ii) traceJX(q) < 0.

Only A. A. Glutsyuk uses inequality (ii) explicitly. Assuming that Y is not injective, he

cleverly constructs a bounded regular region so that the flow of the vector field through

its boundary is positive. He thus contradicts inequality (ii).

However, the injectivity results are more general in the other two works. Feßler’s

main result is the following.

Theorem 1.1.1. [C1–12, Theorem 1] Let X : R2 → R2 be a C1−vector field such that:

1. det JX(q) > 0 for all q ∈ R2.

2. There is a compact set K ⊂ R2 such that DX(q)v 6= λ v for all q ∈ R2 \K and

λ ∈ [0,∞[.

Then X is injective.

The proof of Theorem 1.1.1 follows Theorem 1.1.3, and is consequence of the next

two results.



4

Theorem 1.1.2. [C1–12, Theorem 2] Let X : R2 → R2 be a C1−vector field which is

not injective, and is such that det JX(q) > 0 for all q ∈ R2. Then, for every compact

set K ⊂ R2, there is a curve γ : R→ R2 \K satisfying the following properties:

1. γ is injective, proper, and regular.

2. There is an ε > 0 such that, for every s1 ≤ 0 and s2 ≥ 1, the rotation of (X ◦ γ)′

from s1 to s2 is at least 3π + ε.

Theorem 1.1.3. [C1–12, Theorem 3] Let γ : R→ R2 be injective, proper, and regular.

Then for every ε > 0, there are s1 ≤ 0 and s2 ≥ 1 such that the rotation of γ′(s) from

s1 to s2 is less than π + ε.

Suppose that there were a C1−vector field X : R2 → R2 which is not injective

satisfying assertions 1 and 2 of Theorem 1.1.1. Then we could take the curve γ and

ε > 0 of Theorem 1.1.2, and the s1, s2 of Theorem 1.1.3 to obtain the estimate

(∠γ′(s2) − ∠(X ◦ γ)′(s2)) − (∠γ′(s1) − ∠(X ◦ γ)′(s1))

= ∠γ′(s2) − ∠γ′(s1) − (∠(X ◦ γ)′(s2)− ∠(X ◦ γ)′(s1))

< π + ε − (3 π + ε) = −2 π .

Then, according to assumption 2 of Theorem 1.1.1, we would have

(X ◦ γ)′(s) = DX(γ(s) γ′(s) 6= λ γ′(s) for all λ > 0 .

This would mean that X ◦ γ)′(s) and γ′(s) never point in the same direction. Then

there must be an open interval of length 2 π, say ]α0, α0 + 2 π[, such that ∠γ′(s) −
∠(X ◦γ)′(s) ∈ ]α0, α0 +2 π[ for all s, which contradicts the estimate above. Therefore,

X must be injective.

Two slightly more general results are proved by C. Gutiérrez in [C1–14], called The-

orem C and Theorem D. Here we reproduce only Theorem C because it is more related

with the Markus–Yamabe Conjecture. Let Hθ denote the rotation of R2 by an angle θ,

and let Yθ = Hθ ◦ Y ◦H−1
θ = (fθ, gθ). The result is the following.
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Theorem 1.1.4. [C1–14, Theorem C] Let Y : R2 → R2 be a C1−map such that, for

all p ∈ R2, DY (p) is invertible. Suppose that there exists v ∈ R2, with ‖v‖ = 1, such

that the following (directional) obstruction property is satisfied: For all θ ∈ R and for

all p ∈ R2, with ‖p‖ ≥ ρ,

∇fθ(q) · v 6= ‖∇fθ(q)‖ .

Then, Y is injective.

A consequence of this Theorem is the following result. Given ρ ∈ [0,∞) and a

C1−map Y : R2 → R2, we say that Y satisfies the ρ−eigenvalue condition if, for all

q ∈ R2, the determinant of DY (q) is positive and, for all p ∈ R2, with ‖p‖ ≥ ρ, the

spectrum of DY (p) is disjoint of the non–negative real half axis.

Theorem 1.1.5. [C1–14, Theorem A] If Y : R2 → R2 is a C1−map that satisfies the

ρ−eigenvalue condition, for some ρ ∈ [0,∞), then Y is injective.

Since, any Hurwitz C1−vector field Y : R2 → R2 satisfies the condition of Theo-

rem 1.1.5, the bi–dimesional Markus–Yamabe Conjecture follows of this result.

It was more or less known for some time that the conjecture is not true for n > 3.

The counterexamples usually claimed the existence of a non–trivial periodic trajectory

of the vector field in question, which made them rather difficult to construct and

sometimes more difficult to check or believe in (see [C1–2], [C1–4], as well as Section

1.3). Another way of constructing counterexamples is to find Hurwitz–vector fields with

unbounded orbits. In this context, an explicit polynomial counterexample to the MYC

in dimension 3 was announced by A. Cima, A. van den Essen, A. Gasull, E. Hubbers

and F. Mañosas in 1995. They proved that for the vector field

Y (x, y, z) = (−x + z(x + yz)2,−y − (x + yz)2,−z),

all of the eigenvalues of DY are constant and equal to −1, while the vector field admits

the unbounded trajectory y(t) = (18et,−12e2t, e−t).
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1.2 The Triangular Case

A fundamental class of vector fields for which the Markus–Yamabe Conjecture is true

is that consisting of the triangular vector fields. Since these vector fields play a key

role in one of our main results (see Theorem 1.6.3), we reproduce in Theorem 1.2.1 the

original result of Markus–Yamabe together with its proof (see [C1–17][Theorem 3]).

Let us first recall two definitions.

Definition 1.2.1. A C1−vector field X : Rn → Rn is said to be triangular if it has

the form

X(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x2, . . . , xn), . . . , fn(xn)) . (1.2.2)

In addition, X is said to be linearly triangularizable if there exists a linear change

of coordinates which makes X triangular.

Remark 1.2.1. Any triangular and any linearly triangularizable vector field is a Hurwitz–

vector field.

Theorem 1.2.1. Consider a C1−triangular vector field X : Rn → Rn of the form

(1.2.2) and the system

ẋi = fi(x1, . . . , xn) , with i = 1, 2, . . . , n . (1.2.3)

Suppose that X(x) = 0 if and only if x = 0. Then each solution of system (1.2.3) is

defined for all large t and tends to the origin as t →∞.

Proof. The theorem is trivial if n = 1. Now we proceed by induction to prove the

theorem in the general case.

Suppose the theorem holds for differential systems in Rn−1 satisfying the hypotheses.

Consider the system

ẋ1 = f1(x1, x2, . . . , xn)

ẋ2 = f2(x2, x3, . . . , xn)
...

ẋn = fn(xn)

(1.2.4)
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in Rn which satisfies the hypotheses of the theorem.

If (x0
1, x

0
2, . . . , x

0
n) is a point in Rn at which

f2(x
0
2, x

0
3, . . . , x

0
n) = 0

...

fn(x0
n) = 0,

since fn(0) = 0 and f ′n(xn) < 0 for all xn ∈ R, then we have that x0
n = 0. Hence

fn−1(x
0
n−1, 0) = 0

and since fn−1(0, 0) = 0 and
∂fn−1

∂xn−1

< 0 we have x0
n−1 = 0. Similarly

x0
n−2 = x0

n−3 = · · · = x0
2 = x0

1 = 0.

Thus the last (n− 1) equations of 1.2.4 form a system

ẋ2 = f2(x2, x3, . . . , xn)
...

ẋn = fn(xn)

(1.2.5)

which satisfies the hypothesis of the theorem in the Rn−1 space x1 = 0.

Let S(t) with coordinates x1(t), x2(t), . . . , xn(t) on 0 ≤ t < τ < ∞ a solution of

1.2.4 in Rn. Then x2(t), . . . xn(t) form a solution of 1.2.5 and so can be extend over

0 ≤ t < ∞.

Moreover

|x2(t)|2 + |x3(t)|2 + · · ·+ |xn(t)|2 = ρ(t)2

is bounded on 0 ≤ t < ∞ and

lim
t→∞

x2(t) = lim
t→∞

x3(t) = · · · = lim
t→∞

xn(t) = 0

by the induction hypothesis.

Set K be a compact subset of the Rn−1 space x1 = 0 which contains the curve

x2(t), x3(t), . . . , xn(t) for 0 ≤ t < ∞.
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Since |f1(0, x2, . . . , xn)| is bounded in K and since
∂f1

∂x1

< 0 in Rn, we find that x1(t)

can be extended over 0 ≤ t < ∞, so solution S(t) of 1.2.4 exists on 0 ≤ t < ∞.

Now there is a ball B, centered at the origin of Rn, such that S(t) approaches the

origin if S(t) intersects B. Moreover there is a tube in Rn

T : ρ(t) < ρ0

such that S(t) intersects B if S(t) intersects T.

But

lim
t→∞

x2(t) = lim
t→∞

x3(t) = · · · = lim
t→∞

xn(t) = 0.

Hence S(t) must intersects T. Therefore

lim
t→∞

x1(t) = 0

and S(t) approaches the origin of Rn as t →∞.

An immediate consequence is

Corollary 1.2.1. Any linearly triangularizable vector field X : Rn → Rn, with X(0) =

0, has the origin as a global attractor.

1.3 The Bernat–Llibre Counterexample

In 1994, J. Bernat and J. Llibre [C1–4] spurred by an article of N. Barabanov [C1–2],

were able to construct a C1−Hurwitz vector field that has a periodic orbit. This is the

unique counterexample that we know which has a periodic orbit. Actually, all other

counterexamples does not verify the conjecture because they have orbits that scape

to infinity. Since we can not exclude that Bernat–Llibre vector field have orbits that

escape to infinity, in Theorem 1.4.3 we modify this counterexample to obtain a bounded

Hurwitz–vector field with a periodic orbit. In this section we will outline the procedure

they used to find its counterexample.
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The Bernat–Llibre vector field belong to a special kind called linear control vector

fields which depend of a characteristic function ϕ : R → R. More precisely they

consider vector fields in R4 of the form

Xϕ(x1, x2, x3, x4) = (x2,−x4, x1 − 2x4 − k1 ϕ(x4), x1 + x3 − x4 − k2 ϕ(x4)) , (1.3.6)

where k1 = 9131
900

, k2 = 1837
180

. They began with the piecewise characteristic function

ϕ(x) =





−u si x < −u ,

x si |x| ≤ u ,

u si x > u ,

with u =
900

9185
·

Observe that this vector field is Lipschitz and so the existence and uniqueness of so-

lutions works. They prove that the vector field Xϕ has a stable periodic orbit. We

will outline the procedure they used to find the stable periodic orbit. Since ϕ(−t) =

−ϕ(t), the system is symmetric with respect to the origin of R4, that is, if x(t) =

(x1(t), x2(t), x3(t), x4(t)) is a solution, then −x(t) is also a solution. Therefore if a solu-

tion x(t) pass through the points x0 and−x0, then x(t) is a symmetric periodic solution.

In this form it is sufficient to study two linear systems, the linear system in the region

|x4| ≤ u and the linear system in the region x4 < −u. They prove the existence of a

symmetric periodic orbit γ(t) through a point (a1, a2, a3,−u) in the following way:

(1) Computing explicitly the solutions y(t) in the region |x4| < u and the solutions

m(t) in the region x4 < −u.

(2) Computing the time s > 0 which needs the solution m(t) of the system in the

region x4 < −u for going in forward time from the point m(0) = (a1, a2, a3,−u)

to the hyperplane x4 = −u.

(3) Computing the time −τ < 0 which needs the solution y(t) of the system in the

region |x4| < u for going in forward time from the point y(0) = (−a1,−a2,−a3, u)

to the hyperplane x4 = −u.

(4) Finding a1, a2, a3, s > 0 and τ > 0 such that m(s) = y(−τ).



10

Let Γ− (resp. Γ+) denotes the hyperplane x4 = −u (resp. x4 = u). Let (z0,−u) be

the initial point (a1, a2, a3,−u) ∈ Γ− of the periodic orbit γ(t) constructed above. The

Poincaré map defined on a neighborhood of γ(t) is the composition of the following

four maps. Let (z1,−u) be the first point of the periodic orbit on Γ− after the orbit

passes through the point (z0,−u). The maps are

T1 : Br(z0) ∩ Γ− → Γ− ,

T2 : Br(z1) ∩ Γ− → Γ+ ,

T3 : Br(−z0) ∩ Γ+ → Γ+ and

T4 : Br(−z1) ∩ Γ+ → Γ− ,

where r > 0 is sufficiently small and Br(z) is the open ball in R4 with center the point

(z,−u) and radius r. Due to the symmetry of the solutions with respect to the origin

we get that T3(z) = −T1(−z) and T4(z) = −T2(−z). Then the Poincaré map T in a

neighborhood of γ(t) can be defined as

T = T4 ◦ T3 ◦ T2 ◦ T1 : Br(z0) ∩ Γ− → Γ− .

Since the ordinary differential systems which define the Poincaré map Ti for i = 1, . . . , 4

are linear systems, the maps Ti and T are analytic. Then to prove that γ(t) is locally

stable, the authors show that all the eigenvalues of DT (z0) are real and have modulus

smaller than 1. Since the point z0 and the smallest time t0 > 0 that the solution γ(t)

from (z0,−u) needs for to arrive Γ− are not know exactly, they find an specific point

z̃0 = (0.22275019594,−2.13366751029745,−1.395139155570) ∈ Γ−

with the following properties:

1) ‖DT (z0)−DT (z̃0)‖ ≤ 6.75 · 10−3.

2) The eigenvalues of DT (z̃0) are 0.30521, 0.00557788 and 9.11685 · 10−6.
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3) The matrix D = P−1 DT (z̃0) P is diagonal, with

P =




0.643732 0.646488 −0.689503

−0.331955 −0.216012 −0.731705

−0.689503 −0.00999182 0.483755


 .

Then to estimate the eigenvalues of DT (z0) the authors use the following result (see

[C1–23][Theorem 6.9.6]).

Proposition 1.3.1. If B is a diagonalizable n×n matrix, B = P D P−1, and A is an

arbitrary n×n matrix, then for each eigenvalue λ(A) there is an eigenvalue λ(B) such

that

|λ(A) − λ(B)| ≤ ‖P‖
∥∥P−1

∥∥ ‖A−B‖ .

Here A = DT (z0), B = DT (z̃0), ‖P‖ < 2 and ‖P−1‖ < 16.6. Hence |λ(A) − λ(B)| <
0.2241, it follows that the eigenvalues of DT (z0) are real and with modulus smaller than

1.

Although, for |x4| > u the Jacobian matrix of Xϕ has eigenvalues with zero real part,

they prove that if the map ϕ is changed by any C1−map φ with 0 < φ′(x4) < 91310
5511

,

then the vector field Xφ is Hurwitz. In this form they prove that there exists a C1−map

ψ such that the vector field Xψ is Hurwitz and has a periodic orbit. Also they remark

that the function ψ can be chosen Cr for all r ≥ 1, C∞ or analytic.

To be more specific, they have the following results.

Proposition 1.3.2. [C1–4, Proposition 8.1] The vector field Xφ is Hurwitz if the

characteristic function φ is C1 and satisfies 0 < φ′(x4) < 91310
5511

·

Theorem 1.3.1. [C1–4, Section 9] Given ε > 0 and R > 0 and r ∈ Z+ ∪ {∞} there

exists a characteristic function ψ with ψ(0) = 0 such that

a) ψ is of class Cr,

b) 0 < ψ′(x) < 10 for all x ∈ R,
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c) |ψ(x)− ϕ(x)| < ε for all x ∈ [−R, R].

d) The Poincaré map Tψ, defined by the flow of Xψ in a neighborhood of z0 ∈ Γ with

Γ a transversal section, has a stable fixed point near z0.

Remark 1.3.1. (1) Xψ is a Hurwitz Cr− vector field such that Xψ(0) = 0 and

having an stable periodic orbit.

(2) The vector field Xψ can have orbits that scape to infinity.

1.4 Hurwitz–vector fields with periodic orbits

In this section we study the conditions under which a Hurwitz vector field X of class

C∞ in Rn can be arbitrarily approximate by bounded Hurwitz vector field in a compact

neighborhood. Hence, we apply the result to the Bernat–Llibre vector field to obtain

a bounded Hurwitz vector field which has a periodic orbit. We begin by definition of

bounded vector field.

Definition 1.4.1. Let X : Rn → Rn be a C1−vector field. We say that X is bounded

if there exists a compact set K ⊆ Rn such that for all x ∈ Rn there exist tx ∈ N such

that φ(t, x) ∈ K for all t ≥ tx.

The Euclidean inner product of two vector p, q ∈ Rn will denoted by < p, q >.

Remark 1.4.1. Any C1−vector field X : Rn → Rn such that < X(p), p > < 0 for all

‖p‖ > K, is bounded.

To simplify we introduce the following notation. Given a C1−vector field X : Rn →
Rn we denote

S(X) = sup
p∈Rn

{max{<(λ) : λ is an eigenvalue of DX(p)}} .

Next we state the mail result of this section. Let r ∈ Z+ ∪ {∞}.
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Theorem 1.4.1. Let X : Rn → Rn be a Cr−vector field such that S(X) ≤ −c0, for

some c0 > 0. Suppose further that exist positive numbers C, R and α > 1 such that

‖DX(p)‖ ≤ C for all p ∈ Rn and < X(p), p > ≤ α < p, p > for all ‖p‖ ≥ R. Then,

given 0 < b < 1 and a compact neighborhood U of the origin , there exists a bounded

Cr−vector field, Y : Rn → Rn with S(Y ) ≤ −c0

2
such that Y (p) = X(p)− b p for all

p ∈ U .

The following two Lemmas 1.4.1 and 1.4.2 are fundamental in the proof of Theorem

1.4.1.

Lemma 1.4.1. Given R > 0, 0 ≤ b < a and ε > 0, there exists N ∈ N and a smooth

function

φ : [0,∞) → [b, a]

such that

(1) φ(r) = b for all r ∈ [0, R]

(2) φ
′
(r) ≥ 0 and | φ′(r) · r |< ε for all r ≥ 0.

(3) φ(r) = a for all r ≥ R + N.

Proof. First we define φ(r) = b, for all r ∈ [0, R]. Hence, we consider the sequence

(S(n)) defined for all positive integer n by

S(n) = b +
ε

8

(
1

R + 1
+

1

R + 2
+ · · · 1

R + n

)
.

Observe that S(n) → ∞ as n → ∞. Let N be the integer such that verifies S(n) < a

for n = 1, . . . , N − 1, and S(N) ≥ a. For all positive integer n ≥ 1 we define





φ(R + n) = S(n), if 1 ≤ n ≤ N − 1

φ(R + n) = a, if n ≥ N

For each integer n such that 1 ≤ n ≤ N − 1 we consider a smooth map C∞ φ :

[R + n,R + n + 1] → [S(n + 1), S(n)] which is flat at R + n y R + n + 1 and defined



14

as above and such that

0 ≤ φ′(r) =| φ′(r) |= 2(S(n + 1)− S(n))

(R + n + 1)− (R + n)
=

ε

4(R + n + 1)
.

Then the map φ satisfies the conditions because, for n = 1, . . . N y R+n−1 ≤ r ≤ R+n

we have

| φ′(r) · r |≤ ε

4(R + n)
· (R + n) =

ε

4
< ε.

Lemma 1.4.2. Set M(n) be the space of n×n real matrices. Given c0 > 0 and C > 0,

set A be the compact set

A = {A ∈ M(n) : ‖A‖ ≤ C and S(A) ≤ −c0}.

Then, given ε > 0 exists δ > 0 such that

S(A−B) ≤ −c0 + ε

for all A ∈ A and for all B = cI + E, with c ≥ 0 y ‖E‖ < δ.

Proof. Writting B = cI + E, we have A−B = A− cI − E and

det(A−B − λI) = det (A− E − (λ + c)I) ,

i.e.,

λ− c ∈ Spec(A−B) ⇐⇒ λ ∈ Spec(A− E) ,

which implies

S(A−B) ≤ S(A− E) .

Then, it is sufficient to choose δ > 0 such that

S(A− E) ≤ −c0 + ε,

for all A ∈ A and ‖E‖ < δ.
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Theorem 1.4.2. Let X : Rn → Rn be a Cr−vector field such that S(X) ≤ −c0 < 0.

Suppose that exists C > 0 such that ‖DX(p)‖ ≤ C for all p ∈ Rn. Given R > 0 and

0 ≤ b < a, there exist N ∈ N and a Cr− vector field Y : Rn → Rn such that:

a) S(Y ) ≤ −c0

2
,

b) Y (x) = X(x)− b x for all ‖x‖ ≤ R ,

c) Y (x) = X(x)− a x for all ‖x‖ ≥ R + N .

Proof. First choose ε > 0 such that S(A − B) ≤ − c0
2

for all A ∈ A = {A ∈ M(n) :

‖A‖ ≤ C and S(A) ≤ −c0} and all B = cI + E, with c ≥ 0 and ‖E‖ < ε (Lemma

1.4.2). Associated at this ε > 0, R > 0 and 0 ≤ b < a, we consider the function of class

C∞,

φ : [0,∞) → [b, a]

of the Lemma 1.4.1 that verifies

(1) φ(r) = b for all r ∈ [0, R]

(2) φ
′
(r) ≥ 0 and | φ′(r) · r |< ε for all r ≥ 0.

(3) φ(r) = a for all r ≥ R + N.

Then the vector filed Y (x) = X(x)− φ(‖x‖) x is Cr and verifies the conditions b)

and c). Finally if we define f(x) = φ(‖x‖) x , we have Df(x) = φ(‖x‖) I + E(x),

with ‖E(x)‖ ≤ |φ′(‖x‖) ‖x‖| < ε . Then the condition a) is consequence of Lemma

1.4.2.

Proof of Theorem 1.4.1. Set R > 0 such that ‖X(p)‖ ≤ R for all p ∈ U and a > α.

Since X verifies the conditions of Theorem 1.4.2, associated to the numbers R, b and

a, there exists N ∈ N and a Cr−vector field Y : Rn → Rn that verify

a) S(Y ) ≤ −c0

2
,
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b) Y (x) = X(x)− b x for all ‖x‖ ≤ R ,

c) Y (x) = X(x)− a x for all ‖x‖ ≥ R + N .

This vector field Y is also bounded. In fact, for ‖p‖ ≥ R + N we have

< Y (p), p > = < X(p)− a p, p >

= < X(p), p > −a < p, p >

< < X(p), p > −α < p, p >

≤ 0 ,

and the proof is completed.

Consider now the Bernat–Llibre vector field Xψ of Theorem 1.3.1.

Proposition 1.4.1. There exists a Hurwitz Cr−vector field X : R4 → R4 which has a

stable periodic orbit that satisfies the following conditions:

(1) S(X) < −c0 for some c0 > 0.

(2) ‖DX(p)‖ < C for all p ∈ R4 for some C > 0.

(3) < X(p), p >< α < p, p > for all ‖p‖ > R, for some positive numbers α and R .

Proof. The vector field Xψ satisfies (2) and (3). In fact

‖DXψ(p)‖ = 2 +
9131

900
ψ′(x4) < 2 +

9131

90
,

and if p = (x1, x2, x3, x4), then

< Xψ)(p), p > = x1x2 − x2x4 + x3x1 − x4x3 + x4x1 − x2
4 +

−(
9131

900
x3 +

1837

180
x4) ψ(x4)

< 208 < p, p > ,

because |ψ(x4)| ≤ 10 |x4|. Since it is not clear that Xψ satisfies condition (1), we

consider X = Xψ − ε I, where I is the identity map and ε > 0 is sufficiently small.

This vector field is a Hurwitz Cr−vector field which has a stable periodic orbit that

verifies the three conditions.
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Theorem 1.4.3. There exists a bounded Hurwitz Cr−vector field Y : R4 → R4 which

has a stable periodic orbit.

Proof. The vector field X of Proposition 1.4.1 satisfy all conditions of Theorem 1.4.1.

Then associated to a compact ball U ⊂ R4 that contain the stable periodic orbit of X

and a small positive number b, there exists a bounded Hurwitz Cr−vector field Y such

that Y (p) = X(p)− b p for all p ∈ U . Such vector field satisfies our Theorem.

1.5 A New Family of Counterexamples

In [C1–8], a polynomial counterexample for the Markus–Yamabe Conjecture for dimen-

sion n ≥ 3 is given. Subsequently, in [C1–9], the authors explain a way for obtaining

a family of polynomial counterexamples containing the ones above. The construction

is based on results about quasi–homogeneous vector fields of degree one (see [C1–9,

Section 2]). We next record the resultI [C1–9, Theorem 3.2] for n = 3. We do not give

its proof.

Theorem 1.5.1. For each a, b, λ ∈ R and each k, l,m ∈ N, the vector field

X(x, y, z) = λ(x, y, z) + (axzl + byzm)k (−bzm, azl, 0) (1.5.7)

satisfies the following three properties:

(1) X is linear quasi–homogeneous with weights

(α1, α2, α3) = (m + kl, l + km, 1− k) .

(2) For all λ ∈ R, with λ < 0, the vector field X ∈ N (λ, 3), and

(3) for all λ ∈ R, with λ < 0, k an even number, l, k, l−m ∈ N other than zero, and

all a, b ∈ R− {0}, the differential system ẋ = X(x) has unbounded orbits.

Remark 1.5.1. 1) If m = l and/or ab = 0, then the origin is a global attractor of

the vector field (1.5.7).
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2) The unbounded orbits of assertion (3) may be found as follows. Consider the

curve

α(t) = (x(t), y(t), z(t)) = (x0e
At, y0e

Bt, z0e
λt)

with A = λ m+kl
1−k

, B = λ l+km
1−k

. If x0, y0, z0 satisfy

λx0
m + kl

1− k
= λx0 − b zm

0 (ax0z
l
0 + by0z

m
0 )k and

λ y0
k + km

1− k
= λ y0 + a zl

0 (ax0z
l
0 + by0z

m
0 )k ,

then α(t) is an unbounded solution. Since these conditions are equivalent to the condi-

tions

x0 = − b

a

l + km− 1 + k

m + kl − 1 + k
y0 zm−l

0 and

yk−1
0 =

l + km− 1 + k

abk (1− k)

(
m + kl − 1 + k

(m− l)(1− k)

)k

zl+km
0 ,

the proof of assertion (3) of Theorem 1.5.1 follows.

The following, which is the main result of this section, gives an extension of the

family (1.5.7) and shows that assertion (3) of Theorem 1.5.1 may also hold for k odd.

Theorem 1.5.2. For each a, b, λ ∈ R, each k, l, m ∈ N, and each polynomial map

f : R→ R, the vector field

X(x, y, z) = λ (x, y, z) + f(axzl + byzm) (−bzm, azl, 0) (1.5.8)

satisfies the following two properties:

(1) For all λ ∈ R, with λ < 0, the vector field X ∈ N (λ, 3), and

(2) for all λ ∈ R, with λ < 0, all l, k, l−m ∈ N other than zero, and all a, b ∈ R−{0}
such that either m + l is odd, or m + l is even and (m − l) abAk < 0, the

differential system ẋ = X(x) has unbounded orbits.
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Proof. The proof of (1) is straightforward. Concerning assertion (2), since there cannot

be any unbounded orbits in the plane z = 0 , outside of this plane we consider the

change of coordinates

(u, v, w) = (axzl + byzm, λ(m− l)byzm, λ(m− l)abzm+l) .

The system ẋ = X(x) then becomes

(u̇, v̇, ẇ) = (λ(l + 1)u + v, λ(m + 1)v + wf(u), λ(m + l)w) . (1.5.9)

In order to analyze the behavior of the solutions of (1.5.9) near infinity, we consider

the change of coordinates

(s, p, r) = (u−1 , v u−1 , wuk+1)

obtaining the system

ṡ = −s [λ(l + 1) + t] ,

ṗ = p [λ(m− l)− p] + r[A0s
k + · · ·+ Ak)] ,

ṙ = r [λ(lk + m + k − l) + (k − 1)p]

(1.5.10)

where f(u) = A0 + A1 u + · · ·Ak uk, with Ak 6= 0. The singularities in the plane s = 0

are (0, 0, 0), (0, λ(m− l), 0) and (0, p0, r0), where

p0 =
−λ(lk + m + k − 1)

k − 1
and

r0 =
λ2(mk + l + k − l)(lk + m + k − 1)

(k − 1)2Ak

·

Note that p0 > 0 and r0 Ak > 0. Moreover, the Jacobian matrix of the vector field at

(0, p0, r0) has determinant −λ (l + m) r0 Ak > 0, and eigenvalues µ1 = λ (l+m)
k−1

< 0 ,

and µ2, µ3 with µ2 µ3 < 0. Therefore, the singularity (0, p0, r0) has a stable manifold of

dimension 2 and an unstable manifold of dimension 1, which is contained in the plane

s = 0.

Therefore, system (1.5.10) has solutions (s(t), p(t), r(t)) such that s(t) > 0, p(t) > 0,

and limt→+∞ (s(t), p(t), r(t)) = (0, p0, r0). Hence system (1.5.9) has solutions (u(t), v(t), w(t)),



20

with u(t) and v(t) positive, so that limt→+∞ u(t) = limt→+∞ v(t) = +∞. Further,

limt→+∞ w(t) = 0+ (resp. 0−) if Ak > 0 (resp. Ak < 0).

In order to obtain unbounded solutions (x(t), y(t), z(t)) of our system ẋ = X(x), we

must solve the system




u(t) = a x(t) z(t)l + b y(t) z(t)m ,

v(t) = λ (m− l) b y(t) z(t)m ,

w(t) = λ (m− l) ab z(t)m+l .

(1.5.11)

If w(0) = w0, the third equation is reduced to finding a z0 so that

w0 = λ (m− l) ab zm+l
0 .

Indeed, the conditions imposed on this theorem guarantee the existence of such a z0.

With this z0, we obtain

x(t) =
u(t) e−λ l t

a zl
0

− v(t)

λ (m− l)
,

y(t) =
v(t) e−λ m t

λ (m− l) b zm
0

,

z(t) = z0 eλ t .

Thus limt→+∞ |y(t)| = ∞, and we have the result.

Remark 1.5.2. Setting A0 = A1 = · · · = Ak−1 = 0 and Ak = 1, we obtain the vector

field (1.5.7).

1.6 The Positive Case

In this section, given λ < 0, we consider vector fields X = λ I + Hk + Hm ∈ N (λ, 3),

where Hk and Hm are homogeneous of degree k and m, respectively, with 1 ≤ k < m.

We will show that these vector fields are linearly triangularizable and, therefore, they

have the origin as a global attractor. By definition, a vector field F : Rn → Rn is

triangular if it has the form

F (x1, x2, · · · , xn) = (F1(x1), F2(x1, x2), · · · , Fn(x1, x2, · · · , xn)) .
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In addition, F is said to be linearly triangularizable if there exists a linear change of

coordinates which makes F triangular. Recall that L. Markus and H. Yamabe show

that for Hurwitz–triangular vector fields which vanish at the origin, the origin is a

global attractor (see [C1–17]). Therefore, any linearly triangularizable Hurwitz–vector

field X, with X(0) = 0, has the origin as a global attractor.

Before giving our main result, we recall some definitions and preliminary results.

Let κ be an arbitrary field of characteristic zero and let κ[x] = κ[x1, · · · , xn] denote

the polynomial ring in the variables x1, · · · , xn over κ. Associated to each polynomial

f ∈ κ[x] and i = 1, · · · , n, we denote by ∂f
∂xi

the polynomial which is the formal

derivative of f with respect to xi.

A polynomial map is a map F = (F1, · · · , Fn) : κn → κn of the form

(x1, · · · , xn) → (F1(x1, · · · , xn), · · · , Fn(x1, · · · , xn))

where each Fi belong to κ[x]. Given a polynomial map F = (F1, · · · , Fn) , we denote by

JF , the Jacobian of F ; that is the map which associate to each x ∈ κn the n×n−matrix

JF (x) whose (i, j)−entries is ∂Fi

∂xj
(x). Further, we said that JF is nilpotent if the matrix

JF (x) is nilpotent at every point x ∈ κn. Finally, we say that a polynomial map

F : κn → κn is homegeneous of degree k if F (tx) = tk F (x) for all x ∈ κn and all t ∈ κ.

Our principal tools are Theorems 1.6.1 and 1.6.2, whose proofs are contained in

[C1–6, Theorem 1.1] and [C1–7, Theorem 1.1], respectively. Recall that κ is a field of

characteristic zero. The set consisting of all the linear isomorphisms T : κn → κn is

denoted Gln(κ).

Theorem 1.6.1. Let H = (H1, H2, H3) : κ3 → κ3 be a homogeneous polynomial

map of degree d ≥ 2. If JH is nilpotent, then there exists a T ∈ Gl3(κ) such that

THT−1(x, y, z) = (0, h2(x), h3(x, y)), where the hi are homogeneous of degree d.

Theorem 1.6.2. Let A be a unique factorization domain of characteristic zero, and

let H = (H1, H2) ∈ A[x1, x2]
2. Then Jx1,x2(H) is nilpotent if and only if

H(x1, x2) = f(a1 x1 + a2 x2)(a2,−a1) + (c1, c2)
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for some a1, a2, c1, c2 ∈ A and f(t) ∈ A[t].

Remark 1.6.1. 1) A consequence of Theorem 1.6.1 is that if H = (H1, H2, H3) :

κ3 → κ3 is a homogeneous polynomial map of degree d ≥ 2, then H1, H2, H3 are

linearly dependent over κ.

2) If λ < 0, then the origin is a global attractor for any vector field X = λI + H ∈
N (λ, 3), with H homogeneous of degree d ≥ 2.

3) Let P (x, y, z), Q(x, y, z) be homogeneous polynomials of degree k such that Jx,y(P, Q)

is nilpotent at every point (x, y, z) ∈ R3. Then Theorem 1.6.2 implies that

P (x, y, z) = −b(ax + by)(α1z
k−1 + α2z

k−2(ax + by) +

· · ·+ αk(ax + by)k−1) + c1z
k and

Q(x, y, z) = a(ax + by)(α1z
k−1 + α2z

k−2(ax + by) +

· · ·+ αk(ax + by)k−1) + c2z
k .

Now let

X = λI + Hk + Hm : R3 → R3 ∈ N (λ, 3) (1.6.12)

be a polynomial vector field where Hk and Hm are homogeneous of degree k and m,

respectively, with 2 ≤ k < m. Since JHk and JHm are necessarily nilpotent, we have

that, modulus a linear change of coordinates, the vector field X has the form

X(x, y, z) = λ (x, y, z) + (P, Q, R)(x, y, z) + (0, Axm, S(x, y)) (1.6.13)

where P,Q, R are homogeneous polynomials of degree k and S(x, y) is a homogeneous

polynomial of degree m, with 2 ≤ k < m. Moreover, there exists a triple (α, β, γ) ∈
R3 − {(0, 0, 0} such that

α P + β Q + γ R ≡ 0 .

In addition, we must have

1) mAxm−1Py + QzSy + PzSx = 0,
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2) −PxQzSy − Py(mAxm−1Rz −QzSx) + Pz(mAxm−1Ry + QxSy −QySx) = 0,

3) mAxm−1PzSy = 0.

In order to prove that the origin is a global attractor of the vector field (1.6.12), we

will assume that X has the form (1.6.13). First we consider the cases where P , Q, or

R vanish (see Lemmas 1.6.1, 1.6.2, and 1.6.3). We next show that the general case can

be reduced to one of the preceding cases.

Lemma 1.6.1. For λ < 0, consider the polynomial vector field

X(x, y, z) = λ (x, y, z) + (0, Q,R)(x, y, z) + (0, Axm, S(x, y)) ∈ N (λ, 3)

where Q(x, y, z) and R(x, y, z) are homogeneous polynomials of degree k, and S(x, y)

is a homogeneous polynomial of degree m, with 1 ≤ k < m. Then X is linearly trian-

gularizable.

Proof. The condition DX(p)− λI nilpotent at every point p ∈ R3 implies

Qy + Rz ≡ QyRz −QzRy ≡ QzSy ≡ 0 .

Hence Jy,z(Q,R) is nilpotent at every point (x, y, z) ∈ R3 and we have

Q(x, y, z) = −c(by + cz)(α1x
k−1 + α2x

k−2(by + cz) +

· · ·+ αk(by + cz)k−1) + a1x
k ,

R(x, y, z) = b(by + cz)(α1x
k−1 + α2x

k−2(by + cz) +

· · ·+ αk(by + cz)k−1) + a2x
k and

S(x, y) = Bxm + Cy T (x, y) ,

with cC (α2
1 + · · · + α2

k) = 0 and T (x, y) a homogeneous polynomial of degree m − 1.

Observe that X is triangular if c(α2
1 + · · ·+α2

k) = 0, and if c 6= 0 and b = C = 0. When

c 6= 0 and b 6= 0, since C = 0, the vector field X is linearly triangularizable through

the change of coordinates (u, v, w) = (x, by + cz, z), which completes the proof.
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Lemma 1.6.2. For λ < 0, consider the polynomial vector field

X(x, y, z) = λ (x, y, z) + (P, 0, R)(x, y, z) + (0, Axm, S(x, y)) ∈ N (λ, 3)

where P (x, y, z), R(x, y, z) are homogeneous polynomials of degree k, and S(x, y) is a

homogeneous polynomial of degree m, with 1 ≤ k < m. Then X is linearly triangular-

izable.

Proof. The condition DX(p)− λI nilpotent at every point p ∈ R3 implies that

Px + Rz ≡ PxRz − PzRx ≡ 0 and

mAxm−1Py + PzSx ≡ A(PyRz − PzRy) ≡ APzSy ≡ 0 .

We suppose P 6= 0. The first two conditions imply

P (x, y, z) = −c(ax + cz)(α1y
k−1 + α2y

k−2(ax + cz) +

· · ·αk(ax + cz)k−1) + b1y
k and

R(x, y, z) = a(ax + cz)(α1y
k−1 + α2y

k−2(ax + cz) +

· · ·αk(ax + cz)k−1) + b2y
k .

If c = 0, then Ab1 = 0 and the vector field X is triangular. If c 6= 0 and A = 0, then

S(x, y) = Cym. Further, if a = 0, then the vector field X is triangular. If a 6= 0, then,

performing the change of coordinates (u, v, w) = (y, ax + cz, z), the vector field X is

triangular in the new coordinates. Next if c 6= 0 and A 6= 0, then S(x, y) = D xm

and ab1 + cb2 = kAb1 − α1Dc2 = (k − 1)Aα1 + 2cDα2 = · · · = Aαk−1 + kcDαk = 0.

When D = 0, we have b1 = b2 = α1 = · · · = αk−1 = 0, and consequently the vector

field X is triangular with the change of coordinates (u, v, w) = (ax + cz, x, y). When

D 6= 0, we have P (x, y, z) = b1(y − A
cD

(ax + cz))k,R(x, y, z) = −a
c
P (x, y, z), and

consequently the vector field X is triangular with the change of coordinates (u, v, w) =

(y − A
cD

(ax + cz), x, z). The proof is now complete.

Lemma 1.6.3. For λ < 0, consider the polynomial vector field

X(x, y, z) = λ (x, y, z) + (P, Q, 0)(x, y, z) + (0, Axm, S(x, y)) ∈ N (λ, 3)
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where P (x, y, z), Q(x, y, z) are homogeneous polynomials of degree k, and S(x, y) is a

homogeneous polynomial of degree m, with 1 ≤ k < m. Then X is linearly triangular-

izable.

Proof. The condition DX(p)− λI nilpotent at every point p ∈ R3 implies that

Px + Qy ≡ PxQy − PyQx ≡ 0

and that

mAxm−1Py + QzSy + PzSx ≡ (PyQz − PzQy)Sx + (PzQx − PxQz)Sy ≡ APzSy ≡ 0 .

We suppose P 6= 0 and Q 6= 0. The preceding conditions imply that

P (x, y, z) = −b(ax + by)(α1z
k−1 + α2z

k−2(ax + by) +

· · ·+ αk(ax + by)k−1) + c1z
k ,

Q(x, y, z) = a(ax + by)(α1z
k−1 + α2z

k−2(ax + by) +

· · ·+ αk(ax + by)k−1) + c2z
k ,

(ax + by)[−mb2Axm−1(2α2z
k−2 + · · ·+ kαk(ax + by)k−2) +

(aSy − bSx)((k − 1)α1z
k−2 + (k − 2)α2z

k−3(ax + by) +

· · ·+ αk−1(ax + by)k−2)] + [−mb2Aα1x
m−1 + k(c1Sx + c2Sy)]z

k−1 = 0 ,

(ac1 + bc2) [α1z
k−1 + α2z

k−2(ax + by) + · · ·+ αk(ax + by)k−1](aSy − bSx) = 0 ,

and

A [−b(ax + by)((k − 1)α1z
k−2 + (k − 2)α2z

k−3(ax + by) +

· · ·+ αk−1(ax + by)k−2) + kc1z
k−1] Sy = 0 .

If a = b = 0, or (a, b) 6= (0, 0) and α1 = α2 = · · · = αk = 0, then c1c2 6= 0,

S(x, y) = B (c2x − c1y)m, and AB = 0. When B = 0 the vector field X is triangular.

When B 6= 0, we have A = 0 and consequently, performing the linear change of
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coordinates (u, v, w) = (c2x − c1y, z, x), the vector field X is triangular in the new

coordinates.

Suppose (a, b) 6= (0, 0) and (α1, α2, · · · , αk) 6= (0, 0, · · · , 0). When A = 0 and ac1+bc2 =

0, we have that either S(x, y) = B(ax+by)m, or S(x, y) 6= B(ax+by)m and α1 = · · · =
αk−1 = c1 = c2 = 0. In the first case (resp. second case), if a 6= 0, then the vector field

X becomes triangular with the change of coordinates (u, v, w) = (ax + by, z, y) (resp.

(u, v, w) = (ax + by, y, z)); if b 6= 0, then the vector field X becomes triangular with

the change of coordinates (u, v, w) = (ax + by, z, x) (resp. (u, v, w) = (ax + by, x, z)).

When A = 0 and ac1 + bc2 6= 0, we have S(x, y) = 0, and the result follows from

Remark 1.6.1.

If (a, b) 6= (0, 0), (α1, α2, · · · , αk) 6= (0, 0, · · · , 0), and A 6= 0, then Sy = 0. Therefore,

S(x, y) = Bxn, bB(ac1+bc2) = 0, and b(2bα2A+(k−1)α1B) = b(3bα3A+(k−2)α2B) =

· · · = b(kbαkA+Bαk−1) = −b2α1A+kBc1 = 0. If b = 0, then B = 0, and consequently

the vector field X is triangular. If b 6= 0, then B 6= 0 and ac1 + bc2 = 0, with a 6= 0.

Moreover,

(P,Q)(x, y, z) =
bα1

2AB
[B(ax + by)− Abz]k(b,−a) ,

consequently the vector field X becomes triangular after the change of coordinates

(u, v, w) = (B(ax + by)− Abz, x, y). The proof is now complete.

We conclude this section with our main result.

Theorem 1.6.3. For λ < 0, consider a polynomial vector field X = λI + Hk + Hn ∈
N (λ, 3), with Hk and Hm homogeneous polynomials of degree k and m, respectively,

and with 1 ≤ k < m. Then X is linearly triangularizable, and therefore the origin is a

global attractor of X.

Proof. After a linear change of coordinates, we may suppose

Hm(x, y, z) = (0, A xm, S(x, y)) and Hk = (P, Q, R)

such that α P + β Q + γ R ≡ 0, for some (α, β, γ) ∈ R3 − {(0, 0, 0)}.
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When γ 6= 0, after the change of coordinates (u, v, w) = (x, y, αx + βy + γz), the

vector field X takes the form

Y (u, v, w) = λ(u, v, w) + (P, Q, 0)(u, v,
1

γ
(w − αu− βv)) +

(0, Aum, βAum + γS(u, v)) .

The theorem now follows from Lemma 1.6.3. Now when γ = 0 and β 6= 0, after the

change of coordinates (u, v, w) = (x, αx + βy, z), the vector field X takes the form

Y (u, v, w) = λ(u, v, w) + (P, 0, R)(u,
1

β
(v − αu)) + (0, βAum, γS(u,

1

β
(v − αu))) ,

thus the theorem follows from Lemma 1.6.2. Finally, if γ = β = 0, then P ≡ 0, and

the result follows from Lemma 1.6.1.



Chapter 2

Couples of Transversal Nets with

Singularities

2.1 A Class of Quartic Differential Forms

Let M be a connected, oriented two–manifold of class C∞. We let Q(M) denote the set

consisting of all smooth quartic differential forms defined on M which have the following

property. At each point p in M , there exist a local chart (u, v) : U ⊂ M −→ R2 and

smooth maps E, F,G : (u, v)(U) → R, with EG − F 2 positive everywhere, such that

if

(u, v)∗(ω) = a4dv4 + 4a3dv3du + 6a2dv2du2 + 4a1dvdu3 + a0du4 (2.1.1)

then

G (a0, a1, a2) − 2F (a1, a2, a3) + E (a2, a3, a4) ≡ 0 . (2.1.2)

A remarkable example of a quartic in Q(R2) is

ω = 4a (du2 − dv2)dudv + b (du4 − 6du2dv2 + dv4) (2.1.3)

where E = G = 1 and F = 0. We will show that, locally, any quartic in Q(M) may

be written in the form (2.1.3) in an appropriate coordinate chart, which we will call

main chart. (See Definition 2.2.1 and Proposition 2.2.3).

28
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For any quartic ω in Q(M) , we have that either ω(p) ≡ 0 (in which case p is called a

singular point of ω) or ω(p)−1(0) is the union of four distinct lines L1(ω)(p), L2(ω)(p),

L3(ω)(p) and L4(ω)(p) of the tangent space TpM (in which case p is called a regular

point of ω). In general, these line fields do not define foliations over the set of regular

points of ω. Nevertheless, they can be grouped in pairs, say N1(ω) = {L1(ω), L2(ω)}
and N2(ω) = {L3(ω), L4(ω)}, so that each Ni(ω), with i = 1, 2, defines a net.

Locally, each quartic ω ∈ Q(M) is the product of two positive quadratic forms. In

fact, if (2.1.1) is the local expression of ω in a chart (u, v), then

a4 · (u, v)∗(ω) = ω+ · ω−

with

ω± = a4 dv2 + 2

(
a3 ±

√
a2

3 − a2a4

)
du dv + (a2 ±R) du2

and

R(p) = lim
q→p

a3a2 − a1a4√
a2

3 − a2a4

(q) =
2F (p)

E(p)

√(
G

E
a2

0 −
2F

E
a0a1 + a2

1

)
(p) .

The quadratic forms ω− and ω+ belong to a special class called positive. Recall that

a quadratic form τ = a(u, v)dv2 + 2b(u, v)dudv + c(u, v)du2 is positive if, at each point

p , either (b2 − ac)(p) > 0 or (a, b, c)(p) = (0, 0, 0). In the former case, the point p is a

regular point of τ , and in the latter case, p is a singular point of τ . Thus there is a triple

C(τ) = {f1(τ), f2(τ), Sing(τ)} associated with τ which is called the configuration of τ ,

where Sing(τ) is the set consisting of all singular points of τ , and where f1(τ) and f2(τ)

are the transversal one–dimensional foliations defined over the set of regular points of

τ which are, respectively, tangent to the vector fields X1(τ) = (a,−b − √
b2 − ac )

and X2(τ) = (a,−b +
√

b2 − ac ). (See for example [C2–10], [C2–11].) Observe that

the positive quadratic forms ω− and ω+ are not differentiable at the singular points

of the quartic. Further generically, they have a semi–curve of singular points that are

not singular points of the quartic. The net N1(ω) (resp. N2(ω)) corresponds to the
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configuration of ω− (resp. ω+). To describe this correspondence, we consider a main

chart (u, v) where ω takes the form

(u, v)∗(ω) = 4a (du2 − dv2)dudv + b (du4 − 6du2dv2 + dv4) .

We obtain

b · (u, v)∗(ω) = ω+ · ω−

with

ω± = b (dv2 − du2) + 2 (−a±
√

a2 + b2) du dv .

The set Sing(ω−) (resp. Sing(ω+)) is the set consisting of all points where b vanishes and

a is non–positive (resp. non–negative). We obtain the net N1(ω) from the configuration

C(ω−) as follows. Let p ∈ Sing(ω−) − Sing(ω), and let V be a small neighborhood of

p . We let V + = V ∩ b−1(]0,∞[) and V − = V ∩ b−1(]−∞, 0[). For i = 1, 2, we denote

the leaf of fi(ω
−)/V + (resp. of fi(ω

−)/V −) which converges to p by γ+
i (resp. γ−i ). We

have that γ+
i (resp. γ−i ) converges to p with slope (−1)i ( resp. −(−1)i). Further, if

α1 and α2 are the leaves of N1(ω)/V that contain p, then α1 = γ+
1 ∪ {p} ∪ γ−2 and

α2 = γ+
2 ∪ {p} ∪ γ−1 .

The type of the quartics under study is related to the principal curvature lines of

surfaces immersed in R4. In fact, the principal directions at a point p are obtained by

solving an equation ω(p) = 0, with ω ∈ Q(R2). (See [C2–8], [C2–6], [C2–7], [C2–3],

[C2–9], [C2–19], [C2–20].) Observe that the converse is locally true in the analytic case.

More precisely, given an ω ∈ Q(U) , with real analytic coefficients a0, · · · , a4 defined

in a neighborhood U ⊂ R2 of a point p , there exists an immersion f : V → R4 where

V ⊂ U is some small open neighborhood of p such that the differential equation of

the lines of curvature of f is given by ω = 0. (See [C2–6, Theorem 2.1] or [C2–3,

Proposition 2.4].) Thus all of the local results of [C2–6], [C2–7], [C2–3], [C2–9] hold for

the nets associated to an ω ∈ Q(M).
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2.2 Preliminaries

In that follws, fx will denote the partial derivative of a map f with respect to a variable

x.

Proposition 2.2.1. Let ω ∈ Q(M) have only isolated singular points. Then, for any

local chart (u, v) : U ⊂ M −→ R2, there exist smooth maps E, F, G : (u, v)(U) → R,

with EG − F 2 positive everywhere, such that if (u, v)∗(ω) = a4dv4 + 4a3dv3du +

6a2dv2du2 + 4a1dvdu3 + a0du4, then G (a0, a1, a2) − 2F (a1, a2, a3) + E (a2, a3, a4) ≡
0 .

Proof. For simplicity, a chart which satisfies the conditions of Proposition 2.2.1 will be

called a g−chart. The proof is consequence of the following.

1) Let (u, v) be a g−chart. If φ is the change of coordinates

(u, v) = φ−1(x, y) = (f(x, y), g(x, y))

then (x, y) is a g−chart.

In fact, if

(x, y)∗(ω) = b4dy4 + 4b3dy3dx + 6b2dy2dx2 + 4b1dydx3 + b0dx4 ,

then

b0 =
[
f 4

x − (6f 2
xGg2

x)/E − (8FfxGg3
x)/E

2+

(G((−4F 2)/E3 + G/E2)g4
x)

]
a0 +

[
f 3

xgx + (3Ff 2
xg2

x)/E+

fx((4F
2)/E2 −G/E)g3

x + (F ((2F 2)/E3 −G/E2)g4
x)

]
a1

and

b1 =
[
4f 3

xfy − (12fxfyGg2
x)/E − (8FfyGg3

x)/E
2 − (12f 2

xGgxgy)/E

−(24FfxGg2
xgy)/E

2 + (4G((−4F 2)/E2 + G/E)g3
xgy)/E

]
a0 +

[
3f 2

xfygx + (6Ffxfyg
2
x)/E + fy((4F

2)/E2 −G/E)g3
x + f 3

xgy+

(6Ff 2
xgxgy)/E + 3fx((4F

2)/E2 −G/E)g2
xgy +

(4F ((2F 2)/E2 −G/E)g3
xgy)/E

]
a1 .



32

Setting

Ẽ = E(fx)
2 + 2Ffxgx + G(gx)

2 ,

F̃ = Efxfy + F (fxgy + fygx) + Ggxgy ,

G̃ = E(fy)
2 + 2Ffygy + G(gy)

2

we obtain

ẼG̃− F̃ 2 = (EG− F 2)(fxgy − fygx)
2 .

Thus we again obtain the relationships

G̃b0 − 2F̃ b1 + Ẽb2 = 0 ,

G̃b1 − 2F̃ b2 + Ẽb3 = 0 ,

G̃b2 − 2F̃ b3 + Ẽb4 = 0 .

2) Suppose that associated to each g−chart (u, v) : U ⊂ M → R2, with (u, v)∗(ω) =

a4dv4 + 4a3dv3du + 6a2dv2du2 + 4a1dvdu3 + a0du4 , there are two triples of

smooth maps, E, F, G and Ẽ, F̃ , G̃ , so that in (u, v)(U) , we have EG−F 2 > 0 ,

ẼG̃ − F̃ 2 > 0 , G(a0, a1, a2) − 2F (a1, a2, a3) + E(a2, a3, a4) = 0 , and

G̃(a0, a1, a2) − 2F̃ (a1, a2, a3) + Ẽ(a2, a3, a4) = 0 . Then there exists a smooth

map λ : (u, v)(U) → R such that (Ẽ, F̃ , G̃) = λ(E, F, G) .

For this, it suffices to show that, for every regular point p of ω, we have G
E

(p) =

G̃
Ẽ

(p) and F
E

(p) = F̃
Ẽ

(p) ·

First, we assume that there exists a regular point p so that G
E

(p) − G̃
Ẽ

(p) 6= 0 .

Then

(a0, a1, a2)(p) = H(p) (a1, a2, a3)(p)

with H = 2
F
E
− F̃

Ẽ
G
E
− G̃

Ẽ

· This implies that a0, a1, a2, a3 are non–vanishing at p , and

a1 = H a2 and a0 = H a1 = H2 a2 .
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Therefore,

a2 = −G

E
a0 +

2F

E
a1

= −G

E
H2a2 + H

2F

E
a2

implies that x = H(p) is a real solution of the equation

G(p)

E(p)
x2 − 2F (p)

E(p)
x + 1 = 0 ,

which is impossible because E(p) G(p) − F (p)2 > 0 .

Similarly, if there exists a regular point p so that F
E

(p) − F̃
Ẽ

(p) 6= 0 , then

(a1, a2, a3)(p) = H̃(p) (a0, a1, a2)(p)

with H̃ = 1
2

G
E
− G̃

Ẽ
F
E
− F̃

Ẽ

, and x = H̃(p) is a real solution of the equation

E(p)

G(p)
x2 − 2F (p)

G(p)
x + 1 = 0 ,

which is impossible.

We next show that the coefficients a0, ..., a4 of the local expression of ω ∈ Q(M)

satisfy relationships similar to those of the case of principal curvature lines of surfaces

immersed in R4. (See [C2–9, Lemma 2.1].)

Proposition 2.2.2. Let ω = a4dv4 + 4a3dv3du + 6a2dv2du2 + 4a1dvdu3 + a0du4

be a quartic in Q(R2) . Let E, F,G : R2 → R be smooth maps such that, for all p ∈ R2,

we have (EG− F 2)(p) > 0 and

G(p)(a0, a1, a2)(p) − 2F (p)(a1, a2, a3)(p) + E(p)(a2, a3, a4)(p) = 0 .
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Then

Ea2 = −Ga0 + 2Fa1 ,

E2a3 = −2FGa0 + (4F 2 − EG)a1 , (2.2.4)

E3a4 = G(EG− 4F 2)a0 + 4F (2F 2 − EG)a1 .

Moreover, if p is a regular point of ω, we have

H(p) =

∣∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣∣
(p) < 0 and I(p) = (a4 a0 − 4 a1 a3 + 3 a2

2)(p) > 0 . (2.2.5)

Proof. For all p ∈ R2, we have

Ga0 − 2Fa1 + Ea2 = 0 ,

Ga1 − 2Fa2 + Ea3 = 0 , (2.2.6)

Ga2 − 2Fa3 + Ea4 = 0 .

Observe that the first relationship of (2.2.6) corresponds to the first relationship of

(2.2.4), the second relationship of (2.2.6) multiplied by E corresponds to the second

relationship of (2.2.4), and the last relationship of (2.2.6) multiplied by E2 corresponds

to the last relationship of (2.2.4) .

We now work on the set of the regular points of the quartic. Using relationships (2.2.4),

we find

E3 (H, I) = (Ea2
1 − 2Fa0a1 + Ga2

0) (−G2, 4(EG − F 2)) . (2.2.7)

Therefore EG− F 2 > 0 imply H < 0 and I > 0 .

We now show the existence of such main charts. In the case of curvature lines they

correspond to the isothermal coordinates.

Definition 2.2.1. Let ω ∈ Q(M) and p ∈ M . A local chart (u, v) at p will be called

a main chart of ω at p if

(u, v)∗(ω) = 4a (du2 − dv2)dudv + b (du4 − 6du2dv2 + dv4) .
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Proposition 2.2.3. Given ω ∈ Q(M) and p ∈ M , there exists a main chart of ω at p.

Proof. Observe that taking F = 0 and E = G in (2.2.6), the local expression (2.1.1)

already has the desired expression. Hence, given a local chart (u, v) at p and associated

maps E, F, G to the quartic differential form ω , it suffices to find a coordinate change

u = f(x, y) , v = g(x, y)

so that, in a neighborhood of the origin, we have

Efxfy + F (fxgy + fygx) + Ggxgy = 0 and

E(fx)
2 + 2Ffxgx + G(gx)

2 = E(fy)
2 + 2Ffygy + G(gy)

2 .

Therefore, the problem is equivalent to finding isothermal coordinates in a neighbor-

hood of a point of a surface. (See [Spi, Vol. IV, Addendum 1 of Chapter 9].) The

conclusion follows.

Remark 2.2.1. Main charts are preserved by changes of coordinates of the form

(u, v) = (f(x, y), g(x, y)) which verify

(fx, fy) = (gy,−gx) or (fx, fy) = (−gy, gx) .

2.3 Simple Singular Points

Let ω be a quartic differential form in Q(M), and let p be a singular point of ω.

Assume that (2.1.1) is the local expression of ω in a chart (u, v) : (M, p) → (R2, 0)

with coefficients a0, a1, a2, a3, a4 satisfying relationships (2.2.6). The point p will be

called a simple singular point of ω if the Jacobian matrix D(a0, a1)(0, 0) is non–

singular.

Proposition 2.3.1. Let ω ∈ Q(M) and let p be a singular point of ω. Then the

following properties are equivalent:

a) The point p is a simple singular point of ω.
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b) Let (u, v) : (M, p) → (R2, 0) be a local chart. If

(u, v)∗(ω) = b4dv4 + 4b3dv3du + 6b2dv2du2 + 4b1dvdu3 + b0du4 ,

then the Jacobian matrix D(b0, b1)(0, 0) is non–singular.

c) Let (u, v) : (M, p) → (R2, 0) be a local chart. If

(u, v)∗(ω) = b4dv4 + 4b3dv3du + 6b2dv2du2 + 4b1dvdu3 + b0du4 ,

then the Jacobian matrix D(bi, bi+1)(0, 0) is non–singular, for i = 0, 1, 2, 3.

Proof. Let (x, y)∗(ω) = a4 dy4 + 4a3 dy3dx + 6a2 dy2dx2 + a1 dydx3 + a0 dx4

be the local expression of ω in a chart (x, y) : (U, p) → (R2, (0, 0)) . Let i = 0, 1, 2, 3.

Using relationships (2.2.4), we see

 ai

ai+1


 = Mi


 a0

a1




where Mi is a square matrix with det Mi =
(

G
E

)i 6= 0. Therefore, the curves {a0 = 0}
and {a1 = 0} are regular, meeting each other transversally at the origin if and only if

the curves {ai = 0} and {ai+1 = 0} are regular meeting each other transversally at

the origin.

Consider the change of coordinates (x, y) = (f(u, v), g(u, v)), with f(0, 0) = g(0, 0) =

0, and let

(u, v)∗(ω) = b4dv4 + 4b3dv3du + 6b2dv2du2 + 4b1dvdu3 + b0du4 .

Again, using relationships (2.2.4), we obtain

 b0

b1


 =


 b00 b01

b10 b11





 a0

a1




with

det


 b00 b01

b10 b11


 = (E f 2

u + 2 F fu gu + Gg2
u) det D(f, g) .

The proof now follows.
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The next result is [C2–6, Lemma 3.2], so we give the lemma without proof.

Lemma 2.3.1. Let ω ∈ Q(M), and let p ∈ M be a simple singular point of ω. There

is a main chart (u, v) : (M, p) → (R2, 0) such that the local expression of ω is

(u, v)∗(ω) = 4(Au + Bv + S(u, v))(du2 − dv2)dudv +

(v + R(u, v))(du4 − 6du2dv2 + dv4)
(2.3.8)

where A 6= 0 and B are real numbers, and S and R are real–valued functions which

satisfy

S(0, 0) = R(0, 0) =
∂S

∂u
(0, 0) =

∂S

∂v
(0, 0) =

∂R

∂u
(0, 0) =

∂R

∂v
(0, 0) = 0 .

For the rest of this article, we endow the set Q(M) with the smooth Whitney topol-

ogy.

Simple singular points are persistent under perturbations of the quartic differential

form in Q(M) because they are defined by transversal conditions. We explain this fact

in the next Proposition.

Proposition 2.3.2. Let p0 be a simple singular point of a quartic differential form

ω0 ∈ Q(M). Then there exist a neighborhood U of p in M , a neighborhood V of ω0 in

Q(M), and a smooth map p : V → U which associates each ω ∈ V with the unique

singular point of ω in U . Moreover, the singular point p(ω) is simple.

Proof. The local expression of a quartic differential form ω in Q(M) associated to an

arbitrary chart (u, v) is given by

(u, v) ∗ (ω) = (A40a0 + A41a1)dv4 + (A30a0 + A31a1)dv3du

+(A20a0 + A21a1)dv2du2 + a1dvdu3 + a0du4
(2.3.9)

where a0 = a0(u, v) , a1 = a1(u, v) , and Aij = Aij(u, v) , for i = 2, 3, 4 and j = 0, 1 ,

are smooth functions. Moreover, the singular points of ω are given by the equations

a0 = a1 = 0 . Consider a local chart (u, v) : (M, p) −→ (R2, 0) such that the local

expression of ω0 has form (2.3.8). Therefore, A 6= 0 . For ω in a neighborhood Ṽ of
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ω0 in Q(M) , the local expression in the same coordinates is of the form (2.3.9), where

a0(ω0)(u, v) = v + R(u, v) and a1(ω0)(u, v) = 4(Au + Bv + S(u, v)). Next consider

the smooth map F : Ṽ × R2 −→ R2 defined by

F (ω, (u, v)) = (a0(ω)(u, v), a1(ω)(u, v)) .

Since F (ω0, (0, 0)) = (0, 0) , and since the matrix

D2 F (ω0, (0, 0)) =


 4A 4B

0 1




is non–singular, there exist a neighborhood Ũ of (0, 0) in R2 , a neighborhood V ⊂ Ṽ
of ω0 in Q(M), and a smooth map q : V → Ũ such that q(ω0) = (0, 0) and F (ω, q(ω)) =

(0, 0) , for all ω ∈ V . The proof now follows.

The next two results are contained in [C2–3, Theorem 1.1]. We do not give their

proofs.

Theorem 2.3.1. Let ω ∈ Q(M), and let p ∈ M be a simple singular point of ω. Let

(u, v) : (M, p) −→ (R2, 0) be a local chart such that

(u, v) ∗ (ω) = 4(Au + Bv + S)(du2 − dv2)dudv + (v + R))(du4 − 6du2dv2 + dv4)

where A 6= 0 and B are real numbers, and S = S(u, v) and R = R(u, v) are real–valued

functions which satisfy

S(0, 0) = R(0, 0) =
∂S

∂u
(0, 0) =

∂S

∂v
(0, 0) =

∂R

∂u
(0, 0) =

∂R

∂v
(0, 0) = 0.

Then, under each of the conditions (a) through (e), the corresponding phase portrait is

obtained by making into one, through a rigid translation, the pair of pictures (that is,

nets) of the indicated figure.

(a) Condition H3 : ∆ < 0 . ( Figure 1 )

(b) Condition H4 : ∆ > 0, A < 0 and A 6= −1/4 . ( Figure 2 )
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(c) Condition H5 : ∆ > 0, A > 0 . ( Figure 3 )

(d) Condition H34: ∆ > 0 and A = −1/4 and B 6= 0. ( Figure 4 )

(e) Condition H̃3: A = −1/4 and B = 0. ( Figure 5 )

Here

∆ = 4(1 + B2)3 + 24(1 + B2)2A + 8(5−B2)(1 + B2)A2 + (2.3.10)

4(9 + B2)A3 + (17 + 4B2)A4 + 4A5 .

Figure 1

Figure 2

Figure 3
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Figure 4

Figure 5

Definition 2.3.1. Let p be a singular point of a quartic differential form ω ∈ Q(M).

We will say that ω is locally topologically stable at p if both nets, N1(ω) and N2(ω),

are locally topologically stable at p.

Theorem 2.3.2. Let ω ∈ Q(M), and let p ∈ M be a simple singular point of ω .

Consider a local chart (u, v) : (M, p) −→ (R2, 0) as in Theorem 2.3.1 . Then ω is

locally topologically stable at p if and only if either condition H3, or condition H4 , or

condition H5 holds.

The next two results will be used in Subsection 2.5.1 to obtain versal unfoldings of

the singular points H34 and H̃3, thus showing that the former is of codimension one,

and the latter is of codimension two.

Proposition 2.3.3. Let p be a simple singular point of ω ∈ Q(M). Consider a main

local chart (u, v) : (M, p) → (R2, 0) such that the local expression of ω at p is of the

form

(u, v) ∗ (ω) = 4(Au + Bv + S(u, v))(du2 − dv2)dudv +

(v + R(u, v))(du4 − 6du2dv2 + dv4) . (2.3.11)
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Consider also the separatrix polynomial

g(s) = −sQ(s) (2.3.12)

where

Q(s) = s4 − 4Bs3 − 2(3 + 2A)s2 + 4Bs + 1 + 4A .

Then the point p is:

a) a locally stable singular point if the separatrix polynomial (2.3.12) only has simple

roots;

b) an H34−singular point if the separatrix polynomial (2.3.12) has a root of multi-

plicity two;

c) an H̃3−singular point if the separatrix polynomial (2.3.12) has a root of multi-

plicity three.

Proof. This is a direct consequence of Theorems 2.3.1 and 2.3.2 , and the result [C2–3,

Theorem 5.3].

Our next result gives a characterization of the H3, H4 and H5 singularities better

suited for our needs.

Let ω ∈ Q(M). Given a main chart (x, y) : U → R2, if (x, y)∗(ω) = 4a(x, y)(dx2 −
dy2)dxdy + b(x, y)(dx4 − 6dx2dy2 + dy4) , consider the maps g : (x, y)(U) ⊂ R2 → R2

and ∆, H : (x, y)(U) ⊂ R2 → R defined as follows:

1) g = (4a, b)

2) ∆(x, y) is the discriminant of the homogeneous degree five polynomial

4Da(x,y)(u, v)(u2 − v2)dudv + Db(x,y)(u, v)(u4 − 6u2v2 + v4).

3) H(x, y) is the determinant of the Jacobian matrix of the map g = (4a, b).

Proposition 2.3.4. Let p be a simple singular point of ω ∈ Q(M), and let (x, y) :

(U, p) → (R2, (0, 0)) be a main chart. If ∆(0, 0) 6= 0, then:
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1) p is of type H3 if and only if ∆(0, 0) < 0.

2) p is of type H4 if and only if ∆(0, 0) > 0 and H(0, 0) < 0.

3) p is of type H5 if and only if ∆(0, 0) > 0 and H(0, 0) > 0.

Proof. In the case a main chart (u, v) : (U, p) → (R2, (0, 0)) is such that

(u, v) ∗ (ω) = 4(Au + Bv + S(u, v))(du2 − dv2)dudv +

(v + R(u, v))(du4 − 6du2dv2 + dv4)

we have

∆(0, 0) = (1 + 4A)2 [4(1 + B2)3 + 24(1 + B2)2A + 8(5−B2)(1 + B2)A2

+4(9 + B2)A3 + (17 + 4B2)A4 + 4A5]

and

H(0, 0) = 4 A .

The proof now follows from Theorem 2.3.1.

Consider now an arbitrary main chart (u, v) with

(u, v)∗(ω) = 4a(u, v)(du2 − dv2)dudv + b(u, v)(du4 − 6du2dv2 + dv4) .

Since the roots of the equation

4Da(0,0)(u, v)(u2 − v2)uv + Db(0,0)(u, v)(u4 − 6u2v2 + v4) = 0

correspond to the possible directions of asymptotic convergence to the singular point

for the leaves of the nets, the sign of ∆(0, 0) is invariant by coordinate changes. On

the other hand, H(0, 0) is negative (resp. positive) if and only if the Poincaré index of

the singular point is 1
4

(resp. −1
4
). Therefore, the sign of H(0, 0) is also invariant by

coordinate changes. From these considerations the proof follows.
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2.4 A Non–simple Case

Definition 2.4.1. Let ω ∈ Q(M) and let p be a singular point of ω. We will say

p is a rank–k singular point of ω, with k = 0, 1, 2, if there exists a main chart

(x, y) : (U, p) → (R2, (0, 0) such that

(x, y) ∗ (ω) = 4a(dx2 − dy2)dxdy + b(dx4 − 6dx2dy2 + dy4)

and the Jacobian matrix D(a, b)(0, 0) has rank–k.

Proposition 2.4.1. Let p be a rank–1 singular point of ω ∈ Q(M). Then there exists

a main chart (x, y) such that

(x, y) ∗ (ω) = 4a(dx2 − dy2)dxdy + b(dx4 − 6dx2dy2 + dy4)

and j1(a, b)(0, 0) = (By, y), with B > 0.

Proof. Without loss of generality, we may suppose that there is a main chart (x, y) so

that

(x, y) ∗ (ω) = 4a(dx2 − dy2)dxdy + b(dx4 − 6dx2dy2 + dy4)

with

j1(a, b)(0, 0) = (Ax + By)(λ, 1) ,

where λ (A2 + B2) 6= 0 . For α, β ∈ R, with α2 + β2 6= 0, we consider (x, y) = φ(u, v) =

(αu− βv, βu + αv). Then

φ∗ω = 4ã(u, v)(du2 − dv2)dudv + b̃(u, v)(du4 − 6du2dv2 + dv4)

where

j1(ã, b̃)(0, 0) = (A10, B10) u + (A01, B01) v

and

A10 = (Aα + Bβ) (−4α3β + 4αβ3 + α4λ− 6α2β2λ + β4λ) ,

A01 = (αB − Aβ) (−4α3β + 4αβ3 + α4λ− 6α2β2λ + β4λ) ,

B10 = (Aα + Bβ) (α4 − 6α2β2 + β4 + 4α3βλ− 4αβ3λ) ,

B01 = (αB − Aβ) (α4 − 6α2β2 + β4 + 4α3βλ− 4αβ3λ).
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If A = 0 (resp. B = 0), then B 6= 0 (resp. A 6= 0). We set β = 0 and α = 1
5√B

(resp.

α = 0 and β = − 1
5√A

), and we obtain A10 = B10 = 0, B01 = 1 and A01 6= 0. If A 6= 0

and B 6= 0, we set α = mβ with m = −A
B

to obtain B10 = 0, and we are under the

conditions of the preceding case. Finally, if the coefficient A01 obtained is negative, it

suffices to consider the change of coordinates (u, v) = (−s, t).

Proposition 2.4.2. Let p be an isolated rank–1 singular point of ω ∈ Q(M). Let

(x, y) : (U, p) → (R2, (0, 0) be a local chart. Assume that

(x, y)∗(ω) = a4 dy4 + 4a3 dy3dx + 6a2 dy2dx2 + 4a1 dydx3 + a0 dx4 .

Then there exist a pair (β1, β2) 6= (0, 0) and real constants α0, α1, α2, α3, α4, with

(α0, α1) 6= (0, 0), such that

j1(ai)(0, 0) = αi (β1 x + β2 y) , for i = 0, 1, 2, 3, 4 .

Proof. Let (u, v) : (V, p) → (R2, (0, 0)) be a main chart such that V ⊂ U and

(u, v)∗(ω) = 4a(du2 − dv2)dudv + b(du4 − 6du2dv2 + dv4) , with j1(a, b)(0, 0) =

(Bv, v). Consider the changes of coordinates (u, v) = (f(x, y), g(x, y)). Then

a0(x, y) = 4(f 3
x gx − fx g3

x) a(u, v) + (f 4
x − 6 f 2

x g2
x + g4

x) b(u, v) ,

a1(x, y) = (3f 2
xfygx − fyg

3
x + f 3

xgy − 3fxg
2
xgy)a(u, v) +

(f 3
xfy − 3fxfyg

2
x − 3f 2

xgxgy + g3
xgy)b(u, v) ,

a2(x, y) = 2(fxf
2
y gx + f 2

xfygy − fyg
2
xgy − fxgxg

2
y) a(u, v) +

(f 2
xf 2

y − f 2
y g2

x − 4fxfygxgy − f 2
xg2

y + g2
xg

2
y) b(u, v) ,

a3(x, y) = (f 3
y gx + 3fxf

2
y gy − 3fygxg

2
y − fxg

3
y) a(u, v) +

(fxf
3
y − 3f 2

y gxgy − 3fxfyg
2
y + gxg

3
y) b(u, v) ,

a4(x, y) = 4(f 3
y gy − fyg

3
y) a(u, v) + (f 4

y − 6f 2
y g2

y + g4
y) b(u, v) .

Therefore, j1(ai)(0, 0) = αi (β1 x + β2 y) where β1 x + β2 y = j1(g)(0, 0) . Setting

αi = B σi + τi , for i = 0, 1 , we have

M =


 σ0 σ1

τ0 τ1


 =


 P Q

R S





 Q P

P −Q



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with P = (f 2
x − g2

x)(0, 0) , Q = 2(fxgx)(0, 0) , R = (fxfy − gxgy)(0, 0) , and S =

(fygx + fxgy)(0, 0) . Since

det


 P Q

R S


 = (f 2

x + g2
x)(0, 0) det D(f, g)(0, 0) 6= 0

we have det M 6= 0 , and therefore (α0, α1) 6= (0, 0).

Let p be a singular point of ω ∈ Q(M). At p , consider a main chart (u, v) such that

(u, v)∗(ω) = 4a(du2 − dv2)dudv + b(du4 − 6du2dv2 + dv4) .

Observe that a simple singular point corresponds to the case where {a = 0} and

{b = 0} are regular curves meeting each other transversally at the origin. In this

section, we weaken this condition in the mildest way by considering the case where the

curves {a = 0} and {b = 0} have quadratic contact at the origin. More precisely,

Definition 2.4.2. A rank–1 singular point p of ω ∈ Q(M) will be called an H45−singular

point if there exists a main chart (x, y) : (U, p) → (R2, (0, 0) such that

(x, y)∗(ω) = 4a(dx2 − dy2)dxdy + b(dx4 − 6dx2dy2 + dy4)

and the curves {a = 0} and {b = 0} have quadratic contact at the origin.

Proposition 2.4.3. Let p be an H45−singular point of ω ∈ Q(M). Then there exists

a main chart (x, y) such that

(x, y)∗(ω) = 4a(dx2 − dy2)dxdy + b(dx4 − 6dx2dy2 + dy4)

where

a(x, y) = By + a20x
2 + a11xy + a02y

2 + R(x, y) ,

b(x, y) = y + b20x
2 + b11xy + b02y

2 + S(x, y)

with B > 0, a20−Bb20 6= 0, and j2(R,S)(0, 0) = (0, 0). Here jk(f)(q) denotes the k–jet

of the map f at the point q.
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Proof. This is a direct consequence of Proposition 2.4.1.

Our next result determines the phase portrait of the nets around an H45−singular

point. In the study of the phase portrait of the nets around a simple singular point p (see

[C2–6, Lemma 5.1] and [C2–3, Theorem 5.3]), we consider the surface LM defined on

the projective line bundle PM over M by the solutions of equation 4a(dx2−dy2)dxdy +

b(dx4 − 6dx2dy2 + dy4) = 0. This surface is regular in P−1(p) (where P denotes the

projection of PM onto M) if and only if p is a simple singular point (see [C2–6, Lemma

4.1]). Thus, this procedure cannot be applied to obtain of the phase portrait of the nets

around an H45−singular point. Therefore, we use the decomposition

b ω = ω+ ω−

where

ω± = b (dy2 − dx2) + 2 (−a±
√

a2 + b2) dx dy .

We subsequently study the foliations fi(ω
+) associated with ω+, and the foliations

fi(ω
−) associated with ω−, with i = 1, 2, by considering the relationships between the

leaves of fi(ω
−) (resp. fi(ω

+)) and the leaves of the net N1(ω) (resp. N2(ω)).

Theorem 2.4.1. Let p be an H45−singular point of ω ∈ Q(M). The phase portraits

of the nets N1(ω) and N2(ω) around p are homeomorphic to those shown in Figure 6.

Figure 6
N1(ω) N2(ω)

Proof. Let (x, y) be a main chart such that

(x, y)∗(ω) = 4a(dx2 − dy2)dxdy + b(dx4 − 6dx2dy2 + dy4)
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where

a(x, y) = By + R(x, y) , b(x, y) = y + S(x, y)

with B > 0, j2(R,S)(0, 0) = (a20, b20) x2 + (a11, b11) xy + (a02, b02) y2, and a20−Bb20 6=
0. First, we suppose a20 −Bb20 > 0.

We first study the configuration around the origin of the positive quadratic dif-

ferential form ω+ = b (dy2 − dx2) + 2 (−a +
√

a2 + b2) dx dy . Since a(x, y) =

(a20 − Bb20) x2 + · · · > 0 , for (x, y) ∈ b−1(0) − {(0, 0)} sufficiently close to the

origin, the set Sing(ω+) is a regular curve through the origin. Moreover, the roots of

the separatrix equation at the origin

S(ω+)(x, y) = y(y2 − x2) + 2(−By +
√

1 + B2 | y |)xy ,

which are the possible directions of asymptotic convergence to the origin for the leaves

of the foliations f1(ω
+) and f2(ω

+), are the following. The line y = 0 and the segments

y = vi x, with (−1)i x ≥ 0, for i = 1, 2, 3, 4, where

vi = B −
√

B2 + 1 + (−1)i

√
(B −

√
B2 + 1)2 + 1 if i = 1, 2,

(2.4.13)

vi = B +
√

B2 + 1 − (−1)i

√
(B +

√
B2 + 1)2 + 1 if i = 3, 4 .

Observe that v1 < −1 < v4 < 0 < v2 < 1 < v3 . Consider the blowing–up

(x, y) = (u, uv) .

If (S, R)(u, uv) = u2 (S1, R1)(u, v) , then (u, v)∗(ω+) = uω+
1 , with

ω+
1 = u2A1(u, v)dv2 + 2uA2(u, v)dudv + A3(u, v)du2 .

For u 6= 0, we have

A1(u, v) = v + uS1(u, v),

A2(u, v) = v A1(u, v)−
[
Bv + uR1(u, v)− | u |

u

√
H(u, v)

]
,

A3(u, v) = (v2 − 1) A1(u, v)− 2v

[
Bv + uR1(u, v)− | u |

u

√
H(u, v)

]
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with

H(u, v) = (Bv + uR1(u, v))2 + (v + uS1(u, v))2 .

The singular points of ω+
1 on u = 0 correspond to the solutions of A3(0, v) = 0. Hence

the origin is a singular point; the other singular points are the following. For u ≥ 0

(resp. u ≤ 0), they are (0, v2) and (0, v4) (resp. (0, v1) and (0, v3)).

In order to obtain the local configuration of ω+
1 around these singular points, we

consider the vector fields Xi = Xi(ω
+
1 ), Yi = Yi(ω

+
1 ) and Zi = Zi(ω

+
1 ), with i = 1, 2,

defined by

Xi(u, v) =

(
u2A1(u, v),−uA2(u, v) + (−1)i

√
u2(A2

2 − A1 A3)(u, v)

)
,

Yi(u, v) =

(
uA1(u, v),−A2(u, v) + (−1)i

√
(A2

2 − A1 A3)(u, v)

)
,

Zi(u, v) =

(
u

[
A2(u, v) + (−1)i

√
u2(A2

2 − A1 A3)(u, v)

]
,−A3(u, v)

)
.

We know that Xi is tangent to the foliation fi(ω
+
1 ), and that Yi is tangent to Zi. Now for

u positive (resp. u negative), Yi is also tangent to Xi (resp. to X3−i). (See for example

[C2–12, Section 4].)

Since A2(0, vi) = 1
2
(1 + v2

i ) for i = 1, 2, 3, 4, the point (0, vi) is a regular point

of Y1 and a singular point of Y2. Moreover, since ∂A3

∂v
(0, vi) > 0, the point (0, vi) is a

hyperbolic saddle of Z2. Since A2(0, 0) = 0, in order to obtain the local configuration

around the origin, we consider the blowing–up

x = s , y = s2 t .

Let

a(x, y) = By + R(x, y) = By + a20 x2 + a11 xy + a02 y2 + R2(x, y)

and

b(x, y) = y + S(x, y) = y + b20 x2 + b11 xy + b02 y2 + S2(x, y) ,

with j2(R2, S2)(0, 0) = (0, 0) , and (R2, S2)(s, s
2 t) = s3 (R3, S3)(s, t) .
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Then (s, t)∗(ω+) = s2 ω+
2 , with

ω+
2 = s4 N1(s, t) dt2 + 2 s2 N2(s, t) ds dt + N3(s, t) ds2 ,

where

N1(s, t) = b20 + t + s(b11t + b02st
2 + R3(s, t)) ,

N2(s, t) = 2stN1 −M1(s, t) +
√

H2(s, t) ,

N3(s, t) = (4s2t2 − 1)N1 + 4st
[
−M1(s, t) +

√
H2(s, t)

]

and

M1(s, t) = a20 + B t + s(a11t + a02st
2 + S3(s, t)) ,

H2(s, t) = N1(s, t)
2 + M1(s, t)

2 .

The unique singular point of ω+
2 on the line s = 0 is the point (0,−b20) . For i = 1, 2 ,

consider the vector fields

Xi(s, t) =
(
s4 N1(s, t),−s2 N2(s, t) + (−1)i s2

√
N2(s, t)2 −N1(s, t)N3(s, t)

)

and

Yi(s, t) =
s2 N1(s, t)

M1(s, t) +
√

H2(s, t)
(P (s, t), Qi(s, t))

where

P (s, t) = s2
(
M1(s, t) +

√
H2(s, t)

)
,

Qi(s, t) = −2st
(
M1(s, t) +

√
H2(s, t)

)
−N1(s, t) +

(−1)i
√

2

√
H2(s, t) + M1(s, t)

√
H2(s, t) .

Then Xi is tangent to the foliation fi(ω
+
2 ) , for i = 1, 2 . Since M1(0,−b20) > 0 , the

vector fields Yi are well defined in a neighborhood of the point (0,−b20) . Further, we

have Yi = Xi (resp. Yi = X3−i ) for N1(s, t) positive (resp. negative). Observe that the

vector fields (P (s, t), Qi(s, t)) , with i = 1, 2 , are non–vanishing at the point (0,−b20).

To complete our analysis of the local configuration of ω+, we consider the blowing–up
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(x, y) = (st, st2) .

If (R, S)(st, st2) = s2t2 (R4, S4)(s, t) , then (s, t)∗(ω+) = st2 ω+
3 , with

ω+
3 = s2 A3(s, t) dt2 + 2 s t B3(s, t) ds dt + t2 C3(s, t) ds2

where, for s 6= 0 , we have

A3(s, t) = −1− 4 B t + 4t2 + 4
| s |
s

t
√

H3(s, t) −
s [S4(s, t) + 4 t R4(s, t)− 4 t2 S4(s, t)] ,

B3(s, t) = −1− 3 B t + 2 t2 + 3
| s |
s

t
√

H3(s, t) −
s [S4(s, t) + 3 t R4(s, t)− 2 t2 S4(s, t)] ,

C3(s, t) = −1− 2 B t + t2 + 2 t
| s |
s

√
H3(s, t) −

s [S4(s, t) + 2 t R4(s, t)− t2 S4(s, t)]

with

H3(s, t) = (B + sR4(s, t))
2 + (1 + s S4(s, t))

2 .

The vector fields associated with ω3 are

Xi(ω
+
3 )(s, t) = (s2 A3(s, t),−stB3(s, t) + (−1)i

√
s2t2(B2

3 − A3C3)(s, t)) ,

and

Yi(ω
+
3 )(s, t) = (sA3(s, t), t[−B3(s, t) + (−1)i

√
(B2

3 − A3C3)(s, t)])

with i = 1, 2. As usual, for i = 1, 2 , the vector field Xi(ω
+
3 ) is tangent to the foliation

fi(ω
+
3 ) , and the vector field Yi(ω

+
3 ) is tangent to Xi(ω

+
3 ) (resp. X3−i) for st positive

(resp. negative). Since A3(0, 0) = B3(0, 0) = −1 and (B2
3−A3C3)(s, t) = t2 F (s, t) with

F (0, 0) > 0, we conclude that the origin is a saddle singular point for Yi(ω
+
3 ), with

i = 1, 2.

Therefore, the configuration of ω+
1 (resp. ω+) around the line u = 0 (resp. the origin)

is the one shown in Figure 7 (resp. Figure 8), which proves that the phase portrait of

the net N1(ω) is homeomorphic to the one shown in Figure 6.
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Figure 7

f1(ω
+
1 ) f2(ω

+
1 )

Figure 8
f1(ω

+) f2(ω
+)

We now study the configuration around the origin of ω− = b (dy2 − dx2) +

2 (−a − √a2 + b2) dx dy . Since a(x, y) = (a20 − Bb20) x2 + · · · > 0 for (x, y) ∈
b−1(0) − {(0, 0)} sufficiently close to the origin, the set Sing(ω−) is reduced only to

the origin. The roots of the separatrix equation at the origin

S(ω−)(x, y) = y(y2 − x2) + 2(−By −
√

1 + B2 | y |)xy

are the line y = 0 and the segments y = vi x, with (−1)i x ≤ 0, for i = 1, 2, 3, 4, where

the v′is are given by (2.4.13). Performing the blowing–up

(x, y) = (u, uv)

we obtain (u, v)∗(ω−) = uω−1 . Similarly, the origin is a singular point of ω−1 ; the

other singular points on u = 0 are (0, v1) and (0, v3), for u ≥ 0, and (0, v2) and (0, v4),

for u ≤ 0.

We now study the corresponding vector fields Xi = Xi(ω
−
1 ), Yi = Yi(ω

−
1 ) and Zi =

Zi(ω
−
1 ), with i = 1, 2, obtaining the following. The points (0, vi), with i = 1, 2, 3, 4,

are regular points of Y1, and are singular points of Y2. Moreover, the points (0, vi) are

hyperbolic saddles of Z2.



52

As before, to determine the local configuration around the origin, we perform the

blowing–up

x = s , y = s2 t .

Let

a(x, y) = By + R(x, y) = By + a20 x2 + a11 xy + a02 y2 + R2(x, y)

and

b(x, y) = y + S(x, y) = y + b20 x2 + b11 xy + b02 y2 + S2(x, y) ,

with j2(R2, S2)(0, 0) = (0, 0) and (R2, S2)(s, s
2 t) = s3 (R3, S3)(s, t) .

Then (s, t)∗(ω−) = s2 ω−2 , with

ω−2 = s4 N1(s, t) dt2 + 2 s2 N2(s, t) ds dt + N3(s, t) ds2

where

N1(s, t) = b20 + t + s(b11t + b02st
2 + S3(s, t)),

N2(s, t) = 2stN1 −M1(s, t)−
√

H2(s, t) ,

N3(s, t) = (4s2t2 − 1)N1 + 4st
[
−M1(s, t)−

√
H2(s, t)

]

and

M1(s, t) = a20 + Bt + s(a11t + a02st
2R3(s, t)) ,

H2(s, t) = N1(s, t)
2 + M1(s, t)

2 .

The unique singular point of ω−2 on the line s = 0 is the point (0,−b20) . Observe that

N2(0,−b20) = −2M1(0,−b20) < 0 and N1(0,−b20) =

N3(0,−b20) = 0. For i = 1, 2 , consider the vector fields Xi(s, t) = s2 Yi(s, t), with

Yi(s, t) =
(
s2 N1(s, t),−N2(s, t) + (−1)i

√
N2(s, t)2 −N1(s, t)N3(s, t)

)
.

Then the point (0,−b20) is a singular point for Y1, and is a regular point for Y2.

Moreover, the vector field Y1 is tangent to the vector field

Z1(s, t) =
(
s2

(
−N2(s, t) +

√
N2(s, t)2 −N1(s, t)N3(s, t)

)
, N3(s, t)

)
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which has a saddle node singular point at the point (0,−b20) with parabolic sector in

s ≤ 0.

In order to complete our analysis of the local configuration of ω− , we consider the

blowing–up

(x, y) = (st, st2) .

If (R, S)(st, st2) = s2t2 (R4, S4)(s, t) , then (s, t)∗(ω−) = st2 ω−3 , with

ω−3 = s2 A3(s, t) dt2 + 2 s t B3(s, t) ds dt + t2 C3(s, t) ds2

where, for s 6= 0 we have

A3(s, t) = −1− 4 B t + 4t2 − 4
| s |
s

t
√

H3(s, t) −
s [S4(s, t) + 4 t R4(s, t)− 4 t2 S4(s, t)] ,

B3(s, t) = −1− 3 B t + 2 t2 − 3
| s |
s

t
√

H3(s, t) −
s [S4(s, t) + 3 t R4(s, t)− 2 t2 S4(s, t)] ,

C3(s, t) = −1− 2 B t + t2 − 2 t
| s |
s

√
H3(s, t) −

s [S4(s, t) + 2 t R4(s, t)− t2 S4(s, t)]

with

H3(s, t) = (B + sR4(s, t))
2 + (1 + s S4(s, t))

2 .

The vector fields associated with ω−3 are

Xi(ω
−
3 )(s, t) = (s2 A3(s, t),−stB3(s, t) + (−1)i

√
s2t2(B2

3 − A3C3)(s, t))

and

Yi(ω
−
3 )(s, t) = (sA3(s, t), t[−B3(s, t) + (−1)i

√
(B2

3 − A3C3)(s, t)])

with i = 1, 2. As usual, for i = 1, 2 , the vector field Xi(ω
−
3 ) is tangent to the foliation

fi(ω
−
3 ) , and the vector field Yi(ω

−
3 ) is tangent to Xi(ω

−
3 ) (resp. X3−i) for st positive

(resp. negative). Since A3(0, 0) = B3(0, 0) = −1 and (B2
3−A3C3)(s, t) = t2 F (s, t) with

F (0, 0) > 0, we conclude that the origin is a saddle singular point for Yi(ω
−
3 ), with

i = 1, 2.
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Therefore, the configuration of ω−1 (resp. ω−) around the line u = 0 (resp. the origin)

is the one shown in Figure 9 (resp. Figure 10), which proves that the phase portrait of

the net N2(ω) is homeomorphic to the one shown in Figure 6.

Figure 9

f1(ω
−
1 ) f2(ω

−
1 )

Figure 10
f1(ω

−) f2(ω
−)

Finally, in the case a20 − Bb20 < 0, the configuration obtained is the same as the one

already obtained, though with the nets interchanged. The proof of the theorem is now

complete.

2.5 Smooth families in Q(R2)

In this section we deal with local problems around isolated singular points of rank

greater or equal than one of quartics in Q(M). Such problems are normal forms, finite

determinacy and versal unfoldings. Thus we will work with quartic differential forms

in Q(R2).

The notion of equivalence of families of quartic differential forms in Q(R2) used in

this article is the following.
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Definition 2.5.1. Consider two smooth families (ωµ) and (vµ) in Q(R2) with (the

same) parameter µ ∈ Rk. Let N1(ωµ) and N2(ωµ) (resp. N1(vµ) and N2(vµ)) be the

nets associated to ωµ (resp. vµ). The families (ωµ) and (vµ) are called C0−equivalent

(over the identity) if there exist homeomorphisms hi
µ : R2 → R2 such that, for each

µ ∈ Rk, we have that hi
µ is a C0−equivalence between the nets Ni(ωµ) and Ni(vµ),

with i = 1, 2.

Remark 2.5.1. For local families around the origin of R2×Rk , we impose for i = 1, 2 ,

the conditions that hi
0̄(0, 0) = 0 , that hi

µ only be defined for ((x, y), µ) which belongs

to a neighborhood V ×W of ((0, 0), 0̄) in R2×Rk , and that {(hi
µ(x, y), µ) ∈ V ×W

be a neighborhood of ((0, 0), 0̄) .

Definition 2.5.2. Let U ⊂ Rk and V ⊂ Rl be neighborhoods of the origin. If φ :

(V, 0̄) → (U, 0̄) is a smooth map and (ωµ) is a smooth family of quartics in Q(R2) with

parameter µ ∈ U , the family (vα) = ωφ(α) , with parameter α ∈ V , is called a family

C∞−induced by φ .

Recall that an unfolding of a quartic ω ∈ Q(R2) is any smooth family (ωµ) in

Q(R2) with ω0̄ = ω ; thus we have the following Definition.

Definition 2.5.3. An unfolding (ωµ) of ω0 is called a versal unfolding of ω0 if all

unfoldings of ω0 are C0−equivalent to an unfolding C∞−induced from (ωµ).

Our principal tool is the following result, similar to Proposition 2.2.3, which assert the

existence of main charts for families of quartics in Q(R2) . The proof is an adaptation

of the one presented in [C2–21, Addendum 1] for the existence of smooth isothermal

coordinates and it is presented in Section 2.6.

Proposition 2.5.1. Let (ω(µ)), with parameter µ ∈ Rk, be an arbitrary smooth family

in Q(R2). Given p0 ∈ R2, there exits a local chart φ : (U × V, (p0, 0̄)) → (R2 ×
Rk, ((0, 0), 0̄)) of the form φ(p, µ) = (u(p, µ), v(p, µ), µ), with φ(p, 0̄) = (u(p), v(p), 0̄)

for all p ∈ U0, such that in the chart φµ : (U0, p(µ)) → (R2, (0, 0)) defined by φµ(p) =
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φ(p, µ) for all µ ∈ V, the local expression of ω(µ) is

φ∗µ(ω(µ)) = 4 a(µ) (du2 − dv2) dudv + b(µ) (du4 − 6 du2dv2 + dv4) . (2.5.14)

2.5.1 Simple singular points

Our next result asserts that for a smooth family ω(µ) in Q(R2) such that ω(0) has a

simple singular point at the origin, without loss of generality we may assume that the

origin is a singular point of ω(µ), for small | µ |. Here is a precise statement.

Lemma 2.5.1. Let ω(µ) , with parameter µ ∈ Rk , be an arbitrary smooth family of

quartic differential forms in Q(R2) such that ω(0) has a simple singular point at the

origin. Then there exists a change of coordinates of the form (x, y, µ) = (h(u, v, µ), µ)

such that, for each µ with small | µ |, the origin is a singular point of the quartic

(x, y)∗(ω(µ)) .

Proof. We may assume that

ω(µ) = 4 a(u, v, µ) (du2 − dv2) dudv + b(u, v, µ) (du4 − 6 du2dv2 + dv4) .

By hypothesis we have that (a(0, 0, 0̄), b(0, 0, 0̄))((0, 0)) = (0, 0) , and that

D1(a(0, 0, 0̄), b(0, 0, 0̄)) ((0, 0)) =


 a01 a02

a11 a12




is non–singular. Since the map (a, b) : R2 × Rk → R2 is smooth, it follows from

the implicit function theorem that there exists a smooth map S defined on a small

neighborhood of 0̄ ∈ Rk so that S(0̄) = (0, 0) and

(a0, a1)(S(µ), µ) = (0, 0)

for all µ in such a neighborhood. Using the change of coordinates

(x, y, µ) = (u, v, µ)− (S(µ), 0̄)

we obtain the Lemma.
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Our next result shows that the normal form (2.3.8) also holds for families in Q(R2)

which pass through a quartic having a simple singular point.

Lemma 2.5.2. Let (ω(µ)), with parameter µ ∈ Rk, be an arbitrary smooth family

in Q(R2), such that ω(0) has a simple singular point at the origin. Then there exits

a local chart φ : (U × V, ((0, 0), 0̄)) → (R2 × Rk, ((0, 0), 0̄)) of the form φ(p, µ) =

(u(p, µ), v(p, µ), µ), with φ(p, 0̄) = (u(p), v(p), 0̄) for all p ∈ U0, such that in the chart

φµ : (U0, p(µ)) → (R2, (0, 0)) defined by φµ(p) = φ(p, µ) for all µ ∈ V, the local

expression of ω(µ) is

φ∗µ(ω(µ)) = 4(A(µ)u + B(µ)v + R(µ))(du2 − dv2)dudv +

(v + S(µ))(du4 − 6du2dv2 + dv4) ,

with A(µ) 6= 0 and j1(R(µ), S(µ))(0, 0) = (0, 0).

Proof. For µ in a neighborhood V of the origin in Rk, there exists local chart (s, t, µ)

such that the local expression of ω(µ) is

(s, t)∗(ω(µ)) = 4(Ã(µ)s + B̃(µ)t + R̃(µ))(ds2 − dt2)dsdt +

(C̃(µ)s + D̃(µ)t + S̃(µ))(ds4 − 6ds2dt2 + dt4)

with j1(R(µ), S(µ))(0, 0) = (0, 0) and A(µ)D(µ)−B(µ)C(µ) 6= 0.

Let L(α,β) : R3 → R3, with parameter (α, β) ∈ R2, be the family of linear isomor-

phisms such that the inverse of L = L(α,β) is given by

L−1(s, t, µ) = ((1 + α)s− βt, βs + (1 + α)t, µ) .

Observe that for all (α, β) ∈ R2, the map L(α,β) is a linear rotation at the first two

coordinates. Therefore, in the chart

(s, t, µ) = ((1 + α)u− βv, βu + (1 + α)v, µ)

the local expression of ω(µ) is given by

(u, v)∗(ω(µ)) = 4(A(µ)u + B(µ)v + R̃)(du2 − dv2)dudv

+(C(µ)u + D(µ)v + S̃)(du4 − 6du2dv2 + dv4) .
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To complete the proof, it suffices to show that there exists (α, β) = (α(µ), β(µ)) so

that (C(µ), D(µ)) ≡ (0, 1), for µ ∈ V sufficiently close to 0̄ . In fact,

C(µ) = 4(1 + α)4Ã(µ)β + 4(1 + α)3B̃(µ)β2 − 4(1 + α)2Ã(µ)β3 −
4(1 + α)B̃(µ)β4 + (1 + α)4βD̃(µ)− 6(1 + α)2β3D̃(µ) + β5D̃(µ) +

(1 + α)5C̃(µ)− 6(1 + α)3β2C̃(µ) + (1 + α)β4C̃(µ)

and

D(µ) = 4(1 + α)4B̃(µ)β − 4(1 + α)3Ã(µ)β2 − 4(1 + α)2B̃(µ)β3 + 4(1 +

α)Ã(µ)β4 + (1 + α)5D̃(µ)− 6(1 + α)3β2D̃(µ) + (1 + α)β4D̃(µ)−
(1 + α)4βC̃(µ) + 6(1 + α)2β3C̃(µ)− β5C̃(µ) .

If C̃(µ) = 0 , then D̃(µ) 6= 0 . We may set β = 0 and 1+α = 1

D̃(µ)
1
5
· Then C(µ) = 0

and D(µ) = 1. If C̃(µ) 6= 0 , we set 1 + α = m β , with m a real root of the equation

C̃(µ)x5 + 2 (2B̃(µ)− 3C̃(µ))x4 + 2 (2B̃(µ)− 3C̃(µ))x3 −
2 (2Ã(µ) + 3D̃(µ))x2 + (C̃(µ)− 4B̃(µ))x + D̃(µ) = 0 .

Then C(µ) = 0 , and we are under the condition of the first case. The proof now

follows.

To obtain a versal unfolding for a simple singular point, we will need the following.

Lemma 2.5.3. Let (ω(µ)) , with parameter µ ∈ Rk, be an arbitrary smooth family in

Q(R2) such that ω(0) has a simple singular point at the origin. Consider a local chart

(u, v, µ) such that

ω(µ) = 4(A(µ)u + B(µ)v + R(µ)(u, v))(du2 − dv2)dudv +

(v + S(µ)(u, v))(du4 − 6du2dv2 + dv4)

with j1(R(µ), S(µ))(0, 0) = (0, 0). Then, for small | µ |, the family (ω(µ)) is equivalent

to the family

ω̃(µ) = 4(A(µ)u + B(µ)v)(du2 − dv2)dudv + v(du4 − 6du2dv2 + dv4) .
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Proof. The Lemma is clear from the fact that both families have the same linear part

at the origin.

We next give a versal unfolding for singular points of type H34 .

Theorem 2.5.1. A versal unfolding of an H34−singular point is the family of quartic

υ(λ) , with λ ∈ R, given by

υ(λ) = 4

((
λ− 125

32

)
u +

51

32
v

)
(du2 − dv2)dudv + v (du4 − 6du2dv2 + dv4) .

Proof. Let (ω(µ)) , with parameter µ ∈ Rk, be an arbitrary smooth family in Q(R2) so

that ω(0) has an H34−singular point at the origin. By Lemma 2.5.3 we may suppose

that

ω(µ) = 4(A(µ)u + B(µ)v)(du2 − dv2)dudv + v(du4 − 6du2dv2 + dv4) (2.5.15)

with A(µ) 6= 0 .

First we claim that we may suppose A(0) 6= −1
4
· In fact A(0) = −1

4
if and only if

the root of multiplicity two of the separatrix polynomial g(s) is s = 0. Now if A = −1

4
and s0 is a simple root of g(s) , then we make a rotation that in µ = 0 sends s0 on

s = 0. In the resulting chart, the local expression of ω is also of the form (2.5.15).

Hence, the corresponding coefficient A(0) 6= −1

4
, which completes the proof of the

claim.

Consider the real–valued function ψ defined on a neighborhood of the origin of Rk by

ψ(µ) = 16 [4(1 + B(µ)2)3 + 24(1 + B(µ)2)2A(µ) +

8(5−B(µ)2)(1 + B(µ)2)A(µ)2 + 4(9 + B(µ)2)A(µ)3 +

(17 + 4B(µ)2)A(µ)4 + 4A(µ)5] .

Then the unfolding induced by ψ from the family (υ(λ))λ∈R is

υ̃(µ) = 4

((
ψ(µ)− 125

32

)
u +

51

32
v

)
(du2 − dv2)dudv + v (du4 − 6du2dv2 + dv4) .
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Since the discriminant (2.3.10) associated to the family (ω(µ)) is ∆(µ) = ψ(µ), and

since the discriminant associated to the family (υ̃(µ)) is of the form

∆̃(µ) = ψ(µ) h(ψ(µ))

where h(x) is a degree 4 polynomial with h(0) > 0, both families are equivalent for

small |µ| . The proof is now complete.

We now consider the singular points of type H̃3 .

Theorem 2.5.2. A versal unfolding of an H̃3−singular point is the family of quartic

υ(λ), with λ = (λ1, λ2) ∈ R2, given by

υ(λ) = 4

((
λ1 − 1

4

)
u + λ2 v

)
(du2 − dv2)dudv + v (du4 − 6du2dv2 + dv4) .

Proof. Let (ω(µ)) , with parameter µ ∈ Rk, be an arbitrary smooth family in Q(R2)

so that ω(0) has an H̃3−singular point at the origin. By Lemma 2.5.3 we may suppose

ω(µ) = 4(A(µ)u + B(µ)v)(du2 − dv2)dudv + v(du4 − 6du2dv2 + dv4)

with A(0) = −1
4

and B(0) = 0 . Let us consider the real bi–valued function ψ defined

on a neighborhood of the origin of Rk by

ψ(µ) = (A(µ), B(µ)) .

Then the unfolding induced by ψ from the family (υ(λ))λ∈R2 is

υ̃(µ) = 4

((
A(µ)− 1

4

)
u + B(µ) v

)
(du2 − dv2)dudv + v (du4 − 6du2dv2 + dv4) .

Since the discriminant (2.3.10) associated to the family (ω(µ)) is equal to that associ-

ated to the family (υ̃(µ)), for every µ, we conclude that both families are equivalent.

The proof is now complete.

The next two theorems give the bifurcation diagrams of these types of singular points.
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Theorem 2.5.3. Consider the one–parameter family of quartic ω(λ) given by

ω(λ) = 4

((
λ− 125

32

)
u +

51

32
v

)
(du2 − dv2)dudv + v (du4 − 6du2dv2 + dv4) .

Then, for all values of λ, the origin is a singular point of ω(λ). Moreover, for small

| λ |, the origin is of type H3 for λ < 0, of type H34 for λ = 0, and of type H4 for

λ > 0.

Proof. Since the associated discriminant is

Λ =
λ

8192
(6640625− 48348750λ + 30426304λ2 − 6680064λ3 + 524288λ4) ,

the proof follows.

Theorem 2.5.4. Consider the two–parameter family of quartic ω(λ), with λ = (λ1, λ2) ∈
R2, given by

ω(λ) = 4

((
λ1 − 1

4

)
u + λ2 v

)
(du2 − dv2)dudv + v (du4 − 6du2dv2 + dv4) .

Then the origin is a singular point for all values of λ = (λ1, λ2). Moreover, for small

| λ |, we have that:

i) The origin is of type H3 if Λ < 0.

ii) The origin is of type H34 if Λ = 0 and λ1 6= 0, or if λ1 = 0 and λ2 6= 0.

iii) The origin is of type H4 for Λ > 0 and λ1 6= 0.

iv) The origin is of type H̃3 for λ = (λ1, λ2) = (0, 0).

Here

Λ =
1

4
(625 λ1 + 1200 λ2 + 1376 λ3

1 + 768 λ4
1 + 256 λ5

1 + 125 λ2
2 +

2080 λ1 λ2
2 + 1952 λ2

1 λ2
2 + 256 λ4

1 λ2
2 + 352 λ4

2 + 1792 λ1 λ4
2

−512 λ2
1 λ4

2 + 256 λ6
2) .
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Figure 11

λ1

λ2

Λ < 0

Λ > 0

Λ = 0

Proof. For the proof, it suffices to observe that the corresponding values of A and B

are

A = λ1 − 1

4
and B = λ2 .

2.5.2 A non–simple case

Lemma 2.5.4. Let ω(µ) , with parameter µ ∈ Rk , be an arbitrary smooth family of

quartic differential forms in Q(R2) such that ω(0) has a H45−singular point at the

origin. Then there exits a local chart φ : (U × V, ((0, 0), 0̄)) → (R2 × Rk, ((0, 0), 0̄)) of

the form φ(p, µ) = (u(p, µ), v(p, µ), µ), with φ(p, 0̄) = (u(p), v(p), 0̄) for all p ∈ U0, such

that in the chart φµ : (U0, p(µ)) → (R2, (0, 0)) defined by φµ(p) = φ(p, µ) for all µ ∈ V,

the local expression of ω(µ) is

φ∗µ(ω(µ)) = 4 a(µ) (du2 − dv2) dudv + b(µ) (du4 − 6 du2dv2 + dv4) , (2.5.16)

where

a(µ)(u, v) = A1(µ) u + A2(µ) v + R(u, v, µ)

b(µ)(u, v) = n0(µ) + n1(µ)(A1(µ) u + A2(µ) v) + S(u, v, µ) ,

with A1(0) = n0(0) = 0 and n1(0) A2(0) = 1.
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Proof. Making a rotation if necessary we may assume (see Proposition ...)

(x, y) ∗ (ω(µ)) = 4 a(µ) (dx2 − dy2)dxdy + b(µ) (dx4 − 6 dx2dy2 + dy4) ,

with

a(0)(x, y) = B y + a20 x2 + a11 xy + a02 y2 + R(x, y) ,

b(0)(x, y) = y + b20 x2 + b11 xy + b02 y2 + R(x, y) ,

and B > 0, a20 −Bb20 6= 0. Consider the map S : Rk × (u, v)(U) → R2 defined by

S(µ, q) = (a(µ)(q), det D(a(µ), b(µ))(q)) .

Thus S is smooth, S(0̄, (0, 0)) = (0, 0), and

D2S(0̄, (0, 0)) =


 0 B

2(a20 −B b20) ∗


 .

According to the Implicit Function Theorem, there exist neighborhoods V of 0̄ in Rk

and U1 ⊂ (u, v)(U) of the origin and a smooth map s : V → U1 such that s(0̄) = (0, 0)

and S(µ, s(µ)) = (0, 0) for all µ ∈ V . Using the change of coordinates

(u, v, µ) = (x, y, µ)− (s(µ), 0̄)

we obtain the Lemma.

Lemma 2.5.5. Let (ω(µ)), with parameter µ ∈ Rk, be an arbitrary smooth family

in Q(R2), such that ω(0) has a H45−singular point at the origin. Then there exits

a local chart φ : (U × V, ((0, 0), 0̄)) → (R2 × Rk, ((0, 0), 0̄)) of the form φ(p, µ) =

(u(p, µ), v(p, µ), µ), with φ(p, 0̄) = (u(p), v(p), 0̄) for all p ∈ U0, such that in the chart

φµ : (U0, p(µ)) → (R2, (0, 0)) defined by φµ(p) = φ(p, µ) for all µ ∈ V, the local

expression of ω(µ) is

φ∗µ(ω(µ)) = 4 a(µ) (du2 − dv2) dudv + b(µ) (du4 − 6 du2dv2 + dv4) , (2.5.17)
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with

a(µ)(u, v) = B(µ) v + R(u, v, µ)

b(µ)(u, v) = n0(µ) + v + S(u, v, µ) ,

and n0(0) = 0, B(0) = B > 0.

Proof. Without loss of generality we may suppose

(x, y)∗(ω(µ)) = 4 a(µ) (dx2 − dy2) dxdy + b(µ) (dx4 − 6 dx2dy2 + dy4) , (2.5.18)

where

a(µ)(x, y) = A1(µ) x + A2(µ) y + R(x, y, µ) ,

b(µ)(x, y) = n0(µ) + n1(µ)(A1(µ) x + A2(µ) y) + S(x, y, µ) ,

with A1(0) = n0(0) = 0 and n1(0) A2(0) = 1.

Let L(α,β) : R3 → R3, with parameter (α, β) ∈ R2, be the family of linear isomor-

phisms such that the inverse of L = L(α,β) is given by

L−1(x, y, µ) = ((1 + α)x− βy, βx + (1 + α)y, µ) .

Observe that for all (α, β) ∈ R2, the map L(α,β) is a linear rotation at the first two

coordinates. Putting β = −A1(1 + α)/A2, in the chart

(x, y, µ) = ((1 + α)u− βv, βu + (1 + α)v, µ)

the local expression of ω(µ) is given by

(u, v)∗(ω(µ)) = 4[m0(µ) + B(µ)v + N(u, v, µ)](du2 − dv2)dudv

+ [n0(µ) + D(µ)v + M(u, v, µ)](du4 − 6du2dv2 + dv4) ,

where

m0(µ) = −4n0(µ) A1(µ) (A1(µ)2 − A2(µ)2) (1 + α(µ))4/(A2(µ))3 ,

B(µ) = P (µ) (1 + α(µ))5 ,

n0(µ) = n0(µ) [A1(µ)2 − A2(µ)2]2 (1 + α(µ))4/(A2(µ))4

D(µ) = Q(µ) (1 + α(µ))5 ,
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with P (0) = A2(0) 6= 0 and Q(0) = n1(0) A2(0) = 1.

Therefore, there exist α defined at a small neighborhood of the origin of Rk such that

(u, v)∗(ω(µ)) = 4[m0(µ) + B(µ)v + N(u, v, µ)](du2 − dv2)dudv

+ [n0(µ) + v + M(u, v, µ)](du4 − 6du2dv2 + dv4) .

Finally, with a second change of coordinates of the form

(u, v, µ) = (s, v0(µ) + t, µ) ,

with v0(µ) a suitable map, we obtain the desire result.

Proposition 2.5.2. Let (ω(µ)), with parameter µ ∈ Rk, be an arbitrary smooth family

in Q(R2), such that ω(0) has a H45−singular point at the origin. Then there exist

r > 0, a neighborhood U of the origin in R2 and a smooth map f : B(0, r) ⊂ Rk → R,

such that for every µ ∈ B(0, r), the following three properties are satisfied.

a) f(µ) = 0 if and only if ω(µ) has a unique singular point in U , which is a

H45−singular point.

b) f(µ) > 0 if and only if ω(µ) has only two singular points in U , one is a

H4−singular point and the other a H5−singular point.

c) f(µ) < 0 if and only if ω(µ) has no singular points in U .

Proof. Without loss of generality we may suppose

(x, y)∗(ω(µ)) = 4 a(µ) (dx2 − dy2) dxdy + b(µ) (dx4 − 6 dx2dy2 + dy4) ,

where

a(µ)(x, y) = B(µ) y + R(µ)(x, y) ,

b(µ)(x, y) = n0(µ) + y + S(µ)(x, y) ,

j2(R(µ), S(µ))(0, 0) = (a20(µ), b20(µ)) x2 + (a11(µ), b11(µ)) xy

+ (a02(µ), b02(µ)) y2
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with n0(0) = 0, B(µ) > 0 and a20(µ)−B(µ)b20(µ) 6= 0 .

Without loss of generality, assume that a20(µ)−B(µ)b20(µ) > 0 .

Consider a neighborhood U0 ⊂ (x, y)(U) of the origin and a square Rδ = Iδ × Iδ

where Iδ = [−δ, δ], with δ > 0 such that Rδ ⊂ U0. Taking δ sufficiently small if

necessary, we assume the following three properties for ‖µ‖ small:

1) ∆(µ)(x, y) 6= 0 in Rδ, where ∆(µ)(x, y) is the discriminant of the homogeneous

degree five polynomial 4 Da(µ)(x,y)(u, v)(u2−v2)uv+Db(µ)(x,y)(u, v)(u4−6u2v2+

v4).

2) There exists a smooth map h(µ) : Iδ → R such that a(µ)(x, y) = B(µ)(y −
h(µ)(x))M1(x, y, µ)), with M1(0, 0, 0̄) = 1.

3) The curves y = h(µ)(x) and H(µ)(x, y) = 0, where H(µ)(x, y) is the determi-

nant of the Jacobian matrix of the map (a(µ), b(µ)) at (x, y), have the point

(x, y)(p(µ)) = (0, 0) as the unique common point in Rδ ; furthermore, the inter-

section is transversal.

We next show that the map f given by f(µ) = bµ(0, 0) satisfies our Proposition. In

effect, the map f is smooth. For µ fixed, we set m(x) = bµ(x, h(µ)(x)). Then

m′(x) = (
∂a(µ)

∂y
(x, h(µ)(x)))−1H(µ)(x, h(µ)(x)) .

Since a20(µ) − B(µ)b20(µ) is positive, the map H2(µ)(x, h(µ)(x)) is positive (resp.

negative) for −δ < x < 0 (resp. 0 < x < δ). This implies that m(x) decreases strictly

in ]−δ, 0)[ and increases strictly in ]0, δ[. Assertions a), b) and c) now follow from

Proposition 2.3.4.

Lemma 2.5.6. Consider the family of quartics

ω(µ) = 4 a(µ)(du2 − dv2)dudv + b(µ) (du4 − 6du2dv2 + dv4) ,

where

a(µ)(u, v) = B(µ) v + a20(µ) u2 + a11(µ) u v + a02(µ) v2 + R2(µ)(u, v)

b(µ)(u, v) = n0(µ) + v + b20(µ) u2 + b11(µ) u v + b02(µ) v2 + S2(µ)(u, v) ,
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with n0(0) = 0 , B(0) = B > 0, a20(0)− B b20(0) 6= 0 and j2(R2, S2)(µ)(0, 0) = (0, 0).

Then, for small | µ |, the family (ω(µ)) is equivalent to the family

ω̃(µ) = 4 [B(µ)v + a20(µ) u2] (du2 − dv2) du dv

+ [n0(µ) + v + b20(µ) u2] (du4 − 6 du2 dv2 + dv4) .

Proof. The map f(µ) of Proposition 2.5.2 associated to this family is f(µ) = n0(µ) .

Therefore there exists a neighborhood U of (0, 0) and δ > 0 such that for all ‖µ‖ < δ

we have

a) n0(µ) = 0 imply that ω(µ) and ω̃(µ) has a unique singular point in U , which is

a H45−singular point.

b) n0(µ) > 0 imply that ω(µ) and ω̃(µ) has only two singular points in U , one is

a H4−singular point and the other a H5−singular point.

c) n0(µ) < 0 imply that ω(µ) and ω̃(µ) has no singular points in U .

Furthermore, the local configuration of N1(ω) and N1(ω̃) (resp. N2(ω) and N2(ω̃))

at the origin is homeomorphic to the ones shown in Figure 12 (resp. Figure 13).

Figure 12

n0(µ) > 0 n0(µ) = 0 n0(µ) < 0

Figure 13

n0(µ) > 0 n0(µ) = 0 n0(µ) < 0
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From these considerations the proof follows.

Theorem 2.5.5. A versal unfolding of an H45−singular point is the family of quartic

υ(λ) , with λ ∈ R, given by

υ(λ) = 4 v [du2 − dv2] du dv + (λ + v − u2) [du4 − 6du2dv2 + dv4] .

Proof. The proof follows from Lemma 2.5.6 because any pair of family of quartics

(ω(µ)) , with parameter µ ∈ Rk, of the form

ω(µ) = 4 [B(µ)v + a20(µ) u2] (du2 − dv2) du dv

+ [n0(µ) + v + b20(µ) u2] (du4 − 6 du2 dv2 + dv4)

with n0(0) = 0 , B(µ) > 0, a20(µ)−B(µ) b20(µ) > 0, are equivalent.

2.6 Appendix

This section is devoted to prove the existence of main charts for families in Q(R2) (see

Proposition 2.5.1.) The proof is inspired on the one presented by M. Spivak in [C2–21,

Addendum 1] for the existence of smooth isothermal coordinates. The strategy is to

prove the same sequence of results for families with parameters in Rk.

As in the case with no parameters, given a local chart (u, v) : (U, p0) → (R2, (0, 0))

and a family of smooth maps E(λ), F (λ), G(λ) defined at a neighborhood V ⊂
(u, v)(U) of the origin, with parameter λ in a neighborhood of the origin of Rk, that

verifies E(λ)G(λ)− F (λ)2 positive in V , we must find a coordinate change

(u, v, λ) = (f(x, y, λ), g(x, y, λ), λ)

so that, in a neighborhood of the origin of R2 × Rk, we have

E(λ)fxfy + F (λ)(fxgy + fygx) + G(λ)gxgy = 0 and

E(λ)(fx)
2 + 2F (λ)fxgx + G(λ)(gx)

2 = E(λ)(fy)
2 + 2F (λ)fygy + G(λ)(gy)

2 .
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Here, we introduce the notation of formal complex derivatives, identifying (x, y) with

z = x + ı y and considering

ωz =
1

2
(ωx − ı ωy) and ωz̄ =

1

2
(ωx + ı ωy) .

As in the case with no parameters, to find a solution (f(x, y, λ), g(x, y, λ)) of equa-

tions above is equivalent to find a solution ω(z, λ) of the complex equation

ωz̄(z, λ) = µ(z, λ) ωz(z, λ) , (2.6.19)

with

µ(z, λ) =
G(z, λ)− E(z, λ)− 2ıF (z, λ)

G(z, λ) + E(z, λ) + 2
√

E(z, λ)G(z, λ)− F (z, λ)2
·

Therefore |µ(z, λ)| < 1 and the equation (2.6.19) have the same class of differentia-

bility that the maps E(λ), F (λ), G(λ) .

Also, instead of solving the equation (2.6.19), we will instead solve the more general

equation

ωz̄(z, λ) = µ(z, λ) ωz(z, λ) + γ(z, λ) ω(z, λ) + δ(z, λ) , (2.6.20)

where µ, γ, δ are Cα at z and |µ(0, 0̄)| < 1 .

To be precise in the formulation of the results we introduce some definitions.

Definition 2.6.1. Given (z0, λ0) ∈ C × Rk, R > 0, 0 < α < 1 and an integer n ≥ 1,

we denote by D(z0, R) (resp. B(λ0, R)) the open ball in C (resp. in Rk) with center at

z0 (resp. λ0) and radius R. Also we define H(z0,λ0)(α,R) as the set consisting of the

maps f : D(z0, R)×B(λ0, R) → C such that

1) There exists K > 0 such that |f(z1, λ)− f(z2, λ)| ≤ K |z1 − z2|α , for all z1, z2 ∈
D(z0, R) and for all λ ∈ B(λ0, R) .

2) For every z ∈ D(z0, R) , the map λ Ã f(z, λ) is smooth in B(λ0, R).

Finally, we recursively define H(z0,λ0)(n + α, R) as the set consisting of the maps f :

D(z0, R) × B(λ0, R) → C that verify condition 2) above and such that the derivatives

fz and fz̄ exist and belong to H(z0,λ0)(n− 1 + α, R) .
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For simplicity we denote 0̃ = (0, 0̄), where 0 is the origin of C and 0̄ is the origin of

Rk. Also we put D(R) = D(0, R), B(R) = B(0̄, R) and H(n + α, R) = H0̃(n + α,R).

We start establishing a proposition similar to [C2–21, Addendum 1, Proposition 24].

Proposition 2.6.1. Let f ∈ H(α, R) such that

i) |f(z, λ)| ≤ M for all (z, λ) ∈ D(R)×B(R).

ii) |f(z1, λ)− f(z2, λ)| ≤ K |z1 − z2|α for all z1, z2 ∈ D(R) and λ ∈ B(R).

Define

F (z0, λ0) = − 1

π

∫

D(R)

f(z, λ0)

z − z0

dxdy ,

for (z0, λ0) ∈ D(R)×B(R). Then F ∈ H(1 + α, R) and

a) Fz̄(z0, λ0) = f(z0, λ0).

b) Fz(z0, λ0) = − 1
π

∫
D(R)

f(z,λ0)−f(z0,λ0)
(z−z0)2

dxdy.

c) |F (z0, λ0)| ≤ 4 R M , for all (z0, λ0) ∈ D(R)×B(R).

d) |Fz(z0, λ0)| ≤ 2α+1

α
Rα K, for all (z0, λ0) ∈ D(R)×B(R).

e) |Fz(z1, λ0)− Fz(z2, λ0)| ≤ C K |z1 − z2|α for all z1, z2 ∈ D(R) and λ0 ∈ B(R),

where C is a constant that does not depend on R, or on the function f .

Proof. Similar to the one’s in the case with no parameters.

The next result show that there is no loss of generality in assuming that µ(0̃) = 0

in equation (2.6.20).

Lemma 2.6.1 (Lemmachen). Suppose that given maps µ, γ, δ in H(α,R) with

µ(0̃) = 0, and arbitrary complex numbers a and b, there exists 0 < R̃ ≤ R such

that the equation (2.6.20) has a solution ω ∈ H(1 + α, R̃) that verify ω(0̃) = a and

ωz(0̃) = b. Then, given µ, γ, δ in H(α,R) with
∣∣µ(0̃)

∣∣ < 1 , and arbitrary complex

numbers a and b, there exists 0 < R̃ ≤ R such that the equation (2.6.20) has a solution

ω ∈ H(1 + α, R̃) that verify ω(0̃) = a and ωz(0̃) = b.
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Proof. Let µ, γ, δ be maps in H(α, R) with
∣∣µ(0̃)

∣∣ < 1 and let a, b ∈ C. Associated to

these maps we set

ρ(z, λ) =
µ(z − µ(0̃)z̄, λ)− µ(0̃)

1− µ(z − µ(0̃)z̄, λ) µ(0̃)
,

σ(z, λ) =
γ(z − µ(0̃)z̄, λ)(1− µ(0̃) µ(0̃)

1− µ(z − µ(0̃)z̄, λ)
,

τ(z, λ) =
δ(z − µ(0̃)z̄, λ)(1− µ(0̃) µ(0̃)

1− µ(z − µ(0̃)z̄, λ)
·

Therefore ρ, σ, τ ∈ H(α, R1) with R1 = R

1+|µ(0̃)| and
∣∣ρ(0̃)

∣∣ = 0 . Let w̃(z, λ) ∈ H(1 +

α, R̃1) such that

ω̃z̄(z, λ) = ρ(z, λ) ω̃z(z, λ) + σ(z, λ) ω̃(z, λ) + τ(z, λ) ,

that verify ω̃(0̃) = a and ω̃z(0̃) = (1− µ(0̃)µ(0̃)) b − µ(0̃) (σ(0̃) a + τ(0̃)).

Then, straightforward calculations show that

ω(z, λ) = ω̃

(
z + µ(0̃)z̄

1− µ(0̃)µ(0̃)
, λ

)

is a solution of equation (2.6.20) that belong to H(1+α, R̃) , with R̃ = R̃1 (1−
∣∣µ(0̃)

∣∣) ,

and that verifies ω(0̃) = a and ωz(0̃) = b.

To find an integral equation equivalent to

ωz̄(z, λ) = µ(z, λ) ωz(z, λ) + γ(z, λ) ω(z, λ) + δ(z, λ) , µ(0̃) = 0 , (2.6.21)

we put

F (z0, λ) = − 1

π

∫

D(R)

µ(z, λ)ωz(z, λ) + γ(z, λ)ω(z, λ) + δ(z, λ)

z − z0

dxdy ·

Proposition 2.6.1 gives

Fz̄ = µωz + γ ω + δ = ωz̄
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if ω satisfies (2.6.21), and hence (ω − F )z̄ = 0 , so that

ω(z0, λ) = − 1

π

∫

D(R)

µ(z, λ)ωz(z, λ)

z − z0

dxdy −

1

π

∫

D(R)

γ(z, λ)ω(z, λ)

z − z0

dxdy −

1

π

∫

D(R)

δ(z, λ)

z − z0

dxdy + g(z0, λ) ,

for some function g which is complex analytic in z0.

By the same arguments used in the case with no parameters, we can see that it

suffices to show that we can solve the following equation for functions µ, γ ∈ H(α, R) ,

with µ(0̃) = 0 , and any function h ∈ H(1 + α,R) :

ω(z0, λ) = − 1

π

∫

D(R)

µ(z, λ)ωz(z, λ)

z − z0

dxdy − 1

π

∫

D(R)

γ(z, λ)ω(z, λ)

z − z0

dxdy

+
1

π

∫

D(R)

µ(z, λ)ωz(z, λ)

z
dxdy +

1

π

∫

D(R)

γ(z, λ)ω(z, λ)

z
dxdy

+z0

{
1

π

∫

D(R)

µ(z, λ)ωz(z, λ)

z2
dxdy +

1

π

∫

D(R)

γ(z, λ)ω(z, λ)

z2
dxdy

}

+ h(z0, λ) (2.6.22)

The integral equation (2.6.22) will be solved using the Contraction Lemma. On H(α, R)

we consider the metric defined by the norm

‖ω‖R = sup
(z,λ)∈D(R)×B(R)

|ω(z, λ)| + Rα sup
z1,z2∈D(R),z1 6=z2,λ∈B(R)

|ω(z1, λ)− ω(z2, λ)|
|z1 − z2|α ·

It is easy to see that H(α,R) is complete in this metric and that

‖ω1ω2‖R ≤ ‖ω1‖R · ‖ω2‖R .

On H(1 + α, R) we consider the metric defined by the norm

‖ω‖R = sup
(z,λ)∈D(R)×B(R)

|ω(z, λ)| + R · ‖ωz‖R + R · ‖ωz̄‖R .

Also, it easy to see that H(1 + α,R) is complete in this metric and that there is an

inequality of the form

‖ω‖R ≤ constant · ‖ω‖R , (2.6.23)

for ω ∈ H(1 + α,R) .
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Proposition 2.6.2. Let µ, γ ∈ H(α, R0) with µ(0̃) = 0, and let h ∈ H(1 + α,R0) .

Then for sufficiently small R > 0 there is ω ∈ H(1 + α,R) satisfying the integral

equation (2.6.22) for all (z0, λ) ∈ D(R)×B(R).

Proof. Since the proof is similar to the case with no parameter (see [C2–21, Addendum

1, Proposition 26]) we reproduce here only the more significant part. We suppose that

µ, γ ∈ H(α, R0) for some R0 ≤ 1, and we will henceforth consider only R ≤ R0. For

ω ∈ H(1 + α,R), define the function Sω on D(R) × B(R) by setting (Sω)(z0, λ)

equal to the right side of (2.6.22) without the h(z0, λ) .

Claim: There is a constant C ′ , depending only on α, and not on R, such that

‖Sω‖R ≤ C ′ ·Rα · ‖ω‖R , (2.6.24)

for all ω ∈ H(1 + α, R).

Assuming this claim, the remainder of the proof goes as follows. Since Rα → 0 as

R → 0 , there is R∗ such that for all R ≤ R∗ we have

‖Sω‖R ≤ C ′′ · ‖ω‖R ,

where C ′′ is a constant with

C ′′ < min

{
1,
‖h‖R

3

}
·

Define T : H(1 + α, R) → H(1 + α, R) by

Tω = Sω + h .

If R ≤ R∗, then for all ω with

‖ω‖R ≤
3

2
‖h‖R

we have

‖T‖R = ‖Sω + h‖R ≤ ‖Sω‖R + ‖h‖R

≤ ‖h‖R

3
· ‖ω‖R + ‖h‖R

≤ 1

2
‖h‖R + ‖h‖R

=
3

2
‖h‖R .
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Thus, for R ≤ R∗ , the map T takes the complete metric space

M = {ω ∈ H(1 + α,R) : ‖ω‖R ≤
3

2
‖h‖R}

into itself. Moreover, the map T : M → M is a contraction, for

‖Tω1 − Tω2‖R = ‖Sω1 − Sω2‖R

= ‖S(ω1 − ω2)‖R ≤ C ′′ ‖ω1 − ω2‖R .

By the contraction Lemma, there is some ω ∈ M with

ω = Tω = Sω + h ,

which is precisely the equation we want.

The proof of the Claim is omitted.

Corollary 2.6.1. Let µ, γ, δ ∈ H(α, R0) with
∣∣µ(0̃)

∣∣ < 1, and let a, b ∈ C be arbitrary

complex numbers. Then, there are 0 < R̃ ≤ R and ω ∈ H(1 + α, R) such that

ωz̄ = µωz + γ ω + δ , ω(0̃) = a , ωz(0̃) = b . (2.6.25)

Proof. Consequence of Proposition 2.6.2 and Lemma 2.6.1.

Now we want to prove that if µ, γ, δ in Corollary 2.6.1 belong to H(n+α, R) , then

there is a solution of (2.6.25) which is in H(n + 1 + α, R̃) , for some 0 < R̃ ≤ R .

Lemma 2.6.2. If f ∈ H(n + α, R) (n ≥ 1) and we define for (z0, λ) ∈ D(R)×B(R)

F (z0, λ) = − 1

π

∫

D(R)

f(z, λ)

z − z0

dxdy ,

then F ∈ H(n + 1 + α, R) .

Proof. The proof is similar for the case with no parameters (see [C2–21, Addendum 1,

Lemma 28]) because clearly F is smooth with respect to the parameter λ.
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Proposition 2.6.3. Let µ, γ, δ ∈ H(n + α,R) with
∣∣µ(0̃)

∣∣ < 1, and let a, b ∈ C be

arbitrary complex numbers. Then, there are 0 < R̃ ≤ R and ω ∈ H(n+1+α, R̃) such

that

ωz̄ = µωz + γ ω + δ , ω(0̃) = a , ωz(0̃) = b .

Proof. Induction on n . The case n = 0 is Corollary 2.6.2. Now suppose the result is

true for n , and let µ, γ, δ ∈ H(n + 1 + α,R) .

Case 1. γ = 0 . Let f ∈ H(n + 1 + α, R0) satisfying

fz̄ = µ fz + µz f + δz , f(0̃) = b , fz(0̃) = 0 . (2.6.26)

Define W by

W (z0, λ) = − 1

π

∫

D(R0)

f̄(z, λ)

z − z0

dxdy .

Then W ∈ H(n + 2 + α, R0) by Proposition 2.6.2 and by Proposition 2.6.1 we have

f̄(z0, λ) = W z̄(z0, λ) = Wz(z0, λ) ⇒ f(z0, λ) = Wz(z0, λ) .

So

(Wz̄)z = Wzz̄ = fz̄ = µ fz + µz f + δz by (2.6.26)

= (µ f)z + δz = (µWz)z + δz .

Hence (Wz̄ − µWz − δ)z = 0 . This means that we can write

Wz̄(z, λ) − µ(z, λ) Wz(z, λ) − δ(z, λ) = g(z̄, λ) , (2.6.27)

where g is complex analytic in z and smooth in λ . Let G be a function which is

complex analytic in z and smooth in λ with G(0̃) = W ((0̃) − a and such that

Gz̄(z̄, λ) = g(z̄, λ) , and let

ω(z, λ) = W (z, λ) − G(z̄, λ) .
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Then

ωz = Wz − 0

ωz̄(z, λ) = Wz̄(z, λ) − g(z̄, λ) = µ(z, λ) Wz(z, λ) + δ(z, λ)by (2.6.27)

= µ(z, λ) ωz(z, λ) + δ(z, λ) .

Thus ω is a solution of our equation which is in H(n + 2 + α, R0) . We also have

ω(0̃) = W (0̃) − G(0̃) = a

ωz(0̃) = Wz(0̃) = f(0̃) = b .

Case 2. General case. Let β, σ ∈ H(n + 2 + α, R0) satisfying

βz̄ = µβz + γ ; β(0̃) = 0 , βz(0̃) = 0

σz̄ = µσz + e−β δ ; σ(0̃) = a , σz(0̃) = b .

Then ω = eβ σ ∈ H(n + 2 + α, R0) satisfies

ωz̄ = µωz + γ ω + δ , ω(0̃) = a , ωz(0̃) = b .

Proposition 2.6.4. Let ω ∈ H(n + α,R) be a solution of ωz̄ = µωz . Consider

the map W (z, λ) = (w(z, λ), λ) and a C1−complex valued map f defined at a

neighborhood of the set W (D(R)×B(R)) . Then

a) If f is analytic en z , then σ = f ◦W is also a solution.

b) Suppose that σ = f ◦W is a solution. If ωz 6= 0 and |µ| < 1 on D(R)×B(R) ,

then f is analytic in z .

Proof. a) Since f is analytic en z , we have fz̄ = 0 and

σz = (f ◦W )z = (fz ◦W ) Wz = (fz ◦W ) ωz ,

σz̄ = (f ◦W )z̄ = (fz ◦W ) Wz̄ = (fz ◦W ) ωz̄ .
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Hence

σz̄ = (fz ◦W ) ωz̄ = µ (fz ◦W ) ωz = µσz .

b) We have

σz = (fz ◦W ) ωz + (fz̄ ◦W ) (ω̄)z ,

σz̄ = (fz ◦W ) ωz̄ + (fz̄ ◦W ) (ω̄)z̄ .

Since σ is a solution we have

(fz ◦W ) ωz̄ + (fz̄ ◦W ) (ω̄)z̄ = µ [(fz ◦W ) ωz + (fz̄ ◦W ) (ω̄)z] .

Since ω is a solution, this leads to

(fz̄ ◦W ) [(ω̄)z̄ − µ (ω̄)z] = 0 . (2.6.28)

Since ωz̄ = µωz implies that

(ω̄)z = (ωz̄) = µ̄ (ωz) = µ̄ (ω̄)z̄ ,

we see that

(ω̄)z̄ − µ (ω̄)z = (ω̄)z̄ − µ µ̄ (ω̄)z̄ = (ω̄)z̄ (1− |µ|2) = (ωz) (1− |µ|2).

Then, it follows from (2.6.28) that fz̄ = 0 , i.e. f is analytic in z.

Proposition 2.6.5. Let µ ∈ H(n + α,R) with |µ| < 1 . Let ω be a solution of

ωz̄ = µωz , (2.6.29)

defined in D(R0)× B(R0) . If ω is smooth in λ then ω ∈ H(n + 1 + α, R0) . So, if µ

is smooth, any solution ω which is smooth in λ of (2.6.29) is also smooth.

Proof. Let ω be a solution smooth in λ of (2.6.29) defined in D(R0)×B(R0) and let

(z0, λ0) be a point in D(R0) × B(R0) . We must prove that there exists r0 > 0 such

that ω ∈ H(z0, λ0)(n + 1 + α, r0).
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Let r > 0 such that D(z0, r)×B(λ0, r) ⊂ D(R0)×B(R0). For (z, λ) ∈ D(r)×B(r)

defines µ̃(z, λ) = µ(z + z0, λ+λ0) . Then µ̃ ∈ H(n+α, r), and taking r > 0 sufficiently

small, we can suppose that there exists a solution σ̃ ∈ H(n + 1 + α, r) of the equation

σ̃z̄ = µ̃ σ̃z with σ̃z 6= 0. Then σ defined by σ(z, λ) = σ̃(z − z0, λ − λ0) is in

H(z0,λ0)(n + 1 + α, r) and verifies σz̄ = µσz.

Since we also have σz 6= 0, taking r > 0 sufficiently small, we can suppose that

Σ(z, λ) = (σ(z, λ), λ) has an inverse Σ−1 : Σ(D(z0, r)×B(λ0, r)) → D(z0, r)×B(λ0, r)

and that the set Σ(D(z0, r) × B(λ0, r)) is open. Then, if we define f : Σ(D(z0, r) ×
B(λ0, r)) → C by f(z, λ) = ω(Σ−1(z, λ)), we have

ω = f ◦ Σ .

Since f is analytic in z (see Proposition 2.6.4,part b)) and smooth in λ, we have that

ω ∈ H(z0,λ0)(n + 1 + α, r).
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[C2–12] V. Gúıñez, Locally stable singularities for positive quadratic differential forms,

J. of Diff. Eq. 110 (1994), 1–37.

[C2–13] C. Gutiérrez and J. Sotomayor, Principal Lines on Surfaces Immersed with

Constant Mean Curvature, Trans. of the Amer. Math. Soc. 293:2 (1986), 751–

766.
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in Oeuvres de Henri Poincaré, Vol. 1, Gauthiers–Villars et Cie, Paris, 1928.

[C2–19] A. Ramı́rez–Galarza and F. Sánchez–Bringas, Lines of Curvature Near Umbilic

Points on Surfaces Immersed in R4, Annals of Global Analysis and Geometry, 13

(1995), 129–140.

[C2–20] M. C. Romero–Fuster and F. Sánchez–Bringas, Umbilicity of surfaces with

orthogonal asymptotic lines in R4, Differ. Geom. Appl. 16 (2002), 213–224.

[C2–21] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 5,

Publish or Perish Inc., Berkeley, 1979.


