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INTRODUCTION

Much work has been done on centralizers of C2-diffeomorphisms of the interval [5, 14,

23, 24]. This theory has been extensively used for studying the algebraic constraints of

finitely-generated subgroups of Diff2
+([0, 1]). For example, using the famous Kopell lemma

[14], Plante and Thurston showed that nilpotent groups of C2-diffeomorphisms of [0, 1[ (resp.

]0, 1[) are Abelian (resp. metabelian); see [21].

As is well known, most of the rigidity properties are lost when we consider centralizers of

C1-diffeomorphisms. In relation to Plante-Thurston’s theorem, this fact is corroborated by

the work of Farb and Franks. In [6], they construct an embedding ϕ
FF

of Nd into Diff
1
+([0, 1]),

where Nd denotes the (nilpotent) group of (d+ 1)× (d+ 1) lower-triangular matrices whose

entries are integers which equal 1 on the diagonal (see §1.0.1 for the details). Since every

finitely-generated, torsion-free, nilpotent group embeds into Nd for some d ≥ 1 (see [22]),

one concludes that all these groups can be realized as groups of C1-diffeomorphisms of the

(closed) interval (compare [12]).

Major progress has been recently made in the understanding of the loss of rigidity for

centralizers in intermediate differentiability classes, that is, between C1 and C2 (see [4, 13,

15]). Recall that, for 0 < α < 1, a diffeomorphism f is said to be of class C1+α if its

derivative is α-Hölder continuous. In other words, there exists a constant M such that for

all x, y,

|f ′(x)− f ′(y)| ≤ M |x− y|α. (1)

We denote the group of C1+α-diffeomorphisms of [0, 1] by Diff1+α
+ ([0, 1]). The main object

of this work is to establish the following theorem, a complete proof of which is given in

Chapter 1 though an alternative (more conceptual) proof is given in Chapter 2.
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Theorem A. If d ≥ 3 and α > 2
d(d−1)

, then the action ϕ
FF

is not topologically conjugated

to an action by C1+α-diffeomorphisms of [0, 1].

Notice that for d = 2, this theorem still holds and follows from Plante-Thurston’s the-

orem. Theorem A should be considered as a partial complement to [15, Theorem B] which

establishes that, for all 0 < α < 1, every subgroup Γ of Diff1+α
+ ([0, 1]) without free subsemi-

groups is virtually nilpotent. (Although the last result still holds for the open interval ]0, 1[,

Theorem A fails to be true in this context, but it extends –with the very same proof– to the

case of the half-closed interval).

Recall that [4, Theorem B] deals with Abelian group actions that are dynamically very

similar to ϕ
FF

, and a direct application of it shows that ϕ
FF

is not conjugated to an action

by C1+α-diffeomorphisms of [0, 1[ for any α > 1
d−1

. The fact that our critical regularity here

is actually smaller relies on that compared to the Abelian actions of [4], the action ϕ
FF

has a

more complicated combinatorial dynamics in that the growth of certain orbits is polynomial

with degree precisely equal to d(d−1)
2

. We should point out that similar combinatorial dy-

namics appear for the actions of the natural quotients of the Grigorchuk-Machi’s group [7]

for which the method of this article should also provide the best possible regularity (compare

[15, Theorem A]). Moreover, it is worth mentioning that the very same arguments show that

Theorem A above still applies to topological semiconjugacies.

As we pointed out, we provide two proofs of the theorem. In both, we attempt to obtain

the same, namely, control of the distortion along suitable compositions of elements in any

regularity larger than the critical one.

In the first proof (Chapter 1), the control of distrotion is obtained by a nontrivial modi-

fication of the probabilistic techniques of [4, 13]. These essentially consits in ramdom walk

type arguments that require a complete knownledge of the combinatorial structure of the

orbits.

The second proof (Chapter 2) is based on a clever remark of R. Tessera. He noticed that

the random walk type arguments have a natural traslation into the framework of moduli

of curves. While this method is less elementary than the first one, it has the advantage

of providing a more general setting in which the proof of Theorem A becomes simpler and

enlightened.
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The converse of Theorem A was essentially established by Jorquera in his PhD thesis

[11]. The proof is based on classical constructions of Denjoy and Pixton (a clever exposition

of these techniques appears in [25]; see also [16]).

Theorem B. For each d ≥ 2 and α < 2
d(d−1)

, the action ϕ
FF

is topologically conjugated to

an action by C1+α-diffeomorphisms of [0, 1].

Both theorems A and B above are the core of the work [2], which is still in revision in a

prestigious journal. At the time of writing [2], we were unable to settle the C1+ 2
d(d−1) case,

though we conjectured that the rigidity (i.e. Theorem A) should still hold for this critical

regularity. This has been confirmed in the recent work [17].

Theorems A and B strongly suggest that, attached to each finitely-generated, torsion-

free nilpotent group Γ, there should be a positive exponent α(Γ) ≤ 1 that is critical for

embedding Γ into Diff1+α
+ ([0, 1]). However, it is still unclear to us what should be the value

of α(Γ). Here, it is important to point out that it seems hard to adapt the techniques of

proof of [2] (i.e. those of Charper 1) to the general case. Nevertheless, the ideas exploited

in Chapter 2 seem suitable for this, so that we hope they will lead in the near future to

the complete solution of the problem of determining the optimal regularity for actions of

arbitray finitely-generated, torsion-free, nilpotent groups on the interval.
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Chapter 1

NON-EXISTENCE OF

EMBEDDINGS FOR α > 2
d(d−1)

1.0.1 A reminder on Farb-Franks’ action ϕ
FF

We deal with the group Nd of (d + 1) × (d + 1) lower-triangular matrices with integer

entries, all of which are equal to 1 on the diagonal. Notice that N2 corresponds to the

Heisenberg group. In general, Nd is a nilpotent group of nilpotence degree d. A nice system

of generators of Nd is {f2,1, . . . , fd+1,d}, where fi,j is the elementary matrix whose unique

nonzero entry outside the diagonal is the (i, j)-entry (with i > j).

The group Nd acts linearly on Zd+1 with the affine hyperplane 1×Zd remaining invariant.

The thus-induced action on Zd allows producing an action on the interval as follows. Let{
Ii1,...,id : (i1, . . . , id) ∈ Zd

}
be a family of intervals such that the sum

∑
i1,...,id

|Ii1,...,id| is

finite, say equal to 1 after normalization. We join these intervals lexicographically on the

closed interval [0, 1], and we identify fj+1,j to a certain homeomorphism sending each interval

I = Ii1,...,id into the interval J given by:

• J := Ii1+1,i2,...,id−1,id for j = 1,

• J := Ii1,...,ij−1,ij+ij−1,ij+1,...,id for 2≤j≤d.

It is not hard to perform this procedure in a equivariant way (for instance, using piecewise-

affine maps), thus preserving the group structure and hence obtaining an embedding of Nd

into Homeo+([0, 1]). (Much harder is to obtain an embedding into the group of diffeomor-

5



phisms.) For this action, an interval of the form Ii1,...,id is sent by f ∈ Nd into Ij1,...,jd , where

f
(
(1, i1, . . . , id)

T
)
= (1, j1, . . . , jd)

T . Notice that up to topological conjugacy, all the actions

obtained by this procedure are equivalent. This includes Farb-Franks’ action ϕ
FF

, which is

obtained via this method for a well-chosen family of diffeomorphisms between the intervals

of type I, J above so that the resulting fi,j’s are C1-diffeomorphisms.

1.0.2 From control of distortion to the proof of Theorem A

Let us begin by stating a general principle from [4] in the form of the following

Proposition 1.0.1. Let f1, . . . , fk be C1-diffeomorphisms of the interval [0, 1] that commute

with a C1-diffeomorphism g. Assume that g fixes a subinterval I of [0, 1] and its restriction

to I is nontrivial. Assume moreover that for a certain 0 < α < 1 and a sequence of indexes

ij ∈ {1, . . . , k}, the sum

Lα :=
∑
j≥0

∣∣fij · · · fi1(I)∣∣α (1.1)

is finite. Then f1, . . . , fk cannot be all of class C1+α.

Proof. Let x0 ∈ I be such that g(x0) ̸= x0. Denote by [a, b] the shortest interval containing

x0 that is fixed by g. For each j ≥ 1, n ≥ 1 and z ∈ [a, b], the equality gn = (fij · · · fi1)−1 ◦

gn ◦ (fij · · · fi1) yields

log(gn)′(z) = log(fij · · · fi1)′(z) + log(gn)′(fij · · · fi1(z))− log(fij · · · fi1)′(gn(z)).

Fix a constant M such that (1) (see introduction) holds for all f ∈ {f1, . . . , fk} and all x, y

in [0, 1]. Letting zn := gn(z) and noticing that zn belongs to [a, b] ⊂ I for all n ≥ 1, we

obtain

|log(gn)′(z)| ≤ |log(gn)′(fij · · · fi1(z))|+
j∑

m=1

∣∣log(fim)′(fim−1 · · · fi1(z))− log(fim)
′(fim−1 · · · fi1(zn))

∣∣
≤ |log(gn)′(fij · · · fi1(z))|+

j∑
m=1

M
∣∣fim−1 · · · fi1(z)− fim−1 · · · fi1(zn)

∣∣α
≤ |log(gn)′(fij · · · fi1(z))|+M

j∑
m=1

|fim−1 · · · fi1(I)|α

≤ |log(gn)′(fij · · · fi1(z))|+MLα.
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The length of the intervals fij · · · fi1(I) must necessarily converge to zero as j goes to infinite.

Moreover, since gn fixes I and commutes with f1, . . . , fk, on each of these intervals there

must be a point at which its derivative equals 1. By the continuity of (gn)′, we conclude

that the value of (gn)′(fij · · · fi1(z)) converges to 1 as j goes to infinite. Hence we obtain

(gn)′(z) ≤ eMLα for all n ≥ 1 and all z ∈ [a, b], which certainly contradicts the fact that

the restriction of g to [a, b] is nontrivial. �

Let us come back to the action ϕ
FF

. Notice that the group Nd−1 can be naturally viewed

as the subgroup of Nd formed by the elements whose last row coincide with that of the

identity. We will denote by N∗
d−1 the copy of Nd−1 inside Nd.

Notice that the element g := fd+1,1 ∈ Nd is centralized by N∗
d−1. Under the action ϕ

FF
,

this element fixes the interval

I∗ :=
∪
j∈Z

I0,...,0,j. (1.2)

Moreover, this interval is sent into a disjoint one by any nontrivial element of N∗
d−1. We are

hence in a situation close to that of the preceding proposition. Thus, we need to ensure the

existence of a systems of generators for N∗
d−1 and a sequence of compositions for which the

associated sum (1.1) is finite provided that α> 2
d(d−1)

. To do this, we will use the system of

generators {f2,1, f3,1, . . . , fd,1} ∪ {f2,1, f3,2, . . . , fd,d−1}.

It is worth mentioning that this is an analogous problem to that of the Zd-actions on the

interval considered in [4, Théorème B]. However, the Zd-case is easier in that the generators

of the dynamics commute, hence the orbit graph of the associated interval I∗ has a simpler

structure. Indeed, the space of infinite paths of this graph can be endowed of a natural

probability measure such that for appropriately large values of α (namely, for α > 1/d),

almost every path has a finite Lα-series. In order to establish this, besides the restriction on

the exponent α, the main property of the underlying process is that the arrival probabilities

up to time k are equidistributed along the sphere of radius k (centered at the origin) for

every k ≥ 1. Although in [4] this is modeled via a Polya urn like model that charges

only the positive powers of the generators, an alternative model sharing this property that

charges both positive and negative powers of the generators is the Markov process depicted in

Figure 1 below for the case d = 2 (the reader will easily check the equidistribution property
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along spheres as well as the general rule for the transition probabilities; the generalization

for higher values of d is not very hard).

Remark 1.0.2. It seems to be an interesting and nontrivial problem to determine general

conditions for an infinite graph ensuring the existence of a Markov process satisfying the

equidistribution property above.
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Let us now consider the orbit of the interval I∗ defined by (1.2) for the action of N∗
d−1. For

simplicity, let us first deal with the case d = 3. With respect to the generators f2,1, f3,1, f3,2

of N∗
2 , the orbit graph is depicted in Figure 2 below. Here, f2,1 corresponds to the generator

whose action on the the graph is moving to the right, whereas the action of both f3,1 and

f3,2 consists in moving up, the former by one unit and the latter with an amplitude that

depends on the position. (Notice that the directions of the arrows mean that we are only

considering positive powers of the generators.)

Now, the difficulty comes from that, as the reader may easily check, it is impossible

to put probability distributions on this graph yielding the equidistribution property along

the spheres centered at the origin. (This is already impossible for the sphere of radius 4.)

To overcome this problem, we will use the counting argument of (the first part of) [13],
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which actually corresponds to a deterministic counterpart of the random walk argument

above. Indeed, this argument is more robust in that it does not need any equidistribution

property, though it requires a certain extra argument to obtain our desired infinite path as

a concatenation of finite paths that behave nicely for certain finite processes.
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To close this section, let us finally explain why the exponent 2
d(d−1)

is critical for the

action ϕ
FF

. For simplicity, let us first consider the case d = 3. Looking at the graph of

Figure 2 above, one easily computes the growth of the balls. This appears to be cubic, in

the sense that the number of points at distance ≤n from the origin is n3+11n+6
6

∼ n3. These

points correspond to intervals in the orbit of I∗ obtained up to ≤ n compositions of the

generators. Since these intervals are disjoint, the length of a typical one should be of order

∼ 1/n3. Hence, along a generic sequence of compositions, the value of the corresponding

sum Lα should be of order ∑
n≥1

(
1

n3

)α

,

which is finite for α > 1
3
= 2

3(3−1)
, as expected.

The case of a general d ≥ 3 is similar. Indeed, the growth of the associated graph is

polynomial with degree

1 + 2 + . . .+ (d− 1) =
d(d− 1)

2
,
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which allows to argue as before for any α larger than the critical exponent 2
d(d−1)

.

Remark 1.0.3. Notice that the polynomial degree above is in concordance with the Bass-

Guivarch formula for the growth of Nd−1; see [8, Appendix]. This view will be pursued in

Chapter 2.

1.0.3 Proof of Theorem A: the case d = 3

The proof of Theorem A is somewhat technical and requires hard notation. This is the

reason why we have chosen to first give the proof for the case d = 3, where most of the

ideas become more transparent and an important technical problem is overcomed by a trick

consisting in the introduction of a small parameter ε > 0. For the general case, we use

a slightly modified construction keeping essentially the same arguments. We begin with a

lemma in the spirit of [13, Lemma 2.2].

Lemma 1.0.4. Let n ≥ 1 be an integer and let C1, C2, ε be positive constants. Let P be a set

of ≤ C1n
3+ε pairs of non-negative integers (i, j) associated to which there is a number ℓi,j > 0

such that
∑

(i,j)∈P ℓi,j ≤ 1. Suppose that P partitioned into n′ ≥ n2/C2 (resp. n′ ≥ n2+ε/C2)

disjoint subsets P1, . . . , Pn′. Then, given A > 1 and 1 > α > 0, the proportion of indexes

m ∈ {1, . . . , n′} for which∑
(i,j)∈Pm

ℓαi,j ≤
AC1−α

1 C2

n3α−1−ε(1−α)

(
resp.

∑
(i,j)∈Pm

ℓαi,j ≤
AC1−α

1 C2

n3α−1+εα

)
is at least 1− 1/A.

Proof. Since
∑

(i,j)∈P ℓi,j ≤ 1 and P consists of at most C1n
3+ε pairs, a direct application

of Hölder’s inequality yields ∑
(i,j)∈P

ℓαi,j ≤ (C1n
3+ε)1−α.

Hence,

1

n′

n′∑
m=1

∑
(i,j)∈Pm

ℓαi,j ≤ C1−α
1 n(3+ε)(1−α)

n′ ,

and the latter expression is less than or equal to C1−α
1 C2n

1−3α+ε(1−α) (resp. C1−α
1 C2n

1−3α−εα).

The lemma then follows as a direct application of Chebyshev’s inequality. �
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Let us now come back to the graph associated to the action ϕ
FF

depicted in Figure 2,

and let us set ℓi,j := |f i
2,1f

j
3,1(I

∗)|. Fix positive constants α, ε such that

α >
1

3
=

2

(3− 1)(3− 2)
, ε < max

{
3α− 1

1− α
, 1

}
. (1.3)

For any real numbers M ≤ N , we let [[M,N ]] := [M,N ] ∩ Z. Given an integer n ≥

2, we consider the set P (n) := [[n, 8n − 1]] × [[0, . . . , n2+ε]]. This set P (n) consists of

7n([n2+ε] + 1) ≤ 10n3+ε points (with [ · ] standing for the integer part), and is partitioned

into the n′ = [n2+ε] + 1 ≥ n2+ε disjoint sets (horizontal paths) P (n, 1), P (n, 2), . . . , P (n, n′)

given by

P (n,m) :=
{
(n,m), (n+ 1,m), . . . , (8n− 1,m)

}
.

By the preceding lemma, for each 0 < An < 1, the proportion of indexes m ∈ {1, . . . , n′} for

which
8n−1∑
i=n

ℓαi,m =
∑

(i,j)∈P (n,m)

ℓαi,j ≤ An10
1−α

n3α−1+εα
(1.4)

is at least 1− 1/An. Notice that each path P (n,m) comes from the action of the generator

f2,1.

Similarly, for each integer n ≥ 2, let us consider the set Q(n) := [[n, 2n−1]]∩[[0, . . . , n2+ε]]

consisting of n([n2+ε]+ 1) ≤ 2n3+ε points. Although in general there is no partition of Q(n)

into paths induced by the action of f3,1, f3,2 all of them having the same number of points,

a partition that almost satisfies this property (and that will be sufficient for our purposes)

can be defined as follows. For each n ≤ m ≤ 2n − 1 we divide the set {(m, 0), (m, 1), . . .}

into n paths via the following rules:

– For each 0 ≤ j ≤ n− 2, there is a path starting at (m, j) jumping upwards of m units;

– The path starting at (n− 1,m) makes m− n jumps upwards of 1 unit and then makes a

jump of m units;

– The picture repeats “periodically”, so that each infinite path is made of n− 1 consecutive

jumps of m units followed by m− n jumps of 1 unit.

Figure 3 illustrates the case where n = 3 and m = 5 though the resulting paths are

disposed horizontally instead of vertically by obvious reasons. Although one may give precise

formulas for the points in each of these paths, this is not completely necessary. The main

11



property that we will retain is the obvious fact that the number of points of each of them

inside any rectangle [[n, 2n − 1]] × [[0, K − 1]] lies between K
n
− 2n and K

n
+ 2n. (An

alternative construction leading to a much better -logarithmic- control of the deviation will

be given in §1.0.4.) In particular, we have an induced partition of Q(n) into n′′ = n2 paths

Q(n, 1), Q(n, 2), . . . , Q(n, n′′) for which the preceding lemma yields that for each An > 0,

the proportion of indexes m ∈ {1, . . . , n′′} satisfying∑
(i,j)∈Q(n,m)

ℓαi,j ≤
An2

1−α

n3α−1−ε(1−α)
(1.5)

is at least 1 − 1/An. Notice again that each of these paths comes from the action of the

generators f3,1 and f3,2 according to the amplitude of the jump.
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We will apply the preceding construction for each integer n = nk := 4k, where k ≥ 1.

The choice of the constants Ank
is as follows. First, we let rk (resp. sk) be the minimum

(resp. maximum) number of points of a path of the form Q(nk,m) inside Q(nk). Similarly,

we let r′k (resp. s′k) be the minimum (resp. maximum) number of points in a path of the

form Q(nk,m) inside P (nk−1) ∩Q(nk). Finally, we let

B :=
∏
k≥2

sk
rk

s′k
r′k
. (1.6)

Notice that the value of B is finite. Indeed, by the discussion above, we have

4k(1+ε) − 2 · 4k = n1+ε
k − 2nk ≤ rk ≤ sk ≤ n1+ε

k + 2nk = 4k(1+ε) + 2 · 4k

and

4k+kε−1 − 2 · 4k+1 =
n2+ε
k

nk+1

− 2nk+1 ≤ r′k ≤ s′k ≤
n2+ε
k

nk+1

+ 2nk+1 = 4k+kε−1 + 2 · 4k+1,

which easily yield the convergence of the infinite product in the definition of B. We will also

use the constant

C := 4
∑
k≥1

1

2k(3α−1−ε(1−α))
. (1.7)

12



Notice again that since (1.3) implies that 3α− 1− ε(1− α) > 0, we have C < ∞.

We now fix An1 ≥ 22+k(3α−1−ε(1−α))BC such that (1.4) holds for n = n1 and every m in

the corresponding range. Finally, for k ≥ 2, we set

Ank
:= BC 2k(3α−1−ε(1−α)).

We next state a key lemma whose proof is postponed in order to proceed immediately to

the proof of Theorem A in the case d = 3.

Lemma 1.0.5. There are two infinite sequences of paths P (nk,m
′
k) and Q(nk,m

′′
k) such that

(1.4) (resp. (1.5)) holds for n = nk and m = m′
k (resp. m = m′′

k) and such that P (nk,m
′
k)

intersects both Q(nk,m
′′
k) and Q(nk+1,m

′′
k+1) for all k ≥ 1.

Figure 4

0

[(4k)2+ε]

[(4k+1)2+ε]

Q(nk,m′′
k )

P (nk,m
′
k)

Q(nk+1,m
′′
k+1)

P (nk+1,m
′
k+1)

Q(nk+2,m
′′
k+2)

P (nk−1,m
′
k−1)

••••••••••••••••••

•••••••••••••••••••••••••••••••
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•

•
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•

4k 4k+2

2·4k − 1
4k+1

2·4k+1 − 1 2·4k+2 − 1

Assuming this lemma, the proof of Theorem A in the case d = 3 is at hand. Indeed,

the concatenation of the sequence of finite paths provided by the lemma naturally yields an

infinite path without loops which is in correspondence with a sequence of compositions by

f2,1, f3,1, f
−1
3,1 , f3,2, f

−1
3,2 (see Figure 4). By construction, for this sequence of iterations, the

value of the corresponding Lα-sum (1.1) for the interval I∗∗ corresponding to the initial point

of Q(n1,m
′
1) is less than or equal to

101−α
∑
k≥1

Ank

n3α−1+εα
k

+ 21−α
∑
k≥1

Ank

n
3α−1−ε(1−α)
k

≤ 20An1

43α−1−ε(1−α)
+
∑
k≥2

40BC

2k(3α−1−ε(1−α))

≤ 80An14
ε(1−α) + 40BC2.
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This interval I∗∗ is in the orbit of I∗, from which it can be reached in no more than (2 · 41 −

1)+4 = 11 iterations of the generator f2,1. By concatenating this finite path to the previous

one, we obtain an infinite path associated to which the Lα-sum corresponding to I∗ is finite,

which allows to conclude the proof by the arguments developed in §1.0.2.

All that remains for completing the proof of Theorem A in the case d = 3 is the

Proof of Lemma 1.0.5. The argument is similar to that of [13, Lemma 2.3], but it

needs a slight modification. Namely, for each k ≥ 1, we let D′
k be the density of in-

dexes m′ ∈ {1, . . . , [n2+ε
k ] + 1} such that P (nk,m

′) is “reached” by a sequence of paths

Q(n1,m
′′
1), P (n1,m

′
1), . . . , Q(nk,m

′′
k) satisfying:

– P (ni,m
′
i) intersects both Q(ni,m

′′
i ) and Q(ni+1,m

′′
i+1) for all 1 ≤ i ≤ k − 1, whereas

P (nk,m
′) intersects Q(nk,m

′′
k);

– Inequality (1.4) (resp. (1.5)) holds for (n,m) = (ni,m
′
i) whenever 1 ≤ i ≤ k − 1 as well as

for (n,m) = (nk,m
′) (resp. for (n,m) = (ni,m

′′
i ) whenever 1 ≤ i ≤ k).

Similarly, we denote by D′′
k the density of indexes m′′ ∈ {1, . . . , n2

k} such that Q(nk,m
′′) is

reached by a sequence of paths Q(n1,m
′′
1), P (n1,m

′
1), . . . , P (nk−1,m

′
k−1) satisfying:

– P (ni,m
′
i) intersects both Q(ni,m

′′
i ) and Q(ni+1,m

′′
i+1) for all 1 ≤ i ≤ k − 1;

– Inequality (1.4) (resp. (1.5)) holds for (n,m) = (ni,m
′
i) (resp. for (n,m) = (ni,m

′′
i ))

whenever 1 ≤ i ≤ k − 1 as well as for (n,m) = (nk,m
′′)).

We claim that the following relations hold:

1−D′
k ≤ (1−D′′

k)
sk
rk

+
1

Ank

, 1−D′′
k+1 ≤ (1−D′

k)
s′k+1

r′k+1

+
1

Ank+1

. (1.8)

Assuming this for a while, we obtain for each k ≥ 1,

1−D′
k ≤ (1−D′

k−1)
sk
rk

s′k
r′k

+
1

Ank

sk
rk

+
1

Ank

.

Using induction, this easily yields

1−D′
k ≤ (1−D′

1)
k∏

i=2

si
ri

s′i
r′i

+ 2
k∑

i=2

1

Ani

i∏
j=2

sj
rj
.

From the definition ni := 4i and that of the constant B in (1.6), one concludes that for each
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k ≥ 1,

1−D′
k ≤ (1−D′

1)B + 2B
k∑

i=1

1

Ani

.

Now, the choice of An1 was made so that D′
1 = 1, hence

1−D′
k ≤ 2B

∑
i≥1

1

Ani

≤ 1

2
.

Thus, D′
k ≥ 1/2 holds for all k ≥ 1, which provides finite paths satisfying the desired

properties of length as large as we want. The infinite path claimed to exist is obtained easily

from this by means of a Cantor diagonal type argument.

Finally, it remains to show (1.8). The proof follows the same principle of that of [13,

Lemma 2.3] but requires a little adjustment. First, we denote by D̂′′
k the density of points

in Q(nk) that are “well-attainable” in the sense that they belong to the last of a sequence

of consecutively intersecting paths Q(n1,m
′′
1), P (n1,m

′
1), . . . , P (nk−1,m

′
k−1), Q(nk,m

′′
k) for

which inequalities of type (1.4) or (1.5) hold according to the case. We have

(1−D′
k) ≤ (1− D̂′′

k) +
1

Ank

. (1.9)

Indeed, the term 1/Ank
corresponds to the density of horizontal paths in P (nk) that are “bad

by themselves” in the sense that the corresponding type (1.4) inequality does not hold for

them. The term (1− D̂′′
k) corresponds to the density of paths in P (nk) that may be good by

themselves but intersect Q(nk) at a set formed only by non-well-attainable points. (Notice

that we are using the fact that all horizontal paths in P (nk) have the same number of points

in Q(nk).) The left-side inequality in (1.8) then follows as a combination of (1.9) and the

inequality

1− D̂′′
k ≤ (1−D′′

k)
sk
rk
,

where the correction factor comes from the fact that although the number of points in each

path of the form Q(nk,m) is not constant, it varies between rk and sk.

Similarly, in the right-side inequality, the term 1/Ank+1
corresponds to the density of

bad-by-themselves paths of the form Q(nk+1,m) in Q(nk+1). The term (1−D′
k) corresponds

to the “accumulated density of bad paths” up to P (nk), and equals the density of “non-well-

attainable” points in P (nk) ∩ Q(nk+1). Finally, the correction factor comes from the fact
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that the number of points in P (nk)∩Q(nk+1) contained in each path of the form Q(nk+1,m)

lies between r′k+1 and s′k+1.

1.0.4 Proof of Theorem A: the general case

To deal with the general case we will follow a similar strategy, though most of the compu-

tations become more involved. We will now consider paths inside parallelepipeds of dimen-

sion d− 1 having sides of length of (relative) order k, k2, . . . , kd−1. This will make naturally

appear the exponent d(d−1)
2

in relation to the total number of points in the parallelepiped.

The most relevant difficulty will be related to the decomposition into paths. Indeed, the

construction of the preceding section illustrated by Figure 3 is no longer satisfactory, and

we will need to carry out a nontrivial modification of it. Since this is of independent interest

and has potential applications in other contexts, the discussion of the new construction will

be the subject of §1.0.5. Here we content ourselves in stating what we need for our purposes,

which is summarized in the next

Lemma 1.0.6. Let M > N be positive integer numbers, with N of the form 1 + 2k. There

exists a decomposition of N0 := {0, 1, . . .} into N subsets (paths) satisfying:

(i) The distance (jump) between two consecutive points of each path is either M or 1;

(ii) For all 0 ≤ K1 < K2, the maximal number of points of a path contained in [[K1, K2]]

differs from the minimal one by at most 4 + 2M−1
N−1

+ 4 log2(N − 1).

We now proceed to the proof of Theorem A. Recall that the graph of the N∗
d−1-orbit of

the interval I∗ defined by (1.2) has Zd−1 as its set of vertices. We will hence inductively

define parallelepipeds Q(n) ⊂ Zd−1. We start with Q(0) := [[1, 1 + 4d+1]]d−1. Assuming

that Q(n) := [[x1,n, y1,n]] × · · · × [[xd−1,n, yd−1,n]] has been already defined, we let i(n) ∈

{1, . . . , d − 1} be the residue class (mod. d − 1) of n, and we set Q(n + 1) := · · · × [[1 +

4i(n)(xi(n),n − 1), yi(n),n]] × [[xi(n)+1,n, 1 + 4i(n)+1(yi(n)+1,n − 1)]] × · · · , where the dots mean

that the corresponding factors remain untouched. (See Figure 5 for an illustration of the

case d = 4, with n ≡ 1 (mod. 3).)

Notice that xi,n, yi,n are of the form 1 + 2k for all i, n. Although one may give precise

formulas for xi,n, yi,n, we will only need to record the (easy to check) fact that for some
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universal constants C1, C2, C3, C4, we have the estimates

C14
in

d−1 ≤ yi,n − xi,n ≤ C24
in

d−1 (1.10)

and

C34
in

d−1 ≤ xi,n ≤ C44
in

d−1 . (1.11)

In particular, the number of points in Q(n) is

|Q(n)| =
d−1∏
j=1

(yj,n − xj,n) ≤
d−1∏
j=1

C24
jn
d−1 = Cd−1

2 4
n

d−1

∑d−1
j=1 j = Cd−1

2 4
nd
2 . (1.12)

Each Q(n) is decomposed into paths pointing in the i(n)th-direction as follows. If i(n) = 1,

then we decompose Q(n) into “horizontal” paths of jump 1 at each step, so that the number

of paths is ∏
j ̸=1

(yj,n − xj,n) ≥
∏
j ̸=1

C14
jn
d−1 = Cd−2

1 4
n

d−1

∑
j ̸=1 j = Cd−2

1 4n
[

d
2
− 1

d−1

]
.

If i(n) ̸= 1, then for each fixed coordinates zj ∈ [[xj,n, yj,n]], with j ̸= i(n), we identify

{z1} × · · · × {zi(n)−1} × [[xi(n),n, yi(n),n]]× {zi(n)+1} × · · · × {zd−1} ∼ [[xi(n),n, yi(n),n]] ⊂ N

and we decompose this set into N := xi(n)−1,n paths making jumps (in the i(n)th-direction)

of either 1 or M := zi(n)−1,n steps following the strategy of Lemma 1.0.6. The corresponding

number of paths now equals

xi(n)−1,n

∏
j ̸=i(n)

(yj,n − xj,n) ≥ C34
(i(n)−1)n

d−1

∏
j ̸=i(n)

C14
jn
d−1

= C34
(i(n)−1)n

d−1 Cd−2
1 4

n
d−1

∑
j ̸=i(n) j = C3C

d−2
1 4n

[
d
2
− 1

d−1

]
.

In either case, we denote by Q(n, 1), . . . , Q(n,mn) these paths, so that mn ≥ C54
n
[

d
2
− n

d−1

]
for C5 := min{C3C

d−2
1 , Cd−2

1 }. What is important in the construction above is that each

of these paths has a concrete dynamical meaning for the action of N∗
d−1 ⊂ Nd. Namely, if

i(n) = 1, they are induced by the action of the generator f2,1, whereas for i(n) ̸= 1, they are

induced by the action of fi(n),1 and fi(n)−1,i(n), where the first generator appears for 1-step

jumps and the second one for jumps of amplitude zi(n)−1,n.
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Associated to each point (i1, . . . , id−1) ∈ Zd−1 there is a positive number ℓi1,...,id−1
, namely

the length of the interval

I∗i1,...,id−1
:=

∪
j∈Z

Ii1,...,id−1,j.

Notice that the total sum of the ℓi1,...,id−1
’s equals 1. Moreover, all the intervals I∗i1,...,id−1

are

in the N∗
d−1-orbit of I

∗ = I∗0,...,0; see (1.2). Hence, as in the case d = 3, what we need to do is

to ensure the existence of an infinite sequence of intersecting paths in Q(1), Q(2), . . . along

which the total Lα-sum is finite provided that α > 2
d(d−1)

. To do this, we start with the next

Lemma 1.0.7. Given 0 < α < 1, there exists a constant C6 > 0 such that for all A > 0 and

all n ≥ 1, the subset of indexes m ∈ {1, . . . ,mn} satisfying∑
(i1,...,id−1)∈Q(n,m)

ℓαi1,...,id−1
≤ AC6

4n
[

dα
2
− 1

d−1

] (1.13)

has density at least 1− 1/A.

Proof. As in the case d = 3, by Hölder’s inequality we have∑
(i1,...,id−1)∈Q(n)

ℓαi1,...,id−1
≤ |Q(n)|1−α ≤ C

(d−1)(1−α)
2 4

nd(1−α)
2 .

Hence,

1

mn

mn∑
m=1

∑
(i1,...,id−1)∈Q(n,m)

ℓαi1,...,id−1
≤ C

(d−1)(1−α)
2 4

nd(1−α)
2

C54
nd
2
− n

d−1

=
C

(d−1)(1−α)
2

C54
ndα
2

− n
d−1

,

and the claim follows from Chebyshev’s inequality for C6 := C
(d−1)(1−α)
2 /C5. �
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Figure 5

Q(n) Q(n+ 1)

Q(n+ 2)

Q(n+ 3)

x1,n y1,n = y1,n+1x1,n+1

x2,n = x2,n+1

y2,n

y2,n+1 = y2,n+2

x2,n+2

x3,n

y3,n

From now on, we fix α > d(d−1)
2

. We start by letting rn (resp. sn) be the minimum (resp.

maximum) of points in a path of the form Q(n,m) inside Q(n) ∩ Q(n + 1). Similarly, we

denote by r′n (resp. s′n) the minimum (resp. maximum) number of points of a path of the

form Q(n+ 1,m) inside Q(n) ∩Q(n+ 1). Then we let

B :=
∏
n≥1

sn
rn

s′n
r′n

.

We claim that the value of B is finite. Indeed, we have rn = sn whenever i(n) = 1, whereas

s′n = r′n whenever i(n) = d − 1. For the other values of i := i(n), the condition (ii) in

Lemma 1.0.6 together with the inequalities 2
yi−1,n−1

xi−1,n−1
≤ 4d+2 and 2

yi,n+1−1

xi,n+1−1
≤ 4d+2 yield the

estimates

yi,n+1 − xi,n+1

xi−1,n
−4−4d+2−4 log2(xi−1,n−1) ≤ rn ≤ sn ≤ yi,n+1 − xi,n+1

xi−1,n
+4+4d+2+4 log2(xi−1,n−1)

and

yi+1,n − xi+1,n

xi,n+1
−4−4d+2−4 log2(xi,n+1−1) ≤ r′n ≤ s′n ≤ yi+1,n − xi+1,n

xi,n+1
+4+4d+2+4 log2(xi,n+1−1),

which together with (1.10) and (1.11) easily imply the finiteness of B.

We will also use the (finite) constant

C := 2
∑
n≥1

1

2n
[

dα
2
− 1

d−1

] .
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Now we fix A1 ≥ BC 2
dα
2
− 1

d−1 such (1.13) holds for n = 1 and every m ∈ {1, . . . ,m1} when

letting A = A1. Finally, for n ≥ 2, we set

An := BC 2n
[

dα
2
− 1

d−1

]
.

Lemma 1.0.8. There exists an infinite sequence of paths of the form Q(n,m′
n) in Q(n) such

that, for all n ≥ 1, the path Q(n+1,m′
n+1) intersects Q(n,m′

n) and (1.13) holds for m = m′
n

and A = An.

Proof. As in the case d = 3, for each n ≥ 1 we let Dn be the density of indexes m ∈

{1, . . . ,mn} such that there exists a finite sequence of pathsQ(1, n′
1), . . . , Q(n,m′

n) satisfying:

– For each 1 ≤ k ≤ n− 1, the path Q(k + 1,m′
k+1) intersects Q(k,m′

k);

– Estimate (1.13) holds for each m = m′
k and A = Ak.

Similar arguments to those leading to (1.8) yield

(1−Dn+1) ≤ (1−Dn)
sn
rn

s′n
r′n

+
1

An

.

Indeed, the product sns′n
rnr′n

acts as a correction factor for the passage from Q(n) to Q(n + 1)

taking into account that the paths of the form Q(n,m) do not have the same number of

points in Q(n) ∩ Q(n + 1), and similarly for those of the form Q(n + 1,m). By induction,

the preceding inequality yields

1−Dn ≤ (1−D1)
n−1∏
k=1

sk
rk

s′k
r′k

+
n−1∑
k=1

1

Ak

k−1∏
j=1

sj
rj

s′j
r′j

≤ (1−D1)B +B
∑
k≥1

1

Ak

.

The choice of A1 was made so that D1 = 1, hence

1−Dn ≤ B
∑
k≥1

1

Ak

≤ 1

2
.

As a consequence, Dn ≥ 1/2, which implies that for each n we may obtain a finite sequence of

n paths with the desired properties. The infinite sequence is obtained via a Cantor diagonal

type argument. �

The proof of Theorem A is now at hand. Indeed, the concatenation of the paths provided

by the preceding lemma yields an infinite sequence of points in Zd−1 along which the value
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of the Lα-sum is bounded from above by∑
n≥1

AnC6

4n
[

dα
2
− 1

d−1

] ≤ A1C6

4
dα
2
− 1

d−1

+
∑
n≥2

BCC6

2n
[

dα
2
− 1

d−1

] ≤ 2A1C6 + 2BC6.

This is in correspondence to a sequence of intervals of the form Ii1,...,id−1
each of which is

obtained from the preceding one by applying one of the generators in {f2,1, f3,1, . . . , fd,1} ∪

{f2,1, f3,2. . . . , fd,d−1}. Joining this infinite sequence to a finite one from the origin to a point

in Q(1, n′
1), we obtain an infinite sequence of intervals in the N∗

d−1-orbit of the interval I∗

for which the Lα-sum is finite, and hence the arguments of §1.0.2 may be applied. This

concludes the proof.

1.0.5 An independent combinatorial lemma

The aim of this section is to give the proof of Lemma 1.0.6. We first give the details of

the construction of the partition of N0 into N sets (paths) P1, ...., PN , and latter we check

the desired properties. The construction is made in two steps, the former of which applies

to arbitrary values of N , whereas the latter is restricted to integers of the form 1 + 2k.

Step 1. Let M > N be positive integers. Assume that we are given a partition

[[0,M − 1]] = R0

∪
R1

∪
. . .

∪
RN−1

into “consecutive” sets, that is, such that 1+maxRi = minRi+1 holds for all 0 ≤ i ≤ N −2.

Then this induces a partition of N0 as follows. Denoting R⊕ k := {n+ k : n ∈ R}, we define

• S1 :=
N−1∪
j=1

Rj ⊕ j(M − 1),

• Si :=
N−1∪
j=i−1

Rj ⊕ (j − i+ 1)(M − 1)
∪ i−2∪

j=1

Rj ⊕ (j − i+N)(M − 1), for 2 ≤ i ≤ N .

(Notice that, by definition, the second term in the definition of Si above is empty for i = 2.)

Now, what defines our partition of N0 is the “periodic repetition” of the sets S1, ..., SN . More

precisely, we let

• P1 := R0

∪ ∞∪
k=0

S1 ⊕ kN(M − 1),

• Pi :=
∞∪
k=0

Si ⊕ kN(M − 1), for 2 ≤ i ≤ N .
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To have a clearer view of this construction, the reader may easily check that for the

particular choice R0 := {0}, R1 := {1}, . . . , RN−2 := {N − 2} and RN−1 := {N − 1, N,N +

1, . . . ,M − 1}, it yields to the paths constructed in §1.0.3 (see again Figure 3 for an illustra-

tion).

It is sometimes better to think on our paths as concatenations of “patches”. In this

view, for 2 ≤ i ≤ N , the sequence representing Si is Ri−1Ri . . . RN−1R1R2 . . . Ri−2, which

in notation modulo N − 1 may be rewritten as Ri−1Ri . . . Ri+N−2. This means that Si is

made of a copy of Ri−1 followed by a copy of Ri translated by M − 1 units, a copy of Ri+1

translated by another M−1 units, and so on. Similarly, our paths Pi may be seen as infinite

sequences of patches. Thinking on each Si as a patch as well, for 2 ≤ i ≤ N , the path Pi is

represented by SiSiSi . . .. The sequence representing P1 corresponds to R0S1S1S1 . . ..

Step 2. Assuming that N has the form 1 + 2k, we will associate to it a particular choice of

sets R1, ..., RN . Let p ≥ 1 and q ≥ 0 be the integers such that

M − 1 = (N − 1)p+ q, with q < N − 1.

Let us consider the binary expansion of q:

q = 2r1 + . . .+ 2rl , with r1 > .... > rl ≥ 0.

(Notice that since q < N − 1 = 2k, we have k > r1.) Now, for 1 ≤ i ≤ N − 1, define si as

being the largest integer s such that 2k−rs divides i whenever there is such an index s, and

as being equal to zero otherwise. We claim that the following relation holds:

s1 + s2 + . . .+ sN−1 = q. (1.14)

Indeed, by definition, si equals s > 0 if and only if i is a multiple of 2k−rs but not a multiple

of 2k−rs+1 . Now, in {1, 2, . . . , N − 1}, there are exactly 2rs multiples of 2k−rs , namely the

products of 2k−rs with the integers in {1, 2, 3, . . . , 2rs}. Hence, the left-side expression in

(1.14) equals

l∑
s=1

s
∣∣{i : si = s}

∣∣ = l−1∑
s=1

s
(
2rs − 2rs+1

)
+ l2rl =

l∑
s=1

2rs = q. (1.15)

Finally, let us inductively define:
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• R0 := {0},

• Ri := {1 + maxRi−1, ..., p+ si +maxRi−1}, where 1 ≤ i ≤ N − 1.

Notice that for 1 ≤ i ≤ N − 1, the number of points of Ri equals

p+ si ≤ p+ l ≤ p+ k = p+ log2(N − 1). (1.16)

Using (1.14), we conclude that the number of points contained in the union of the Ri’s equals

1 + p(N − 1) + s1 + . . .+ sN−1 = 1 + p(N − 1) + q = M.

Thus, the Ri’s yield a partition of [[0,M − 1]] into consecutive sets. We claim that the

corresponding partition of N0 into the paths P1, . . . , PN produced as in Step 1 satisfies the

desired properties.

Step 3. We first notice that in order to prove property (ii) of Lemma 1.0.6, we may restrict

ourselves to intervals of the form [[0, K]] instead of general intervals [[K1, K2]] provided we

obtain the better bound 2+ M−1
N−1

+2 log2(N) for the maximal difference of points in [[0, K]]

among our N paths. This is what we now proceed to do.

Let a, b be non-negative integers such that

K = aN(M − 1) + b, with b < N(M − 1),

Let us first consider a path Pi such that 2 ≤ i ≤ N . In terms of patch sequences, and using

notation modulo N − 1, the intersection of Pi with [[0, K]] has the form

Si . . . SiRi−1Ri . . . Ri−1+tT, with t ≤ N − 1.

Here, the patch T is a starting part of the patch Ri+t. Moreover, the patch Si appears

precisely a times.

By construction, the number of points in the set represented above is a times the number

of points in Si plus the sum of the number of points in Ri−1 . . . Ri−1+t plus the number of

points in T . The former equals a(M − 1), hence it is independent of i ∈ {2, . . . , N}, whereas

the latter is smaller than or equal to p+si+t ≤ p+log2(N−1); see (1.16). As a consequence,

the difference with respect to the number of points in [[0, K]] ∩ Pj (with 2 ≤ j ≤ N) is at

most p+log2(N−1) plus the difference between the number of points in Ri−1 . . . Ri−1+t and
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Rj−1 . . . Rj−1+t. Since p ≤ 1 + M−1
N−1

, our task reduces to show that the last difference is at

most log2(N − 1).

Now, the number of points in the first (resp. second) sequence above equals

(p+ si−1) + (p+ si) + . . .+ (p+ si−1+t) = tp+ si−1 + . . .+ si−1+t(
resp. (p+ sj−1) + (p+ sj) + . . .+ (p+ sj−1+t) = tp+ sj−1 + . . .+ sj−1+t

)
.

Define ρs,i (resp. ρs,j) as being the number of indexes in {i − 1, . . . , i − 1 + t} (resp. {j −

1, . . . , j − 1 + t}) that are multiples of 2k−rs . A similar argument to that leading to (1.15)

yields

si−1+ . . .+ si−1+t = ρ1,i+ ρ2,i+ . . .+ ρl,i
(
resp. sj−1+ . . .+ sj−1+t = ρ1,j + ρ2,j + . . .+ ρl,j

)
.

Since
t

2k−rs
≤ ρs,i ≤ 1 +

t

2k−rs

(
resp.

t

2k−rs
≤ ρs,j ≤ 1 +

t

2k−rs

)
,

we conclude that |ρs,i − ρs,j| equals zero or 1. We thus conclude that

∣∣si−1+. . .+si−1+t−sj−1−. . .−sj−1+t

∣∣ ≤ |ρ1,i−ρ1,j|+. . .+|ρl,i−ρl,j| ≤ l ≤ k = log2(N−1),

as we wanted to show.

Actually, so far we have obtained the upper bound 1 + M−1
N−1

+ 2 log2(N − 1) for the

difference between the number of points in Pi ∩ [[0, K]] and Pj ∩ [[0, K]]. The extra 1 which

lacks appears when making comparisons with the path P1, taking into account that P1 starts

with R0 = {0}. The proof of this follows the same ideas above. We leave the details to the

reader.
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Chapter 2

AN ALTERNATIVE PROOF OF

THEOREM A

The aim of this charper is to give an alternative (and simpler) proof of Theorem A. As

we saw in Chapter 1, the core of the proof consisted in finding “good paths” in a graph.

Here, we will perform this task by appealing to the general framework of moduli of curves,

as we next explain.

2.0.6 Some preliminaries and notation: moduli in metric spaces

A good general discussion of this theory can be found in [9, 10].

Let (X,µ) be a metric measured space. As usual, we denote by Br(x) the open ball in X

of center x and radius r. For C > 0, we let CBr(x) := BCr(x). We use the generic notation

Br for a ball of radius r whenever the center is irrelevant for the discussion.

By a curve γ in X we mean a continuous function γ : I = [a, b] −→ X for some closed

interval I. The length of γ is defined as

l(γ) = sup

{
n∑

i=1

∣∣γ(ti)− γ(ti−1)
∣∣} ,

where the supremum is taken over all finite sequences a = t0 < t1 < . . . < tn = b. If the

number l(γ) is finite, then we say that γ is rectificable.

For γ : I −→ X a rectificable curve, there always exists a unique 1-Lipschitz continuous
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curve γ′ : [0, l(γ)] −→ X such that

γ = γ′ ◦ s,

where s : I −→ [0, l(γ)] is the length function of γ. Given a nonnegative Borel function f ,

we define ∫
γ

f :=

∫ l(γ)

t=0

f ◦ γ′(t)dt.

Given Γ a family of curves in X and a real number p ≥ 1, the p−modulus of Γ is defined as

modp(Γ) := inf

∫
X

fpdµ,

where the infimum is taken over the Borel positive functions f that are admissible for Γ,

that is ∫
γ

f ≥ 1

for all rectificable curves γ in Γ.

Let U be an open set in X and u a real-valued function defined on U . We say that a

Borel function f is a very weak gradient of u in U if for all x, y in U and for any rectificable

curve γ joining x and y, we have

∣∣u(x)− u(y)
∣∣ ≤ ∫

γ

f.

Finally, we say that X satisfies a (1, p)-weak-Poincaré’s inequality if there exist constants

Cp > 0 and C ′ ≥ 1 such that

1

µ(B)

∫
B

|u− uB|dµ ≤ Cp(diam(B))

(
1

µ(C ′B)

∫
C′B

|f |pdµ
) 1

p

whenever u is a bounded continuous function defined on C ′B, f is a very weak gradient of

u, B is an open ball in X, and uB is the mean of u on B (with respect to µ). The term weak

in this definition is because the ball in the right side is bigger than the ball in the left side.

We recall that a measure µ on X satisfies the Q-lower bounded condition (resp. doubling

condition) if there exists a constant C ′ > 0 (resp. C ′′ ≥ 1) such that µ(Br) ≥ C ′rQ (resp.

µ(B2r) ≤ C ′′µ(Br)) for every ball Br in X. Given E,F two closed sets in an open set U of

X, we denote by (E,F, U) the set of all curves in U joinning E and F .
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There exists another useful way to compute the moduli of families of curves, called the

capacity. Given an open set U inX and E,F two closed subsets of U , we define the p-capacity

of (E,F, U) as

capp(E,F, U) := inf

∫
X

fpdµ,

where the infimum is taken over all weak gradients of all functions u such that u|E ≥ 1 and

u|F ≤ 0.

A basic result from [10] states that

capp(E,F, U) = modp(E,F, U). (2.1)

The idea of the alternative proof of Theorem A is to replace the upper estimates on

the value of certain series appearing in Chapter 1 by a lower estimative for the modulus of

certain families of curves in a suitable metric space. The following adapted version of [10,

Theorem 5.9] is exactly what gives us the information what we need.

Theorem 2.0.9. Let (X,µ) be a metric measured space with a locally finite, doubling measure

µ satisfying the Q-lower bounded condition. Assume also that X satisfies a (1, p)-weak-

Poincaré’s inequality for some 1 ≤ p ≤ Q. Then there exists a constant C ≥ 1 such that for

any two closed subsets E,F in a ball Br of radius r satisfying

min{diam(E), diam(F )} ≥ λr1−Qµ(Br)

for some 0 < λ ≤ 1, one has

capp(E,F,BCr) ≥ C−1λµ(Br)r
−p.

Since we are interested on graphs, the next remark simplifies the discussion.

Remark 2.0.10. Suppose X is a locally finite graph with degree uniformly bounded by

K > 0. In this framework, almost all previus definitions and results work except for the

concept of the integral over a curve γ and other notions depending on this. Following [3],

given a path γ = (x1, . . . , xn) in X (n can be infinite) and f a real positive function defined

on the set of vertices of X, we define ∫
γ

f :=
n∑

i=1

f(xi) (2.2)
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Let ∇u(x) :=
∑

d(x,y)=1

∣∣u(x)− u(y)
∣∣ be the discrete gradient of u, and put

cap′p(E,F,Br(x)) := inf

 ∑
y∈Br(x)

(∇u)p(y) : u|E ≥ 1, u|F ≤ 0, u : Br(x) −→ R


Then cap′p(E,F,Br−1(x)) ≤ C · capp(E,F,Br(x)), for some constant C depending on K

and p. Indeed, for any very weak gradient f of u, we have

∇u(x) ≤
∑

y∈B1(x)

f(y),

which implies ∑
y∈Br−1(x)

(∇u)p(y) ≤ C
∑

y∈Br(x)

fp(y),

as desired.

It is important to emphasize that equation (2.1) is true in the context above, that is,

when integrals are given by (2.2). Also, Theorem 2.0.9 still holds for cap′ instead of cap.

Therefore, when dealing with graphs, in order to get a lower estimative of moduli, it suffices

to work with cap′ (and with the discrete gradient for the Poincaré inequality).

2.0.7 Schreier graphs as metric spaces

Let G be a finitely generated group, H a subgroup of G, and S a finite system of

generators of G. We denote by H\G the Schreier graph associated to G, H and S. More

precisely, the set of vertices of H\G is V (H\G) := {Hg : g ∈ G}, and the set of edges is

E(H\G) := {(Hg,Hgs) : g ∈ G, s ∈ S}. Observe that if H is trivial, then {e}\G is the

Cayley graph of G associated to S, which is denoted Cayley(G,S).

Denote by B
H\G
r (Hg) (resp. BG

r (g)) the ball of center Hg (resp. g) and radius r in H\G

(resp. Cayley(G,S))).

In this section, we will show that Schreier graphs satisfy the Poincaré inequality and,

whenever they have polynomial growth, the doubling property. Although these facts are

folklore, it is hard to find them in the literature, hence we will provide complete proofs. We

begin with the Poincaré inequality.
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Proposition 2.0.11. The graph H\G satisfies a (1, 1)-Poincaré’s inequality. More precisely,∑
Hg1∈BH\G

r (Hg)

∣∣u(Hg1)− u
B

H\G
r (Hg)

| ≤ 2r
∑

Hg1∈BH\G
r (Hg)

|∇u|(Hg1), (2.3)

where u is any function defined on the set of vertices of H\G, and ∇u is the discret gradient

of u.

Proof. To simplify, we write Br(Hg) instead of B
H\G
r (Hg). Note that, by the triangle

inequality,

|Br(Hg)|
∑

Hg1∈Br(Hg)

∣∣u(Hg1)− uBr(Hg)

∣∣ ≤ ∑
Hg1,Hg2∈Br(Hg)

∣∣u(Hg1)− u(Hg2)
∣∣. (2.4)

Hence, we just need to control |u(Hg1)− u(Hg2)|. Given Hg1, Hg2 in Br(Hg), for i = 1, 2,

there exist 0 ≤ d(Hgi, Hg) := ri ≤ r and γi
1, . . . , γ

i
ri
in S such that the sequences

(Hg1, Hg1γ
1
1), (Hg1γ

1
1 , Hg1γ

1
1γ

1
2), . . . , (Hg1γ

1
1γ

1
2 · · · γ1

r1−1, Hg1γ
1
1γ

1
2 · · · γ1

r1
),

(Hg,Hgγ2
1), (Hgγ2

1 , Hgγ2
1γ

2
2), . . . , (Hgγ2

1γ
2
2 · · · γ2

r2−1, Hgγ2
1γ

2
2 · · · γ2

r2
)

are paths that join Hg1 with Hg and Hg with Hg2, respectively, with the property that

Hg1γ
1
1γ

1
2 · · · γ1

i ∈ ∂Br1−i(Hg) and Hgγ2
1γ

2
2 · · · γ2

j ∈ ∂Bj(Hg), where i ∈ {1, . . . , r1} and

j ∈ {1, . . . , r2}. Set

S1(Hg1) := |u(Hg1)−u(Hg1γ
1
1)|+|u(Hg1γ

1
1)−u(Hg1γ

1
1γ

1
2)|+· · ·+|u(Hg1γ

1
1γ

1
2 · · · γ1

r1−1)−u(Hg)|,

S2(Hg2) := |u(Hg)−u(Hgγ2
1)|+|u(Hgγ2

1)−u(Hgγ2
1γ

2
2)|+· · ·+|u(Hgγ2

1γ
2
2 · · · γ2

r2−1)−u(Hg2)|.

Then,

|u(Hg1)− u(Hg2)| ≤ S1(Hg1) + S2(Hg2).

Now, we proceed to control S1:
r∑

r1=0

∑
d(Hg1,Hg)=r1

S1(Hg1) ≤
r∑

r1=0

∑
d(Hg1,Hg)=r1

∇u(Hg1) +∇u(Hg1γ
1
1) + · · ·+∇u(Hg1γ

1
1γ

1
2 · · · γ1

r1−1).

Since Hg1γ
1
1γ

1
2 · · · γ1

i ∈ ∂Br1−i, we get∑
d(Hg1,Hg)=r1

∇u(Hg1) +∇u(Hg1γ
1
1) + · · ·+∇u(Hg1γ

1
1γ

1
2 · · · γ1

r1−1) ≤
r1−1∑
j=0

∑
d(Hg1,Hg)=r1−j

∇u(Hg1)

=
∑

d(Hg1,Hg)≤r1

∇u(Hg1)

≤
∑

Hg1∈Br(Hg)

∇u(Hg1).
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Therefore, ∑
Hg1∈Br(Hg)

S1(Hg1) ≤
r∑

i=0

∑
Hg1∈Br(Hg)

S1(Hg1) = r
∑

Hg1∈Br(Hg)

∇u(Hg1)

Similar computations for S2 show that∑
Hg2∈Br(Hg)

S2(Hg2) ≤ r
∑

Hg2∈Br(Hg)

∇u(Hg2).

Thus,∑
Hg1∈Br(Hg)

∑
Hg2∈Br(Hg)

∣∣u(Hg1)− u(Hg2)
∣∣ ≤

∑
Hg1∈Br(Hg)

∑
Hg2∈Br(Hg)

(
S1(Hg1) + S2(Hg2)

)
≤ 2r|Br(Hg)|

∑
Hg1∈Br(Hg)

∇u(Hg1).

Joining this inequality with (2.4), we finally obtain (2.3). �

Remark 2.0.12. Inequality (2.3) combined with Jenhsen’s inequality yield, for every real

number p > 1,

1

|BH\G
r (Hg)|

∑
Hg1∈BH\G

r (Hg)

∣∣u(Hg1)−uBH\G(Hg,r)

∣∣ ≤ 2r

|BH\G
r (Hg)|

1
p

 ∑
Hg1∈BH\G

r (Hg)

|∇u|p(Hg1)


1
p

.

Next, we verify the doubling property for the Schreier graph.

Proposition 2.0.13. For each r > 0 and g ∈ G,

|BG
r (g)|

|BG
2r(g) ∩Hg|

≤ |BH\G
r (Hg)| ≤ |BG

2r(g)|
|BG

r (g) ∩Hg|
. (2.5)

Moreover, if G has polynomial growth, then the cardinalities of the balls in H\G satisfy the

doubling property.

Proof. We first prove our claim for g ∈ H, so we can assume g = e. Let π : BG
r (e) −→

B
H\G
r (H) be the canonical projection (which is surjective). Then

π−1(Hw) = {w′ ∈ BG
r (e) : w

′ = hw, h ∈ H} = BG
r (e)

∩
Hw. (2.6)

We can assume ∥w∥ = d(H,Hw) ≤ r, so |π−1(Hw)| = |(BG
r (e)w

−1)
∩
H| ≤ |BG

2r(e)
∩
H|.

This means that π is at most |BG
2r(e) ∩H|-injective. Therefore,

|BG
r (e)| ≤ |BH\G

r (H)| · |BG
2r(e) ∩H|,
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which shows the left-side inequality of (2.5).

For the other inequality, note that if ∥w∥ = d(Hw,H)| ≤ r, then BG
2r(e)w

−1 contains

BG
r (e). Due to (2.6), this implies

|BG
2r(e)| =

∑
d(H,Hw)|≤2r

|π−1(Hw)| ≥
∑

d(H,Hw)|≤r

∣∣∣BG
r (e)

∩
H
∣∣∣

=
∣∣∣BG

r (e) ∩H
∣∣∣ · ∣∣∣BH\G

r (H)
∣∣∣.

This proves the right-side inequality of (2.5).

To deduce the inequality for an arbitrary g ∈ G, just notice that

|BH\G
r (Hg)| = |Bg−1Hg\G

r (H)|

and

|BG
r (e) ∩ g−1Hg| = |BG

r (g) ∩Hg|.

Finally, if G has polynomial growth, then the doubling property for H\G follows from

|BH\G
2r (Hg)| ≤ |BG

4r(g)|
|BG

2r(g) ∩Hg|
≤ C

|BG
r (g)|

|BG
2r(g) ∩Hg|

≤ C|BH\G
r (Hg)|,

where C = C(G) depends only on G. This proves the proposition. �

Remark 2.0.14. Note that if d(Hg,H) = ∥g∥ ≤ Cr, then by the doubling property, for

some appropriate constant C ′ = C ′(G,C), we have

|BH\G
r (Hg)| ≤ |BH\G

(1+C)r(H)| ≤ C ′|BH\G
r (H)|.

On the other hand, |BG
2r(g) ∩ H| ≤ |BG

(2+C)r(e) ∩ H|. Thus, the doubling property yields

another constant C ′′ = C(G,C) such that

|BH\G
r (Hg)| ≥ |BG

r (e)|
|BG

(2+C)r(e) ∩H|
≥ C ′′ |BG

2(2+C)r(e)|
|BG

(2+C)r(e) ∩H|
≥ C ′′|BH\G

r (H)|

This means that |BH\G
r (Hg)| ∼ |BH\G

r (H)|.
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2.0.8 Another proof of Theorem A

Recall from §1.0.2 that associated to the action ϕ
FF

there is a graph corresponding to

the orbit of a certain interval. As we will next see, this is nothing but a Schreier graph, to

which previous discussion may be applied.

Denote by Gd−1 the group generated by the linear maps gi, hj : Zd−1 −→ Zd−1 defined

as:

gi(x1, . . . , xd−1) := (x1, . . . , xi−1, xi + 1, xi+1, . . . , xd−1), i = 1, . . . , d− 1,

hj(x1, . . . , xd−1) := (x1, . . . , xj, xj+1 + xj, xj+2, . . . , xd−1), j = 1, . . . , d− 2.

In the notation of §1.0.2, gi and hj correspond to the action of fi+1,1 and fj+2,j+1 over

1× Zd−1, respectively.

The group Gd−1 has polynomial growth of degree d(d−1)
2

+ d − 2. Although this may be

directly obtained from the Bass-Guivarch formula [8, Appendix], an elementary computation

proceeds as follows. First, observe that gmn
i+1 = h−n

i g−m
i hn

i g
m
i and [gi, gj] = [fi, fj] = e

for j > i. It is then easy to prove by inducction (on r) that each word w ∈ B
Nd−1
r (e)

can be written of the form g
qd−1

d−1 h
pd−2

d−2 g
qd−2

d−2 · · · gq22 hp1
1 gq11 , where |pj| ≤ r and |qi| ≤ ri, for

j = 1, . . . , d − 2 and i = 1, . . . , d − 1. This gives us the desired upper bound for the

cardinality of B
Nd−1
r (e) . For the lower bound, we proceed by induction on d. The estimate

is clear for d = 3, since N2 is the Heisenberg group. For larger values of f , notice that

each word in B
Nd−2
r (1) can be identified with a word in B

Nd−1
r (e), so the number of words

of length r with respect to g1, . . . , gd−1, f1 . . . , fd−2 is at least Cr
(d−1)(d−2)

2
+d−3 for a certain

constant C > 0. Pick any word w in this set of Cr
(d−1)(d−2)

2
+d−3 elements and take a point

(x1, . . . , xd−1) ∈ Zd−1 such that the value of the (d − 2)th-coordinate of w(x1, . . . , xd−1) is

greater than rd−1. Take |i| ≤ rd−1 and |j| ≤ r. Then the last coordinate of the points

gid−1h
j
d−2w(x1, . . . , xd−1) are different. Since gmn

i+1 = f−n
i g−m

i fn
i g

m
i , the points of the form

gid−1, with |i| ≤ rd−1, belong to B
Nd−1

C′r (e) for a certain constant C ′ > 0. This easily yields

the desired lower bound.

Define Hd−1 as the subgroup of Gd−1 generated by h1, . . . , hd−2. Then the graph associ-

ated to the action ϕ
FF

can be interpreted as Hd−1\Gd−1: We identified the coset Hd−1 with

the point (0, . . . , 0) ∈ Zd−1; and then each coset Hd−1g can be viewed as a point on Zd−1. For
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example, the the coset Hd−1g
3
1h

6
1g

4
d−2 corresponds to the point (3, 18, 0, . . . , 0, 4, 0) ∈ Zd−1.

The core of the proof of Thorem A given in Chapter 1 then reduces to the next propo-

sition, for which we provide an alternative proof using the ideas introduced in the last two

sections.

Proposition 2.0.15. Given u : V (Hd−1\Gd−1) −→ R+ a summable function and a real

number α > 2
d(d−1)

, there exists a path γ on Hd−1\Gd−1 going to infinite, such that∑
Hd−1g∈γ

∣∣u(Hg)
∣∣α < ∞.

Moreover, γ can be taken going to infinite in any prescribed direction.

To prove this, we will strongly use Theorem 2.0.9. As the Poincaré inequality and the

doubling property are ensured by Propositions 2.0.11 and 2.0.13, respectively, what we need

to check is the Q-lower bounded condition for Hd−1\Gd−1 for some Q > 0.

We focus on the cardinalities of the balls in Hd−1\Gd−1. Keeping in mind that each

coset Hd−1g can be viewed as a point in Zd−1, we take (x1, . . . , xd−1) ∈ Zd−1, and define

s1 := min{max{r, |x1|}, r2} and si := rmin{max{si−1, |xi|}, ri}, for i = 2, . . . , d− 2. Then

∣∣BHd−1\Gd−1
r ((x1, . . . , xd−1))

∣∣ ∼
 r2s1 if d = 3,

r2sd−2Π
d−2
j=2sj if d ≥ 4.

(2.7)

For example, for d = 4, we have

|BH3\G3
r ((x1, x2, x3))| ∼


r6 if max{|x1|, |x2|} ≤ r,

r4 max{|x1|, |x2|}2 if r < max{|x1|, |x2|} ≤ r2,

r8 if r2 < max{|x1|, |x2|}.

Let us explain formula (2.7). In the case d ≥ 4, for the first coordinate, we have a number

of possibilities of order r. For the second one, the order is rmin{max{s1, |x2|}, r2}, as we

use hr
1 to get r jumps of length max{s1, |x2|} in the second direction and then reach ∼ r2 of

these points using the relation gmn
2 = h−n

1 g−m
1 hn

1g
m
1 . For the rest of the coordinates, using

the relation gmn
i+1 = h−n

i g−m
i hn

i g
m
i , the same procedure yields (2.7). For the case d = 3, these

ideas still apply, but notice that we have a smaller number of coordinates.
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Now it is clear that if |xi| ∼ r for each i, then for all (y1, ..., yd−1) ∈ Zd−1 we have∣∣BHd−1\Gd−1
r ((x1, . . . , xd−1))

∣∣ ∼ r
d(d−1)

2 &
∣∣BHd−1\Gd−1

r ((y1, . . . , yd−1))
∣∣.

This establishes the desired Q-lower bound condition for Q := d(d−1)
2

.

Proof of Proposition 2.0.15. To simplify, we use the notation G and H for Nd−1 and

Gd−1, respectively.

Without loss of generality, we can suppose that the sum of u over V (H\G) equals 1. Set

Q := (d−1)d
2

and p := α−1. Let {w0.w1, . . .} be a sequence of points in G satisfying

d
(
B

H\G
2i

(Hwi), B
H\G
2i+1 (Hwi+1)

)
= 2i+1.

If w0 ∈ H, then 2i ≤ d(Hwi, H) ≤ 1 + (3)
∑i−1

j=1 2
j + 2i+1 ≤ 6(2i), and so we can assume

∥wi∥ = d(Hwi, H) ≤ 6(2i) . Associated to these points we consider the following collection

of sets: F0 := ∂B
H\G
2 (Hw1), E0 := ∂B

H\G
1 (Hw0), Fn := ∂B

H\G
2n+1 (Hwn+1), En := Fn−1 and

Kn := B
H\G
7(2)n(Hwn). By Remark 2.0.14,

min{diam(Fn), diam(En)} = 2n = (7C1)
−1(7(2)n)1−QC1(7(2)

n)Q ≥ λ(7(2)n)1−Q|Kn|,

with λ = (7C1)
−1. So, if we denote by Λn the set of curves contained in CKn that join En

with Fn, the Theorem 2.0.9 and the remark 2.0.12, implies

modp(Λn) ≥ C−1λ(7 · (2n))−p|Kn| ≥ λC−1C−1
1 (7 · (2n))Q−p.

Consequently, there must exist a curve γn in Λn such that∑
Hg∈γn

(u(Hg))α ≤ {λ−1CC1(7 · (2n))p−Q}α

wn
wn+1

wn+2

γn 

γn+1 

Fn=En+1

En

Fn+1

2
n+2

2
n+1

2
n

34



If γn intersects γn+1 for each n, then we are done. However, it is not clear that this

happens. To solve this eventual problem, we define E ′
n and F ′

n as being the segments of γn

and γn+1, respectively, which are contained in B
H\G
2n+2 (wn+1); then we consider Ωn the family

of curves in B
H\G
2n+2 (wn+1) that join these two sets. Since E ′

n and F ′
n join the boundaries of

the the balls B
H\G
2n+1 (wn+1) and B

H\G
2n+2 (wn+1), Remark 2.0.14 yields

min{diamF ′
n, diamE ′

n} ≥ 2n+2 − 2n+1 = 2n+1 = (2C1)
−1C1(2

n+2)Q(2n+2)1−Q

≥ λ′(2n+1)1−Q|B2n+1(wn+1)|,

where λ′ = (2C1)
−1. Thus, reasoning as above, we can find a curve σn ∈ Ωn such that∑

Hg∈σn

(u(Hg))α ≤ {(λ′)−1CC1(2
n)p−Q}α

The concatenation of the paths γn and σn at intersecting points then provides us the desired

path. Finally, note that we can choose the sequence of points {w1, w2, ...} going to infinity

in any prescribed direction.

Remark 2.0.16. The same argument in the critical case d(d−1)
2

= 1
α
:= p gives a curve β in

the graph H\G, starting at H, which can be written as

β1 ∪ β2 ∪ β3 ∪ · · · ,

where βm is a curve such that d(H, βm) ≥ 2m+1 and
∑

Hg∈βm
u(Hg)d ≤ C ·m for a constant

C that depends only of the growth of G. This yields a path (Hg1, Hg2, . . .) in H\G such

that
m∑
i=1

u(Hgi)
d ≤ C log2(m+ 1) ≤ C ′ log(m).

Such paths plays a central role in [17], where their existence is established by constructive

arguments similar to those of Chapter 1.
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CONJECTURES

The Q-lower bounded condition for H\G can be stated as

rQ ∼ |BH\G
r (H)| % |BH\G

r (g)|.

Under this assumption, the argument of proof of Proposition 2.0.15 would yield an affirmative

answer to the the following

Conjecture 2.0.1. Let G be a group of polynomial growth and H a subgroup of G. Given

u : V (H\G) −→ R+ a summable function and a real number α > 1
Q
, there exists a path γ

on H\G going to infinity, such that:∑
Hg∈γ

∣∣u(Hg)|α < ∞.

Moreover, γ can be taken going to ininity in any prescribed direction.

The relevance of this conjecture in relation to nilpotent group actions on the interval lies

in that each time we can associate a Schreier graph to the orbit of an interval that is fixed

by a central element, this will provide us an upper bounded for the regularity of the action

(at scale C1+α).

Note that for a group G of polynomial growth of degree d and H = {e}, the Q-lower

bounded condition is trivially true with Q = d, so Conjecture 2.0.1 holds in this case. For

the general case, in view of Proposition 2.0.13 , the problem reduces to the next

Conjecture 2.0.2. Given a group G of polynomial growth and a subgroup H, then

1. There exist positive rational number Q′ such that |BG
r (e) ∩H| ∼ rQ

′
,
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2. There exist a positive real number C such that for all g ∈ G and r < |g|,

|BG
r (e) ∩H| ≤ C|BG

r (g) ∩Hg|.

There is a natural candidate for the value of Q′ above. Indeed, suppose that G is nilpotent

of degree n and denote by G = G1 ▹ G2 ▹ · · · ▹ Gn+1 = {e} its decending central series.

Define Hi := H ∩Gi, and let di be the rank of Hi/Hi+1. Then the candidate is

Q′ =
∑
i

idi.

Observe that for H trivial, this is nothing but the Bass-Guivarch formula for the exponent

growth of G; see [8, Appendix].

Next we provide a proof that Q′ is the right exponents for the case n = 2.

Lower bound: Since G1/G2 is abelian, |BG1/G2
r (G2) ∩G2H| ∼ rrank(G2H/G2). By Lemma 1

of [8, Appendix], |G2 ∩H ∩BG
r (e)| ∼ r2rank(G2∩H), so the lower bound follows.

Upper bound: It is clear that |BG1/G2
r (G2) ∩ G2H| ∼ rrank(G2H/G2). Let g1, . . . , gd ∈ G be

such that their projections generate H/(G2 ∩ H). Then each word w ∈ BG
r (e) ∩ H can be

written in the form (Πd
j=1g

lj
j )w

′, where
∑

i |li| ≤ r and w′ is an element in G2 ∩ H whose

length in G2 is of order r2, The upper bound easily follows from this.

For the second claim of Conjecture 2.0.2, we think that the distortion of H (see [18]) will

play a role in the proof. Moreover, Breuillard has recently given a quite convincing hint of

using Lie type methods; more precisely, a translation of the problem into the Lie algebra

should yield an affirmative answer.
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