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Chapter 1

Introduction

The aim of this thesis is to study the existence and qualitative properties of solutions
for some integro-differential equations with delay by using methods of maximal regular-
ity in spaces of vector valued functions. The study of maximal regularity is very useful
for treating semilinear and quasilinear problems and results in this direction have been
studied extensively in recent years (see for example, [1], [21], [42], and the recent survey
by W. Arendt [6] and the bibliography therein). One of the most important tools to
prove maximal regularity is the theory of Fourier multipliers. They play an important
role in the analysis of parabolic problems. In recent years it has become apparent
that one needs not only the classical theorems but also vector-valued extensions with
operator-valued multiplier functions or symbols. These extensions allow to treat cer-
tain problems for evolution equations with partial differential operators in an elegant
and efficient manner in analogy to ordinary differential equations. For some recent pa-
pers on the subjet, we refer to Weis [52, 53], Kalton-Lancien [32], Denk-Hieber-Prüss
[25], Schweiker [46], Arendt-Bu [9, 11], Amann [1, 2], Arendt-Batty-Bu [8] . Operator
valued Fourier multiplier theorems for Besov spaces, have been obtained and studied
by Amann [2], Weis [54], Girardi-Weis [27, 28], Arendt-Bu [10].

We characterize well-posedness of some linear integro-differential equations in Lp

spaces, Besov and Hölder spaces. In the case of Lp
2π(R; X) (periodic boundary con-

ditions), our results involve UMD spaces, the concept of R−boundedness and a con-
dition on the resolvent operator. We remark that many of the most powerful modern
theorems are valid in UMD spaces, i.e., Banach spaces in which martingale are un-
conditional differences. The probabilistic definition of UMD spaces turns out to be
equivalent to the Lp−boundedness of the Hilbert transform, a transformation which
is, in a sense, the typical representative example of a multiplier operator. On the
other hand the notion of R−boundedness has played an important role in the func-
tional analytic approach to partial differential equations. It was shown in [52] (see also
[15, 29]) that R−boundedness provides a proper setting for boundedness theorems for
operator-valued Fourier multipliers. Workable criteria for R−boundedness have been
established recently by Girardi-Weiss in [29].

In the case of, Besov and Hölder spaces, our results involve only boundedness of the
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resolvent and are therefore, more suitable for the applications.
We study equations containing some hereditary characteristics. In the modelling of
many evolution phenomena arising in physics, biology, engineering, etc., some time
delay can appear. Typical examples can be found in the researches on materials with
thermal memory, biochemical reactions, population models (See for instance, Wu [56]
and references cited therein).
We will consider the following three problems, the first and second one with periodic
boundary conditions, the third one on the real line.
First problem. Denote by Bs

pq(T; X) the periodic Besov spaces and let f ∈ Bs
pq(T; X) .

We consider the following integro-differential equation with infinite delay





u′′(t) + αu′(t) = Au(t) +

∫ t

−∞
c(t− s)Au(s)ds + f(t) 0 ≤ t ≤ 2π

u(0) = u(2π)
u′(0) = u′(2π) ,

(1.1)

where A is a closed linear operator defined on the Banach space X, c ∈ L1(R+) is an
scalar-valued kernel.
We say that equation (1.1) is Bs

p,q− well-posed or that there exists a classical solution
with maximal regularity, if for each f ∈ Bs

pq(T; X) there exists a unique solution
u ∈ Bs

pq(T; X) ∩Bs+2
pq (T; [D(A)]) .

We will obtain maximal regularity results for (1.1) inspired by a recent paper by
Keyantuo-Lizama [34] where the second order problem without integral term is studied.
Note that the results presented here corresponding to equation (1.1) are the subject of
the paper [43].

Second problem. We achieve in this work is the perturbed equation





u(t) =

∫ t

−∞
a(t− s)Au(s)ds +

∫ t

−∞
b(t− s)Bu(s)ds + f(t)

u(0) = u(2π) ,
(1.2)

where A and B are closed linear operators defined on a UMD space X , such that
D(A) ⊂ D(B) and a(·) , b(·) ∈ L1(R+) are scalar-valued kernels.
By Lp

2π(R; X) we denote all 2π-periodic Bochner measurable X-valued functions f such
that the restriction of f to [0, 2π] is p-integrable. We say that the problem (1.2) is Lp

well-posed or that there exists a classical solution with maximal regularity if, for each
f ∈ Lp

2π(R; X) there exists a unique solution u ∈ Lp
2π(R; [D(A)]) .

Equations of the form (1.2) has been studied by Pugliese [45] (see also Prüss [44]).
Maximal regularity for integro-differential equations similar to (1.2) using operator-
valued Fourier multiplier theorems have been studied recently in [33] and [35]. Our
case is more difficult to handle in opposition to those cases treated, for example to [9],
[33], [35], because the presence of the perturbing operator B .
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In the problems above, we shall assume that ik , k ∈ Z , is contained in the resolvent
set of A. We will study existence of solutions for (1.1) and (1.2) if some ik does not
belong to the resolvent set. We also give a representation formula for all the solutions.
We call this problem: resonance case. We remark that a similar case was studied by
Da Prato and Lunardi in [24] when A generates an analytic semigroup. Our results
extends and improve those in [24].
The study of equation (1.2) was done in joint work with C. Lizama [39].

Third problem. We consider

u′(t) = Au(t) + Fut + f(t), t ∈ R, (1.3)

where (A,D(A)) is a (unbounded) linear operator on a Banach space X, ut(·) = u(t+·)
on [−r, 0], r > 0, here the delay operator F belong to B(C([−r, 0], X), X) and f ∈
Cα(R, X) .
Some of the earlier investigation on equation (1.3) were done by back to J. Hale [30] and
G. Webb [51]. More recently a general and systematic study of linear delay equations
with emphasis on the qualitative behavior and asymptotic properties can be found
in the recent monograph by Bátkai and Piazzera [13]. (See also [56]). The problem
to obtaining conditions for all solutions of (1.3) to be in the same space as f arises
naturally from new studies on maximal regularity and their application to nonlinear
problems in the theory of evolution equations. See the monograph by Denk-Hieber-
Prüss [25].
A significant progress has been made in finding sufficient conditions for operator valued
functions to be Cα- Fourier multipliers; see [8]. In particular, in [12] the theory of
operator-valued Fourier multipliers is applied to obtain results on the hyperbolicity
of delay equations and in [37] to obtain stability of linear control systems in Banach
spaces. Also, existence and uniqueness of periodic solutions for equation (5.1) via
Lp-Fourier multiplier theorems has been obtained in [41].
Our goal is to prove that problem (1.3) is Cα well-posed. We characterize the maximal
regularity of solutions on the real line by operator-valued Fourier multipliers methods.
(See [8]). We remark that the study of equation (1.3) was done in joint work with C.
Lizama [40].

A few words about the organization of this work. It is divided in four chapters. In the
first chapter, we collect basic definitions and notations which we use throughout, for
example, R−boundedness of operator families, Fourier multipliers, UMD and Besov
spaces. Moreover, we present previous results on maximal regularity via periodic mul-
tipliers; see [9], [10], [33]. In the remaining chapters we study the three problems
described above.



Chapter 2

Preliminaries

In this chapter we introduce some of the concepts to be used there after. We also
review the classical results that provide material for a better understanding of the
thesis. We study the notion of R−boundedness, giving a review of its basic properties
of R−bounds. We present the basic theory of UMD−spaces and establish their basic
properties. In the Section 4, we present the notion of multipliers. Fourier multiplier
theorems are of crucial importance in the study of maximal regularity of evolution
equations. In Section 5, we establish a connection between sequences that satisfy
Marcinkiewicz estimates of order k (k = 1, 2, 3) and k−regular sequences. Furthermore,
we establish new properties of k−regular sequences.

Let X, Y be Banach spaces. We denote by B(X, Y ) be the space of all bounded linear
operators from X to Y . When X = Y , we write simply B(X).

2.1 R-bounded Families

The notion of R−boundedness has proved to be a significant tool in the study of
abstract multiplier operators. Preliminary concepts for the definition and properties
of R−boundedness that we will use may be found in [9], [31], [25].

For j ∈ N, denote by rj the j-th Rademacher function on [0, 1], i.e. rj(t) = sgn(sin(2jπt)).
For x ∈ X we write rjx for the vector valued function t → rj(t)x. We use the nota-
tion Lp(a, b; X) for the Lp−space of all functions X-valued integrable on [a, b] . The
definition of R−boundedness is given as follows.

Definition 2.1 A family T ⊂ B(X,Y ) is called R-bounded if there exists cp ≥ 0 so
that

||
n∑

j=1

rjTjxj||Lp(0,1;Y ) ≤ cp||
n∑

j=1

rjxj||Lp(0,1;X) (2.1)

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X and n ∈ N, where 1 ≤ p < ∞. We denote by
Rp(T ) the smallest constant cp such that (2.1) holds.
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Theorem 2.2 (Khintchine-Kahane inequality) For 0 < p, q < ∞ , there exist finite
constants Kp,q such that

||
n∑

j=1

rjxj||Lq(0,1;X) ≤ Kp,q||
n∑

j=1

rjxj||Lp(0,1;X) (2.2)

for all xj ∈ X , j = 1 . . . n .

Proof. See [31, Corollary 3.12].

Remark 2.3

(a) By the Khintchine-Kahane inequality, the definition of R−boundedness is inde-
pendent of the value of p in the sense that any T ⊂ B(X, Y ) either satisfies the
condition for all p ∈ [1,∞) or for none of them. However, note that the R−bound
Rp(T ) may depend on p . In fact, the Khintchine-Kahane inequality shows that we
could take different exponents p, q ∈ [1,∞) on the two sides of the inequality defining
R−boundedness, and the resulting inequality either holds for all pairs (p, q) or for
none of them.

(b) From the definition it is clear that any R-bounded family is bounded.
In fact, if T ⊂ B(X,Y ) is R-bounded then it is uniformly bounded, with

sup
T∈T

||T ||B(X,Y ) ≤ inf
p∈[0,∞)

Rp(T ).

The converse of this assertion holds only for spaces which are isomorphic to Hilbert
spaces. For more details, we refer to Arendt and Bu [9] .

Example 2.4 Let X = Y = Lp(a, b;C) = Lp(a, b) for some a, b ∈ R with a < b .
Then T ⊂ B(X,Y ) is R-bounded if and only in there is a constant M > 0 such that
the following square function estimate holds

∥∥∥∥∥∥

(
n∑

j=1

|Tjfj|2
)1/2

∥∥∥∥∥∥
Lp(a,b)

≤ M

∥∥∥∥∥∥

(
n∑

j=1

|fj|2
)1/2

∥∥∥∥∥∥
Lp(a,b)

(2.3)

for all n ∈ N , fj ∈ Lp(a, b) , and Tj ∈ T .

This is a consequence of the Khintchine-Kahane inequality: For each p ∈ [1,∞) there
is a constant Kp > 0 such that

K−1
p

∥∥∥∥∥
n∑

j=1

rjaj

∥∥∥∥∥
Lp(0,1;C)

≤
(

n∑
j=1

|aj|2
)1/2

≤ Kp

∥∥∥∥∥
n∑

j=1

rjaj

∥∥∥∥∥
Lp(0,1;C)

(2.4)
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for all n ∈ N , aj ∈ C , and for all Rademacher functions rj , j = 1 . . . n .
If (2.3) holds, we have by (2.4)

∥∥∥∥∥
n∑

j=1

rjTjfj

∥∥∥∥∥
Lp(0,1;Lp(a,b))

=

∥∥∥∥∥
n∑

j=1

rjTjfj

∥∥∥∥∥
Lp(a,b;Lp(0,1))

≤ Kp

∥∥∥∥∥∥

(
n∑

j=1

|Tjfj|2
)1/2

∥∥∥∥∥∥
Lp(a,b)

≤ KpM

∥∥∥∥∥∥

(
n∑

j=1

|fj|2
)1/2

∥∥∥∥∥∥
Lp(a,b)

≤ K2
pM

∥∥∥∥∥
n∑

j=1

rjfj

∥∥∥∥∥
Lp(a,b;Lp(0,1))

= K2
pM

∥∥∥∥∥
n∑

j=1

rjfj

∥∥∥∥∥
Lp(0,1;Lp(a,b))

.

The proof of the converse is similar.
In what follows, we give a survey of some simple properties of R−boundedness and
provide further examples of R−bounded sets of operators. More details and proofs,
can be founded in the recent monograph of Denk-Hieber-Prüss [25].

Proposition 2.5 (a) Any finite family T ⊂ B(X,Y ) is R-bounded.
(b) A subset of an R-bounded set is also R-bounded.
(c) Let X, Y be Banach spaces and T ,S ⊂ B(X, Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}

is R-bounded as well, and Rp(T + S) ≤ Rp(T ) + Rp(S).
(d) Let X,Y, Z be Banach spaces, and T ⊂ B(X, Y ) and S ⊂ B(Y, Z)be R-bounded.
Then

ST = {ST : T ∈ T , S ∈ S}
is R-bounded, and Rp(ST ) ≤ Rp(S)Rp(T ).

Lemma 2.6 ([31, Lemma 4.6]) To check the R−boundedness of a family T ⊂ B(X,Y ),
it is sufficient to verify the inequality (2.1) for all sequences of distint elements Tk ∈ T .
The best constants are the same.

Corollary 2.7 ([31, Corollary 4.7])If T = {T k}∞k=1 ⊂ B(X, Y ) is a countable se-
quence of operators, then it is sufficient to verify the inequality (2.1) for all truncated
sequences {T k}n

k=1 of the first n members of the sequence.

It is clear that the R−boundedness of the countable set T is independent of the order
in which we enumerate its element. Thus it is interesting that, given any enumeration,
the subset of n first members of the sequence are fully representative of all finite
subsets of T in view of R−boundedness, this is what the assertion above states.
A very useful tool in connection with R-boundedness is the contraction principle of
Kahane, which we state as a lemma. A proof can be found in [25, Lemma 3.5] and
[38].
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Lemma 2.8 Let X be a Banach space, n ∈ N , xj ∈ X , and αj ∈ C for each
j = 1, ..., n. Then

||
n∑

j=1

αj rj xj||p ≤ 2 max
j=1,...,n

|αj| ||
n∑

j=1

rj xj||p .

The constant 2 can be omitted in case where αj is real.

2.2 UMD Spaces

The definition of a Banach space with the unconditional martingale difference property
or UMD was introduced by D.L. Burkholder in [18, Section 9], and is given as follows

Definition 2.9 A Banach space X is said to have the unconditional martingale dif-
ference property (UMD) if for each p ∈ (1,∞) there is a constant Cp such that for
any martingale {fn}n≥0 ⊂ Lp(Ω, Σ, µ; X) and any choice of signs {εn}n≥0 ⊂ {−1, 1}N
and any N ∈ N the following estimate holds.

||f0 +
N∑

n=1

εn (fn − fn−1)||Lp(Ω,Σ,µ;X) ≤ Cp ||fN ||Lp(Ω,Σ,µ;X)

We recall that those Banach spaces X for which the Hilbert transform defined by

(Hf)(t) = lim
ε→0

R→∞

1

π

∫

ε≤|s|≤R

f(t− s)

s
ds

is bounded on Lp(R, X) for some p ∈ (1,∞) are called HT spaces. The limit in the
above formula is to be understood in the Lp sense.
For more information and details on the Hilbert transform and the UMD Banach
spaces we refer to [5, Section III.4.3-III.4.5]. The UMD property turns out to be
equivalent to several important properties of certain Banach spaces. Burkholder and
McConnell proved that a UMD space is a HT space (see [18, Section 9]) and Bourgain
proved the converse in [17].

The following are examples the UMD spaces. For its proof see [31] and [25].

Example 2.10 The UMD spaces include Hilbert spaces, Sobolev spaces W s
p (Ω), 1 <

p < ∞ (see [3]), Lebesgue spaces Lp(Ω, µ) , 1 < p < ∞ , Lp(Ω, µ; X) , 1 < p < ∞ ,
when X is a UMD space and the Schatten-von Neumann classes Cp(H) , 1 < p < ∞
of operators on Hilbert spaces.

Example 2.11 Every closed subspace of a UMD space is a UMD space.

Example 2.12 Every UMD space is reflexive.

Example 2.13 A Banach space X is UMD if and only if its dual X∗ is UMD.

For more information on R−boundedness and UMD−spaces we refer to the recent
thesis of Hytönen [31].
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2.3 Periodic Besov Spaces

Besov spaces form a class of function spaces which are of special interest. The relatively
complicated definition is rewarded by useful applications to differential equations (see
Amann [1] for a concrete model). We briefly recall the definition of periodic Besov
spaces in the vector-valued setting as case introduced in [10]. For the scalar case,
see Triebel [49, Chapter 9] and Schmeisser-Triebel [47] . An approach to periodic
Besov spaces based on semigroup theory and abstract interpolation is presented in [19,
Chapter 4].
Let X be a Banach space and let T = [0, 2π] where the points 0 and 2π are identified.
Let D(T) be the space of all complex-valued infinitely differentiable functions on T .
The usual locally convex topology in D(T) is generated by the semi-norms ||f ||n =
supt∈T ||f (n)(t)|| , where n ∈ N ∪ {0} . We let D′(T; X) := B(D(T); X) . Elements in
D′(T; X) are called X−valued distributions on T .

For f ∈ D′(T; X), denote by f̂(k) , for k ∈ Z , the k-th Fourier coefficient of f as

〈f̂ , l〉 = 〈f, l̂〉, l ∈ D(T).

In what follows we identify l̂ with f̂ which is standard in the theory of Besov and
Triebel spaces (see [50], pages 49-50).
Let S be the Schwartz space on R and Φ(R) be the set of all systems φ = {φj}j≥0 ⊂ S
satisfying

supp(φ0) ⊂ [−2, 2] ,

supp(φj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2k+1] , j ≥ 1 ,

∑
j≥0

φj(t) = 1 , t ∈ R

and for n ∈ N ∪ {0} , there exists Cn > 0 such that

sup
j≥0, x∈R

2nj||φ(n)
j (x)|| ≤ Cn . (2.5)

Let 1 ≤ p, q ≤ ∞ , s ∈ R and φ = (φj)j≥0 ∈ Φ(R) . Let ek(t) = eikt . For x ∈ X
we write ekx the vector valued function t → ek(t)x . The X−valued periodic Besov
spaces are defined by

Bs,φ
p,q (T; X) = {f ∈ D′(T; X) : ||f ||Bs,φ

p,q
=


∑

j≥0

2sjq

∥∥∥∥∥
∑

k∈Z
ekφj(k)f̂(k)

∥∥∥∥∥

q

p




1/q

< ∞} ,

where for x ∈ X .
We make the usual modification if q = ∞ . Note also, that the space Bs

∞,∞ is the
familiar space of all Hölder continuous functions of index s if s ∈ (0, 1) .
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We remark that the spaces Bs,φ
p,q are independent of φ ∈ Φ(R) , and the norms || · ||Bs,φ

p,q

are equivalent. We will simply denote || · ||Bs,φ
p,q

by || · ||Bs
p,q

for some φ ∈ Φ(R) .

Remark 2.14

We summarize some useful properties of Bs
p,q(T; X) .

(i) Bs
p,q(T; X) is a Banach space.

(ii) The natural injection from Bs
p,q(T; X) into Lp(T; X) is a continuous linear

operator for s > 0 .

(iii) The natural injection from Bs+ε
p,q (T; X) in Bs

p,q(T; X) is a continuous linear
operator for ε > 0 .

(iv) Lifting Property: Let f ∈ D′(T; X) and η ∈ R . Then f ∈ Bs
p,q(T; X) if and

only if
∑

k 6=0 ek ⊗ kηf̂(k) ∈ Bs−η
p,q (T; X) .

(v) Let s > 0 . Then f ∈ B1+s
p,q (T; X) if and only if f is differentiable a.e. and

f ′ ∈ Bs
p,q(T; X) .

For a proof see [10, Theorem 2.3]

2.4 Multipliers

In the classical context, the notion of multipliers emerges in Fourier analysis. It turns
out that certain important bounded linear transformations of Lp to Lq , 1 ≤ p, q < ∞
have a multiplier structure when viewed in the Fourier domain.
We fix some notation. We identify the spaces of (vector or operator-valued) functions
defined on [0, 2π] to their periodic extensions to R.
For a function f ∈ L1

2π(R; X), denote by f̂(k) , for k ∈ Z , the k-th Fourier coefficient
of f , that is,

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt,

with t ∈ R. By Fejér’s theorem

σn(f) :=
1

n + 1

n∑
m=0

m∑

k=−m

ekf̂(k) =
n∑

k=−n

(
1− |k|

n + 1

)
ekf̂(k)

converges to f as n →∞ .
We begin with some preliminaries about operator-valued Fourier multipliers. More
information may be found in Arendt-Bu [9] for the periodic case and Amann [5], Weis
[52] for the non-periodic case.
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Definition 2.15 For 1 ≤ p ≤ ∞, we say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is
an Lp

X,Y -multiplier (resp. Bs
pq−multiplier), if for each f ∈ Lp

2π(R; X) (resp. f ∈
Bs

p,q(T; X) ) there exists u ∈ Lp
2π(R; Y ) (resp.u ∈ Bs

p,q(T; Y ) ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

If {Mk}k∈Z is a Lp
X,Y -multiplier then the uniqueness theorem and the closed graph

theorem show that the mapping

M : Lp
2π(R; X) → Lp

2π(R; Y )

is linear and continuous. We call M the operator associated with {Mk}k∈Z . One has

Mf = lim
n→∞

1

n + 1

n∑
m=0

m∑

k=−m

ekMkf̂(k)

in Lp
2π(R; Y ) for all f ∈ Lp

2π(R; X) , (analogously, if f ∈ Bs
p,q(T; X) ).

Example 2.16 On a Hilbert space X each bounded sequence {Mk}k∈Z ⊂ B(X) is an
L2-multiplier. This follows from the fact that the Fourier transform given by

f ∈ Lp
2π(R; X) → {f̂(k)}k∈Z ∈ `2(X)

is an isometric isomorphism if X is a Hilbert space.

Remark 2.17

Let X , Y and Z be Banach spaces. If {Mk}k∈Z ⊂ B(X,Y ) and {Nk}k∈Z ⊂ B(Y, Z)
are Bs

pq−multipliers then {NkMk}k∈Z is a Bs
pq−multiplier. This follows directly from

the definition.

Remark 2.18

Let {Mk}k∈Z ⊂ B(X, Y ) be an Lp
X,Y− multiplier, where 1 ≤ p < ∞. An inspection of

the proof of [9, Proposition 1.11] shows that the set {Mk}k∈Z is R-bounded.
The following condition on sequences {Mk}k∈Z ⊂ B(X,Y ) appears in [9] to study
Fourier multipliers in the Lp−context. It is also used in the study of multipliers of
Besov spaces.

Definition 2.19 A sequence {Mk}k∈Z ⊂ B(X, Y ) satisfies a Marcinkiewicz estimate
of order 1 if

sup
k∈Z

||Mk|| < ∞ , sup
k∈Z

||k (Mk+1 −Mk)|| < ∞ , (2.6)

If in addition we have that

sup
k∈Z

||k2 (Mk+1 − 2Mk + Mk−1)|| < ∞ . (2.7)
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then we say that {Mk}k∈Z satisfies a Marcinkiewicz estimate of order 2.
Finally, if in addition to (2.6) and (2.7) we have that

sup
k∈Z

||k3 (Mk+1 − 3Mk + 3Mk−1 −Mk−2)|| < ∞ . (2.8)

then we say that {Mk}k∈Z satisfies a Marcinkiewicz estimate of order 3.

The following theorem establishes regularity properties of sequences that satisfies Marcinkiewicz
estimates.

Theorem 2.20 If {Mk}k∈Z and {Nk}k∈Z satisfy Marcinkiewicz estimate of order
k (k = 1, 2, 3) then {Mk ± Nk}k∈Z satisfy Marcinkiewicz estimates of the same or-
der.

The proof is obvious and we omit it. In the scalar case, we have

Theorem 2.21 If {ak}k∈Z and {bk}k∈Z are sequences that satisfy Marcinkiewicz es-
timate of order k (k = 1, 2, 3) then {ak bk}k∈Z satisfy Marcinkiewicz estimate the
same.

Proof. By the hypotheses, is clear that sup
k∈Z

|ak bk| < ∞ . To verify Marcinkiewicz

estimates of order k (k = 1, 2, 3) , we have the following identities,

(i) For Marcinkiewicz estimates of order 1

k(ak+1bk+1 − akbk) = k (ak+1 − ak) bk+1 + k (bk+1 − bk) ak .

(ii) For Marcinkiewicz estimates of order 2

k2 (ak+1bk+1 − 2akbk + ak−1bk−1)

= k2 (ak+1 − 2ak + ak−1) bk+1 + k2 (bk+1 − 2bk + bk−1)ak + k (ak − ak−1) k (bk+1 − bk−1) .

(iii) For Marcinkiewicz estimates of order 3

k3 (ak+1bk+1 − 3akbk + 3ak−1bk−1 − ak−2bk−2)

= k3(ak+1 − 3ak + 3ak−1 − ak−2) bk+1 + k2 (ak − 2ak−1 + ak−2) k (bk+1 − bk−2)

+ k3 (bk+1 − 3bk + 3bk−1 − bk−2)ak + 2k2 (bk − 2bk−1 + bk−2) k(ak − ak−1)

+ k (ak − ak−1) k2 (bk+1 − 2bk + bk−1) .

Since {ak} and {bk} satisfy Marcinkiewicz estimates of order k (k = 1, 2, 3) we obtain
that {ak bk} satisfies (2.6), (2.7) and (2.8).

The following general multiplier theorem is due to Arendt and Bu [10, Theorem 4.5]
and plays an important role in our investigations.
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Theorem 2.22 Let X and Y be Banach spaces and let {Mk}k∈Z ⊂ B(X, Y ) satisfy
Marcinkiewicz estimates of order 2 . Then for 1 ≤ p, q ≤ ∞ , s ∈ R , {Mk}k∈Z is a
Bs

pq−multiplier.

For the Hölder spaces, Arendt, Batty and Bu in [8, Theorem 3.4], proved the following
theorem.

Theorem 2.23 If {Mk}k∈Z ⊂ B(X, Y ) satisfies a Marcinkiewicz estimate of order 2
then {Mk}k∈Z is a Cα

2π-multiplier .

The following theorem due to Weis [52] is the discrete analog of the operator- valued
version of Mikhlin’s theorem, and will be of fundamental importance, see also [22] .

Theorem 2.24 (Marcinkiewicz operator-valued multiplier theorem) Let X, Y be UMD
spaces and let {Mk}k∈Z ⊆ B(X,Y ). If the families {Mk}k∈Z and {k(Mk+1 −Mk)}k∈Z
are R-bounded, then {Mk}k∈Z is an Lp

X,Y -multiplier for 1 < p < ∞.

We remark that Witvliet’s thesis [55] contains an extensive treatment of modern mul-
tiplier theorems and applications. Some of the results have also appeared in Clément
et. al. [20].

2.5 k−regular Sequences

The notion of 1−regular and 2−regular scalar sequences were introduced by Keyantuo
and Lizama in [33] to study maximal regularity on periodic Besov spaces. This concept
is the discrete analogue for the notion of k−regularity related to Volterra integral equa-
tions (see [44, Chapter I, Section 3.2]). Subsequently, Bu and Fang in [16] introduced
the notion of 3-regular scalar sequence to study maximal regularity on Triebel-Lizorkin
spaces.

Definition 2.25 A sequence {ak}k∈Z ⊂ C \ {0} is called

(a) 1−regular if the sequence {k (ak+1 − ak)

ak

}k∈Z is bounded;

(b) 2−regular if it is 1−regular and the sequence {k2 (ak+1 − 2ak + ak−1)

ak

}k∈Z is

bounded;

(c) 3−regular if it is 2−regular and the sequence {k3 (ak+1 − 3ak + 3ak−1 − ak−2)

ak

}k∈Z

is bounded.

Example 2.26 It is not difficult to see that the sequence ak = b/(ik+c) , where b ∈ R
and c 6= 0 is 3-regular.

In the next Lemma we give some useful properties of k−regular (k = 1, 2, 3) sequences.
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Lemma 2.27 (i) If {ak}k∈Z and {bk}k∈Z are k−regular sequences such that

sup
k

∣∣∣∣
ak

ak + bk

∣∣∣∣ < ∞ , then the sequence {ak + bk}k∈Z is k−regular.

(ii) If the sequences {ak}k∈Z and {bk}k∈Z are k−regular, then the sequence {ak bk}k∈Z
is k−regular.

(iii) The sequence {ak}k∈Z is k−regular if and only if the sequence { 1
ak
}k∈Z is k−regular.

(iv) If the sequences {ak}k∈Z and {bk}k∈Z are k−regular, then the sequence {ak/bk}k∈Z
is k−regular.

Proof. We first prove (i). Observe that for 1-regularity observe that

k
ak+1 + bk+1 − (ak + bk)

ak + bk

= k
ak+1 − ak + bk+1 − bk

ak + bk

= k
ak+1 − ak

ak

ak

ak + bk

+ k
bk+1 − bk

bk

bk

ak + bk

= k
ak+1 − ak

ak

ak

ak + bk

+ k
bk+1 − bk

bk

− k
bk+1 − bk

bk

ak

ak + bk

.

To verify 2-regularity, we have

k2ak+1 + bk+1 − 2(ak + bk) + ak−1 + bk−1

ak + bk

= k2ak+1 − 2ak + ak−1

ak

ak

ak + bk

+ k2 bk+1 − 2bk + bk−1

bk

bk

ak + bk

= k2ak+1 − 2ak + ak−1

ak

ak

ak + bk

+ k2 bk+1 − 2bk + bk−1

bk

− k2 bk+1 − 2bk + bk−1

bk

ak

ak + bk

.

Finally, to verify the 3-regularity, note that

k3ak+1 + bk+1 − 3(ak + bk) + 3(ak−1 + bk−1)− (ak−2 + bk−2)

ak + bk

= k3ak+1 − 3ak + 3ak−1 − ak−2

ak

ak

ak + bk

+ k3 bk+1 − 3bk + 3bk−1 − bk−2

bk

bk

ak + bk

= k3ak+1 − 3ak + 3ak−1 − ak−2

ak

ak

ak + bk

+ k3 bk+1 − 3bk + 3bk−1 − bk−2

bk

−k3 bk+1 − 3bk + 3bk−1 − bk−2

bk

ak

ak + bk

.

Hence we obtain (i).
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To prove (ii), note that

k
ak+1bk+1 − akbk

akbk

= k
ak+1bk+1 − akbk+1 + akbk+1 − akbk

akbk

= k
ak+1 − ak

ak

bk+1

bk

+ k
bk+1 − bk

bk

.

Since {ak} and {bk} are 1-regular sequences, it follows that {ak bk} is 1-regular.

In order to prove that {ak bk} is 2-regular, we have the following identity

k2 ak+1bk+1 − 2akbk + ak−1bk−1

akbk

= k2 ak+1 − 2ak + ak−1

ak

bk+1

bk

+ k2 bk+1 − 2bk + bk−1

bk

+ k
ak − ak−1

ak

k
bk+1 − bk−1

bk

.

Since {ak} and {bk} are 2-regular sequences, it follows that {ak bk} is 2-regular.

Finally, to prove that {ak bk} is 3-regular, we have

k3 ak+1bk+1 − 3akbk + 3ak−1bk−1 − ak−2bk−2

akbk

= k3ak+1 − 3ak + 3ak−1 − ak−2

ak

bk+1

bk

+ k2 ak − 2ak−1 + ak−2

ak−1

k
bk+1 − bk−2

bk

ak−1

ak

+ k3 bk+1 − 3bk + 3bk−1 − bk−2

bk

+ 2k2 bk − 2bk−1 + bk−2

bk−1

k
ak − ak−1

ak

bk−1

bk

+ k
ak − ak−1

ak

k2 bk+1 − 2bk + bk−1

bk

,

and hence (ii) follows.

To verify (iii) observe that

k
1/ak+1 − 1/ak

1/ak

= −k
ak+1 − ak

ak

ak

ak+1

.

Since {ak} is a 1-regular sequence, it follows that |ak+1

ak
− 1| ≤ M/|k| , k 6= 0 , for some

M > 0 , and hence ak/ak+1 → 1 , from which it follows that {1/ak} is 1-regular.

To verify 2-regularity, we write

k2 1/ak+1 − 2/ak + 1/ak−1

1/ak

= k2 ak−1ak − 2ak−1ak+1 + akak+1

ak−1 ak ak+1

ak
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= k2 ak−1(ak − ak+1) + ak+1(ak − ak−1)

ak−1 ak+1

= k2 ak−1(ak − ak+1)− ak+1(ak − ak+1) + ak+1(ak − ak+1) + ak+1(ak − ak−1)

ak−1 ak+1

= k2 (ak−1 − ak+1) (ak − ak+1)− ak+1(ak+1 − 2ak + ak−1)

ak−1 ak+1

= k
ak−1 − ak+1

ak−1

k
ak − ak+1

ak+1

− k2ak+1 − 2ak + ak−1

ak−1

.

Finally, to verify 3-regularity, we write

k3 1/ak+1 − 3/ak + 3/ak−1 − 1/ak−2

1/ak

=
ak−1

ak−2

ak

ak−1

ak

ak+1

k3−ak+1 + 3ak − 3ak−1 + ak−2

ak

− 3
ak−1

ak−2

ak

ak+1

k
ak−1 − ak

ak−1

k2ak−1 − 2ak + ak+1

ak

+ 3
ak

ak+1

k
ak−1 − ak

ak−1

k
ak−1 − ak−2

ak−2

k
ak+1 − ak

ak

+ 3
ak−2

ak+1

k
ak−1 − ak

ak−1

k
ak−1 − ak−2

ak−2

k
ak−1 − ak−2

ak−2

− 3
ak−1

ak+1

k
ak−1 − ak

ak−1

k2ak−2 − 2ak−1 + ak

ak−1

,

and hence the result follows.
Note that (iv) follows from (ii) and (iii). This completes the proof of the Lemma.

Remark 2.28

Note that (i) hold substituting the condition sup
k

∣∣∣∣
ak

ak + bk

∣∣∣∣ < ∞ by sup
k

∣∣∣∣
bk

ak + bk

∣∣∣∣ < ∞.

Proposition 2.29 If {ak}k∈Z is a bounded and k−regular sequence, then it satisfies a
Marcinkiewicz estimate of order k for k = 1, 2, 3.

Remark 2.30

The converse of the above proposition is false. In fact, the sequence ak = e−k2
satisfies

Marcinkiewicz of order 3 and not 3-regular.
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Theorem 2.31 If {ak}k∈Z satisfies a Marcinkiewicz estimate of order k and { 1
ak
} is

bounded then {ak}k∈Z is a k−regular sequence (k = 1, 2, 3).

Proof. It follows directly from the definition of k−regular sequence.

Corollary 2.32 If {ak}k∈Z satisfies a Marcinkiewicz estimate of order k and { 1
ak
} is

bounded then { 1
ak
}k∈Z is a k−regular sequence (k = 1, 2, 3).

Proof. By Theorem 2.31 we have that {ak}k∈Z is k−regular sequence. From Lemma
2.27 (iii), the result follows.

2.6 Maximal Regularity via Periodic Multipliers

In this section, we review some recent work where maximal regularity of integro-
differential problems is studied via periodic Fourier multipliers.
For a linear operator A on X, we denote its domain by D(A) and its resolvent set by
ρ(A), and for λ ∈ ρ(A), we write R(λ,A) = (λI − A)−1.

2.6.1 Strong solutions of periodic problems on Lebesgue spaces

Given a closed linear operator A defined on a UMD space, Arendt and Bu (see [9]),
characterize maximal regularity of the following non-homogeneous problem with peri-
odic boundary conditions

u′(t) = Au(t) + f(t) , t ∈ [0, 2π] (2.9)

u(0) = u(2π)

in terms of R−boundedness of the resolvent. Here A is not necessarily the generator of
a C0−semigroup. In order to study the periodic case, the authors establish a multiplier
theorem, (see Theorem 2.24).
A strong Lp−solution of (2.9) is a function u ∈ W 1,p

2π (R, X) ∩ Lp
2π(R, X) such that

(2.9) is satisfied a.e.
The main result in [9] is the following

Theorem 2.33 Let A be a closed operator on a UMD space X and let 1 < p < ∞ .
The following assertions are equivalent.
(i) For all f ∈ Lp

2π(R, X) , there exists a unique strong Lp−solution of (2.9) ,
(ii) iZ ⊂ ρ(A) and the family {k(ik − A)−1 : k ∈ Z} is R−bounded.
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Remark 2.34

1. Condition (ii), i.e. well-posedness of the periodic problem in the sense of strong
Lp−solution is independent of p for 1 < p < ∞ .

2. Whereas no characterization of Lp−multipliers is available in general (if 1 < p <
∞ , p 6= 2), in the context of resolvents it is.

3. In [9], the authors also characterize maximal regularity of the second order Cauchy
problem

u′′(t) + Au(t) = f(t)

on a bounded interval with periodic, Dirichlet or Neumann boundary conditions.

2.6.2 Fourier Multipliers on periodic Besov spaces

The Marcinkiewicz type theorem stated in Theorem 2.22, enables one to study maximal
regularity in vector-valued periodic Besov spaces for evolution equations with periodic
boundary conditions as follows.

Let X be an arbitrary Banach space and A be a closed operator on X. Consider the
periodic problem (2.9) with f ∈ Bs

p,q(T; X) for some 1 ≤ p, q ≤ ∞ and s > 0 . The
problem (2.9) has Bs

p,q−maximal regularity if for each f ∈ Bs
p,q(T; X) there exists a

unique u ∈ B1+s
p,q (T; X) such that u(t) ∈ D(A) and u′(t) = Au(t) + f(t) for a.e.

t ∈ [0, 2π] .

The authors prove in [10] the following result

Theorem 2.35 Let A be a closed operator on X . The following assertions are equiv-
alent

(i) Problem (2.9) has Bs
p,q−maximal regularity for some (equivalently, for all) s >

0 , 1 ≤ p, q ≤ ∞ .

(ii) iZ ⊂ ρ(A) and supk∈Z ||k(ik − A)−1|| < ∞ .

Theorem 2.22 may be also be applied to the second order problem with periodic bound-
ary conditions giving necessary and sufficient conditions for such a problem to have
Bs

p,q−maximal regularity as the following theorem shows, (see [10]).

Theorem 2.36 Let A be a closed operator on X and let 1 ≤ p, q ≤ ∞ , s > 0 . The
following assertions are equivalent

(i) For all f ∈ Bs
p,q(T; X) there exist a unique u ∈ Bs

p,q(T; [D(A)])∩B2+s
p,q (T; X) such

that u′′(t) + Au(t) = f(t) for a.e.

(ii) k2 ∈ ρ(A) for all k ∈ Z and supk∈Z ||k2(k2 − A)−1|| < ∞ .
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2.6.3 Integro-Differential Equations in Banach spaces

The operator-valued Fourier multiplier Theorems 2.22 and 2.24 have been used by
Keyantuo and Lizama in [33] to establish maximal regularity results for an integro-
differential equation with infinite delay in Banach spaces. The authors consider the
following problem

u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds + f(t) (2.10)

u(0) = u(2π) ,

and examine this equation in various spaces of 2π−periodic vector-valued functions:
Lp

2π(R; X) , Cα(T; X) , Bs
p,q(T; X) .

Suppose the kernel a ∈ L1
loc(R+) is such that ã(ik) exist for all k ∈ Z, where ã(λ) =∫∞

0
e−λta(t) dt denotes the Laplace transform of a .

Proposition 2.37 [33, Proposition 2.8] Let A be a closed linear operator defined on
the UMD space X. Let {dk}k∈Z be a 1-regular sequence such that {dk}k∈Z ⊂ ρ(A) .
Then the following assertions are equivalent
(i) {dk (dkI − A)−1}k∈Z is an Lp−multiplier , 1 < p < ∞ .
(ii) {dk (dkI − A)−1}k∈Z is R−bounded.

We adopt throughout the notations:

c̃k = ã(ik) (2.11)

bk =
ik

1 + c̃k

, for all k ∈ Z , (2.12)

and the following condition

(H1) {c̃k} , {k(c̃k+1 − c̃k)} , and {1/(c̃k + 1)} are bounded sequences. (2.13)

Denote by Ha,p
per the space of all u ∈ Lp

2π(R; X) for which there exists v ∈ Lp
2π(R; X)

such that v̂(k) = bk û(k) for all k ∈ Z . A function u ∈ Ha,p
per is called a strong

Lp−solution of (2.10) if u(t) ∈ D(A) and equation (2.10) holds for almost all t ∈
[0, 2π] .
The following characterization of Keyantuo and Lizama establishes well-posedness for
(2.10), extending the results of Arendt and Bu.

Theorem 2.38 [33, Theorem 2.12] Let X be a UMD space and let A : D(A) ⊂ X →
X be a closed linear operator. Assume that the sequence {c̃k} satisfies (H1) . Then
the following assertions are equivalent for 1 < p < ∞ .

(i) For all f ∈ Lp
2π(R, X) , there exists a unique strong Lp−solution of (2.10) .
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(ii) {bk}k∈Z ⊂ ρ(A) and {bk (bk − A)−1}k∈Z is an Lp−multiplier.

(iii) {bk}k∈Z ⊂ ρ(A) and {bk (bk − A)−1}k∈Z is R−bounded.

For Besov spaces, they obtain the following fundamental result.

Proposition 2.39 Let A be a closed linear operator defined on the Banach space X.
Let {dk}k∈Z be a 2-regular sequence such that {dk}k∈Z ⊂ ρ(A) . Then the following
assertions are equivalent

(i) {dk (dkI − A)−1}k∈Z is a Bs
p,q−multiplier, 1 ≤ p ≤ ∞ , s ∈ R.

(ii) {dk (dkI − A)−1}k∈Z is bounded.

Now, for 1 ≤ p ≤ ∞ and s > 0 , a function u ∈ B1+s
p,q (T; X) is called a strong

Bs
p,q−solution of (2.10) if u(t) ∈ D(A) and (2.10) holds for almost all t ∈ [0, 2π] .

The authors in [33], introduce the following condition

(H2) {kc̃k} , {k2(c̃k+1 − 2c̃k + c̃k−1)} are bounded sequences . (2.14)

Theorem 2.40 Let 1 ≤ p ≤ ∞ and s > 0 . Let A be a closed linear operator on the
Banach space X. Assume that {c̃k} satisfies (H2) and {bk} is 2-regular. Then the
following assertions are equivalent

(i) For all f ∈ Bs
p,q(T; X) , there exists a unique strong Bs

p,q−solution of (2.10) such
that u′ , Au and a ∗ Au ∈ Bs

p,q(T; X) .

(ii) {bk}k∈Z ⊂ ρ(A) and supk∈Z ||bk (bk − A)−1|| < ∞ .

As a consequence the results in this thesis, we will see in Chapter 3, Section 3.4, that
conditions (H1) and (H2) can be improved.



Chapter 3

Solutions of Second Order
Integro-differential Equations on
Periodic Besov Spaces.

3.1 Introduction

We consider the following integro-differential equation with infinite delay





u′′(t) + αu′(t) = Au(t) +

∫ t

−∞
c(t− s)Au(s)ds + f(t) , 0 ≤ t ≤ 2π

u(0) = u(2π)
u′(0) = u′(2π),

(3.1)

where A is a closed linear operator defined on a Banach space X , c ∈ L1(R+) is a
scalar-valued kernel, f is an X−valued function defined on [0, 2π] and α is a real
number.

We will study existence and uniqueness of solutions for (3.1) in the space of 2π−periodic
vector-valued functions Bs

pq(T; X) .

We are able to obtain a very simple characterization of maximal regularity for (3.1) only
in terms of the boundedness of {dk(bk−A)−1}k∈Z where dk = −k2

1+c̃(ik)
, bk = αik−k2

1+c̃(ik)
and

c̃ denotes the Laplace transform of c . We remark that the conditions that we impose
on the kernel c are satisfied by a large class of functions appearing in the applications.

We also study a resonance case: we assume that there are k1, . . . , kN ∈ Z such that
ikj is a simple pole of F (λ) = (λ2 +αλ−(1+ c̃(λ))A)−1 for j = 1, . . . , N . In this case,
we will show that equation (3.1) has a Bs

p,q-solution strong if and only if f satisfies
suitable compatibility conditions (Theorem 3.23).

We remark that a similar case was studied in [33] for the first order integro differential
equations for a general linear unbounded operator A. However, in [33] the resonance
case was not considered. Our results extends those in [10, Theorem 5.3 ] where the
case α = 0 and c ≡ 0 was presented.

20
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3.2 Maximal regularity on Bs
pq(T; X)

We denote by c̃ the Laplace transform of c ∈ L1(R+) , c̃(ik) exists for all k .

We adopt throughout the following notations

dk =
−k2

1 + c̃k

, for all k ∈ Z (3.2)

bk =
αik − k2

1 + c̃k

, for all k ∈ Z (3.3)

where c̃k := c̃(ik) .

Remark 3.1

Note that by the Riemann Lebesgue lemma and the assumption that c̃(ik) 6= −1 exists
for all k ∈ Z the sequences {c̃(ik)} and { 1

1+c̃(ik)
} are bounded.

Proposition 3.2 If {c̃k}k∈Z satisfies a Marcinkiewicz estimate of order 2, then { 1

dk

}
and {bk} defined by (3.2) and (3.3) verify the following:

{k 1

dk

(bk+1 − bk)}k∈Z\{0} and {k2 1

dk

(bk+1 − 2bk + bk−1)}k∈Z\{0} are bounded.

Proof. We have the identities

k
1

dk

(bk+1 − bk) = k
1 + c̃k

−k2

[−(k + 1)2 + αi(k + 1)

1 + c̃k+1

− −k2 + αik

1 + c̃k

]

=
−1

1 + c̃k+1

k (c̃k+1 − c̃k)− αi

1 + c̃k+1

(c̃k − c̃k+1) +
−2k − 1 + αi

k

1 + c̃k

1 + c̃k+1

.

By assumption and Remark 3.1 we obtain the first condition. In order to prove the
second condition, we note the identities

k2 1

dk

(bk+1 − 2bk + bk−1)
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= k2 1 + c̃k

−k2

[−(k + 1)2 + αi(k + 1)

1 + c̃k+1

− 2
−k2 + αik

1 + c̃k

+
−(k − 1)2 + αi(k − 1)

1 + c̃k−1

]

=
−1

(1 + c̃k+1) (1 + c̃k−1)

[
(1 + c̃k+1) k2 (c̃k−1 − 2c̃k + c̃k+1)

− k (c̃k+1 − c̃k−1) k (c̃k+1 − c̃k) + 2(1 + c̃k) k (c̃k+1 − c̃k−1)

+αi(1 + c̃k−1) k (c̃k − c̃k+1) + αi(1 + c̃k+1) k (c̃k − c̃k−1)

+ αi(1 + c̃k) (c̃k−1 − c̃k+1) − (1 + c̃k−1) (1 + c̃k)− (1 + c̃k+1) (1 + c̃k)] .

Hence by assumption and Remark 3.1 we obtain the desired conclusion.

Proposition 3.3 Let A be a closed linear operator defined on the Banach space X .
Let {dk}k∈Z , {bk}k∈Z be defined by (3.2), (3.3) respectively. Assume that {c̃k}k∈Z
satisfies a Marcinkiewicz estimate of order 2.
If bk ∈ ρ(A) for all k ∈ Z and {dk(bk −A)−1}k∈Z is bounded then {dk(bk −A)−1}k∈Z
is an Bs

p,q− multiplier, 1 ≤ p ≤ ∞ .

Proof.
Denote by (Mk) the sequence dk (bkI − A)−1. Note that M0 is the null operator.

We will verify that the sequence {Mk} satisfies a Marcinkiewicz estimate of order 2.
Then, the result follows from Theorem 2.22. In fact, first we prove (2.6). We have the
identity

k[Mk+1 −Mk] = Mk+1 k
1

dk+1

[bk − bk+1] Mk + Mk+1 k [1− dk

dk+1

].

Note that
dk

dk+1

=
1 + c̃k+1

1 + c̃k

(k/(k + 1))2 , hence for each k ∈ Z \ {−1} we have that

k

[
1− dk

dk+1

]
=

[
2k2 + k

(k + 1)2
+

k2

(k + 1)2

1

1 + c̃k

k (c̃k − c̃k+1)

]
is bounded since {c̃k}

verifies a Marcinkiewicz estimate of order 2.

Moreover, for all k ∈ Z \ {−1} , by Proposition 3.2 we have that {k 1

dk+1

(bk − bk+1)}
is bounded. This, together with the boundedness of {Mk} imply that

sup
k∈Z

||k (Mk+1 −Mk)|| < ∞ .

In order to verify the condition (2.7), with an analogous calculation as above we obtain
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k2 (Mk+1 − 2Mk + Mk−1) = k2 dk+1 − 2dk + dk−1

dk+1

Mk+1

− 2 k

[
1− dk−1

dk

]
k dk−1 (bk+1 − bk) Mk Mk−1

− k2 1

dk

(bk+1 − 2bk + bk−1) Mk Mk−1

+2 k
1

dk+1

(bk+1 − bk) k
1

dk−1

(bk+1 − bk−1) Mk+1 Mk Mk−1

−k
1

dk

(bk+1 − bk) k
1

dk+1

(bk+1 − bk−1) Mk+1 Mk Mk−1 ,

where, with a direct calculation, we have that

k2 dk+1 − 2dk + dk−1

dk+1

=
k2

(k + 1)2(1 + c̃k) (1 + c̃k−1)
[−(1 + c̃k+1) k2 (c̃k+1 − 2c̃k + c̃k−1)

+ k (c̃k−1 − c̃k+1) k (c̃k − c̃k+1) + 2 (1 + c̃k) k (c̃k−1 − c̃k+1)

+ (1 + c̃k−1) (1 + c̃k) + (1 + c̃k+1) (1 + c̃k) ].

Since {c̃k} verifies a Marcinkiewicz estimate of order 2, we conclude that the sequence

{k2 dk+1 − 2dk + dk−1

dk+1

} is bounded for all k ∈ Z \ {−1} . Hence, by Proposition 3.2

together with the boundedness of {Mk} , we obtain that k2 (Mk+1 − 2Mk + Mk−1) is
bounded for all k ∈ Z\{−1, 0, 1} . Finally, since M−2 , M2 , M−1 , M1 are well defined
operators we obtain the claim.

Lemma 3.4 Let X be a Banach space, assume that the sequence {c̃k}k∈Z satisfies a

Marcinkiewicz estimate of order 2. Then the sequences {(1+ c̃k)I}k∈Z and { 1

1 + c̃k

I}
are Bs

p,q−multipliers.

Proof. It is clear, directly from Marcinkiewicz estimates of order 1 and Theorem
2.22, that the sequence {(1 + c̃k)I} is an Bs

p,q−multiplier.

Now, let nk :=
1

1 + c̃k

. The sequence {nk} is bounded and satisfies the identities

k(nk+1 − nk) = k[c̃k − c̃k+1]
1

1 + c̃k

1

1 + c̃k+1
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and

k2(nk+1 − 2nk + nk−1) =
−1

(1 + c̃k)

1

(1 + c̃k−1)
k2[c̃k+1 − 2c̃k + c̃k−1]

+
1

1 + c̃k+1

1

1 + c̃k

1

1 + c̃k−1

k[c̃k+1 − c̃k−1] k[c̃k+1 − c̃k].

Hence the sequence verifies a Marcinkiewicz estimates of order 2, by Theorem 2.22 the
lemma follows.

Definition 3.5 Let 1 ≤ p, q ≤ ∞ and s > 0 . A function u ∈ Bs+2
p,q (T; X) , is

called a strong Bs
p,q−solution of (3.1) if u(t) ∈ D(A) and (3.1) holds for almost every

t ∈ [0, 2π] .

We have the following result

Theorem 3.6 Let 1 ≤ p, q ≤ ∞ and s > 0 . Let A be a closed linear operator defined
on a Banach space X . If {c̃k}k∈Z satisfies a Marcinkiewicz estimate of order 2, then
the following assertions are equivalent

(i) {αik − k2

1 + c̃k

}k∈Z ⊂ ρ(A) and sup
k

∥∥∥∥∥
−k2

1 + c̃k

(−k2 + αik

1 + c̃k

− A

)−1
∥∥∥∥∥ < ∞ .

(ii) For every f ∈ Bs
p,q(T; X) , there exist a unique strong Bs

p,q−solution of (3.1) such
that u′′ , u′ , Au ∈ Bs

p,q(T; X) .

Proof. (ii) ⇒ (i) Let x ∈ X be fixed. Define f = ek⊗x . Note that f ∈ Bs
p,q(T; X) .

Hence there exists u ∈ Bs+2
p,q (T; X) such that u(t) ∈ D(A) and (3.1) holds for almost

every t ∈ [0, 2π] .
Taking Fourier transforms on both sides we obtain that û(k) ∈ D(A) and

−k2û(k) + αikû(k) = Aû(k) + c̃kAû(k) + f̂(k) .

Thus, (−k2 + αik − A − c̃kA)û(k) = f̂(k) = x proving that −k2 + αik − A − c̃kA is
surjective.

Let x ∈ D(A) . If (−k2 + αik − A − c̃kA)x = 0 , that is Ax =
−k2 + αik

1 + c̃k

Ix , then

u(t) = eiktx define a periodic solution of

u′′(t) + αu′(t) = Au(t) +

∫ t

−∞
c(t− s)Au(s)ds.

Hence u = 0 by the assumption of uniqueness and thus x = 0 . Since A is closed, by
Closed Graph Theorem we conclude that αik−k2

1+c̃k
⊂ ρ(A) , for all k ∈ Z .
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Next we claim that −k2

1+c̃k

(
−k2+αik

1+c̃k
− A

)−1

is a Bs
p,q− multiplier. Let f ∈ Bs

p,q(T; X) .

By hypothesis, there exists a unique u ∈ Bs+2
p,q (T; X) such that

u′′(t) + αu′(t) = Au(t) +

∫ t

−∞
c(t− s)Au(s)ds + f(t).

Taking Fourier series on both sides we obtain that û(k) ∈ D(A) and

û(k) = (−k2 + αik − (1 + c̃k)A)−1f̂(k)

or

−k2û(k) = − k2

1 + c̃k

(−k2 + αik

1 + c̃k

− A

)−1

f̂(k).

By [10, Theorem 1.3], if u ∈ Bs+2
p,q (T; X) then u′ is differentiable almost everywhere

and u′′ ∈ Bs
p,q(T; X) . Define v = u′′. Then we obtain that

v̂(k) = − k2

1 + c̃k

(−k2 + αik

1 + c̃k

− A

)−1

f̂(k) ,

proving the claim. It follows from the Closed Graph Theorem that there exist C > 0
such that, for f ∈ Bs

p,q(T; X) , we have

∥∥∥∥∥
∑

k∈Z
ekMkf̂(k)

∥∥∥∥∥
Bs

p,q

≤ C ||f ||Bs
p,q

.

Let x ∈ X and defines f(t) = en(t)x = eintx for n ∈ Z fixed. Then the above
inequality implies that ||en||Bs

p,q
||Mnx|| = ||enMnx|| ≤ C||en||Bs

p,q
||x|| . Hence ||Mn|| ≤

C .

(i) ⇒ (ii) Let Mk = − k2

1 + c̃k

(−k2 + αik

1 + c̃k

− A

)−1

. By assumption we have that

{Mk}k∈Z is a bounded sequence. We define Nk =
1

1 + c̃k

(−k2 + αik

1 + c̃k

− A

)−1

.

First, we claim that the families {ik Nk}k∈Z and {Nk}k∈Z are Bs
pq−multipliers. In

order to see that, we will apply Theorem 2.22.

In fact, in order to verify condition (2.6), observe that ||ik Nk|| ≤ ||k2 Nk|| = ||Mk||
for all k ∈ Z and hence sup

k∈Z
||ik Nk|| < ∞ .

Moreover we have the identity

k[ (k + 1)Nk+1 − kNk ] = −Mk+1 + Mk − (k + 1)Nk+1,

and hence condition (2.6) holds since {Mk} is bounded.
To verify the condition (2.7), note that
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k2[ (k + 1)Nk+1 − 2kNk + (k − 1)Nk−1 ]

= k[Mk −Mk+1] + k[Mk −Mk−1]− k[(k + 1)Nk+1 − kNk] + k[(k − 1)Nk−1 − kNk].

Since sup
k∈Z

||Mk|| < ∞ , from the proof of Proposition 3.3, we see that the sequence

{Mk} satisfies the condition (2.6) of multiplier. Using this in the above identity, we
conclude that the condition (2.7) hold for {ikNk}. We claim is proved.
Secondly, we will prove that {Nk} is a Bs

pq−multiplier. In fact, to verify condition
(2.6) observe that ||Nk|| ≤ ||k2Nk|| = ||Mk|| for all k ∈ Z \ {0} hence sup

k∈Z
||Nk|| < ∞ .

Moreover we have

k[ Nk+1 −Nk ] = (k + 1)Nk+1 + Nk −Nk+1,

and since {kNk} and {Nk} are bounded sequences we obtain condition (2.6).
In order to verify condition (2.7), note that

k2 [ Nk+1 − 2Nk + Nk−1 ]

= −Mk+1 + 2Mk −Mk−1 − (k + 1)Nk+1 + (k − 1)Nk−1 + Nk−1 −Nk+1,

and since {Mk} , {kNk} and {Nk} are bounded sequences we obtain condition (2.7)
and the claim follows.
Now, let f ∈ Bs

p,q(T; X) . Since {Nk} is Bs
pq−multiplier, there exist u ∈ Bs

p,q(T; X)
such that

û(k) = Nkf̂(k) for all k ∈ Z , (3.4)

where we observe that û(k) ∈ D(A) .
Since {ikNk} is a Bs

pq−multiplier there exists v ∈ Bs
p,q(T; X) such that v̂(k) =

ikNkf̂(k) for all k ∈ Z . From (3.4) we obtain that

ikû(k) = v̂(k). (3.5)

By Lemma 2.1 of [9], u is differentiable a.e. with u′ = v and u(0) = u(2π) . By [10,
Theorem 2.3] this implies that u ∈ Bs+1

p,q (T; X) .
By Proposition 3.3, we have that {Mk} is a Bs

pq−multiplier, hence there exists w ∈
Bs

p,q(T; X) such that ŵ(k) = Mkf̂(k) for all k ∈ Z . Using again equality (3.4) and
equality (3.5) we have

−k2û(k) = ikv̂(k) = ŵ(k).

By [9, Section 6] u′ is differentiable a.e. with w = u′′, u′(0) = u′(2π) and w = v′ = u′′ .
By [10, Theorem 2.3] this implies that u ∈ Bs+2

p,q (T; X) .

We will show that u(t) ∈ D(A) . By (3.4), we have the identity

(−k2 + αik − (1 + c̃k)A) û(k) = f̂(k) (3.6)
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for all k ∈ Z , or equivalently

Aû(k) =
−k2 + αik

1 + c̃k

û(k) − 1

1 + c̃k

f̂(k)

=
1

1 + c̃k

ŵ(k) +
α

1 + c̃k

v̂(k)− 1

1 + c̃k

f̂(k) .
(3.7)

Since f, v, w ∈ Bs
p,q(T; X) and by Lemma 3.4, the family { 1

1 + c̃k

I} is a Bs
p,q−multiplier,

there exists g ∈ Bs
p,q(T; X) such that

Aû(k) = ĝ(k).

Then Lemma 3.1 of [9] implies that u(t) ∈ D(A) and Au(t) = g(t) . Hence Au ∈
Bs

p,q(T; X) .
Finally from (3.6), we have

(−k2 + αik) û(k) = Aû(k) + A c̃kû(k) + f̂(k).

Define h(t) = u′′(t) + αu′(t) − f(t). It is clear that h ∈ Bs
p,q(T; X) . From the above

equality, we obtain

ĥ(k) = Aŝ(k),

where s(t) = u(t) +

∫ t

−∞
c(t − s)u(s)ds and s ∈ Bs+2

p,q (T; X) . From Lemma 3.1 of [9]

we have s(t) ∈ D(A) , and then

∫ t

−∞
c(t − s)u(s)ds ∈ D(A) . Since A is closed, we

deduce that

u′′(t) + αu′(t) = Au(t) +

∫ t

−∞
c(t− s)Au(s)ds + f(t) .

It remains to show uniqueness. Let u ∈ Bs
p,q(T; X) be such that

u′′(t) + αu′(t)− Au(t)−
∫ t

−∞
c(t− s)Au(s)ds = 0.

Then û(k) ∈ D(A) and [−k2 + αik − (1 + c̃k)A]û(k) = 0 . Since −k2+αik
1+c̃k

∈ ρ(A) , this

implies that û(k) = 0 for all k ∈ Z and thus u = 0 .

In the case where p = q = ∞ and 0 < s < 1 we have that Bs
∞,∞(T; X) corresponds

to the space Cs(T; X) of Hölder continuous functions. We state the corresponding
result separately:
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Corollary 3.7 Let 0 < s < 1 . Let A be a closed linear operator defined on a Banach
space X . Assume that {c̃k}k∈Z satisfies Marcinkiewicz estimates of order 2. The
following assertions are equivalent

(i) {αik − k2

1 + c̃k

}k∈Z ⊂ ρ(A) and sup
k

∥∥∥∥∥
−k2

1 + c̃k

(
αik − k2

1 + c̃k

− A

)−1
∥∥∥∥∥ < ∞ .

(ii) For every f ∈ Cs(T; X) , there exist a unique strong Cs−solution of (3.1) such
that u′′ , u′ , Au ∈ Cs(T; X) .

Remark 3.8

Setting α = 0 and c = 0 in the equation (3.1) we obtain the second order problem
with periodic boundary conditions





u′′(t) = Au(t) + f(t) 0 ≤ t ≤ 2π
u(0) = u(2π)
u′(0) = u′(2π)

(3.8)

and we may apply Theorem 3.6 to obtain a necessary and sufficient condition in order to
such problem have maximal regularity in Besov spaces. In [9] Arendt and Bu studied
the problem (3.8) for A a closed linear operator defined on UMD space X. They
established conditions for maximal regularity in Lp

2π(R; X) in terms of R-boundedness
of resolvents. In [10], the authors have obtained maximal regularity for (3.8) in periodic
vector-valued Besov spaces as we have considered here.

3.3 The resonant case

We define

ρd,e(A) = {λ ∈ C : d(λ)I−e(λ)A is invertible and (d(λ)−e(λ)A)−1 ∈ B(X, [D(A)]) }

In what follows we will assume that d(ik) and e(ik) exist for all k ∈ Z. We suppose
that λ → d(λ) (resp. e(λ)) admits an analytical extension to a sector containing the
imaginary axis, and still denote this extension by d (resp. e).
Denote by σd,e(A) the set C \ ρd,e(A) .
Now, we consider a resonant case: We assume that there are k1, . . . , kN ∈ Z such that





(i) ikj ∈ σd,e(A) for j = 1, . . . , N ;

(ii) ik /∈ σd,e(A) for k ∈ Z , k 6= k1, . . . , kN

(iii) ikj is a simple pole of F (·) for j = 1, . . . , N

(3.9)

where F : ρd,e(A) ⊂ C→ B(X, [D(A)]) is defined by F (λ) = (d(λ)I − e(λ)A)−1.
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We now give some preliminary results about the solvability of the equation

(d(λ0)I − e(λ0)A)x = y (3.10)

where λ0 is a simple pole of F (·).
We denote by Q the residue of F (·) at λ0 , that is,

Q = lim
λ→λ0

(λ− λ0) F (λ) =
1

2πi

∫

B(λ0,ε)

F (λ) dλ (3.11)

where ε > 0 and Γ(λ0, ε) := {λ ∈ C : |λ− λ0| < ε } .
We define

G(λ) =





(λ− λ0) F (λ) , 0 < |λ− λ0| < ε

Q , λ = λ0.
(3.12)

We note that Q ∈ B(X, [D(A)]) is a non-zero operator which satisfies the following
property.

Lemma 3.9 With the notations as above, we have

Q = Q [d ′(λ0)I − e′(λ0)A] Q.

Proof.
For λ, µ belonging to Γ(λ0, ε) \ {λ0} with |λ− λ0| > |µ− λ0| we have

F (λ)− F (µ) = F (λ) [ d(µ)I − e(µ)A− d(λ)I + e(λ)A ] F (µ)

= F (λ) [ ( d(µ)− d(λ) )I + ( e(λ)− e(µ) )A ] F (µ).

Hence

F (λ)− F (µ)

λ− µ
(λ− λ0)(µ− λ0)

= (λ− λ0)F (λ)

[
d(µ)− d(λ)

λ− µ
I +

e(λ)− e(µ)

λ− µ
A

]
(µ− λ0) F (µ)

and using (3.12) we have

G(λ)
µ− λ0

λ− µ
−G(µ)

λ− λ0

λ− µ
= G(λ)

[
d(µ)− d(λ)

λ− µ
I +

e(λ)− e(µ)

λ− µ
A

]
G(µ).

Since A ∈ B([D(A)], X), letting µ → λ0 we obtain
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−Q = G(λ)

[
d(λ0)− d(λ)

λ− λ0

I +
e(λ)− e(λ0)

λ− λ0

A

]
Q.

Letting λ → λ0 we get

Q = Q [ d ′(λ0)I − e′(λ0)A] Q.

This proves the Lemma.

The following result is the key for results on existence of solutions in the resonance
case.

Proposition 3.10 Let λ0 be a simple pole of F (·) and let Q ∈ B(X, [D(A)]) be
defined by (3.11) . Then

Ker(d(λ0)I − e(λ0)A) = Q(X). (3.13)

Moreover, for any y ∈ X such that Qy = 0 , all solutions of (3.10) are given by

x = G′(λ0)y −QA(e′G)′(λ0)y + Q (d ′G)′(λ0)y. (3.14)

Proof.
First we show (3.13). For any sufficiently small ε > 0 and 0 < |λ− λ0| < ε we have

(d(λ0)I − e(λ0)A)G(λ) = (λ− λ0)− (d(λ)I − e(λ)A)G(λ) + (d(λ0)I − e(λ0)A)G(λ)

= (λ− λ0) + (d(λ0)− d(λ))G(λ) + (e(λ)− e(λ0))AG(λ).

Since A ∈ B([D(A)], X), letting λ → λ0 we obtain ( d(λ0)I − e(λ0)A ) Q = 0 , so
that Q(X) is contained in Ker( d(λ0)I − e(λ0)A ) . Let now x ∈ D(A) be such that
( d(λ0)I − e(λ0)A ) x = 0, then for 0 < |λ− λ0| < ε with ε small, we have

F (λ) ( d(λ0)I − e(λ0)A ) x = 0. (3.15)

For each x ∈ X, we have the identity x−F (λ) ( d(λ)I−e(λ)A ) x = 0 , or equivalently

x + F (λ) [d(λ0)− d(λ)] x + F (λ)[e(λ)− e(λ0)] Ax− F (λ) [d(λ0)I − e(λ0)A] x = 0 .

It follows from this and (3.15) that

x− (λ− λ0)F (λ)
d(λ)− d(λ0)

λ− λ0

x + (λ− λ0)F (λ)
e(λ)− e(λ0)

λ− λ0

Ax = 0 ,



31

that is, using (3.12)

x−G(λ)
d(λ)− d(λ0)

λ− λ0

x + G(λ)
e(λ)− e(λ0)

λ− λ0

Ax = 0.

Letting λ → λ0 we get

x−Qd ′(λ0) x + Qe′(λ0) Ax = 0 ,

so that x belongs to Q(X) proving (3.13).
Let us now show (3.14). First we claim that

lim
λ→λ0

F (λ) [I+( e′(λ0)A−d ′(λ0)I ) Q ] = G′(λ0)−QA(e′G)′(λ0)+Q (d ′G)′(λ0). (3.16)

In fact, proceeding as in the proof of Lemma 3.9, we have

G′(λ) = F (λ)− (λ− λ0) F (λ) [ d ′(λ)I − e′(λ)A ] F (λ)

= F (λ)− (λ− λ0) F (λ) d ′(λ)F (λ) + (λ− λ0) F (λ) e′(λ)A F (λ)

= F (λ) [I + ( e′(λ0)A− d ′(λ0)I )Q ]− F (λ) e′(λ0) AQ + F (λ) d ′(λ0) Q

− F (λ) d ′(λ)(λ− λ0) F (λ) + F (λ) e′(λ)A (λ− λ0) F (λ)

= F (λ) [ I + ( e′(λ0)A− d ′(λ0)I )Q ] + F (λ) A [ e′(λ) G(λ)− e′(λ0) Q ]

− F (λ) [ d ′(λ) G(λ)− d ′(λ0)Q ]

= F (λ) [ I + ( e′(λ0)A− d ′(λ0)I )Q ] + (λ− λ0) F (λ) A [
e′(λ) G(λ)− e′(λ0) Q

λ− λ0

]

− (λ− λ0) F (λ) [
d ′(λ) G(λ)− d ′(λ0)Q

λ− λ0

].

Since A ∈ B([D(A)], X), letting λ → λ0 in the above identity, we obtain the claim.

On the other hand, using Lemma 3.9 we obtain

lim
λ→λ0

[d(λ0)I − e(λ0)A ] F (λ) [ I + ( e′(λ0)A− d ′(λ0)I ) Q ]

= lim
λ→λ0

[d(λ)I − e(λ)A + e(λ)A− d(λ)I + d(λ0)I − e(λ0)A ]

F (λ)[ I + ( e′(λ0)A− d ′(λ0)I ) Q ]
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= lim
λ→λ0

[ I + { e(λ)− e(λ0)

λ− λ0

A− d(λ)− d(λ0)

λ− λ0

I }(λ− λ0)F (λ) ]

[I + ( e′(λ0)A− d ′(λ0)I ) Q ]

= [I + (e′(λ0)A− d ′(λ0)I)Q] [I + (e′(λ0)A− d ′(λ0)I)Q]

= I + 2(e′(λ0)A− d ′(λ0)I)Q + (e′(λ0)A− d ′(λ0)I)Q(e′(λ0)A− d ′(λ0)I)Q

= I + 2(e′(λ0)A− d ′(λ0)I)Q− (e′(λ0)A− d ′(λ0)I)Q

= I + (e′(λ0)A− d ′(λ0)I)Q.

Due to (3.16) and the fact that A belongs to B([D(A)], X) we have

[d(λ0)− e(λ0)A] [ G′(λ0)−QA(e′G)′(λ0) + Q (d ′G)′(λ0) ] = I + (e′(λ0)A− d ′(λ0)I)Q.
(3.17)

Therefore, if y ∈ X is such that Qy = 0 , equation (3.10) is solvable, and the solution
is given by

w = G′(λ0)y −QA(e′G)′(λ0)y + Q (d ′G)′(λ0)y.

Now, arguing as in the proof of Theorem 3.6, we find that, if f ∈ Bs
p,q(T; X) , and

u ∈ Bs+2
p,q (T; X) is a strong Bs

p,q−solution of (3.1), then

(−k2 + αik − (1 + c̃k)A) û(k) = f̂(k) , k ∈ Z . (3.18)

We suppose that λ → c̃(λ) admits an analytical extension to a sector containing the
imaginary axis, and still denote this extension by c̃.
Substituting d(λ) := λ2 + αλ and e(λ) := 1 + c̃(λ) , we have that

F (λ) = (λ2 + αλ− (1 + c̃(λ))A)−1 for all λ ∈ ρd,e(A).

Now, we assume that there are k1, . . . , kN ∈ Z such that 3.9 hold.
For each k 6= kn , n = 1, . . . , N , equation (3.18) can be uniquely solved, with

û(k) = (−k2 + αik − (1 + c̃k)A)−1f̂(k).

For kn , n = 1, . . . , N , by Proposition 3.10 equation (3.18) is solvable if and only if

Qn f̂(kn) = 0, (3.19)

where Qn is the residue of F (·) at λ = ikn . If (3.19) holds, then by (3.14), the Fourier
coefficients of the solution to (3.18) in kn , n = 1, . . . , N are given by
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û(kn) = [G′
n(ikn) −Qn A(c̃′Gn)′(ikn) + Qn (d ′Gn)′(ikn)] f̂(kn), (3.20)

where Gn : B(ikn, ε) → B(X, [D(A)]) is the analytic function defined by

Gn(λ) =





(λ− ikn) F (λ) , 0 < |λ− ikn| < ε

Qn , λ = ikn

(3.21)

for any ε > 0 sufficiently small.

Now, define the family of operators {Nk} by

Nk =





(−k2 + αik − (1 + c̃k)A)−1 k ∈ Z \ { k1, . . . , kN }

G′
j(ikj) −Qj A(c̃′Gj)

′(ikj) + Qj (d ′Gj)
′(ikj) j = 1, . . . , N.

(3.22)

where ik ∈ ρd,e(A) for all k ∈ Z \ {k1, . . . , kN}. Note that {Nk}k∈Z ⊂ B(X) .
The following main theorem give compatibility conditions on f which are necessary
and sufficient for the existence of a strong Bs

p,q- solution of (3.1).

Theorem 3.11 Let 1 ≤ p, q ≤ ∞ and s > 0 . Let A be a closed linear oper-
ator defined on a Banach space X . Suppose that (3.9) holds and that {c̃k}k∈Z
satisfies Marcinkiewicz estimates of order 2. If sup

k∈Z
||k2 Nk|| < ∞ , then for ev-

ery f ∈ Bs
p,q(T; X) the equation (3.1) has a strong Bs

p,q−solution if and only if

Qn f̂(kn) = 0 , for every n = 1, . . . , N .
In this case, all the strong solutions of (3.1) are given by

u(t) = lim
n→∞

n∑
k = −n

k 6= k1, . . . , kN

(
1− |k|

n + 1

)
eikt(−k2 + αik − (1 + c̃k)A)−1 f̂(k)

+
N∑

j=1

eikjt [G′
j(ikj) −Qj A(c̃′Gj)

′(ikj) + Qj (d ′Gj)
′(ikj)] f̂(kj).

(3.23)

Proof.
First we assume that for every f ∈ Bs

p,q(T; X) there exists v ∈ Bs+2
p,q (T; X) ∩

Bs
p,q(T; [D(A)]) which is a strong Bs

p,q−solution of the equation (3.1). Taking Fourier
series on both sides in (3.1) we obtain that v̂(k) ∈ D(A) and

(−k2 + αik − (1 + c̃k)A)v̂(k) = f̂(k) , for all k ∈ Z.

For λ ∈ ρd,e(A) and k1, k2, ...kN we have that

(λ− ikj)F (λ) [λ2 + αλ− (1 + c̃(λ))A] v̂(kj) = (λ− ikj) v̂(kj).
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Letting λ → ikj it follows that

lim
λ→ikj

(λ− ikj) F (λ) [λ2 + αλ− (1 + c̃(λ))A] v̂(kj) = 0.

Since both limits lim
λ→ikj

(λ− ikj)F (λ) and lim
λ→ikj

[λ2 + αλ− (1 + c̃(λ))A] v̂(kj) exist, we

obtain that
Qj (−k2

j + αikj − (1 + c̃(ikj))A)v̂(kj) = 0,

or equivalently, Qj f̂(kj) = 0 , for all kj , j = 1, . . . , N . Hence by Proposition 3.10
equation (3.18) is solvable and

v̂(k) =





(−k2 + αik − (1 + c̃k)A)−1f̂(k) k ∈ Z \ { k1, . . . , kN }

{G′
j(ikj) −Qj A(c̃′Gj)

′(ikj) + Qj (d ′Gj)
′(ikj)} f̂(k) j = 1, . . . , N.

(3.24)
from which (3.23) follows.
Conversely, assume that f ∈ Bs

p,q(T; X) and Qnf̂(kn) = 0 for n = 1, . . . , N . We
define u(t) by (3.23). Then

û(k) = Nk f̂(k) (3.25)

for all k ∈ Z, where Nk is defined by (3.22). Note that û(k) ∈ D(A) for all k ∈ Z.
For each k ∈ Z , we define Mk := −k2Nk . By hypothesis {Mk}k∈Z is bounded. We
observe that {k(Mk+1−Mk)}k∈Z and {k2(Mk+1−2Mk +Mk−1)}k∈Z are bounded which
can be proved following the same lines as the proof of Proposition 3.3. Then by
Theorem 2.22 we have that {Mk}k∈Z is a Bs

pq−multiplier.
In a similar way as in the proof of Theorem 3.6 it follows that the family {ik Nk}k∈Z
is a Bs

pq−multiplier. Hence, there exist v, w ∈ Bs
p,q(T; X) such that

−k2û(k) = ikv̂(k) = ŵ(k) .

By [9, Lemma 2.1] and [9, Section 6] u , u′ are differentiable a.e. with u′ = v ,
w = v′ = u′′ and u(0) = u(2π) , u′(0) = u′(2π) . By [10, Theorem 1.3], this implies
that u ∈ Bs+2

p,q (T; X) .

Now, we will show that u(t) ∈ D(A) . Since Qnf̂(kn) = 0 for all n = 1, . . . , N, by
Proposition 3.10 we have that

(−k2 + αik − (1 + c̃k)A) Nk f̂(k) = f̂(k) (3.26)

for all k ∈ Z , or equivalently

ANkf̂(k) =
−k2 + αik

1 + c̃k

Nkf̂(k) − 1

1 + c̃k

f̂(k)

=
1

1 + c̃k

(−k2Nk)f̂(k) +
α

1 + c̃k

ikNkf̂(k)− 1

1 + c̃k

f̂(k)

=
1

1 + c̃k

ŵ(k) +
α

1 + c̃k

v̂(k)− 1

1 + c̃k

f̂(k) .

(3.27)
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Since f, v, w ∈ Bs
p,q(T; X) and by Corollary 3.4 the family { 1

1 + c̃k

I} is a Bs
p,q−multiplier,

there exists g ∈ Bs
p,q(T; X) such that

ANkf̂(k) = ĝ(k).

From (3.25) we obtain Aû(k) = ĝ(k), and Lemma 3.1 of [9] implies that u(t) ∈ D(A).
By (3.26) we have

ŵ(k) = − k2 û(k) = −αv̂(k) + [1 + c̃k] ANkf̂(k) + f̂(k)

= −αikû(k) + [1 + c̃k] Aû(k) + f̂(k)

= −αikû(k) + Aû(k) + c̃k Aû(k) + f̂(k) .

(3.28)

It follows from the uniqueness theorem of Fourier coefficients that u(t) defined by
(3.23) satisfies (3.1) for almost all t ∈ [0, 2π] .

3.4 Notes and comments

In [33] Keyantuo and Lizama establish maximal regularity results in Besov spaces for
an integro-differential equation with infinite delay, see Chapter 2 Section 2.6. For this,
they introduce the conditions (2.13) and (2.14). Now, using the previous results, one
can improve Theorems 2.38 and 2.40, corresponding to [33, Theorem 2.12 and Theorem
3.9] replacing these conditions in terms of Marcinkiewicz estimates. For the Lp case,
we only need that {c̃k} satisfy a Marcinkiewicz estimate of order 1 and the Besov case
we only need that {c̃k} satisfy a Marcinkiewicz estimate of order 2. We reformulate
Theorem 2.40 as follows.

Theorem 3.12 Let 1 ≤ p ≤ ∞ and s > 0 . Let A be a closed linear operator on
the Banach space X. Assume that {c̃k} satisfies a Marcinkiewicz estimate of order 2.
Then the following assertions are equivalent

(i) For all f ∈ Bs
p,q(T; X) , there exists a unique strong Bs

p,q−solution of (2.10) such
that u′ , Au and a ∗ Au ∈ Bs

p,q(T; X) .

(ii) {bk}k∈Z ⊂ ρ(A) and supk∈Z ||bk (bk − A)−1|| < ∞ .

Proof. Since the sequence {1 + c̃k} satisfies a Marcinkiewicz estimate of order 2
and {1/(1 + c̃k)} is bounded by Theorem 2.31 we obtain that {1 + c̃k} is a 2-regular
sequence. It is clear that {ik} is 2-regular, hence by Lemma 2.27 it follows that {bk}
is 2-regular sequence.
(ii) ⇒ (i). Let Mk = ik

1+c̃k
(bk − A)−1. Define Nk = i

1+c̃k
(bk − A)−1. We claim that the

family {Nk} is a Bs
p,q−multiplier.
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In fact, to verify that {Nk} satisfies Marcinkiewicz estimate of order 2, note that
||Nk|| ≤ ||kNk|| = ||Mk|| for all k ∈ Z \ {0} and hence supk∈Z||Nk|| < ∞ . Moreover,
we have

k[Nk+1 −Nk] = (k + 1)Nk+1 − kNk −Nk+1 ,

and

k2[Nk+1−2Nk +Nk−1] = k(Mk+1−Mk)+k(Mk−1−Mk)+Mk−1−Mk+1 +Nk−1 +Nk+1 ,

since {Mk} satisfies Marcinkiewicz estimate of order 2 and {Nk} is a bounded se-
quence by Theorem 2.24, we obtain the claim.
Now, let f ∈ Bs

p,q(T, X) . Since {Nk} is a Bs
p,q−multiplier, there exists u ∈ Bs

p,q(T, X)
such that

û(k) = Nkf̂(k) , for all k ∈ Z , (3.29)

we observe that û(k) ∈ D(A) .
Since {Mk} is a Bs

p,q−multiplier, there exists v ∈ Bs
p,q(T, X) such that v̂(k) = Mkf̂(k)

for all k ∈ Z . From (3.29), we obtain that

ikû(k) = v̂(k) , for all k ∈ Z , (3.30)

By Lemma 2.1 of [9], u is differentiable a.e. with u′ = v and u(0) = u(2π) . By [10,
Theorem 2.3], this implies that u ∈ Bs+1

p,q (T; X) .
Apply again the fact that {1/(1 + c̃k)} is a Bs

p,q−multipliers, there exists w1 ∈
Bs

p,q(T, X) such that ŵ1(k) =
1

1 + c̃k

f̂(k) for all k ∈ Z . From (3.29) have the identity

Aû(k) =
ik

1 + c̃k

û(k)− 1

1 + c̃k

f̂(k) = ŵ(k)− ŵ1(k) (3.31)

from [9, Lemma 3.1] this implies that u(t) ∈ D(A) and Au(t) = w(t)− w1(t) . Hence
Au ∈ Bs

p,q(T, X) .
Since A is closed, from (3.31), we deduce that (2.10) holds. We have proved that u is
a strong Bs

p,q−solution of (2.10). It remains to establish uniqueness.
Let u ∈ Bs

p,q(T, [D(A)]) be such that

u′(t)− Au(t)−
∫ t

−∞
a(t− s)Au(s) ds = 0 ,

then û(k) ∈ D(A) and (ikI − (1 + c̃k)A)û(k) = 0 . Since bk ∈ ρ(A) this implies that
û(k) = 0 for all k ∈ Z and thus u = 0.
(i) ⇒ (ii). Is the proof of Keyantuo and Lizama in [33].



Chapter 4

Additive Perturbation for
Integro-differential Equations and
Maximal Regularity

4.1 Introduction

In this chapter we study existence and uniqueness of periodic solutions for the following
integral equation with infinite delay

u(t) =

∫ t

−∞
a(t− s)Au(s)ds +

∫ t

−∞
b(t− s)Bu(s)ds + f(t), (4.1)

where a(·) , b(·) ∈ L1(R+) are scalar-valued kernels, A and B are closed linear opera-
tors defined on a UMD space, such that D(A) ⊂ D(B). In contrast with many papers
on the subject of integrodifferential equations, in this work we will study directly the
full problem (4.1) by mean of Theorem 2.24 .
If we assume that B is relatively bounded with respect to the unperturbed operator
A , then we are able to obtain sufficient conditions for maximal regularity in terms of
R-boundedness of

{(I − b̃(ik)B − ã(ik)A)−1}k∈Z. (4.2)

We remark that the R−boundedness assumption is satisfied by a large number of
examples. We refer to the recent monographs by Denk, Hieber and Prüss [25] and
Kunstmann and Weiss [36] for the corresponding developments.
We observe that the present results on perturbation of R-boundedness (see [25, Propo-
sition 4.3]) are not sufficient to directly handle the case studied here.
In contrast with to all the above papers dealing with this subject, we obtain very simple
conditions for well-posedness. Among the conditions that we impose on a and b is one
of k−regularity. Furthermore, we do not make any parabolicity assumption on the
operator, not even that A generates a semigroup. In fact, we give examples showing
that the condition that A be the generator of a semigroup is not necessary.

37
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4.2 Additive Perturbation and R-boundedness

In this section we consider the behaviour of R-boundedness with respect to perturba-
tions. For this purpose, we recall the following definition (see [26, Definition 2.1]).

Definition 4.1 Let A : D(A) ⊂ X −→ X be a linear operator on a Banach space
X . An operator B : D(B) ⊂ X −→ X is called A−bounded if D(A) ⊂ D(B) and if
there exist constants c ≥ 0 , d ≥ 0 such that

||Bx|| ≤ c||Ax||+ d||x|| (4.3)

for all x ∈ D(A) . The A−bound of B is

c0(A) := inf{ c ≥ 0 : there exists d > 0 such that (4.3) holds }.
Lemma 4.2 Let {αk}k∈I⊆Z ∈ C be a bounded sequence. Let A and B be closed
linear operators defined on X . Assume that B is A−bounded. Then {αkB}k∈I⊆Z ⊂
B([D(A)], X) is R−bounded and

Rp[{αkB}k∈I⊆Z] ≤ 2(c + d) sup
k∈I

|αk|. (4.4)

Proof.
This is a direct consequence of the Kahane contraction principle and R−boundedness
of products. However we will give a direct proof. Denote Bk := αkB, k ∈ I ⊆ Z.
Using Definition 2.1 and the inequality (4.3), we have

||
m∑

j=1

rj Bkj
xj||pLp(0,1;X) =

∫ 1

0

||
m∑

j=1

rj(t)αkj
Bxj||pX dt

≤ (c + d)p

∫ 1

0

||
m∑

j=1

rj(t)αkj
xj||p[D(A)] dt

= (c + d)p||
m∑

j=1

rj αkj
xj||pLp(0,1;[D(A)]),

for all k1, ..., km ∈ I ⊆ Z, x1, ..., xm ∈ [D(A)] and m ∈ N, where 1 ≤ p < ∞. By
Kahane’s contraction principle one has

||
m∑

j=1

rj αkj
xj||Lp(0,1;[D(A)]) ≤ 2 max

j=1,...,m
|αkj

| ||
m∑

j=1

rj xj||Lp(0,1;[D(A)]) ,

for all αkj
∈ C and xj ∈ D(A) , j = 1, . . . , m . Since {αk}k∈I⊆Z is bounded, we have

that

||
m∑

j=1

rj Bkj
xj||Lp(0,1;X) ≤ 2(c + d) sup

k∈I
|αk| ||

m∑
j=1

rj xj||Lp(0,1;[D(A)]).

The following is the main result of this section.
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Theorem 4.3 Let A and B be closed linear operators defined on a UMD space
X . Assume that B is A−bounded. Suppose that the sequence {bk}k∈Z satisfies a
Marcinkiewicz estimate of order 1 and {ak}k∈Z is a 1-regular.
If 1 ∈ ρ(akA + bkB) for all k ∈ Z, then the following assertions are equivalent

(i) {(I − akA− bkB)−1}k∈Z is an Lp
X,[D(A)]− multiplier, 1 < p < ∞ .

(ii) {(I − akA− bkB)−1}k∈Z ⊆ B(X, [D(A)]) and is R-bounded.

Proof.
(ii) ⇒ (i) Define Bk := 1

ak
(I − bkB). We first claim that the family

{k ak+1 (Bk −Bk+1)}k∈Z

is R−bounded. In fact, we have that

kak+1[Bk −Bk+1] = k[
ak+1 − ak

ak

]I + k[bk+1 − bk]
ak+1

ak

B − k[
ak+1 − ak

ak

]bk+1B

Since {ak} is a 1-regular sequence, is follows that |ak+1

ak

−1| < 1

|k| → 0 when |k| → ∞ ,

hence {ak+1

ak
} is bounded.

Setting αk = k[
ak+1 − ak

ak

] , βk = k[bk+1 − bk]
ak+1

ak

and γk = k[
ak+1 − ak

ak

]bk+1 , the se-

quences {αk}k∈Z , {βk}k∈Z and {γk}k∈Z are bounded by hypothesis. The claim follows
from Lemma 4.2 and Proposition 2.5.

Let Nk = (I − akA− bkB)−1 =
1

ak

(BkI −A)−1. In order to prove (i) it is sufficient to

show, by Theorem 2.24, that the set {k(Nk+1 −Nk)}k∈Z is R-bounded. In fact,

k[Nk+1 −Nk] =
1

ak+1

(Bk+1 − A)−1 [kak+1(Bk −Bk+1)]
1

ak

(Bk − A)−1

− 1

ak+1

(Bk+1 − A)−1 k(ak+1 − ak)

ak

and the result follows from Proposition 2.5.
(i) ⇒ (ii) Since ρ(akA + bkB) 6= ∅ for each k ∈ Z, the operators akA + bkB are closed.
The result follows from the Closed Graph Theorem and Remark 2.18.

The next corollary extends Proposition 2.37.

Corollary 4.4 Let A be a closed linear operator on a UMD space X. Let {ak}k∈Z,
{mk}k∈Z be 1-regular sequences such that

{akmk}k∈Z is bounded.
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Suppose {mk}k∈Z ⊂ ρ(A). Then the following assertions are equivalent

(i) { 1

ak

(mkI − A)−1}k∈Z is an Lp
X,[D(A)] multiplier, 1 < p < ∞ .

(ii) { 1

ak

(mkI − A)−1}k∈Z ⊆ B(X, [D(A)]) and is R-bounded.

Proof.
Apply the above theorem with B = I and bk = 1−mkak, k ∈ Z. Moreover

k(bk+1 − bk) = mkak
k(ak − ak+1)

ak

+ mk+1ak+1
k(mk −mk+1)

mk+1

,

and
I − akA− bkB = ak(mk − A),

from which the assertions follows.

Proposition 4.5 Let {ak}k∈Z ⊆ C \ {0} and {bk}k∈Z be sequences with lim
k→∞

bk = 0.

Let A be a closed linear operator defined on a Banach space X such that { 1
ak
} ⊂ ρ(A)

and
Rp[{(I − akA)−1}k∈Z] =: M < ∞. (4.5)

Assume that B is A−bounded. Then there exists N ∈ N ∪ {0} such that 1 ∈ ρ(akA +
bkB) for all |k| ≥ N and

Rp[{(I − akA− bkB)−1}|k|≥N ] < ∞. (4.6)

Proof. Since B is A-bounded, there exists constants c, d ≥ 0 such that (4.3) holds.
By hypothesis, there exists N ∈ N ∪ {0} such that

|bk| ≤ 1

4M(c + d)
for all |k| ≥ N.

By Lemma 4.2, the family of operators {bkB}|k|≥N ⊂ B([D(A)], X) is R-bounded and

Rp[{bkB}|k|≥N ] ≤ 2(c + d) sup
|k|≥N

|bk| ≤ 1

2M
. (4.7)

Since the family {(I−akA)−1}k∈Z is R-bounded, we have by properties of R-boundedness
(see chapter 2) that the family {bkB(I − akA)−1}|k|≥N is R-bounded with

Rp[{bkB(I − akA)−1}|k|≥N ] ≤ Rp[{bkB}|k|≥N ]Rp[{(I − akA)−1}|k|≥N ] ≤ 1

2
. (4.8)

In particular, the family {bkB(I − akA)−1}|k|≥N is uniformly bounded, that is

||bkB(I − akA)−1|| ≤ 1/2 for all |k| ≥ N. (4.9)
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We decompose I − akA− bkB as the product

I − akA− bkB = [I − bkB(I − akA)−1] [I − akA]

and observe that I − akA is a bijection from D(A) onto X , while B(I − akA)−1

is bounded on X since B is A−bounded. By (4.9) we obtain that the operator
I − bkB(I − akA)−1 is invertible for each |k| ≥ N fixed, with inverse

(I − akA− bkB)−1 = (I − akA)−1

∞∑
n=0

(bkB(I − akA)−1)n. (4.10)

Using induction over n, we have by properties of R-bounded families and (4.8),

Rp[{(I − akA)−1}{(bkB(I − akA)−1)}n] ≤ Rp[{(I − akA)−1}]Rp[{bkB(I − akA)−1}]n

≤ M(
1

2
)n.

Finally, taking into account that R-boundedness is preserved by convergence in the
strong operator topology, one has

Rp({(I − akA− bkB)−1}|k|≥N) ≤ 2M. (4.11)

This proves that {(I − akA− bkB)−1}|k|≥N is R-bounded.

4.3 An Integral Equation of Hyperbolic type

Consider the following integral equation with infinite delay





u(t) =

∫ t

−∞
a(t− s)Au(s)ds +

∫ t

−∞
b(t− s)Bu(s)ds + f(t)

u(0) = u(2π)

(4.12)

where a , b ∈ L1(R+) are scalar kernels, and A,B are closed linear operators defined
on a UMD space X, such that D(A) ⊂ D(B) .
In this section, we give sufficient conditions for the maximal regularity for periodic
solutions for the equation (4.12) in the vector valued Lebesgue spaces.
We define

ρ(A,B) = {λ ∈ C : I−ã(λ)A−b̃(λ)B is invertible and (I−ã(λ)A−b̃(λ)B)−1 ∈ B(X, [D(A)])}
where ã(λ) , b̃(λ) are the Laplace transforms of a and b respectively.

We suppose that λ → ã(λ) (resp. b̃(λ)) admits an analytical extension to a sector
containing the imaginary axis, and still denote this extension by ã (resp. b̃). In
what follows we will assume that ã(ik), b̃(ik) exist for all k ∈ Z and use the notation
ãk = ã(ik) and b̃k = b̃(ik) .
Denote by σ(A,B) the set C \ ρ(A,B) .
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Definition 4.6 Let 1 < p < ∞ . A function u is called a strong Lp−solution of
(4.12) if u ∈ Lp

2π(R; [D(A)]) and equation (4.12) holds for almost all t ∈ [0, 2π] .

The following is the main result of this section.

Theorem 4.7 Let a, b ∈ L1(R+) be functions such that the sequence {b̃k} satisfies
a Marcinkiewicz estimate of order 1 and {ãk} is 1-regular. Let A and B be closed
linear operators defined on an UMD space X and assume that B is A−bounded.
If {ik}k∈Z ∈ ρ(A, B) and {(I − ãkA− b̃kB)−1}k∈Z ⊆ B(X, [D(A)]) is R-bounded, then
for every f ∈ Lp

2π(R, X) there exists a unique strong Lp−solution of (4.12).

Proof.
Let f ∈ Lp

2π(R, X) . By Theorem 4.3, we have that there is u ∈ Lp
2π(R; [D(A)]) such

that
û(k) = (I − b̃kB − ãkA)−1f̂(k) , for all k ∈ Z.

We conclude that û(k) ∈ D(A) ⊂ D(B) and

(I − b̃kB − ãkA)û(k) = f̂(k). (4.13)

On the other hand, since {b̃k} satisfies a Marcinkiewicz estimate of order 1, by Lemma
4.2 we have that {b̃kB}k∈Z and { k ( b̃k+1 − b̃k)B }k∈Z are R−bounded. By Theo-
rem 2.24 it follows that {b̃kB}k∈Z is an Lp

[D(A)],X− multiplier. Hence for each g ∈
Lp

2π(R, [D(A)]) there exists h ∈ Lp
2π(R, X) such that ĥ(k) = b̃kBĝ(k) , for all k ∈ Z .

In particular, for g := u ∈ Lp
2π(R, [D(A)]) we obtain ĥ(k) = Bb̃kû(k). Since B is

closed, from Lemma 3.1 in [9] we conclude that (b∗u)(t) =

∫ t

−∞
b(t−s)u(s)ds ∈ D(B)

and B(b ∗ u)(t) = h(t) .
By (4.13) we have ãkAû(k) = û(k)− b̃kBû(k)−f̂(k) and then Aãkû(k) = û(k)−ĥ(k)−
f̂(k). Hence from Lemma 3.1 in [9] it follows that (a ∗ u)(t) =

∫ t

−∞
a(t − s)u(s)ds ∈

D(A) and

A(a ∗ u)(t) = u(t)− h(t)− f(t) = u(t)−B(b ∗ u)(t)− f(t). (4.14)

(cf. [33, equation (2.1)]). It follows from the closedness of A and B , and from
the uniqueness theorem of Fourier coefficients that (4.12) holds for almost all t ∈
[0, 2π] . We have proved that u is a strong Lp−solution of (4.12). It remains to show
uniqueness.

Let u ∈ Lp
2π(R; [D(A)]) such that u(t)−

∫ t

−∞
a(t−s)Au(s)ds−

∫ t

−∞
b(t−s)Bu(s)ds = 0,

then û(k) ∈ D(A) and (I − (ãkA + b̃kB))û(k) = 0 . Since {ik}k∈Z ∈ ρ(A,B) this
implies that û(k) = 0 for all k ∈ Z and thus u = 0 .
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Remark 4.8

In the context of Theorem 4.7 we have Au, a∗Au, b∗Bu ∈ Lp
2π(R, X). Moreover, by the

Closed Graph Theorem there exists a constant C > 0, independent of f ∈ Lp
2π(R, X)

such that

||u||Lp
2π(R,X) + ||a ∗ Au||Lp

2π(R,X) + ||b ∗Bu||Lp
2π(R,X) ≤ C||f ||Lp

2π(R,X).

Example 4.9

Let X = l2(Z) and 0 < β < 1. Consider the system

un = (n− iβ)a ∗ un + fn, n ∈ Z, (4.15)

the Fourier series version of the boundary value problem




u(t, x) = −
∫ t

−∞
a(t− s)(iux(s, x) + iβu(s, x))ds + f(t, x), x ∈ [0, 2π], t ≥ 0

u(t, 0) = u(t, 2π), t ≥ 0.

This problem is of the form (4.12) with

(Au)n = (n− iβ)un, D(A) = {(un) ∈ l2(Z) : (n · un) ∈ l2(Z)},
and b(t) = 0 for all t ∈ R+. Note that A does not generate a C0-semigroup since σ(A) =
{n − iβ : n ∈ Z} is not contained in any left halfplane. Define a(t) = e−αt, α > 0.
Clearly the sequence ãk = 1

ik+α
is 1-regular and {ik+α}k∈Z ⊂ ρ(A). Moreover, for each

x = (xn) ∈ l2(Z) we have

||(I − ãkA)−1x|| = ||(ik + α)(ik + α− A)−1x||

=
∑

n∈Z

∣∣∣∣
ik + α

ik + α− n + iβ
xn

∣∣∣∣
2

≤
∑

n∈Z

k2 + α2

(α− n)2 + (β + k)2
|xn|2

≤
∑

n∈Z

k2 + α2

(k + β)2
|xn|2.

Since 0 < β < 1, we obtain for all k ∈ Z

||(I − ãkA)−1x|| ≤ max{α2

β2
,

α2 + 1

(β − 1)2
}

∑

n∈Z
|xn|2 =: M ||x||,

where, as indicated, the constant M depends only on α and β. Then, the hypotheses
of Theorem 4.7 are satisfied and we conclude that for every f ∈ Lp

2π(R, l2(Z)) there
exists a unique strong Lp-solution of the boundary value problem.
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4.4 The resonant case

In the Section 4.3 we considered the nonresonance case: ik /∈ σ(A, B) for all k ∈ Z ,
and we proved that, for every f ∈ Lp

2π(R, X) there exists a unique strong Lp−solution
of (4.12).

Now, we consider a resonant case: We assume that there are k1, . . . , kN ∈ Z such that





(i) ikj ∈ σ(A,B) for j = 1, . . . , N ;

(ii) ik /∈ σ(A,B) for k ∈ Z , k 6= k1, . . . , kN

(iii) ikj is a simple pole of F (·) for j = 1, . . . , N

(4.16)

where F : ρ(A,B) ⊂ C→ B(X, [D(A)]) is defined by F (λ) = (I − ã(λ)A− b̃(λ)B)−1.

We now give some preliminary results about the solvability of the equation

(I − ã(λ0)A− b̃(λ0)B)x = y (4.17)

where λ0 is a simple pole of F (·).
From Section 3.3 we recall that Q ∈ B(X, [D(A)]) is the residue of F (·) at λ0 and
G(λ) is defined by (3.12).

Lemma 4.10 Suppose that B is A-bounded. With the notations as above, we have

Q = Q [−ã′(λ0)A− b̃′(λ0)B] Q

Proof. We proceed analogously as in the proof of Lemma 3.9. For each λ, µ belonging
to B(λ0, ε) \ {λ0} with |λ− λ0| > |µ− λ0| we have

F (λ)− F (µ) = F (λ) [ ( ã(λ)− ã(µ) )A + ( b̃(λ)− b̃(µ) )B ] F (µ).

Hence

F (λ)− F (µ)

λ− µ
(λ− λ0)(µ− λ0)

= (λ− λ0)F (λ)

[
ã(λ)− ã(µ)

λ− µ
A +

b̃(λ)− b̃(µ)

λ− µ
B

]
(µ− λ0) F (µ)

and using (3.12) we have

G(λ)
µ− λ0

λ− µ
−G(µ)

λ− λ0

λ− µ
= G(λ)

[
ã(λ)− ã(µ)

λ− µ
A +

b̃(λ)− b̃(µ)

λ− µ
B

]
G(µ).
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Since B is A-bounded, we have

−Q = G(λ)

[
ã(λ)− ã(λ0)

λ− λ0

A +
b̃(λ)− b̃(λ0)

λ− λ0

B

]
Q

as µ → λ0. Letting λ → λ0 we get

Q = Q
[
−ã′(λ0)A− b̃′(λ0)B

]
Q.

This proves the Lemma.

The following result is analogous to Proposition 3.10.

Proposition 4.11 Let λ0 be a simple pole of F (·) and let Q be defined by (3.11) .
Suppose that B is A-bounded. Then

Ker(I − ã(λ0)A− b̃(λ0)B) = Q(X). (4.18)

Moreover, for any y ∈ X such that Qy = 0 , all solutions of (4.17) are given by

x = G′(λ0)y −QA(ã′G)′(λ0)y −QB(b̃′G)′(λ0)y . (4.19)

Proof. First we show (4.18). For any sufficiently small ε > 0 and 0 < |λ− λ0| < ε
we have

(I − ã(λ0)A− b̃(λ0)B ) G(λ) = (λ− λ0) + (ã(λ)− ã(λ0))AG(λ) + (b̃(λ)− b̃(λ0))BG(λ)

Since B is A-bounded and A ∈ B([D(A)], X), letting λ → λ0 we obtain ( I− ã(λ0)A−
b̃(λ0)B ) Q = 0 , so that Q(X) is contained in Ker( I − ã(λ0)A− b̃(λ0)B ) . Let now
x ∈ D(A) be such that ( I − ã(λ0)A− b̃(λ0)B ) x = 0, then for 0 < |λ− λ0| < ε with
ε small, we have

F (λ) ( I − ã(λ0)A− b̃(λ0)B ) x = 0. (4.20)

Since x− F (λ) ( I − ã(λ)A− b̃(λ)B ) x = 0 , that is,

x− F (λ) x + F (λ) ã(λ)Ax + F (λ) b̃(λ)B x = 0

and then

x + F (λ) [ã(λ)− ã(λ0)] Ax + F (λ)[b̃(λ)− b̃(λ0)] Bx− F (λ) [I − ã(λ0)A− b̃(λ0)B] x = 0.

It follows from (4.20) that

x + (λ− λ0)F (λ)
ã(λ)− ã(λ0)

λ− λ0

Ax + (λ− λ0)F (λ)
b̃(λ)− b̃(λ0)

λ− λ0

Bx = 0 ,
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that is,

x + G(λ)
ã(λ)− ã(λ0)

λ− λ0

Ax + G(λ)
b̃(λ)− b̃(λ0)

λ− λ0

Bx = 0.

Letting λ → λ0 we get

x + Q ã′(λ0) Ax + Q b̃′(λ0) Bx = 0 ,

so that x belongs to Q(X) .

Let us show now (4.19). First we claim that

lim
λ→λ0

F (λ) [1 + ( ã′(λ0)A + b̃′(λ0)B ) Q ] = G′(λ0)−QA (ã′G)′(λ0)−QB (b̃′G)′(λ0)

(4.21)
In fact, with direct computations, we obtain
G′(λ) = F (λ)− (λ− λ0) F (λ) [−ã′(λ)A− b̃′(λ)B ] F (λ)

= F (λ) [1 + ( ã′(λ0) A + b̃′(λ0) B )Q ]− F (λ) ã′(λ0) AQ− F (λ) b̃′(λ0) B Q

+ F (λ) ã′(λ)A(λ− λ0) F (λ) + F (λ) b̃′(λ)B (λ− λ0) F (λ)

= F (λ) [ 1 + ( ã′(λ0) A + b̃′(λ0) B )Q ] + F (λ) A [ ã′(λ) G(λ)− ã′(λ0) Q ]

+ F (λ) B [ b̃′(λ) G(λ)− b̃′(λ0)Q ]

= F (λ) [ 1 + ( ã′(λ0) A + b̃′(λ0) B )Q ] + (λ− λ0) F (λ) A
ã′(λ) G(λ)− ã′(λ0) G(λ0)

λ− λ0

+ (λ− λ0) F (λ) B
b̃′(λ) G(λ)− b̃′(λ0)G(λ0)

λ− λ0

.

Therefore

G′(λ) = F (λ) [ 1 + ( ã′(λ0) A + b̃′(λ0) B )Q ] + G(λ) A
ã′(λ) G(λ)− ã′(λ0) G(λ0)

λ− λ0

+ G(λ) B
b̃′(λ) G(λ)− b̃′(λ0)G(λ0)

λ− λ0

.

Using the fact that B is A-bounded and A ∈ B([D(A)], X) we let λ → λ0 and obtain
(4.21).

On the other hand, using (4.21) we obtain
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lim
λ→λ0

[I − ã(λ0)A− b̃(λ0)B ] F (λ) [ 1 + (ã′(λ0)A + b̃′(λ0)B)Q ]

= lim
λ→λ0

[I − ã(λ)A− b̃(λ)B + ã(λ)A + b̃(λ)B − ã(λ0)A− b̃(λ0)B ]

F (λ)[ 1 + (ã′(λ0)A + b̃′(λ0)B)Q ]

= lim
λ→λ0

[ I + { (ã(λ)− ã(λ0)) A + ( b̃(λ)− b̃(λ0)) B }F (λ) ] [ I + (ã′(λ0)A + b̃′(λ0)B)Q ]

= I + (ã′(λ0)A + b̃′(λ0)B)Q

Due to (4.21) and the fact that I − ã(λ0)A− b̃(λ0)B belongs to B([D(A)], X) we have

[I−ã(λ0)A−b̃(λ0)B] [ G′(λ0)−QA (ã′G)′(λ0)−QB (b̃′G)′(λ0) ] = I+(ã′(λ0)A+b̃′(λ0)B)Q
(4.22)

Therefore, if y ∈ X is such that Qy = 0 , the equation (4.17) is solvable, and the
solution is given by

w = G′(λ0)y −QA (ã′G)′(λ0)y −QB (b̃′G)′(λ0)y

The proof is complete.

If f ∈ Lp
2π(R, X) and u ∈ Lp

2π(R, [D(A)]) is a strong Lp−solution of (4.12), taking
Fourier series on both sides of (4.12) we obtain

(I − ãkA− b̃kB) û(k) = f̂(k) , k ∈ Z . (4.23)

The equation (4.23) can be uniquely solved for each k 6= kn , n = 1, . . . , N , with

û(k) = (I − ãkA− b̃kB)−1f̂(k)

For kn , n = 1, . . . , N , by Proposition 4.11 the equation (4.23) is solvable if and only
if

Qn f̂(kn) = 0 (4.24)

where Qn is the residue of F (·) at λ = ikn . If (4.24) holds, then by (4.19), the Fourier
coefficients of the solution to (4.23) in kn , n = 1, . . . , N are given by

û(kn) = [G′
n(ikn) −Qn A(ã′Gn)′(ikn)−Qn B(b̃′Gn)′(ikn)] f̂(kn) (4.25)
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where Gn is the analytic function defined by (3.20).
We define the family of operators

Mk =





(I − ãkA− b̃kB)−1 k ∈ Z \ { k1, . . . , kN }

G′
j(ikj) −Qj A(ã′Gj)

′(ikj)−Qj B(b̃′Gj)
′(ikj) j = 1, . . . , N.

(4.26)

Since ik ∈ ρ(A,B) for all k ∈ Z \ {k1, . . . , kN} , {Mk}k∈Z ⊂ B(X, [D(A)]) .
The following main theorem give compatibility conditions on f which are necessary
and sufficient for the existence of a strong Lp- solution of (4.12).

Theorem 4.12 Let a, b ∈ L1(R+) be functions such that {b̃k} satisfies a Marcinkiewicz
estimate of order 1 and {ãk} is 1-regular. Suppose that (4.16) holds. Let A and B
be closed linear operators defined on a UMD space X such that B is A-bounded. If
{Mk}k∈Z , defined by (4.26), is R−bounded then for every f ∈ Lp

2π(R, X) equation
(4.12) has a strong Lp−solution if and only if Qn f̂(kn) = 0 , for every n = 1, . . . , N .
In this case, all the strong solutions of (4.12) are given by

u(t) = lim
n→∞

n∑
k = −n

k 6= k1, . . . , kN

(
1− |k|

n + 1

)
eikt(I − ãkA− b̃kB)−1 f̂(k)

+
N∑

j=1

eikjt [G′
j(ikj) −Qj A(ã′Gj)

′(ikj)−Qj B(b̃′Gj)
′(ikj)] f̂(kj).

(4.27)

Proof. First we assume that for every f ∈ Lp
2π(R, X) there exists a function v ∈

Lp
2π(R, [D(A)]) which is a strong Lp−solution equation (4.12). Taking Fourier series

on both sides in (4.12) we obtain that v̂(k) ∈ D(A) and that

(I − ãkA− b̃kB)v̂(k) = f̂(k) , for all k ∈ Z.

For λ ∈ ρ(A,B) , and k1, k2, ...kN we have that

(λ− ikn)F (λ)(I − ã(λ)A− b̃(λ)B)v̂(kn) = (λ− ikn) v̂(kn).

Letting, λ → ikn it follows that

lim
λ→ikn

(λ− ikn)F (λ)(I − ã(λ)A− b̃(λ)B)v̂(kn) = 0

Since both limits lim
λ→ikn

(λ − ikn)F (λ) and lim
λ→ikn

(I − ã(λ)A − b̃(λ)B)v̂(kn) exist, we

obtain that

Qn (I − ã(ikn)A− b̃(ikn)B)v̂(kn) = 0,
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or, equivalently, Qnf̂(kn) = 0 , for all kj , j = 1, . . . , N . Hence by Proposition 4.11
equation (4.23) is solvable and

v̂(k) =





(I − ãkA− b̃kB)−1f̂(k) k ∈ Z \ { k1, . . . , kN }

[G′
j(ikj) −Qj A(ã′Gj)

′(ikj)−Qj B(b̃′Gj)
′(ikj)]f̂(kj) j = 1, . . . , N

from which (4.27) follows.

Conversely, assume that f ∈ Lp
2π(R, X) and Qnf̂(kn) = 0 . We define u(t) by (4.27).

Then

û(k) = Mk f̂(k) (4.28)

for all k ∈ Z, where Mk is defined by ( 4.26). Note that û(k) ∈ D(A) for all k ∈ Z.
Since {Mk}k∈Z is R-bounded, we claim that {k(Mk+1 − Mk)}k∈Z is also R-bounded.
In fact, note that any finite family of operators is R-bounded, and for all |k| > kN we
have

k (Mk+1 −Mk) = k [(I − ãk+1A− b̃k+1B)−1 − (I − ãkA− b̃kB)−1]

= F ((k + 1)i) k (b̃k+1 − b̃k) B F (ki) + F ((k + 1)i) k
ãk+1 − ãk

ãk

[(I − b̃kB)F (ki)− I].

Since B is A−bounded, {b̃k} satisfies a Marcinkiewicz estimate of order 1 and {ãk}
is 1−regular, the claim follows by Lemma 4.2 and properties of R-boundedness. By
Theorem 2.24 we conclude that {Mk}k∈Z is an Lp-multiplier and then there exists
v ∈ Lp

2π(R; [D(A)]) such that v̂(k) = Mkf̂(k) for all k ∈ Z. Then the uniqueness
theorem shows that u = v for t− a.e. It follows that u ∈ Lp

2π(R; [D(A)]) .
It remains to show that u satisfies equation (4.12). In order to simplify the notation
we write

Sn[h(k)] :=
n∑

k = −n
k 6= k1, . . . , kN

(
1− |k|

n + 1

)
eikth(k)

and

SN,n[h(kj)] :=
N∑

j=1

(
1− |kj|

n + 1

)
eikjth(kj)

and note that lim
n→∞

SN,n[h(kj)] =
N∑

j=1

eikjth(kj) and

Sn[h(k)] + SN,n[h(k)] =
n∑

k=−n

(
1− |k|

n + 1

)
eikth(k) =: σn[h(k)]
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Using the identity

(I − ãkA− b̃kB)−1 = I + ãkA(I − ãkA− b̃kB)−1 + b̃kB(I − ãkA− b̃kB)−1

valid for all k ∈ Z \ { k1, . . . , kN } we obtain

u(t) = lim
n→∞

Sn[(I − ãkA− b̃kB)−1 f̂(k)]

+
N∑

j=1

eikjt [G′
j(ikj) −Qj A(ã′Gj)

′(ikj)−Qj B(b̃′Gj)
′(ikj)] f̂(kj)

= lim
n→∞

Sn[f̂(k)] + lim
n→∞

Sn[ãkA(I − ãkA− b̃kB)−1f̂(k)]

+ lim
n→∞

Sn[b̃kB(I − ãkA− b̃kB)−1 f̂(k)]

+
N∑

j=1

eikjt [G′
j(ikj) −Qj A(ã′Gj)

′(ikj)−Qj B(b̃′Gj)
′(ikj)] f̂(kj)

Using (4.28) we have

u(t) = lim
n→∞

{Sn[f̂(k)] + SN,n[f̂(kj)]} − lim
n→∞

SN,n[f̂(kj)]

+ lim
n→∞

{Sn[ãk A û(k)] + SN,n[ã(ikj) A û(kj)]}

− lim
n→∞

SN,n[ã(ikj) A û(kj)]

+ lim
n→∞

{Sn[b̃k B û(k)] + SN,n[b̃(ikj) B û(kj)]}

− lim
n→∞

SN,n[b̃(ikj) B û(kj)] +
N∑

j=1

eikjt û(kj)

= lim
n→∞

σn[f̂(k)] + lim
n→∞

σn[ãk A û(k)] + lim
n→∞

σn[b̃k B û(k)]

−
N∑

j=1

eikjtf̂(kj) −
N∑

j=1

eikjt[ã(ikj) A + b̃(ikj) B] û(kj) +
N∑

j=1

eikjt û(kj)

= f(t) + (a ∗ Au)(t) + (b ∗Bu)(t)−
N∑

j=1

eikjtf̂(kj)

+
N∑

j=1

eikjt[I − ã(ikj) A− b̃(ikj) B] û(kj)
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Since Qkf̂(kj) = 0 , j = 1, . . . , N , it follows from equality (4.28) and Proposition 4.11
(see also (4.22)) that

[I − ã(ikj) A− b̃(ikj) B] [G′
j(ikj) −Qj A(ã′Gj)

′(ikj)−Qj B(b̃′Gj)
′(ikj)] f̂(kj) = f̂(kj) .

Hence

u(t) = f(t) + (a ∗ Au)(t) + (b ∗Bu)(t),

proving the claim and the theorem.

Example 4.13

Let X = l2(Z) and define Axn = (n + in)xn with maximal domain. Clearly A does
not generate a C0-semigroup. We take b(t) ≡ 0 and a(t) = e−t in equation (4.12).
Clearly ãk = 1

ik+1
is 1-regular and 1

ãk
= ik + 1 ∈ ρ(A) for all k ∈ Z \ {1}. Moreover

λ0 = i is a simple pole of F (λ) = (I − ã(λ)A)−1. It remains to show that the set
{I − ãkA)−1}k∈Z\{1} is bounded. In fact, for each x = (xn) ∈ l2(Z) and k ∈ Z \ {1} we
have

||(I − ãkA)−1x||2 = ||(ik + 1)(ik + 1− A)−1x||2

=
∑

n∈Z

∣∣∣∣
ik + 1

ik + 1− n− in
xn

∣∣∣∣
2

≤
∑

n∈Z

k2 + 1

(1− n)2 + (k − n)2
|xn|2

≤
∑

n∈Z
2

k2 + 1

(k − 1)2
|xn|2,

then we obtain
sup

k∈Z\{1}
||(I − ãkA)−1|| ≤ 10.

We conclude by Theorem 4.12 that for every f ∈ Lp
2π(R, l2(Z)) the equation

u(t, x) =

∫ t

−∞
e−(t−s)(ux(s, x)− iux(s, x))ds + f(t, x) x ∈ [0, 2π], t ≥ 0

with boundary values u(t, 0) = u(t, 2π), has a strong Lp−solution if and only if
Q1 f̂(1) = 0.
To calculate Q1 we note that F (λ)xn = λ+1

λ+1−n−in
xn and hence

(λ− i)F (λ)xn =
(λ− i)(λ + 1)

(λ− in) + (1− n)
xn =

{
(λ + 1)x1 n = 1

(λ−i)(λ+1)
(λ−in)+(1−n)

xn n 6= 1.
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Then

Q1xn := lim
λ→i

(λ− i)F (λ)xn =

{
(i + 1)x1 n = 1

0 n 6= 1.

Therefore if f(t) = (fn(t)), then Q1f̂(1) = 0 if and only if

(i + 1)

∫ 2π

0

e−itf1(t)dt = 0.



Chapter 5

Maximal Regularity of Delay
Equations on the Real Line

5.1 Introduction

Partial differential equations with delay are a subject which has been extensively stud-
ied and there is an enormous literature on the subject. In an abstract way they can be
written as

u′(t) = Au(t) + Fut + f(t), t ∈ R, (5.1)

where (A,D(A)) is a (unbounded) linear operator on a Banach space X, ut(·) = u(t+·)
on [−r, 0], r > 0, and the delay operator F is supposed to belong to B(C([−r, 0], X), X).
In this chapter we are able to obtain necessary and sufficient conditions in order to guar-
antee well-posedness of the delay equation (5.1) in the Hölder spaces Cα(R, X) (0 <
α < 1), and under the condition that X is a B-convex space. However we stress that
here A is not necessarily the generator of a C0-semigroup.
We remark that the Fourier multiplier approach used allows us to give a direct treat-
ment of the equation, in contrast with the approach using the correspondence between
(5.1) and the solutions of the abstract Cauchy problem

U ′(t) = AU(t) + F(t) t ≥ 0,

where A =

(
A F
0 d/dσ

)
. In this case the question of well-posedness of the delay

equation reduces to the question whether or not the operator (A, D(A)) generates a
C0-semigroup; see [13, 14, 48] and the references therein.

5.2 Periodic case

In [41] Lizama, characterized existence and uniqueness of periodic solutions of delay
equations (5.1), here the operator F is assumed to belong to B(Lp([−2πN, 0], X), X)
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for 1 ≤ p < ∞ , N ∈ N , and ut is an element of Lp([−2πN, 0], X) which is defined
by ut(θ) = u(t + θ) .
Denote by eλ(t) := eiλt for all λ ∈ R , and define the operators {Bλ}λ∈R ⊂ B(X) by
Bλx = F (eλx) . Defining the real spectrum of (5.1) by

σ(4) = {s ∈ R : isI − A−Bs ∈ B([D(A)], X) is not invertible } .

The author proved in [41] the following result.

Proposition 5.1 Let A be a closed linear operator defined on a UMD space X . Sup-
pose that Z ∩ σ(4) = ∅ . Then the following assertions are equivalent.
(i) {ik(ikI − A−Bk)

−1}k∈Z is an Lp−multiplier for 1 < p < ∞ .
(ii) {ik(ikI − A−Bk)

−1}k∈Z is R−bounded.

We denote

H1,p(T; X) = {u ∈ Lp(T, X) : ∃ v ∈ Lp(T, X) , v̂(k) = ikû(k) for all k ∈ Z } .

A function u ∈ H1,p(T; X) is called a strong Lp−solution of (5.1) if u(t) ∈ D(A) and
equation (5.1) holds for almost all t ∈ [0, 2π) .
The main result in [41], says the following

Theorem 5.2 Let X be a UMD space and let A : D(A) ⊂ X → X be a closed linear
operator. Then the following assertions are equivalent for 1 < p < ∞ .
(i) For every f ∈ Lp(T, X) , there exists a unique strong Lp−solution of (5.1).
(ii) Z ∩ σ(4) = ∅ and {ik(ikI − A−Bk)

−1}k∈Z is R−bounded.

5.3 Multipliers on the Real Line

Let X, Y be Banach spaces and let 0 < α < 1. We denote by Ċα(R, X) the spaces

Ċα(R, X) = {f : R→ X : f(0) = 0, ||f ||α < ∞}

normed by

||f ||α = sup
t 6=s

||f(t)− f(s)||
|t− s|α .

Let Ω ⊂ R be an open set. By C∞
c (Ω) we denote the space of all C∞-functions in

Ω ⊆ R having compact support in Ω.
We denote by Ff or f̂ the Fourier transform, i.e.

(Ff)(s) :=

∫

R
e−istf(t)dt

(s ∈ R, f ∈ L1(R; X)).
Following [8], we define Cα−multipliers.
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Definition 5.3 Let M : R\{0} → B(X, Y ) be continuous. We say that M is a
Ċα−multiplier if there exists a mapping L : Ċα(R, X) → Ċα(R, Y ) such that

∫

R
(Lf)(s)(Fφ)(s)ds =

∫

R
(F(φ ·M))(s)f(s)ds (5.2)

for all f ∈ Cα(R, X) and all φ ∈ C∞
c (R\{0}).

Here (F(φ ·M))(s) =

∫

R
e−istφ(t)M(t)dt ∈ B(X,Y ). Note that L is well defined, linear

and continuous (cf. [8, Definition 5.2]).
Define the space Cα(R, X) as the set

Cα(R, X) = {f : R→ X : ||f ||Cα < ∞}
with the norm

||f ||Cα = ||f ||α + ||f(0)||.
Let Cα+1(R, X) be the Banach space of all u ∈ C1(R, X) such that u′ ∈ Cα(R, X),
equipped with the norm

||u||Cα+1 = ||u′||Cα + ||u(0)||.
Observe from Definition 5.3 and

∫

R
(F(φM))(s)ds = 2π(φM)(0) = 0,

that for f ∈ Cα(R, X) we have Lf ∈ Cα(R, X). Moreover, if f ∈ Cα(R, X) is bounded
then Lf is bounded as well (see [8, Remark 6.3]).
The following multiplier theorem is due to Arendt-Batty and Bu [8, Theorem 5.3].

Theorem 5.4 Let M ∈ C2(R\{0},B(X, Y )) be such that

sup
t6=0

||M(t)||+ sup
t 6=0

||tM ′(t)||+ sup
t 6=0

||t2M ′′(t)|| < ∞. (5.3)

Then M is a Ċα-multiplier.

Remark 5.5

If X is B-convex, in particular if X is a UMD space, Theorem 5.4 remains valid if
condition 5.3 is replaced by the following weaker condition

sup
t 6=0

||M(t)||+ sup
t6=0

||tM ′(t)|| < ∞, (5.4)

where M ∈ C1(R\{0},B(X, Y )) (cf. [8, Remark 5.5]).
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We use the symbol Cf for the Carleman transform:

(Cf)(λ) =





∫ ∞

0

e−λtf(t)dt Reλ > 0

−
∫ 0

−∞
e−λtf(t)dt Reλ < 0,

where f ∈ L1
loc(R, X) is of subexponential growth; by this we mean

∫ ∞

−∞
e−ε|t|‖f(t)‖dt < ∞, for each ε > 0.

For details of Carleman transform and examples see [7] and [44]. We remark that if
u′ ∈ L1

loc(R, X) is of subexponential growth, then

(Cu′)(λ) = λ(Cu)(λ)− u(0), Reλ 6= 0.

5.4 A Characterization

We consider in this section the equation

u′(t) = Au(t) + Fut + f(t), t ∈ R, (5.5)

where A : D(A) ⊆ X → X is a linear, closed operator; f ∈ Cα(R, X) and, for r > 0,
F : C([−r, 0], X) → X is a linear, bounded operator. Moreover ut is an element of
C([−r, 0], X) which is defined as ut(θ) = u(t + θ) for −r ≤ θ ≤ 0.

Example 5.6 Let µ : [−r, 0] → B(X) be of bounded variation. Let F : C([−r, 0], X) →
X be the bounded operator given by the Riemann-Stieltjes integral

F (φ) =

∫ 0

−r

φdµ for all φ ∈ C([−r, 0], X).

An important special case consists of operators F defined by

F (φ) =
n∑

k=0

Ckφ(τk), φ ∈ C([−r, 0], X),

where Ck ∈ B(X) and τk ∈ [−r, 0] for k = 0, 1, ..., n. For concrete equations dealing
with the above classes of delays operators see the monograph of Bátkai and Piazzera
[13, Chapter 3].

Definition 5.7 We say that (5.1) is Cα-well posed if for each f ∈ Cα(R, X) there is
a unique function u ∈ Cα+1(R, X) ∩ Cα(R, [D(A)]) such that (5.1) is satisfied.
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Denote by eλ(t) := eiλt for all λ ∈ R, and define the operators {Fλ}λ∈R ⊆ B(X) by

Fλx = F (eλx), for all λ ∈ R and x ∈ X. (5.6)

We define the real spectrum of (5.5) by

σ(∆) = C \ {s ∈ R : isI − Fs − A is invertible }.
Proposition 5.8 Let X be a Banach space and let A : D(A) ⊂ X → X be a closed
linear operator. Suppose that (5.5) is Cα-well posed. Then

(i) R ∩ σ(∆) = ∅,

(ii) {iη(iηI − A− Fη)
−1}η∈R is bounded.

Proof. Let x ∈ D(A) and let u(t) = eiηtx for η ∈ R. Then ut(s) = eitηeisηx. Thus

F (ut) = eitηF (eηx) = eitηFηx. (5.7)

Now if (iη−A−Fη)x = 0, then u(t) is a solution of equation (5.1) when f ≡ 0. Hence
by uniqueness it follows that x = 0.
Now let L : Cα(R, X) → Cα+1(R, X) be the bounded operator which associate to
each f ∈ Cα(R, X) the unique solution u ∈ Cα+1(R, X) of (5.1). In order to show
surjectivity, let y ∈ X and f(t) = eitηy , t ∈ R. Let u(t) be the unique solution of (5.1)
such that L(f) = u and s0 ∈ R be fixed. Next, we claim that v(t) := u(t + s0) and
w(t) := eiηs0u(t) both satisfy equation

τ ′(t) = Aτ(t) + Fτt + eisoηf(t), t ∈ R, (5.8)

First we notice that

vt(s) = u(t + s0 + s) = ut+s0(s) , with s ∈ [−r, 0] .

Hence Fvt = Fut+s0 . Then an easy computation shows that v(t) satisfies equation
(5.8). On the other hand,

wt(s) = w(t + s) = eiηs0u(t + s) = eiηs0ut(s) , with s ∈ [−r, 0] .

Hence Fwt = eis0ηFut. Thus

eiηs0u′(t) = eiηs0(Au(t) + F (ut) + f(t)) = Aw(t) + Fwt + eis0ηf(t).

Thus w(t) satisfies equation (5.8). By uniqueness again, we have that

u(t + s0) = eiηs0u(t)

for all t, s0 ∈ R. In particular when t = 0 we obtain that

u(s0) = eiηs0u(0), s0 ∈ R.
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Now let x = u(0) ∈ D(A). Since u(t) = eiηtx satisfy (5.1), by (5.7), we have

iηu(t) = Au(t) + Fut + eiηty = Au(t) + eiηtFηx + eiηty.

In particular if t = 0 we obtain that

iηx = Ax + Fηx + y,

since x = u(0). Thus
(iηI − A− Fη)x = y (5.9)

and hence iηI − A− Fη is bijective. This shows assertion (i) of the proposition.
Next we notice that u(t) = eiηt(iη −A− Fη)

−1y by (5.9). Since ||eη x||α = γα|η|α||x|| ,
where γα = ||e1||α = 2 sup

t>0
t−αsin(t/2) , thus

γα|η|α||iη(iη − A− Fη)
−1y|| = ||eη iη(iη − A− Fη)

−1y||α = ||u′||α

≤ ||u||1+α = ||Lf ||1+α ≤ ||L||||f ||α

≤ ||L||(||f ||α + ||f(0)||)

= ||L||(||eη y||α + ||y||

≤ ||L||(γα|η|α + 1)||y||.
Hence it follows that

sup
|η|>1

||iη(iη − A− Fη)
−1|| ≤ ||L|| sup

|η|>1

(1 +
1

γα|η|α ) < ∞

and since sup
|η|≤1

||iη(iη − A− Fη)
−1|| < ∞ by continuity, it follows that (ii) holds.

Recall that a Banach space X has Fourier type p, where 1 ≤ p ≤ 2, if the Fourier
transform defines a bounded linear operator from Lp(R; X) to Lq(R; X), where q is the
conjugate index of p. For example, the space Lp(Ω), where 1 ≤ p ≤ 2 has Fourier type
p; X has Fourier type 2 if and only if X is isomorphic to a Hilbert space; X has Fourier
type p if and only if X∗ has Fourier type p. Every Banach space has Fourier type 1;
X is B-convex if it has Fourier type p for some p > 1. Every uniformly convex space is
B-convex.
Our main result in this Section, establishes that the converse of Proposition 5.8 is true.

Theorem 5.9 Let A be a closed linear operator defined on a B-convex space X . Then
the following assertions are equivalent

(i) Equation (5.1) is Cα-well posed.

(ii) R ∩ σ(∆) = ∅ and sup
η∈R

||iη(iηI − A− Fη)
−1|| < ∞.
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Proof.
(ii) ⇒ (i). Define the operator M(t) = (Bt − A)−1, with Bt = itI − Ft . Note that
by hypothesis (ii) M ∈ C1(R,B(X, [D(A)])) .
We claim that M is a Cα−multiplier. In fact, by hypothesis it is clear that sup

t∈R
||M(t)||X <

∞. On the other hand, we have

M ′(t) = −M(t) B′
t M(t)

with B′
t = iI−F ′

t and F ′
t(x) = F (e′tx) where e′t(s) = iseist. Note that for each x ∈ X

||Ftx||X ≤ ||F (etx)||X ≤ ||F || ||etx||∞ ≤ ||F || ||x||X , (5.10)

and

||F ′
tx||X ≤ ||F (e′tx)||X ≤ ||F || ||e′tx||∞ ≤ r||F || ||x||X . (5.11)

Hence B′
t is uniformly bounded with respect to t ∈ R and we conclude from the

hypothesis that

sup
t∈R

||tM ′(t)||X = sup
t∈R

|| [tM(t)] B′
t M(t)||X < ∞ , (5.12)

Note that || [tM(t)] B′
t M(t)||[D(A)] = ||M(t) B′

t tM(t)||X + ||AM(t) B′
t tM(t)||X but

||AM(t)B′
ttM(t)||X = ||(BtM(t)−IX)B′

ttM(t)||X ≤ ||BtM(t)B′
ttM(t)||X+||B′

t tM(t)||X
from hypothesis (ii) we obtain that sup

t∈R
||tM ′(t)||[D(A)] < ∞ .

Analogous ||M(t)||[D(A)] < ∞ and hence the claim follows from Theorem 5.4 and
Remark 5.5.
Now, define N ∈ C1(R,B(X)) by N(t) = (id ·M)(t), where id(t) := it for all t ∈ R.
We will prove that N is a Cα−multiplier. In fact, with a direct calculation, we have

tN ′(t) = itM(t) + it2M ′(t) = itM(t) + i[itM(t)] B′
t [itM(t)]

= N(t) + iN(t) B′
t N(t).

By hypothesis (ii) and (5.11) it follows that

sup
t∈R

||tN ′(t)||X ≤ sup
t∈R

||N(t)||X + sup
t∈R

||N(t) B′
t N(t)||X < ∞ ,

hence from Theorem 5.4 and Remark 5.5 the claim is proved.
A similar calculation prove that P ∈ C1(R\{0},B(X)) defined by P (t) = Ft M(t) is
a Cα−multiplier.
In fact, we have t P ′(t) = F ′

tN(t)+Ft tM ′(t) , and hence from (5.10), (5.11) and (5.12)
we obtain that sup

t∈R
||P (t)||X + sup

t∈R
||tP ′(t)||X < ∞ .
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Let f ∈ Cα(R, X). Since M , N and P are Cα−multipliers, there exist ū ∈ Cα(R, [D(A)]) ,
v ∈ Cα(R, X) and w ∈ Cα(R, X), respectively, such that

∫

R
ū(s)(Fφ)(s)ds =

∫

R
F(φ ·M)(s)f(s) ds , (5.13)

∫

R
v(s)(Fψ)(s)ds =

∫

R
F(ψ · id ·M)(s)f(s) ds , (5.14)

∫

R
w(s)(Fϕ)(s)ds =

∫

R
F(ϕ · F.M)(s)f(s) ds , (5.15)

for all φ , ψ , ϕ ∈ C∞
c (R) .

Note that for x ∈ X and φ ∈ C∞
c (R) we have

F(φF. M)(s) x =

∫

R
e−istφ(t) Ft M(t) x dt =

∫

R
e−istφ(t) F (et M(t) x) dt . (5.16)

where

∫

R
e−istφ(t) et M(t) x dt ∈ C([−r, 0], X) . Now, for all θ ∈ [−r, 0] we have

∥∥∥∥
∫

R
e−istφ(t) et(θ) M(t) x dt

∥∥∥∥
X

≤
∫

R
|φ(t) | ||M(t) x ||Xdt.

Since F is bounded, we deduce that

F(φ · F. M)(s)x = F (F(φ · e. M)(s) x) . (5.17)

Furthermore, observe that for θ ∈ [−r, 0] fixed we have that e·(θ)φ ∈ C∞
c (R). Using

(5.13) we obtain

∫

R
ū(s + θ)(Fφ)(s)ds =

∫

R
ū(s + θ)

∫

R
e−istφ(t) dt ds

=

∫

R
ū(s + θ)

∫

R
e−i(s+θ)tet(θ)φ(t) dt ds

=

∫

R
ū(s + θ)(Fe·(θ)φ)(s + θ) ds

=

∫

R
ū(s)(Fe·(θ)φ)(s) ds

=

∫

R
F(e·(θ)φ ·M)(s)f(s) ds,

hence

∫

R
ūs(Fφ)(s)ds =

∫

R
F(e·φ ·M)(s)f(s) ds .

Since the function θ →
∫

R
ūs(θ)(Fφ)(s)ds ∈ C([−r, 0], X) (see [8, p.3]), due to the

boundedness of F and (5.17) it follows that
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∫

R
F(φ · F.M)(s)f(s)ds =

∫

R
FF(φ · e.M)(s)f(s)ds =

∫

R
Fūs (Fφ)(s)ds, (5.18)

for all φ ∈ C∞
c (R). Since F·M is Cα−multiplier, we obtain from (5.15)

∫

R
w(s)(Fφ)(s)ds =

∫

R
Fūs (Fφ)(s)ds .

for all φ ∈ C∞
c (R). We conclude that there exists y1 ∈ X satisfying w(t) = Fūt + y1,

proving that Fū· ∈ Cα(R, X).
Choosing φ = id · ψ in (5.13) we obtain from (5.14) that

∫

R
ū(s)F(id · ψ)(s) ds =

∫

R
v(s) (Fψ)(s) ds , (5.19)

and it follows from Lemma 6.2 in [8] that ū ∈ Cα+1(R, X) and ū′ = v + y2 for some
y2 ∈ X .
Since (id I −F.−A) M = I we have id ·M = I + F.M + AM and replacing in (5.14)
gives

∫

R
v(s) (Fφ)(s) ds =

∫

R
F(φ · (I + F.M + AM))(s) f(s) ds

=

∫

R
(Fφ)(s) f(s) ds +

∫

R
F(φ · F. M)(s) f(s) ds

+

∫

R
F(φ · AM)(s) f(s) ds ,

(5.20)

for all φ ∈ C∞
c (R).

Since ū(t) ∈ D(A) and F(φ ·M)(s)x ∈ D(A) for all x ∈ X, using the fact that A is
closed and setting (5.13) and (5.18) in (5.20) we obtain that

∫

R
v(s) (Fφ)(s) ds =

∫

R
Fūs (Fφ)(s)ds +

∫

R
Aū(s)(Fφ)(s) f(s) ds

+

∫

R
f(s) (Fφ)(s) ds ,

(5.21)

for all φ ∈ C∞
c (R).

By Lemma 5.1 in [8] this implies that for some y3 ∈ X one has

v(t) = Fūt + Aū(t) + f(t) + y3, t ∈ R .

Consequently, ū′(t) = v(t) + y2 = Fūt + Aū(t) + f(t) + y where y = y2 + y3 . In par-
ticular Aū ∈ Cα(R, X). Now, by hypothesis we can define x = (A + F )−1y ∈ D(A) ,
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and then is clear that u(t) := ū(t) + x is in Cα+1(R, X) ∩ Cα(R, [D(A)]) and satisfies
(5.1). We have shown that a solution of (5.1) exists.

In order to shown uniqueness, suppose that

u′(t) = Au(t) + Fut , t ∈ R, (5.22)

where u ∈ Cα+1(R, X) ∩ Cα(R, [D(A)]) and, as showed, Au, Fu· ∈ Cα(R, X).

We claim that (Cu·)(λ) ∈ C([−r, 0], X) for Reλ 6= 0. In fact, let Reλ > 0. Then

||e−λtut||∞ = sup
θ∈[−r,0]

||e−λtu(t + θ)||X ≤ sup
θ∈[−r,0]

e−Reλt(1 + |t + θ|α)

≤ e−Reλt(1 + (|t|+ r)α).

Since e−Reλt(1+ (|t|+ r)α) ∈ L1(R+) applying the dominated convergence theorem, we
obtain the claim. Analogously we obtain the claim for Reλ < 0.
Now, note that for Reλ > 0 and θ ∈ [−r, 0]

∫ ∞

0

e−λtut(θ)dt =

∫ ∞

0

e−λtu(t + θ)dt

=

∫ ∞

θ

e−λ(t−θ)u(t)dt

= eλθ

∫ ∞

θ

e−λtu(t)dt

= eλθ

(∫ ∞

0

e−λtu(t)dt +

∫ 0

θ

e−λtu(t)dt

)

= eλθ(Cu)(λ) + eλθ

∫ 0

θ

e−λtu(t)dt.

Analogously if Reλ < 0 and θ ∈ [−r, 0] , then

−
∫ 0

−∞
e−λtut(θ)dt = −

∫ 0

−∞
e−λtu(t + θ)dt

= −
∫ θ

−∞
e−λ(t−θ)u(t)dt

= −eλθ

(∫ 0

−∞
e−λtu(t)dt−

∫ 0

θ

e−λtu(t)dt

)

= eλθ(Cu)(λ) + eλθ

∫ 0

θ

e−λtu(t)dt.

Since F is bounded, we obtain that

(CFu·)(λ) = F (Cu·)(λ) = Fg(Cu)(λ) + Fgh, for Re(λ) 6= 0 (5.23)

where g(θ) = eλθ and h(θ) =

∫ 0

θ

e−λtu(t)dt . Note that gh ∈ C([−r, 0], X) .
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Since (Cu′)(λ) = λ(Cu)(λ)− u(0) for Re(λ) 6= 0 , one has (Cu)(λ) ∈ D(A) and

(Cu′)(λ) = (CAu)(λ) + (CFu·)(λ) , for Re(λ) 6= 0 . (5.24)

Using the fact that A is closed, from (5.23) and (5.24) we get

(λI − Fg − A) (Cu)(λ) = u(0) + Fgh for all λ ∈ C \ iR.

Since iR ⊂ ρ(A) , it follows that the Carleman spectrum spC(u) of u is empty . Hence
u ≡ 0 by [7, Theorem 4.8.2] .

We denote by KF (X) the class of operators in X satisfying (ii) in the above theorem.
If A ∈ KF (X) we have u′, Au, Fu· ∈ Cα(R, X), and hence we deduce the following
result.

Corollary 5.10 Let X be B-convex and A ∈ KF (X). Then

(i) (5.1) has a unique solution in Z := Cα+1(R, X) ∩ Cα(R, [D(A)]) if and only if
f ∈ Cα(R, X).

(ii) There exists a constant M > 0 independent of f ∈ Cα(R, X) such that

‖u′‖Cα(R,X) + ‖Au‖Cα(R,X) + ‖Fu·‖Cα(R,X) ≤ M‖f‖Cα(R,X). (5.25)

Remark 5.11 The inequality (5.25) is a consequence of the closed graph theorem and
known as the maximal regularity property for equation (5.1). From it we deduce that
the operator L defined by

D(L) = Z

(Lu)(t) = u′(t)− Au(t)− Fut

is an isomorphism onto. In fact, since A is closed, the space Z becomes a Banach space
under the norm

|| u ||Z := ‖u‖Cα(R,X) + ‖u′‖Cα(R,X) + ‖Au‖Cα(R,X).

Such isomorphisms are crucial for the treatment of nonlinear versions of (5.1) by means
of an argument using the implicit function theorem (see [5]).

A second way to study semilinear problems is the following. Assume X be B-convex
and A ∈ KF (X) and consider the semilinear problem

u′(t) = Au(t) + Fut + f(t, u(t)), t ≥ 0. (5.26)
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Define the Nemytskii’s superposition operator N : Z → Cα(R, X) given by N(v)(t) =
f(t, v(t)) and the linear operator

S : Cα(R, X) → Z

by S(g) = u where u is the unique solution of the linear problem

u′(t) = Au(t) + Fut + g(t).

Then we have to show that the operator H : Z → Z defined by H = SN has a fixed
point. Note that Z is defined as a subspace of Cα(R, X).
For example, if we assume that S is a compact operator, and we suppose that for some
M > 0,

sup
‖u‖Cα≤M

‖f(·, u(·))‖Cα(R,X) ≤ M/‖S‖,

then one may apply Schauder’s fixed point theorem to H in the ball {u ∈ Z : ‖u‖Cα ≤
M} to get existence of a strong solution, i.e. u ∈ Z such that (5.26) is satisfied. This
way one obtain the existence of global solutions.

A third way is to show that H is a strict contraction on an interval (0, τ) if τ > 0
is small enough and f satisfies some condition of Lipschitz type. Thus the Banach
fixed point theorem shows that H has a fixed point which is a strong (local) solution of
(5.26). For related information on this subject we refer to Amann [4] where results in
quasilinear delay equations involving the method of maximal regularity are presented.

We finish this chapter with the following result which give us a useful criterion to verify
condition (ii) in the above theorem.

Theorem 5.12 Let X be a B-convex space and let A : D(A) ⊂ X → X be a closed
linear operator such that iR ⊂ ρ(A) and sups∈R ‖A(isI − A)−1‖ =: M < ∞. Suppose
that

||F || < 1

||A−1||M . (5.27)

Then for each f ∈ Cα(R, X) there is a unique function u ∈ Cα+1(R, X)∩Cα(R, [D(A)])
such that (5.1) is satisfied.

Proof. From the identity

isI − A− Fs = (I − Fs(isI − A)−1)(isI − A) s ∈ R,

it follows that isI − A− Fs is invertible whenever ||Fs(isI −A)−1|| < 1. Next observe
that

||Fs|| ≤ ||F ||, (5.28)

and hence

||Fs(isI − A)−1|| = ||FsA
−1A(isI − A)−1|| ≤ ||F ||||A−1||M =: α.
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Therefore, under the condition (5.27) we obtain that R ∩ σ(∆) = ∅, and the identity

(isI−A−Fs)
−1 = (isI−A)−1(I−Fs(isI−A)−1)−1 = (isI−A)−1

∞∑
n=0

[Fs(isI−A)−1]n.

(5.29)
For all n ∈ N we have
‖is(isI − A)−1[Fs(isI − A)−1]n‖

≤ ‖is(isI − A)−1‖[‖FsA
−1A(isI − A)−1‖]n

≤ ‖is(isI − A)−1)[‖FsA
−1‖]n[‖(A(is− A)−1‖]n

≤ ‖is(isI − A)−1‖||A−1||n[‖Fs‖]n[‖A(isI − A)−1‖]n.

By (5.28) we obtain

‖is(isI − A)−1[Fs(isI − A)−1]n‖ ≤ ‖is(isI − A)−1‖||A−1||n||F ||nMn

= ‖is(isI − A)−1‖αn.

Finally by (5.29), one has

‖is(isI − A− Fs)
−1‖ ≤ ‖is(isI − A)−1‖ 1

1− α
≤ M + 1

1− α
.

This proves that {is(isI − A − Fs)
−1} is bounded and the conclusion follows from

Theorem 5.9.



Chapter 6

Summary

The modern extension of the classical theory of Fourier multiplier to operator-valued
multipliers give us tools for study a variety of integro-differential equations. In order
to efficiently apply the abstract machinery to obtain Fourier multipliers theorems for
vector-valued functions, some conditions on the geometry of the Banach spaces are
required. We studied UMD spaces and give some theorems related to them. We
also review the notion of R−boundedness of operators families. This concept is very
important to characterize operator-valued multipliers. Furthermore, we have given
examples of the modern multiplier results, which combine the UMD theory and the
notion of R−boundedness.
We establish and prove new properties of k−regular sequences (k = 1, 2, 3) . For the
scalar case, we prove certain equivalences with sequences that satisfies Marcinkiewicz
estimates. This characterization plays a fundamental role in the proof of our main
theorems.
We obtain solution with maximal regularity of (1.1) on periodic vector-valued Besov
spaces. For this, we use the Fourier multipliers technique to characterize periodic
solutions solely in terms of spectral properties of the data. Note that in this case, only
conditions of boundedness over the resolvent are required. In comparison with [33],
our assumptions on the kernel are weaker. We also reformulate and give a new proof
for the existence of solutions. (See Theorem 2.12 in [33]) .
Additionally, we characterize existence and uniqueness of periodic solutions for the lin-
ear perturbed Volterra equation (1.2), in vector-valued Lebesgue spaces. One difference
with problem (1.1), is that here the result involves UMD−spaces and R−boundedness.
These assumptions are fundamental for the resolvent operator to be a multiplier.
For equations (1.1) and (1.2) we obtain a new formula for the solution if a finite amount
of ik, k ∈ Z does not belong to the resolvent set of A.
Finally, we characterize existence and uniqueness of solutions, but now on the line,
for the inhomogeneous abstract delay equation (1.3) in Hölder spaces and under the
condition that X is a B-convex space. The main tool used here is the theory of operator
valued Fourier multipliers on the line. We finish the work with the study of a semilinear
case associated to equation (1.3).
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Basel 1983.

[50] H. Triebel. Fractals and spectra related to Fourier analisys and function spaces.
Monographs in Mathematics. vol. 91, 1997.

[51] G. Webb. Functional differential equations and nonlinear semigroups in Lp-spaces.
J. Differential Equations 29 (1976), 71-89.

[52] L. Weis. Operator-valued Fourier multiplier theorems and maximal Lp-regularity.
Math. Ann. 319 (2001), 735-758.

[53] L. Weis. A new approach to maximal Lp-regularity. Lect. Notes Pure Appl. Math.
215, Marcel Dekker, New York, (2001), 195-214.

[54] L. Weis. Stability theorems for semigroups via multiplier theorems, in Differential
Equations, Asymptotic Analysis and Mathematical Physics. Electronic Res. An-
nouncements of the AMS 8 (2002), 47-51.

[55] H. Witvliet. Unconditional Schauder decomposition and multiplier theorems. PhD
thesis, Technische Universiteit Delft, November 2000.

[56] J. Wu. Theory and Applications of Partial Differential Equations. Appl. Math.
Sci. 119, Springer-Verlag, 1996.


