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Abstract

On qualitative properties of fractional-difference

equations on abstract spaces and their applications to

lattices models.

Claudio Andrés Leal Jara

June–2018

Advisors: Dr. Carlos Lizama Yañez and Dra. Marina Murillo Arcila

In this thesis we study the existence, uniqueness, qualitative properties and regular-

ity of solutions for different classes of discrete-time fractional difference equations

in abstract spaces using an effective technique based in an operator-theoretical

method. In addition we present explicit examples of equations that can be consid-

ered in our abstract results.

Keywords: difference equations; maximal `p-regularity; weighted bounded vector-

valued spaces; fractional difference operator.
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Introduction

The objective of this thesis is to present a study of the existence, uniqueness, reg-

ularity and qualitative properties of bounded solutions for some classes of abstract

discrete-time fractional difference equations by using operator theoretical methods

in spaces of vector-valued functions. In the last time, recent technological innova-

tions have caused a considerable interest in the study of dynamical processes that

present a mixed continuous and discrete nature, see [3,4,12]. For instance, discrete-

time linear models appear in the study of the solution to optimal control problems

in dynamic programming [21]. Moreover, they are also used for modeling coal lique-

faction mechanisms [67] and robust energy filtering in signal processing [49], among

others fields of interest. In the biological context, qualitative behavior of discrete

models with delays has been examined in [36] and [75]. See also [15, 18, 59]. The

same happens with the analysis of mixed partial differential equations and integral

equations [28,66]. A classical textbook is the monograph by W. J. Rugh [64].

On the other hand, starting with the works of S. Blünck [20] and P. Portal [61,

62], the existence and uniqueness of solutions for discrete systems that belong to

the Lebesgue space of vector-valued sequences began to be considered by many

authors [42, 50, 51]. A recent textbook on this topic is the monograph of Agarwal,

Cuevas and Lizama [6], where several applications in different contexts are given.

After the works of L. Weis [71], and H. Amann [9], characterizations of Lebesgue

regularity using multiplier theorems for operator valued symbols have appeared in

several papers in the last decade. See for instance the ones of Bu [23, 24], Chill

and Srivastava [26], the special volume [22] and references therein. For instance in

[44] Kovács, Li and Lubich studied maximal regularity using the results of Blünck
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for numerical schemes. Kemmochi [43], in the same line, introduced the notion of

maximal regularity for the finite difference method. Other contributions can be

found in the references [7, 47, 48].

On the other hand, modeling with fractional difference equations is a recent and

promising area of research that has been developed from different sides of interest.

For instance, Atici and Şengül [14] develop some basics results of discrete fractional

calculus. These authors introduce and solve the Gompertz fractional difference

equation for tumor growth models. See also the works of Atici and Eloe [13] for

related results in this direction. The methodology used in such discrete fractional

calculus was extended by Lizama in [50] to the context of abstract models, including

in this way the handling of difference differential equations by methods of functional

analysis and operator theory. Studies on qualitative properties, as for example the

existence of positive solutions for discrete fractional systems, have been provided by

Goodrich [29,38,39]. Other interesting contributions are due to Ferreira [35], Holm

[41], Kovács, Li and Lubich [44], Dassios [30, 31], Wu, Baleanu et. al. [32, 72–74],

Čermák et. al. [25] and Tarasov et. al. [68–70].

In this thesis, we characterize well-posedness of some linear discrete-time fractional

difference equations in Lebesgue spaces of sequences. Our results are based on UMD

spaces, the concept of R-boundedness, and the notion of α and ατ resolvent families

of operators. Note that R-boundedness has been an useful tool in the functional

analytic approach to partial differential equations. In [71] L. Weis shows that R-

boundedness provides a proper setting for R-boundedness theorems for operator-

valued Fourier multipliers.

We will consider the following three problems, the first and second in the setting of

Lebesgue spaces whose domains are Z and N0 respectively, the third one is in the

context of weighted vector-valued spaces with domain N0.

In the first problem, our concern is the following fractional difference equation

∆αu(n) + λ∆βu(n) = Au(n) + f(n), n ∈ Z, α, β > 0, λ ≥ 0, (0.0.1)
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where f ∈ `p(Z, X), A is a closed linear operator with domain D(A) defined on a

Banach space X and ∆γ denotes the fractional difference operator of order γ > 0 as

defined recently by Abad́ıas and Lizama [1]. Roughly speaking, it corresponds to a

slight variant of the Grünwald-Letnikov derivative. Equation (0.0.1) is an example

of a wide class of mixed evolution equations that can be considered either as models

for partial differential equations that are continuous in space but discrete in time

[17], or systems of difference equations [5, Chapter 3; 34]. Typical models that are

included in this problem correspond to the discrete time Klein-Gordon equation

∆2u(n, x) = uxx(n, x)− bu(n, x) +G(u)(n, x), n ∈ Z, x ∈ Ω ⊂ RN (0.0.2)

where ∆2u(n, x) := u(n+2, x)−2u(n+1, x)+u(n, x), and the discrete time telegraph

equation

τ∆2u(n, x) + ∆u(n, x) = ρuxx(n, x), n ∈ Z, τ ≥ 0, ρ > 0, x ∈ J ⊂ R,
(0.0.3)

as well as fractional versions of them [11, 37]. The discrete version of the Basset

equation [16,58]

∆2u(n) + λ∆3/2u(n) + bu(n) = f(n), n ∈ Z, λ, b > 0, (0.0.4)

will be also included in our framework. The study of the uniqueness and causality

of p-summable solutions [19] suggests to consider the above equations on Z. More

precisely, given a Banach space X, we ask the following problem: Is it possible

to characterize solely in terms of the data of a given mixed evolution equation,

the existence and uniqueness of solutions that belong to the vector-valued space of

sequences `p(Z, X) ?.

We success solving this open problem for the equation (0.0.1). It is worthwhile to

observe that, for instance, the model (0.0.1) includes the Basset equation (0.0.4)

taking X = C, A = bI, α = 2 and β = 3/2 whereas it also includes the linearized

Klein-Gordon equation (0.0.1) choosing X = L2(Ω), A = ∂xx− bI, α = 2 and λ = 0.
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This problem will be solved by the following way. First, after giving the definition

on maximal `p-regularity, we prove our main result, namely, if

{(1− e−it)α + λ(1− e−it)β}t∈T0 ⊂ ρ(A), λ ≥ 0, α, β > 0, T0 := (−π, π) \ {0},

where ρ(A) denotes the resolvent set of A, then the following assertions are equiv-

alent:

(i) For all f ∈ `p(Z, X) the problem ∆αu(n) + λ∆βu(n) = Au(n) + f(n), n ∈ Z,
has a unique solution in `p(Z, [D(A)]);

(ii) M(t) := ((1−e−it)α+λ(1−e−it)β−A)−1 is an `p-multiplier from X to [D(A)];

(iii) The set {M(t)}t∈T0 is R-bounded.

Furthermore in the context of Hilbert spaces a simpler criterion is also provided,

replacing the condition (iii) above by

sup
t∈T0

‖M(t)‖ <∞.

As a consequence, we analyze the nonlinear equation

∆αu(n) + λ∆βu(n) = Au(n) +G(u)(n) + g(n), n ∈ Z,

where g ∈ `p(Z, X) and G : `p(Z, X) → `p(Z, X) are given. We show that if

G(0) = G′(0) = 0 and g is small enough, then the nonlinear equation has at least

one solution in `p(Z, X). Finally we prove, as an application of our characterization,

that for all 0 < α, β < 2 and b > 2α + λ2β we can find ε∗ > 0 such that for all

ε ∈ (0, ε∗), there exists uε ∈ `p(Z, L2(R)) that solves the problem

∆αuε(n, x) + λ∆βuε(n, x) = uεxx(n, x)− buε(n, x) +G(uε)(n, x) + εf(n, x),

for all n ∈ Z, x ∈ Ω ⊂ RN .

It is important to observe that the results of this problem are included in the recently
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published joint paper [56].

In the second problem, we deal with the fractional difference equation with delay

of the form ∆αu(n) = Tu(n) + βu(n− τ) + f(n), n ∈ N0

u(j) = xj, j = −τ, . . . , 0, 1
(0.0.5)

where τ ∈ N0, β is a real number, T is a linear bounded operator defined on a

Banach space X, 1 < α ≤ 2, f is a vector-valued function and ∆γ denotes the

fractional difference operator of order γ > 0 in sense of Riemann-Liouville.

An interesting feature that involves (0.0.5) is that the fractional difference operator

∆α can be realized as sampling, by means of the Poisson distribution, of the classical

fractional Riemann-Liouville operator. See the work of Lizama [51, Theorem 3.5]

where this remarkable connection has been discovered. This nonlocal operator has

recently appeared in several research of increasing interest to different but related

fields. For instance, in relation to the notion of Césaro operators of order α > 0 [2],

chaos for fractional delayed logistic maps [72] and almost automorphic solutions of

fractional difference equations [1].

The analysis of `p-maximal regularity for difference equations of fractional order

α > 0 in the form ∆αu(n) = Tu(n) + f(n), n ∈ N0,

u(0) = 0,

where T is a bounded operator defined on a Banach space X was studied in [50]

for the range 0 < α ≤ 1 and in [52] for 1 < α ≤ 2. In [53] `p-maximal regularity

for the equation (0.0.6) with infinite delay was studied in Z for all α > 0 when T is

an unbounded operator. Recently, in [54] the authors characterized the `p-maximal

regularity for the finite delayed equation∆αu(n) = Tu(n) + βu(n− τ) + f(n), n ∈ N0, n ≥ 1, β ∈ R,

u(j) = 0, j = −τ, ..., 0, τ ∈ N0,
(0.0.6)
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whenever 0 < α ≤ 1. However, the validity of such characterization for the case

1 < α ≤ 2 was left as an open problem.

The main purpose of this part of the work is to give a positive answer to this open

problem. Note that the maximal `p-regularity for the equation (0.0.6) with infinite

delay was studied in Z for all α > 0 when T is an unbounded operator in the work

of Lizama and Murillo [53].

This problem is studied as follows. Firstly, we introduce the new concept of ατ

resolvent operators in the range 1 < α ≤ 2, which is an important tool for the

construction of the solution of (0.0.6). This family, denoted by {Mα(n)}n≥−τ , in-

corporates directly the finite delay in its definition. Then, we will prove that a

general solution for our model, with initial conditions u(j) = xj, j = −τ, . . . , 0, 1,

can be written as

u(n) = Mα(n)u(0) + Fα(n− 1)[u(1)− u(0)]

+ β
τ∑
j=1

Fα(n− 2 + j − τ)u(−j) + (Fα ∗ f)(n− 2), n ≥ 2.
(0.0.7)

Here, hα(n) = (α− 1)n and Fα(n) = (Mα ∗hα)(n). Note that in the case α = 2 and

β = 0, the resolvent family M2(n) perfectly coincides with the notion of discrete

cosine operator which was introduced and studied by Chojnacki [27] in the context

of UMD Banach spaces.

We remark that the representation (0.0.7) is not straightforward but it is one of the

main tasks that we have overcome in order to achieve the solution of our problem.

Finally we prove the main result of this part of the thesis. We will show that if

X is a UMD space and the condition supn∈N0
‖Mα(n)‖ < ∞ is satisfied, then the

maximal `p-regularity of equation (0.0.6) and the R-boundedness of the sets

{
z2−α(z − 1)α(z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 6= 1

}
,

{
z−τ (z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 6= 1

}
,

6



are equivalent. This characterization coincides perfectly as the counterpart of the re-

sult achieved in the paper [53] by Lizama and Murillo where also an R-boundedness

condition on two sets is needed. We note that in practice, tools to check this con-

dition are generally not easy to find. However, the monograph of Agarwal, Cuevas

and Lizama [6] shows a way in the general case. For the case of Hilbert spaces,

we observe that R-boundedness can be replaced merely by uniform boundedness.

For such a case, we are able to provide a very simple criterion on T that ensures

maximal `p-regularity of equation (0.0.6), namely:

||T || < ωα,β,τ := min
|z|=1
|fα,β,τ (z)| < 1 where fα,β,τ (z) := z2−α(z − 1)α − βz−τ .

We finish the study of our problem with the following examples:

x(n+ 3)− 2x(n+ 2) + qx(n+ 1) + rx(n) = f(n),

with initial conditions: x(0) = x(1) = x(2) = 0.We show that maximal `p-regularity

of this equation for f ∈ `p(N0) is guaranteed whenever 1 < q < 2 and 1− q < r <

−1 +
√

2− q.

In the fractional case 1 < α ≤ 2, we consider

∆αx(n) = (1− q)x(n)− rx(n− 1) + f(n)

and a sufficient condition for maximal `p- regularity on the parameters r, q ∈ R is

provided: ω(r) := min|z|=1 |z3−α(z − 1)α + r| < 1 and 1− ω(r) < q < 1 + ω(r). We

observe that the results of this chapter can be found in the joint paper [55] that has

been submitted for publication.

Finally in the third problem, we consider the following nonlinear fractional difference

equation 
∆αu(n) = Tu(n) + f(n, u(n)), n ∈ N0

u(0) = x

u(1) = y

(0.0.8)
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where T is a linear bounded operator defined on a Banach space X, 1 < α ≤ 2 and

f is a nonlinear function defined on N0 ×X with values in X.

A classical example of equations that can be modeled as (0.0.8) is the time-discrete

nonconvolution equation which is a class of fractional integro-differential equations

and PDE discretized only in time, written as follows

∆αu(t, x) =

∫
k(x, s)u(n, s)ds+ f(n, u(n, x)), n ∈ N0, x ∈ Ω ⊂ RN ,

where f is a suitable forcing term and k is a complex-valued measurable function

[52]. This discrete fractional equations admits the form (0.0.8) with

Tf(x) :=

∫
k(x, s)u(n, s)ds,

which defines a bounded operator on suitable spaces of functions.

Recently Lizama and Velasco, in [57], studied the existence of weighted bounded

solutions for a time-discrete nonlinear fractional equation of the form

∆αu(n) = Tu(n) + f(n, u(n)), n ∈ N0, (0.0.9)

with initial condition u(0) = u0 whenever 0 < α ≤ 1. However, for another values

of α, it was left as an open problem. The main objective of this third part of the

thesis is to provide an answer for this open problem.

We are able to show existence of weighted bounded solutions of (0.0.9) for the range

1 < α < 2.

In order to prove our results, we need a special sequence of bounded operators in-

troduced by Lizama and Murillo in [52] called α-resolvent families, which have an

important role in the representation of the solution by means of a kind of discrete

variation of parameters formula. A second main ingredient is the use of a special

vector-valued Banach space of weighted sequences l∞f (N2;X), whose properties al-

low to prove the existence of solutions of (0.0.9) under certain conditions on the

8



nonlinear term.

On the other hand, we note that in the continuous case, the compactness of the

operator T is neccesary, but in the discrete case, there are examples of operator T

that do not need this condition [10, Section 7]. In spite of this situation, we will

show in this work that when T is a non-compact operator, we can still have existence

of solutions for the fractional model (0.0.9). See Corollary 4.3.6 and Example 4.4.1.

This problem is solved in the following way. We first recall the concept of α-resolvent

sequences of bounded operators, denoted by Sα(n), that was introduced by Lizama

and Murillo [52] for 1 < α ≤ 2. These α-resolvent families allow us to obtain an

explicit representation of the solution for the fractional difference equation (0.0.9)

with initial values u(0) = u0 and u(1) = u1 namely

u(n) = Sα(n)u0 + (Sα ∗ hα)(n− 1)[u1 − u0] + (Sα ∗ hα ∗ f)(n− 2), n ≥ 2

see [52, Theorem 3.8]. Here hα is defined by the sequence hα(n) = (α − 1)n. We

note that in the border case α = 2, the resolvent sequence S2(n) coincides with the

notion of discrete time cosine function introduced by Chojnacki [27] who studied it

in the context of UMD-spaces.

Next we study the nonlinear problem (0.0.8). For this purpose, we firstly give a

formulation of the solution motivated by the representation of the solution in the

linear case (see Theorem 4.2.5 below). Next, we recall from the work of Lizama and

Velasco [57] the following vector-valued Banach spaces of weighted sequences

l∞f (N2;X) :=

{
u : N2 → X : sup

n≥2

‖u(n)‖
nn!

<∞
}
.

This space is called the factorial number system space [57]. Observe that the se-

quence nn! provides a suitable weight in order to find the existence of solutions in

l∞f (N2;X) for the equation (0.0.8). See Lemma 4.3.4 below for properties about

this sequence.

9



Information about the growth rate of the sequence u(n) as n → ∞ is obtained.

See Theorem 4.3.5 and Theorem 4.3.8, where the Banach fixed point theorem and

Leray-Schauder alternative theorem, respectively, are used. Moreover, we show the

following practical result:

Suppose that ‖T‖ < αα(2− α)2−α

4
and f : N0 × X → X satisfies the following

hypothesis:

(F) f(0, 0) 6= 0, f(1, 0) 6= 0, and there exist a sequence a ∈ `1(N0) and constants

c ≥ 0 and b > 0 such that

‖f(k, x)‖ ≤ a(k)(c ‖x‖+ b)

for all k ∈ N0, x ∈ X.

(L) The function f satisfies a Lipschitz type condition in x ∈ X uniformly in

k ∈ N0, with Lipschitz constant

Lf <
64

3

(
αα(2− α)2−α

4
− ‖T‖

)
.

Then, the problem (0.0.8) with initial conditions u(0) = u(1) = 0 has an unique

solution in l∞f (N2;X).

Finally we give concrete examples and applications of the results obtained in this

work. We note that the results of this chapter can be found in the recent paper

[46], submitted for publication.

This thesis is organized in four chapters. In the first chapter, we give basic defini-

tions and fix some notation. Moreover, we present a result about Fourier multipliers

that we use in chapters 1 and 2, see [20]. Chapters 2, 3 and 4 are devoted to the

detailed study of the three problems described above.

10



Chapter 1

Preliminaries

In this chapter we give some preliminary concepts related to fractional differences,

discrete Fourier and zeta transforms, UMD spaces, R-boundedness and operator-

valued Fourier multipliers theorems defined on UMD spaces and important prop-

erties that we will use in the forthcoming chapters. For more details see [6,33] and

the references therein.

1.1 The Riemann-Liouville fractional derivative

In this section we introduce the notion of the fractional difference operator. De-

note by N0 := {0, 1, 2, . . .} and by s(N0, X) the vectorial space of all vector-valued

sequences f : N0 → X.

Recall that given f, g ∈ s(N0, X), we define the finite convolution product as follows

(f ∗ g)(n) =
n∑
j=0

f(n− j)g(j), n ∈ N0. (1.1.1)

We also recall the following definition.

Definition 1.1.1. For a sequence f ∈ s(N0, X). We define the forward Euler

11



operator as follows

∆f(n) = f(n+ 1)− f(n), n ∈ N0,

and ∆0 ≡ I, where I is the identity operator. Also we define for a fixed integer

positive m,

∆m = ∆ ◦∆m−1

Now we recall the following definition of Cesáro numbers that was introduced by

Zygmund in [76, p. 77] and rediscovered in several instances. See also [60, formula

(27) with h = 1]

Definition 1.1.2. For a fixed real number α, define the Cesáro numbers of order

α as follows

kα(j) =


α(α + 1) . . . (α + n− 1)

n!
n ∈ N0

0 otherwise.

Note that if α ∈ R\{−1,−2, . . .}, we have kα(n) =
Γ(α + n)

Γ(α)Γ(n+ 1)
, where Γ denotes

the Euler gamma function..

Note also that the sequence (kα(n))n∈N0 satisfies the semigroup property, that is,

kα ∗ kβ = kα+β for α, β ∈ C. As a function of n, kα is increasing for α > 1,

decreasing for 0 < α < 1. Furthermore, kα(n) ≤ kβ(n) for β ≥ α > 0 and n ∈ N0.

See for instance [76, Theorem III.1.17, p. 42 formula (2)] and [2, Section 2].

The following definition of fractional sum was introduced by Lizama in [50, Formula

2.2] (see also [51]). This definition corresponds to a particular case of fractional sum

proposed by Eloe and Atici, Eloe and Abdeljawad (see [4, 12,13]).

Definition 1.1.3. Let α > 0 and f ∈ s(N0, X) be given. We define the fractional

sum of order α as follows

∆−αf(n) =
n∑
k=0

kα(n− k)f(k), n ∈ N0. (1.1.2)
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The following definition corresponds to an analogous version of fractional derivative

in the sense of Riemann-Liouville, see [12].

Definition 1.1.4. Let f ∈ s(N0, X) be given, we define the fractional difference

operator of order α > 0 (in sense of Riemann-Liouville) as follows

∆αf(n) := ∆m ◦∆−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m = dαe.

Observe that recently in [51], Lizama gives a relationship between the discrete

fractional difference operator and the discrete fractional derivative operator in the

sense of Riemann-Liouville through the so called Poisson transform amd given by

∆αu(n) =

∫ ∞
0

pn+[α](t)D
αu(t)dt, (1.1.3)

where pn(t) =
e−ttn

n!
. Using this formula we obtain, for instance, the representation

of Césaro numbers by means of the Poisson transform of the function gα(t) =
tα−1

Γ(α)
for t ≥ 0.

1.2 Zeta and Fourier transforms

The transform method is most suitable for linear difference equations and discrete

systems. It is used in the analysis of signal processing, digital control and commni-

cations. The Z-transform of a sequence f ∈ s(N0, X) is defined by

f̃(z) ≡ Z[f(n)] :=
∞∑
j=0

z−jf(j), (1.2.1)

where z is a complex number. Note that this series is convergent for |z| > R, for a

sufficiently large R. The number R is called the radius of convergence of the series

(1.2.1).
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Some useful properties of the Z-transform are stated in the following result. See

for instance [6, Proposition 1.2.2].

Proposition 1.2.1. The following properties hold:

a) (Linearity) Let x̃(z) be the Z-transform of x(n) with radius of convergence R1

and ỹ(z) be the Z-transform of y(n) with radius of convergence R2. Then for

any complex numbers a, b, we have

Z[ax(n) + by(n)] = ax̃(z) + bỹ(z), for |z| > max{R1, R2}.

b) (Right shifting) Let R be the radius of convergence of x̃(z). If x(−i) = 0 for

i = 1, 2, . . . , k, then

Z[x(n− k)] = z−kx̃(z), for |z| > R.

c) (Left shifting) Let R be the radius of convergence of x̃(z). Then

Z[x(n+ k)] = zkx̃(z)−
n−1∑
r=0

zk−rx(r).

In particular

Z[x(n+ 1)] = zx̃(z)− zx(0), for |z| > R.

and

Z[x(n+ 2)] = z2x̃(z)− z2x(0)− zx(1), for |z| > R.

d) (Convolution) For the finite convolution defined in equation (1.1.1)

Z[(x ∗ y)(n)] = x̃(z)ỹ(z).

The same formula holds if the convolution is defined by

(x ∗ y)(n) =
∞∑
j=0

x(n− j)y(j).
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e) (Uniqueness) Suppose that there are two vector-valued sequences x(n) and

y(n) such that x̃(z) = ỹ(z) for |z| > R. Then x(n) = y(n).

The formula of the inverse Z-transform is given by

x(n) =
1

2πi

∫
C

x̃(z)zn−1dz = sum of residues of x̃(z)zn−1, (1.2.2)

where C is a circle centered at the origin of the complex plane, that encloses all

poles of x̃(z)zn−1.

On the other hand, the discrete time Fourier transform of a sequence f ∈ s(Z, X)

is defined by

f̂(t) :=
∞∑

j=−∞

e−ijtf(j), t ∈ (−π, π), (1.2.3)

whenever the right side of the above identity exists.

The notation f̂(t) helps to highlight the periodicity property of this transform

and emphasizes the relationship of the discrete-time Fourier transform to the Z-

transform. Also the discrete-time Fourier transform plays an important role in

representing and analyzing discrete-time signal and systems.

Note that the convolution theorem for discrete-time Fourier transform holds, i.e.,

f̂ ∗ g(t) = f̂(t)ĝ(t). Here the convolution is defined in analogous way to the case of

the Z-transform:

(f ∗ g)(n) =
∞∑

j=−∞

f(j)g(n− j).

Further properties of the discrete-time Fourier Transform are analogous to those of

the Z-transform, since it is the evaluation of the Z-transform around the unit circle

in the complex plane.

The following inverse transform recovers the discrete-time sequence

f(n) =
1

2π

∫ π

−π
f̂(t)eintdt.
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1.3 The discrete-time Fourier transform in `p(Z, X)

In what follows, we detail the definition and properties of the discrete-time Fourier

transform in the vector-valued Lebesgue space of sequences `p(Z, X). We denote

by S(Z, X) the space of all vector-valued sequences f : Z → X such that for each

k ∈ N0 there exists Ck with pk(f) := supn∈Z |n|k‖f(n)‖ < Ck.

Recall that S(Z, X) is norm dense in `p(Z, X) for 1 < p < ∞. We also denote by

Cn
per(R;X), n ∈ N0, the space of all 2π-periodic X-valued and n-times continuously

differentiable functions defined in R.

Let T := (−π, π) and T0 := (−π, π) \ {0}. We introduce the space of test func-

tions as C∞per(T;X) :=
⋂
n∈N0

Cn
per(R;X) endowed with the topology induced by the

countable family of seminorms:

qk(ϕ) = max
k∈N0

sup
t∈[−π,π]

‖ϕ(k)(t)‖.

If X = C we simply denote C∞per(T;X) = C∞per(T) and S(Z;X) = S(Z). We also

consider the following spaces of vector-valued distributions

S ′(Z;X) := {T : S(Z)→ X : T is linear and continuous}

and

D′(T;X) := {T : C∞per(T)→ X : T is linear and continuous}.

Observe that we can identify `p(Z;X) with a subspace of S ′(Z;X) via the mapping

Tf (ψ) := 〈Tf , ψ〉 :=
∑
n∈Z

f(n)ψ(n), ψ ∈ S(Z), (1.3.1)

and we have Tf ∈ S ′(Z, X). The space C∞per(T;X) can be also identified with a

subspace of D′(T;X) via the linear map

LS(ϕ) := 〈LS, ϕ〉 :=
1

2π

∫ π

−π
ϕ(t)S(t)dt, ϕ ∈ C∞per(T),
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and we get LS ∈ D′(T;X).

The discrete time Fourier transform F : S(Z, X)→ C∞per(T, X) is defined by

Fϕ(t) ≡ ϕ̂(t) :=
∞∑

j=−∞

e−ijtϕ(j), t ∈ (−π, π].

It is an isomorphism whose inverse is defined by

F−1ϕ(n) ≡ ϕ̌(n) :=
1

2π

∫ π

−π
ϕ(t)eintdt, n ∈ Z, (1.3.2)

where ϕ ∈ C∞per(T;X). This isomorphism, allows to define the discrete time Fourier

transform (DTFT) between the spaces of distributions S ′(Z;X) and D′(T;X) as

follows

〈FT, ψ〉 ≡ F(T )(ψ) := T̂ (ψ) ≡ 〈T, ψ̌〉, T ∈ S ′(Z;X), ψ ∈ C∞per(T), (1.3.3)

whose inverse F−1 : D′(T;X)→ S ′(Z;X) is given by

〈F−1L, ψ〉 ≡ F−1(L)(ψ) := Ľ(ψ) ≡ 〈L, ψ̂〉, L ∈ D′(T;X), ψ ∈ S(Z).

In particular, we get

〈FTf , ϕ〉 = 〈Tf , ϕ̌〉 =
∑
n∈Z

f(n)ϕ̌(n), ϕ ∈ C∞per(T), f ∈ `p(Z, X). (1.3.4)

The convolution of a distribution T ∈ S ′(Z, X) with a function a ∈ `1(Z) is defined

by

〈T ∗ a, ϕ〉 := 〈T, a ◦ ϕ〉, ϕ ∈ S(Z),

where

(a ◦ ϕ)(n) :=
∞∑
j=0

a(j)ϕ(j + n).

Note that (a ◦ ϕ) ∈ S(Z).
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1.4 The discrete fractional derivative on Z

In this section we introduce an extended notion of fractional difference operator,

analogous to Definition 1.1.4. We denote by `p(Z, X) the vector space of all vector-

valued sequences f : Z→ X such that

∞∑
j=−∞

‖f(n)‖p <∞

for 1 ≤ p <∞. In the case when X = C or X = R, we denote it by `p(Z). Now we

recall that given f ∈ `p(Z, X) and g ∈ `1(Z), we can define the convolution product

as

(f ∗ g)(n) =
n∑

j=−∞

f(n− j)g(j) =
∞∑
j=0

f(j)g(n− j), n ∈ Z.

The following definition of fractional sum was introduced in [1].

Definition 1.4.1. Let α > 0 and f : Z → X be given. We define the fractional

sum of order α as follows

∆−αf(n) := (kα ∗ f)(n) =
n∑

j=−∞

kα(n− k)f(k), n ∈ Z, (1.4.1)

whenever it exists.

The following definition corresponds to an analogous version of discrete fractional

derivative in the sense of Grünwald-Letnikov, see [60, formula (27) with h=1].

Definition 1.4.2. Let f : Z→ X be given, we define the the fractional difference

operator of order α > 0 (in sense of Grünwald-Letnikov) by

∆αf(n) := (k−α ∗ f)(n) =
n∑

j=−∞

k−α(n− j)f(j) =
∞∑
j=0

k−α(j)f(n− j). (1.4.2)

The above definition of fractional difference operator of order α was first introduced
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by Abad́ıas and Lizama [1], after previous work of Lizama [50], as follows:

Wαf(n) := (−1)m∆mW−(m−α)f(n), n ∈ Z,

where m := [α] + 1. In the above cited references it is also called Weyl difference

operator of order α and is denoted by W instead of ∆. Their equivalence with

(1.4.2) was recently proved.

From [50], the following generation formula holds

∞∑
j=0

kβ(j)zj =
1

(1− z)β
, β ∈ R, |z| < 1,

see also [76, p.42 formulae (1) and (8)]. In particular, for all α ∈ R+ we have that

the radial limit exists and

k̂−α(t) =
∞∑
j=0

k−α(j)e−itj =
1

(1− e−it)−α
=
(

1− e−it
)α
, t ∈ T0. (1.4.3)

Observe that k−α ∈ `1(Z) (see also [76, p.42 formula (2)]). We also recall the

following lemma stated in [53] which will be used in the proof of our main result.

Lemma 1.4.3. Let u, v ∈ `p(Z;X) and a ∈ `1(Z). The following assertions are

equivalent:

i) (a ∗ v)(n) = u(n) for all n ∈ Z.

ii) < u, φ̌ >=< v, (φ · â−)̌ > for all φ ∈ C∞per((−π, π),R), where

(φ · â−)̌(n) :=
1

2π

∫ π

−π
â(−t)φ(t)eintdt, n ∈ Z.
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1.5 UMD spaces

This section is devoted to the study of a class of Banach spaces, the so-called UMD-

spaces, which share many of the good properties of Hilbert spaces and include the

Lp spaces for 1 < p <∞.

Definition 1.5.1. Let X be a Banach space. We say that X has the Unconditional

Martingale Difference property, that is X is a UMD space, if for each p > 1, there

exists a constant Cp > 0 such that for any (fn)n∈N0 ⊂ Lp(Ω,Σ, µ;X) and any choice

of signs (ξn)n∈N0 ⊂ (−1, 1) and any N ∈ Z+ we have the following estimate

∥∥∥∥∥f0 +
N∑
n=1

ξn(fn − fn−1)

∥∥∥∥∥
Lp(Ω,Σ,µ;X)

≤ Cp ‖fN‖Lp(Ω,Σ,µ;X) .

We recall that those Banach spaces X for which the Hilbert transform defined by

(Hf)(t) = lim
ε→0
R→∞

1

π

∫
ε≤|s|≤R

f(t− s)
s

ds

is bounded on Lp(R, X) for some p ∈ (1,∞) are called HT spaces. The limit in the

above formula has to be understood in the Lp sense.

More information and details on the Hilbert transform and the UMD Banach spaces

can be found in [9, Section III.4.3-III.4.5]. Note that the notions of UMD space

and HT space are equivalent (see [6]).

Some examples of UMD spaces include the Hilbert spaces, Sobolev spaces W s
p (Ω),

1 < p < ∞, Lebesgue spaces Lp(Ω, µ), 1 < p < ∞, Lp(Ω, µ;X), 1 < p < ∞, when

X is a UMD space. Moreover, a UMD space is reflexive and therefore, L1(Ω, µ),

L∞(Ω, µ) (if Ω is a infinite set) and Cs([0, 2π];X) are not UMD.
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1.6 R-Boundedness

The notion of R-boundedness is a significant tool in the study of abstract multiplier

operators. Preliminary concepts for the definition and properties of R-boundedness

that we will use may be found in [33]. In what follows, we denote by B(X, Y ) the

space of bounded linear operators between Banach spaces X and Y endowed with

the uniform operator topology; when X = Y , we denote it by B(X). We recall the

following definition.

Definition 1.6.1. Let X and Y be Banach spaces. A family T ⊂ B(X, Y ) is called

R-bounded if there exists a constant c > 0 such that

∑
εj∈{−1,1}n

∥∥∥∥∥
n∑
j=1

εjTjxj

∥∥∥∥∥ ≤ c
∑

εj∈{−1,1}n

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥ (1.6.1)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈ N. The least c such that (1.6.1) is

satisfied is called the R-bound of T and is denoted by R(T )

Now, we recall some properties of R-bounded sets.

Proposition 1.6.2. i) Every R-bounded set is a uniformly bounded set.

ii) When X and Y are Hilbert spaces, T ⊂ B(X, Y ) is R-bounded if and only if

T is uniformly bounded.

iii) Let X, Y be Banach spaces and T ,S ⊂ B(X, Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}

is R-bounded as well, and R(T + S) ≤ R(T ) +R(S).

iv) Let X, Y , Z be Banach spaces, and T ⊂ B(X, Y ) and S ⊂ B(Y, Z) be R-

bounded.Then

ST = {ST : T ∈ T , S ∈ S}

is R-bounded, and R(ST ) ≤ R(S)R(T ).
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v) A subset T ⊂ B(X, Y ) of the form T = {λI : λ ∈ U} is R-bounded, whenever

U ⊂ C is bounded.

1.7 Operator-valued multipliers

We finish this section recalling the following Fourier multiplier theorem for operator-

valued symbols established by S. Blünck [20]. This theorem corresponds to a dis-

crete version of a result proved by Weis [71] and Amann [8, Section III.4.3-III.4.5]

which establishes sufficient conditions to ensure when a operator-valued symbol is

a multiplier in the context of UMD Banach spaces.

Recall that the Banach space B(X, Y ) is equipped with the uniform operator topol-

ogy. First we introduce the following notion of `p-multiplier.

Definition 1.7.1. Let X, Y be Banach spaces, 1 < p < ∞. A function M ∈
C∞per(T,B(X, Y )) is an `p-multiplier (from X to Y ) if there exists a bounded operator

T : `p(Z;X)→ `p(Z;Y ) such that

∑
n∈Z

(Tf)(n)ϕ̌(n) =
∑
n∈Z

(ϕ ·M−)̌(n)f(n) (1.7.1)

for all f ∈ `p(Z;X) and all ϕ ∈ C∞per(T). Here

(ϕ ·M−)̌(n) :=
1

2π

∫ π

−π
eintϕ(t)M(−t)dt, n ∈ Z.

We finally recall the following Fourier multiplier theorem for operator valued sym-

bols due to S. Blünck, see [6, 20] for more details. This theorem will be crucial

for the characterization of maximal regularity. Blünck’s theorem and its converse

establish an equivalence between R-bounded sets and lp-multipliers.

Theorem 1.7.2. [20, Theorem 1.3] Let p ∈ (1,∞) and let X be a UMD space. Let
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M : T0 −→ B(X) be differentiable function such that the set

{
M(t), (z − 1)(z + 1)M ′(t) : z = eit, t ∈ T0

}
is R-bounded. Then there exists an operator TM ∈ B(`p(Z, X)) such that

(T̂Mf)(z) = M(t)f̂(z), for all z = eit, t ∈ T0. (1.7.2)

The converse of Blünck’s Theorem also holds without any restriction on the Banach

space X.

Theorem 1.7.3. [20, Proposition 1.3] Let p ∈ (1,∞) and let X be a UMD space.

Let M : T0 −→ B(X) be an operator-valued function. Suppose that there exists an

operator TM ∈ B(`p(Z, X)) such that the identity (1.7.2) holds. Then the set

{M(t) : t ∈ T0}

is R-bounded.

Note that in the case of considering two Banach spaces, we obtain a slight modifi-

cation of Blünck’s Theorem.

Theorem 1.7.4. [20, Theorem 1.3] Let p ∈ (1,∞) and let X, Y be UMD spaces.

Let M ∈ C∞per(T0,B(X, Y )) such that the sets

{
M(t), (eit − 1)(1 + eit)M ′(t) : t ∈ T0

}
are both R-bounded. Then M is an `p-multiplier (from X to Y ) for 1 < p <∞.

The converse of the last theorem is fulfilled without any restriction on the Banach

spaces X, Y in the following sense.

Theorem 1.7.5. [20, Proposition 1.4] Let p ∈ (1,∞) and let X, Y be Banach

spaces. Let M : T0 → B(X, Y ) be an operator valued function. Suppose that there

23



is a bounded operator TM : `p(Z, X) → `p(Z, Y ) such that (1.7.1) holds. Then the

set {M(t) : t ∈ T0} is R-bounded.
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Chapter 2

Lebesgue regularity for fractional differential-

difference equations with fractional damping

In this chapter we provide necessary and sufficient conditions for the existence and

uniqueness of solutions belonging to the vector-valued space of sequences `p(Z, X)

for equations that can be modeled in the form

∆αu(n) + λ∆βu(n) = Au(n) +G(u)(n) + f(n), n ∈ Z, α, β > 0, λ ≥ 0,

where X is a Banach space, f ∈ `p(Z, X), A is a closed linear operator with domain

D(A) defined on X and G is a nonlinear function. The operator ∆γ denotes the

fractional difference operator of order γ > 0 in the sense of Grünwald-Letnikov.

Our class of models includes the discrete time Klein-Gordon, telegraph and Basset

equations, among other differential difference equations of interest. We prove a

simple criterion that shows the existence of solutions assuming that f is small and

G is a nonlinear term.
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2.1 A characterization of maximal regularity

In this section, we first provide a characterization of the existence and uniqueness

of solutions in `p(Z, [D(A)]) for the general model

∆αu(n) + λ∆βu(n) = Au(n) + f(n), (2.1.1)

where α, β > 0, λ ≥ 0, A is a closed linear operator defined on a Banach space

X and f : Z → X is a vector-valued sequence. Recall that the above model is

an abbreviated form to write a partial differential equation which is continuous in

space but discrete in time. For example, the equation

u(n+ 2, x)− 2u(n+ 1, x) + u(n, x) + λ[u(n+ 1, x)− u(n, x)] = ∂xxu(n, x) + f(n, x),

where n ∈ Z, x ∈ Ω ⊂ RN , fits in the abstract setting of the model (2.1.1) with

α = 2, β = 1 and A = ∂xx.

We introduce the following definition, also called `p-well-posedness in the literature.

Definition 2.1.1. Let 1 < p <∞. We say that (2.1.1) has maximal `p-regularity if

for each f ∈ `p(Z, X) there exists a unique u ∈ `p(Z, [D(A)]) that satisfies (2.1.1).

We are ready to prove our main result in this chapter. Recall that T = (−π, π) and

T0 = T \ {0}.

Theorem 2.1.2. Let A be a closed linear operator defined on an UMD space X.

Set α, β > 0 and λ ≥ 0. Suppose that

{(1− e−it)α + λ(1− e−it)β}t∈T0 ⊂ ρ(A)

and define M(t) := ((1− e−it)α +λ(1− e−it)β−A)−1. Then the following assertions

are equivalent

(i) (2.1.1) has maximal `p-regularity.
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(ii) M(t) is an `p-multiplier from X to [D(A)].

(iii) The set {M(t)}t∈T0 is R-bounded.

Proof. We first show (iii)⇒ (ii). Let {M(t) : t ∈ T0} be R-bounded. We will show

that the set {(eit − 1)(1 + eit)M(t) : t ∈ T0} is also R-bounded. Defining for each

t ∈ T0, fα(t) := (1− e−it)α and fβ(t) := (1− e−it)β it can be shown that

M ′(t) = −M(t)2(f ′α(t) + λf ′β(t)).

Since f ′α(t) = iαfα(t)
1

eit − 1
, it follows that (eit − 1)(1 + eit)M ′(t) = i(αfα(t) +

λβfβ(t))(1 + eit)M(t)2. From [6, Proposition 2.2.5] we deduce that the set {(eit −
1)(1 + eit)M ′(t) : t ∈ T0} is R-bounded and the claim is proved. Consequently,

by Theorem 1.7.4, we obtain (i). The implication (ii) =⇒ (iii) follows immediatly

from Theorem 1.7.5. Let now show that (i) =⇒ (ii). Let f ∈ `p(Z, X) be

given. Then there exists a unique uf ∈ `p(Z, [D(A)]) solution of (2.1.1). We define

Tα,β : `p(Z, X) → `p(Z, [D(A)]) the linear operator given by Tα,β(f) = uf . By the

Closed Graph Theorem, we get that Tα,β is bounded. Let ϕ ∈ C∞per(T), f ∈ `p(Z, X)

and u = Tα,βf. Since k−α ∈ `1(Z) we obtain the following identity,

(k−α ◦ Š)(n) : =
∞∑
j=0

k−α(j)Š(j + n) =
∞∑
j=0

k−α(j)
1

2π

∫ π

−π
ei(n+j)tS(t)dt

=
1

2π

∫ π

−π
eint
( ∞∑
j=0

eijtk−α(j)
)
S(t)dt

=
1

2π

∫ π

−π
eintk̂−α(−t)S(t)dt = (k̂−α− · S )̌(n), (2.1.2)

valid for any S ∈ C∞per(T,B(X, Y )). Therefore, using the hypothesis and the obser-
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vation that we have M ∈ C∞per(T,B(X, [D(A)])) we get

〈Tα,βf, ϕ̌〉 = 〈u, ϕ̌〉 =
∑
n∈Z

ϕ̌(n)u(n) =
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)u(n)dt

=
∑
n∈Z

1

2π

∫ π

−π
(1− eit)αeintϕ(t)((1− eit)α + λ(1− e−it)β − A)−1u(n)dt

+ λ
∑
n∈Z

1

2π

∫ π

−π
(1− eit)βeintϕ(t)((1− eit)α + λ(1− e−it)β − A)−1u(n)dt

−
∑
n∈Z

1

2π

∫ π

−π
((1− eit)α + λ(1− e−it)β − A)−1Au(n)eintϕ(t)dt

=
∑
n∈Z

1

2π

∫ π

−π
eintk̂−α(−t)ϕ(t)M(−t)u(n)dt

+ λ
∑
n∈Z

1

2π

∫ π

−π
eintk̂−β(−t)ϕ(t)M(−t)u(n)dt

−
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)M(−t)Au(n)dt

= 〈u, ( ̂(k−α− + λk−β− ) · ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉

= 〈u, (k−α− + λk−β− ) ◦ (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉,

where in the last equality we have used (2.1.2) with S = ϕ ·M−. Therefore

〈u, ϕ̌〉 = 〈(k−α− + λk−β− ) ∗ u, (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉

= 〈∆αu+ λ∆βu− Au, (ϕ ·M−)̌〉. (2.1.3)

We conclude that 〈Tα,βf, ϕ̌〉 = 〈f, (ϕ ·M−)̌〉 and then M(t) is an `p-multiplier.

It only remains to prove that (ii) implies (i). We first claim that N(t) := (1 −
e−it)α((1−e−it)α+λ(1−e−it)β−A)−1 and S(t) = (1−e−it)β((1−e−it)α+λ(1−e−it)β−
A)−1 are `p-multipliers. Indeed, since N(t) = fα(t)M(t) and S(t) = fβ(t)M(t)

where fα(t) = (1 − e−it)α and fβ(t) = (1 − e−it)β, the R-boundedness of N(t) and
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S(t) follows. On the other hand, the identities:

(eit − 1)(1 + eit)N ′(t) = −iαN(t)(1 + eit)

+ iαN(t)2(1 + eit) + iλβN(t)S(t)(1 + eit)

(eit − 1)(1 + eit)S ′(t) = −iβS(t)(1 + eit)

+ iαS(t)N(t)(1 + eit) + iλβS(t)2(1 + eit)

show that the sets {(eit−1)(1+eit)N ′(t) : t ∈ T0} and {(eit−1)(1+eit)S ′(t) : t ∈
T0} are R-bounded and then the claim holds by Theorem 1.7.4. Let f ∈ `p(Z, X)

be given. By hypothesis, there exists u ∈ `p(Z, [D(A)]) such that

∑
n∈Z

u(n)ϕ̌(n) =
∑
n∈Z

(ϕ ·M−)̌(n)f(n) (2.1.4)

for all ϕ ∈ C∞per(T). On the other hand, there exist v, w ∈ `p(Z; [D(A)]) such that

∑
n∈Z

v(n)ψ̌(n) =
∑
n∈Z

(ψ ·N−)̌(n)f(n) (2.1.5)

∑
n∈Z

w(n)η̌(n) =
∑
n∈Z

(η · S−)̌(n)f(n) (2.1.6)

for all ψ, η ∈ C∞per(T). Since N(t) = k̂−α(t)M(t) we have

(ψ ·N−)̌(n) =
1

2π

∫ π

−π
eintψ(t)k̂−α(−t)M(−t)dt.

Choosing ϕ(t) = ψ(t)k̂−α(−t) in (2.1.4) we obtain 〈v, ψ̌〉 = 〈u, (ψ · k̂−α− )̌〉 and hence

by Lemma 1.4.3 we get that k−α ∗ u ∈ `p(Z, X) and

∆αu(n) = k−α ∗ u(n) = v(n), n ∈ Z. (2.1.7)

Analogously, since S(t) = k̂−β(t)M(t) we can choose ϕ(t) = η(t)k̂−β(−t) in (2.1.4)

and then, by Lemma 1.4.3 we get that k−β ∗ u ∈ `p(Z, X) and

∆βu(n) = k−β ∗ u(n) = v(n), n ∈ Z. (2.1.8)
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Now, from the identity N(t) + λS(t) = AM(t) + I we obtain after multiplication

by eintϕ(t) and then integration on the interval (−π, π), the identity (ϕ ·N−)̌(n) +

λ(ϕ · S−)̌(n) = A(ϕ ·M−)̌(n) + ϕ̌(n)I, for all ϕ ∈ C∞per(T). Then we get

〈f, (ϕ ·N−)̌〉+ 〈f, λ(ϕ · S−)̌〉 = 〈f, A(ϕ ·M−)̌〉+ 〈f, ϕ̌〉.

Replacing (2.1.4), (2.1.5) and (2.1.6) in the above identity we obtain

∑
n∈Z

v(n)ϕ̌(n) + λ
∑
n∈Z

w(n)ϕ̌(n) =
∑
n∈Z

Au(n)ϕ̌(n) +
∑
n∈Z

ϕ̌(n)f(n),

for all ϕ ∈ C∞per(T). Considering (2.1.7), (2.1.8) and replacing ϕk(t) := e−ikt, k ∈ Z
in the above identity, we conclude that u satisfies the equation (2.1.1).

In order to show uniqueness, we consider u : Z → [D(A)] one solution of (2.1.1)

with f ≡ 0. For all ϕ ∈ C∞per(T) and using (2.1.3) we obtain 〈u, ϕ̌〉 = 〈∆αu+λ∆βu−
Au, (ϕ ·M−)̌〉 = 0. Choosing ϕk(t) := e−ikt, k ∈ Z we obtain u ≡ 0. This proves (i)

and the theorem.

The following statement follows from the closed graph theorem and Theorem 2.1.2.

Corollary 2.1.3. In the context of Theorem 2.1.2, if condition (iii) is valid, we

have u,∆αu,∆βu,Au ∈ lp(Z, X). Moreover, there exists a constant C > 0 such that

‖∆αu‖p + λ
∥∥∆βu

∥∥
p

+ ‖Au‖p ≤ C ‖f‖p . (2.1.9)

As a consequence of Theorem 2.1.2, we easily have a corresponding one in the

case of Hilbert spaces, where R-boundedness is equivalent to norm boundedness

[33, Chapter 3, Remark 3.2].

Corollary 2.1.4. Let H be a Hilbert space and α, β > 0, λ ≥ 0. Suppose that

{(1− e−it)α + λ(1− e−it)β}t∈T0 ⊂ ρ(A). The following assertions are equivalent:

(i) For all f ∈ `p(Z, H) there exists a unique u ∈ `p(Z, H) such that u(n) ∈ D(A)

for all n ∈ Z and u satisfies (2.1.1);
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(ii) sup
t∈T0

∥∥((1− e−it)α + λ(1− e−it)β − A)−1
∥∥ <∞.

Now, we can consider the nonlinear perturbed version of (2.1.1) given by

∆αu(n) + λ∆βu(n) = Au(n) +G(u)(n) + ρf(n) (2.1.10)

where ρ > 0, f ∈ `p(Z, X) and G : `p(Z, X) → `p(Z, X). We can show a result

concerning the existence of `p(Z, X)-solutions of (2.1.10) in terms of the symbol of

the equation and the regularity of G.

Theorem 2.1.5. Let X be a UMD space, 1 < p <∞, α, β > 0 and λ ≥ 0. Suppose

that {(1− e−it)α + λ(1− e−it)β}t∈T0 ⊂ ρ(A). If the following conditions hold

(i) the set {((1− e−it)α + λ(1− e−it)β − A)−1}t∈T0 is R-bounded;

(ii) G is continuously Fréchet differentiable at u = 0 and G(0) = G′(0) = 0.

Then there exists ρ∗ such the equation (2.1.10) has a solution u = uρ ∈ `p(Z, X)

for each ρ ∈ [0, ρ∗).

Proof. We note that |||u||| := ‖∆αu‖ + λ
∥∥∆βu

∥∥ + ‖Au‖ + ‖u‖ defines a norm in

`p(Z, [D(A)]) and hence (`p(Z, [D(A)]), |||·|||) becomes a Banach space. Let L :

`p(Z, [D(A)])→ `p(Z, [D(A)]) be defined as (Lu)(n) := ∆αu(n)+λ∆βu(n)−Au(n).

By Corollary 2.1.4, and since hypothesis (i) holds, we have that the inequality

(2.1.9) holds, and then we obtain |||u||| ≤ C ‖Lu‖ for some constant C > 0. Also,

by definition of L, we have ‖Lu‖ ≤ |||u|||. Then L defines an isomorphism. Given

ρ ∈ [0, 1), we define:

H[u, ρ] = −Lu+G(u) + ρf

By hypothesis (ii), we have H[0, 0] = 0 and H is continuously differentiable at

(0, 0). In addition, H1
(0,0) = −L which is invertible. Therefore, using the implicit

function theorem, we deduce the existence of ρ∗ such that for all ρ ∈ [0, ρ∗), there

exists uρ ∈ `p(Z, X) such that H[uρ, ρ] = 0. This proves the theorem.
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2.2 Examples

We verify the conditions provided in Theorem 2.1.5 in order to show the existence

and uniqueness of `p(Z, X) solutions for the following equation

∆αu(n, x) + λ∆βu(n, x) + bu(n, x)− ∂2

∂x2
u(n, x) = u2(n, x) + εf(n, x) (2.2.1)

where λ ≥ 0 is fixed, b is a real number, ε > 0 and f ∈ `p(Z, X) is an external

force whose size is controlled by ε. Note that the linear part of the equation (2.2.1)

corresponds to the discrete time Telegraph equation when α = 2, β = 1, b = 0, λ = 1
τ

and A = ρ
τ
∂xx. Also, it coincides with the discrete time Klein-Gordon equation for

α = 2, λ = 0 and A = ∂xx − bI.

Equation (2.2.1) can be modeled as (2.1.10) for Au = u′′− bu defined on L2(R) and

G(u)(n, x) = u2(n, x) for instance. It is well known that the operator Bu = u′′ with

domain D(B) = {u ∈ H1
0 (R) : u′′ ∈ L2(R)} generates a contraction C0-semigroup

on L2(R), therefore the following estimate for their resolvent operator holds

∥∥(µ−B)−1
∥∥ ≤ 1

<(µ)
, for all <(µ) > 0. (2.2.2)

We observe that, for all 0 < α, β ≤ 2 we have

<((1− e−it)α + λ(1− e−it)β) = (2− 2 cos(t))
α
2 cos

(
α arctan

(
sin(t)

1− cos(t)

))
+ λ(2− 2 cos(t))

β
2 cos

(
β arctan

(
sin(t)

1− cos(t)

))
> (2− 2 cos(t))

α
2 cos

(απ
2

)
+ λ(2− 2 cos(t))

β
2 cos

(
βπ

2

)
> −(2α + λ2β).

As a consequence, for all b ≥ 2α + λ2β we get that (1− e−it)α + λ(1− e−it)β ∈ ρ(A)

and (2.2.2) shows that

sup
t∈T0

∥∥((1− e−it)α + λ(1− e−it)β − A)−1
∥∥ ≤ 1

b− (2α + λ2β)
<∞.
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Furthermore, G is a continuous Fréchet differentiable function at u = 0 and clearly

satisfies that G(0) = 0 and G′(0) = 0. Then, by Theorem 2.1.5, we conclude that

whenever b > 2α + λ2β there exists a number ε∗ > 0 such that for all ε ∈ (0, ε∗)

there exists a solution uε ∈ `p(Z, X) of the perturbed fractional damping difference

equation (2.2.1).

Remark 2.2.1. In particular, this example shows that the discrete Klein-Gordon

equation admits non-trivial square-summable solutions defined on Z, for small and

square-summable external forcing terms whenever b > 4. In the case of the gener-

alized discrete Basset equation

∆2u(n) + λ∆βu(n) + bu(n) = f(n), n ∈ Z, λ, b > 0, β > 0,

we obtain that for any f ∈ `p(Z), there exist p-summable solutions whenever b > 4

and λ <
b− 4

2β
.
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Chapter 3

Lebesgue regularity for fractional difference equa-

tions with delays

In this chapter, we provide a new and effective characterization for the existence

and uniqueness of solutions for nonlocal time-discrete equations with delays of the

form ∆αu(n) = Tu(n) + βu(n− τ) + f(n), n ∈ N0

u(j) = xj, j = −τ, . . . , 0, 1

where τ ∈ N, β is a real number, T is a linear bounded operator defined on a

Banach space X, 1 < α ≤ 2, f is a vector-valued function and ∆γ denotes the

fractional difference operator of order γ > 0 in sense of Riemann-Liouville. This

characterization is given solely in terms of the R-boundedness of the data of the

problem, and in the context of the class of UMD Banach spaces.

3.1 Resolvent families with delay: 1 < α ≤ 2

In this section we introduce an operator theoretical method to study the existence

and uniqueness of solutions for the following problem.∆αu(n) = Tu(n) + βu(n− τ) + f(n), n ∈ N0, τ ∈ N0, β ∈ R

u(j) = xj, j = −τ, . . . , 0, 1,
(3.1.1)
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where 1 < α ≤ 2 and T ∈ B(X). Note that the case 0 < α ≤ 1 was studied by [54].

Definition 3.1.1. Let T be a bounded linear operator defined in a Banach space

X, and let 1 < α ≤ 2 and τ ∈ N be given. We say that T is a generator of an

ατ -resolvent sequence if there exists a sequence of bounded and linear operators

{Mα(n)}n≥−τ ⊂ B(X) that satisfies the following properties

(i) Mα(0) = Mα(1) = I,

(ii) Mα(−j) = 0, j = 1, . . . , τ ,

(iii) Mα(n+ 2)−Mα(n+ 1) = T (Mα ∗ kα−1)(n) + kα−1(n+ 2)I − (α− 1)kα−1(n+

1)I + β(M τ
α ∗ kα−1)(n) for each n ∈ N0,

where {M τ
α(n)}n∈N0 is defined by M τ

α(n) := Mα(n− τ).

Remark 3.1.2. Note that in the case when β = 0, Definition 3.1.1 coincides with

the definition of resolvent sequence defined in [52].

Example 3.1.3. Suppose that {z2−α(z − 1)α − βz−τ − T}z∈C ⊂ ρ(T ), where ρ(T )

denotes the resolvent set of T and C is a circle centered at the origin that encloses

all singularities of zn(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1 in its interior. Then

the operator defined by

Mα(n) =
1

2πi

∫
C

zn(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1dz, n ∈ N, n ≥ 2

Mα(0) = Mα(1) = I and Mα(j) = 0, j = −τ, . . . ,−1 defines an ατ -resolvent

sequence of operators with generator T . This fact can be formally checked using

the time discrete Fourier transform method to equation (3.1.1) and comparing it

with the formula given in Theorem 3.1.5 below.

Now, we recall the following Lemma proved in [53].

Lemma 3.1.4. Let 1 < α ≤ 2, a : N0 −→ C and S : N0 −→ X be given. Then

∆α(a ∗S)(n) =
n∑
j=0

∆αS(n− j)a(j) +S(0)a(n+ 2)−αS(0)a(n+ 1) +S(1)a(n+ 1).
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Before establishing the main result of this section, we define for 1 < α ≤ 2

hα(n) :=

(α− 1)n n ∈ N0

0 otherwise

and

Fα(n) :=

(Mα ∗ hα)(n) n ∈ N0

0 otherwise.

Theorem 3.1.5. Let 1 < α ≤ 2 and f ∈ s(N0;X) be given. Assume that T is a

generator of an ατ -resolvent sequence Mα(n). Then the unique solution of (3.1.1)

is given by

u(n+ 2) = Mα(n+ 2)u(0) + (Mα ∗ hα)(n+ 1)[u(1)− u(0)]

+ β
τ∑
j=1

Fα(n− τ + j)u(−j) + (Mα ∗ hα ∗ f)(n), n ∈ N0.

Proof. We define a vector-valued sequence v as follows. For n = −τ, . . . , 0, 1, v(n) =

xn and for n ≥ 2,

v(n) = Mα(n)u(0) + (Mα ∗ hα)(n− 1)[u(1)− u(0)] + β
τ∑
j=1

Fα(n− 2− τ + j)u(−j).

(3.1.2)

First, we will show that v is a solution of (3.1.1) with f = 0. Indeed, applying ∆α

to v, we get

∆αv(n+ 2) = ∆αMα(n+ 2)u(0) + ∆α(Mα ∗ hα)(n+ 1)[u(1)− u(0)]

+ β
τ∑
j=1

∆αFα(n− τ + j)u(−j), n ∈ N0.

From Definition 3.1.1, we have that

∆αMα(n+ 2) = ∆αMα(n+ 1) + T∆αFα(n) + ∆αkα−1(n+ 2)I

− (α− 1)∆αkα−1(n+ 1)I + β∆α(M τ
α ∗ kα−1)(n),
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for all n ∈ N0. Since ∆αkα−1 ≡ 0, then

∆αMα(n+ 2) = ∆αMα(n+ 1) +T∆α(Mα ∗ kα−1)(n) + β∆α(M τ
α ∗ kα−1)(n), n ∈ N0.

(3.1.3)

From Lemma 3.1.4, we obtain that

∆α(Mα ∗ kα−1)(n) = (∆αkα−1 ∗Mα)(n) +Mα(n+ 2)− αMα(n+ 1)

+ (α− 1)Mα(n+ 1)

= Mα(n+ 2)−Mα(n+ 1)

= ∆Mα(n+ 1).

(3.1.4)

Thus, replacing (3.1.4) in (3.1.3), we obtain

∆αMα(n+ 2) = ∆αMα(n+ 1) + T∆Mα(n+ 1) + β∆M τ
α(n+ 1), n ∈ N0,

or equivalently

∆∆αMα(n+ 1) = T∆Mα(n+ 1) + β∆M τ
α(n+ 1). (3.1.5)

From (3.1.5), if ∆αMα(0) = TMα(0) + βMα(−τ) = T we get ∆αMα(n + 1) =

TMα(n + 1) + βM τ
α(n + 1) for all n ∈ N0. Indeed, from Definition 1.1.2 and

definition of kα, we have

∆αMα(n) = ∆2(k2−α ∗Mα)(n)

= (k2−α ∗Mα)(n+ 2)− 2(k2−α ∗Mα)(n+ 1) + (k2−α ∗Mα)(n).

In particular, for n = 0

∆αMα(0) = (k2−α ∗Mα)(2)− 2(k2−α ∗Mα)(1) + (k2−α ∗Mα)(0). (3.1.6)
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Since

(k2−α ∗Mα)(2) = k2−α(0)Mα(2) + k2−α(1)Mα(1) + k2−α(2)Mα(0)

= T + (5− 2α)I
(3.1.7)

and

(k2−α ∗Mα)(1) = k2−α(1)Mα(0) + k2−α(0)Mα(1) = (3− α)I (3.1.8)

as well as

(k2−α ∗Mα)(0) = k2−α(0)Mα(0) = I. (3.1.9)

Replacing (3.1.9), (3.1.8) and (3.1.7) in (3.1.6), we get that

∆αMα(0) = T + (5− 2α)I − 2(3− α)I + I = T. (3.1.10)

On the other hand TMα(0) + βM τ
α(0) = T . By Lemma 3.1.4,

∆α(Mα ∗ hα)(n) = (∆αMα ∗ hα)(n) + hα(n+ 2)− (α− 1)hα(n+ 1)

= (∆αMα ∗ hα)(n)

= T (Mα ∗ hα)(n) + β(M τ
α ∗ hα)(n).

Finally, we conclude that

∆αv(n) = TMα(n)u(0) + βM τ
α(n)u(0) + T (Mα ∗ hα)(n− 1)[u(1)− u(0)]

+ β(M τ
α ∗ hα)(n− 1)[u(1)− u(0)] + β

τ∑
j=1

TFα(n− 2− τ + j)u(−j)

+ β2

τ∑
j=1

(F τ
α ∗ hα)(n− 2− τ + j)u(−j) = Tv(n) + βv(n− τ).

Then, (3.1.2) is the solution of the equation (3.1.1) with f = 0. Now, we define a
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vector-valued sequence w as follows

w(n) =

(Mα ∗ hα ∗ f)(n− 2), n ≥ 2,

0 n = −τ, . . . , 1.

Since Mα(n) = 0, for all n = −τ, . . . ,−1, from Lemma 3.1.4 and the last claim, we

obtain

∆αw(n) = ∆α(Mα ∗ hα ∗ f)(n− 2)

= (∆α(Mα ∗ hα) ∗ f)(n− 2) + (Mα ∗ hα)(0)f(n)− α(Mα ∗ hα)(0)f(n− 1)

+ (Mα ∗ hα)(1)f(n− 1)

= T (Mα ∗ hα ∗ f)(n− 2) + β(M τ
α ∗ hα ∗ f)(n− 2) + f(n)

= Tw(n) + βw(n− τ) + f(n),

for all n ≥ 2. Then, w solves (3.1.1) with initial conditions w(j) = 0, j =

−τ, . . . , 0, 1. Finally we claim that u = v + w is solution of (3.1.1). Indeed,

∆αu(n) = Tv(n) + βv(n− τ) + Tw(n) + βw(n− τ) + f(n)

= Tu(n) + βu(n− τ) + f(n), n ∈ N0

and u(j) = xj, for j = −τ, . . . , 1 and the theorem is proved.

3.2 Maximal `p-regularity.

Let T ∈ B(X) and f ∈ s(N0;X) be given. In this section, we consider the following

nonlocal time-discrete equation with delay τ ∈ N :∆αu(n) = Tu(n) + βu(n− τ) + f(n), n ∈ N0,

u(j) = 0, j = −τ, . . . , 1,
(3.2.1)

where 1 < α ≤ 2 and β ∈ R. Assume that T is a generator of an ατ -resolvent

sequence Mα(n). Since u(j) = 0 for all j = −τ, ..., 1 we obtain by Theorem 3.1.5,
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that the solution of (3.2.1) can be represented by

u(n) = (Mα ∗ hα ∗ f)(n− 2), n ∈ N, n ≥ 2.

Furthermore, from Lemma 3.1.4, we have the representation

∆αu(n) = T (Mα ∗ hα ∗ f)(n− 2) + β(M τ
α ∗ hα ∗ f)(n− 2) + f(n). (3.2.2)

This motivates the following definition.

Definition 3.2.1. Let 1 < p <∞, 1 < α ≤ 2 and T ∈ B(X) be given and suppose

that T is a generator of an ατ -resolvent sequence Mα(n). We say that the equation

(3.2.1) has maximal `p-regularity if the operators Kα and Pα, defined by

(Kαf)(n) : = T
n∑
j=0

Mα(n− j)(hα ∗ f)(j) and

(Pαf)(n) : =
n∑
j=0

M τ
α(n− j)(hα ∗ f)(j),

are linear bounded operators in `p(N0;X) for some p > 1.

Remark 3.2.2. Observe that, in contrast with the continuous context, the discrete

maximal `p-regularity ensures the stability of the solution and its fractional differ-

ence in the sense that |u(n)| → 0 and |∆αu(n)| → 0 as n→∞.

In what follows we need the following hypothesis:

(H)α sup
n∈N0

‖Mα(n)‖ <∞ and (z2−α(z−1)αI−βz−τ−T ) is invertible, |z| = 1, z 6= 1.

Now, we prove the main result of this chapter.

Theorem 3.2.3. Let 1 < p < ∞, 1 < α ≤ 2 and let X be a UMD space. Let

T ∈ B(X) be given such that T is a generator of an ατ -resolvent sequence Mα(n)

and the hypothesis (H)α is satisfied. Then the following assertions are equivalent.

(i) Equation (3.2.1) has maximal `p-regularity.
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(ii) The sets

{
z2−α(z − 1)α(z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 6= 1

}
,

{
z−τ (z2−α(z − 1)α − βz−τ − T )−1 : |z| = 1, z 6= 1

}
are R-bounded.

Proof. Suppose that (ii) holds. Then we define N(t) = z2−α(z − 1)α(z2−α(z −
1)α − βz−τ − T )−1 y S(t) = z−τ (z2−α(z − 1)α − βz−τ − T )−1 for all z = eit, t ∈
(−π, π). Moreover, if we denote fα(t) = e2it(1− e−it)α, then we can rewrite N(t) =

fα(t)(fα(t) − βe−itτ − T )−1 y S(t) = e−itτ (fα(t) − βe−itτ − T )−1. Since f ′α(t) =(
2i+

iα

eit − 1

)
fα(t), a simple computation gives us

N ′(t) =

(
2i+

iα

eit − 1

)
(N(t)−N(t)2)− βiτN(t)S(t)

S ′(t) = −iτS(t)− βiτS(t)2 −
(

2i+
iα

eit − 1

)
N(t)S(t).

Then,

(z − 1)(z + 1)N ′(t) = aα(t)N(t)− aα(t)N(t)2 − βbτ (t)N(t)S(t)

(z − 1)(z + 1)S ′(t) = −bτ (t)S(t)− βbτ (t)S(t)2 − aα(t)N(t)S(t),

where aα(t) = 2i(z− 1)(z+ 1) + iα(z+ 1) and bτ (t) = −iτ(z+ 1)(z− 1) are clearly

bounded for z = eit, t ∈ (−π, π). We conclude from [6, Proposition 2.2.5] that the

sets {
(z − 1)(z + 1)N ′(t) : z = eit, t ∈ T0

}
and{

(z − 1)(z + 1)S ′(t) : z = eit, t ∈ T0

}
are R-bounded. Then, by Blünck’s Theorem 1.7.2, we conclude that there exist

operators Tα, Uα ∈ B(`p(Z;X)) such that

(̂Tαf)(z) = N(t)f̂(z), z = eit, t ∈ T0,

(̂Uαf)(z) = S(t)f̂(z), z = eit, t ∈ T0,
(3.2.3)
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for all f ∈ `p(Z;X). From the identity

T (z2−α(z−1)α−βz−τ−T )−1 = (z2−α(z−1)α−βz−τ )(z2−α(z−1)α−βz−τ−T )−1−I,

and (3.2.3), we obtain that the left hand side in the identity

T (z2−α(z − 1)α − βz−τ − T )−1f̂(z) =

(z2−α(z − 1)α − βz−τ )(z2−α(z − 1)α − βz−τ − T )−1f̂(z)− f̂(z),
(3.2.4)

defines an operator Rα ∈ B(`p(Z;X)) given by Rαf(n) = Tαf(n)−βUαf(n)−f(n).

Now, for each f ∈ `p(Z;X), we define the operator

Kαf(n) =

T (Mα ∗ hα ∗ f)(n), n ∈ N0,

0 otherwise.

Observe that the Z-transform of Mα ∗ hα exists by hypothesis (H)α and definition

of hα, and

(z2−α(z − 1)α − βz−τ − T )M̂α ∗ hα(z) = z2I.

Then, from the identity (3.2.3), we have that the discrete Fourier transform of

Kαf(n− 2) coincides with the discrete Fourier transform of Rαf(n) for n ≥ 2. So,

Kαf(n− 2) = Rαf(n) for each n ≥ 2 by uniqueness. On the other hand, we define

Pαf(n) =

(M τ
α ∗ hα ∗ f)(n) n ∈ N0

0 otherwise.

Using again the identity (3.2.3), we obtain that the discrete Fourier transform of

Pαf(n−2) coincides with the discrete Fourier transform of Uαf(n). So, Pαf(n−2) =

Uαf(n) for each n ≥ 2 by uniqueness. This proves (i). Now, we suppose that (i) is

satisfied. We define the following operators

Cαf(n) =

Kαf(n) n ∈ N0

0 otherwise
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and

Dαf(n) =

Pαf(n) n ∈ N0

0 otherwise.

Then, Cα and Dα are bounded linear operators on `p(Z;X). Let Tαf(n) := Cαf(n−
2) + f(n), y Uαf(n) := Dαf(n− 2), n ∈ Z. Given z = eit, t ∈ (−π, π), we have that

T̂αf(z) =
∑
j∈Z

z−jTαf(j) =
∞∑
j=2

z−jCαf(j − 2) +
∑
j∈Z

z−jf(j)

= z−2

∞∑
j=0

z−jCαf(j) +
∑
j∈Z

z−jf(j) = z−2

∞∑
j=0

z−jCαf(j) + f̂(z).

By hypothesis (H)α, the Z-transform of Mα ∗ hα exists for |z| = 1, z 6= 1. Finally,

using the identity (3.2.3), we obtain

T̂αf(z) = z−2T (M̂α ∗ hα)(z)f̂(z) + f̂(z)

= z−2Tz(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1 z

z − (α− 1)
f̂(z)

= T (z2−α(z − 1)α − βz−τ − T )−1f̂(z) + f̂(z)

= (z2−α(z − 1)α − βz−τ )(z2−α(z − 1)α − βz−τ − T )−1f̂(z)− f̂(z) + f̂(z)

= (N(t)− βS(t))f̂(z),

where Mα is defined by

Mα(n) =

Mα(n) n ∈ N0

0 otherwise.

On the other hand,

Ûαf(z) = z−2

∞∑
j=0

z−jPα(j)f(j) = z−2(M̂τ
α ∗ hα)(z)f̂(z) = z−2z−τ (M̂α ∗ hα)f̂(z)

= z−2−τz(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1 z

z − (α− 1)
f̂(z)

= z−τ (z2−α(z − 1)α − βz−τ − T )−1f̂(z) = S(t)f̂(z),
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where Mτ
α is defined by Mτ

α(n) =Mα(n− τ).

Then, from Theorem 1.7.3, we conclude that (ii) holds.

Remark 3.2.4. In the case of Hilbert spaces, R-boundedness coincides with bound-

edness. See e.g. [6]. As a consequence, condition (ii) of Theorem 3.2.3 can be

replaced by the following equivalent assertion:

sup
|z|=1, z 6=1

∥∥z2−α(z − 1)α(z2−α(z − 1)α − βz−τ − T )−1
∥∥ <∞ and

sup
|z|=1, z 6=1

∥∥z−τ (z2−α(z − 1)α − βz−τ − T )−1
∥∥ <∞.

Remark 3.2.5. With the same proof and obvious modifications, the theorem is also

true when we consider a finite number of delays in the equation (3.2.1).

We immediately obtain the following corollary (compare with [53, Corollary 4.5]).

Corollary 3.2.6. If the hypothesis of Theorem 3.2.3 hold, then u,∆αu, Tu ∈
`p(N0;X) and there exists a constant C > 0 (independent of f ∈ `p(N0;X)) such

that the following inequality holds

‖∆αu‖`p(N0;X) + ‖u‖`p(N0;X) + ‖Tu‖`p(N0;X) ≤ C‖f‖`p(N0;X).

3.3 Applications

Let us consider the following difference equation

x(n+ 3)− 2x(n+ 2) + qx(n+ 1) + rx(n) = f(n), (3.3.1)

where q, r ∈ R. This equation was studied in the homogeneous case by Györi and

Ladas in [40] and in [34, Section 5.1]. We study a particular case of this equation

with initial conditions x(0) = x(1) = x(2) = 0. Note that this equation can be
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reformulated as follows

∆2x(n) = (1− q)x(n)− rx(n− 1) + f(n− 1), (3.3.2)

with initial conditions x(−1) = x(0) = x(1) = 0. Consequently, equation (3.3.2)

can be posed into the scheme of (3.2.1) with α = 2, T = (1 − q)I, β = −r and

τ = 1. We first compute the family {Mα(n)}n≥−1 in order to obtain a solution x of

(3.3.2). Indeed, using the inverse formula of Z-transform, we get that

M2(n) =
1

2πi

∫
C

zn−1z(z − 1)((z − 1)2 + rz−1 − (1− q))−1dz

=
1

2πi

∫
C

zn+1(z − 1)

(z3 − 2z2 + qz + r)
dz

=
1

2πi

∫
C

zn+1(z − 1)

(z − λ1)(z − λ2)(z − λ3)
dz

=
(λn+2

1 − λn+1
1 )

(λ1 − λ2)(λ1 − λ3)
− (λn+2

2 − λn+1
2 )

(λ1 − λ2)(λ2 − λ3)
+

(λn+2
3 − λn+1

3 )

(λ1 − λ3)(λ2 − λ3)
,

where C is a circle centered at the origin that encloses the roots λ1, λ2, λ3 of the

equation z3 − 2z2 + qz + r = 0 in its interior.

It follows from Schur-Cohn criterion (see [34, Theorem 5.1]) or Samuelson criterion

(see for example [65]) that all these roots lie inside of the unit disk D if and only

if |r − 2| < 1 + q and |q + 2r| < 1 − r2 which, in turn, is equivalent to 1 < q < 2

and 1− q < r < −1 +
√

2− q. See Figure 1 below. Then, under this restriction on

the parameters of equation (3.3.2), we obtain that supn∈N0
‖M2(n)‖ <∞. It means

that the first part of the condition (H)2 holds. In particular, we also have that

z3 − 2z2 + qz + r 6= 0 for |z| = 1 and consequently

sup
|z|=1,z 6=1

|(z − 1)2((z − 1)2 + rz−1 − (1− q))−1| <∞,

and

sup
|z|=1,z 6=1

|z−1((z − 1)2 + rz−1 − (1− q))−1| <∞.

Therefore all the conditions given in Theorem 3.2.3 hold and we conclude that

whenever 1 < q < 2 and 1 − q < r < −1 +
√

2− q and f ∈ `p(N0), there exists a
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unique u ∈ `p(N0) solving (3.3.2).

Figure 3.1: The sector |r − 2| < 1 + q and |q + 2r| < 1− r2

In order to handle fractional models, the following result will be useful.

Corollary 3.3.1. Let 1 < α ≤ 2, β ∈ R, τ ∈ N0. Let X be a Hilbert space and

T ∈ B(X) satisfying the following condition

||T || < ωα,β,τ := min
|z|=1
|fα,β,τ (z)| < 1 where fα,β,τ (z) := z2−α(z − 1)α − βz−τ .

Then equation (3.2.1) has maximal `p-regularity.

Proof. We first prove that T is the generator of an ατ -resolvent sequence Mα(n)

and the hypothesis (H)α is satisfied. Indeed, by hypothesis and an application of

the minimum principle, we obtain that fα,β,τ (z) ∈ ρ(T ) and

(fα,β,τ (z)− T )−1 =
∞∑
n=0

T n

(fα,β,τ (z))n+1
,
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whenever |z| ≤ 1. Hence there exists a circle Γ centered at the origin of radius R < 1

such that

Mα(n) =
1

2πi

∫
C

zn(z − (α− 1))(z2−α(z − 1)α − βz−τ − T )−1dz, n ∈ N, n ≥ 2

Mα(0) = Mα(1) = I and Mα(j) = 0, j = −τ, . . . ,−1 defines an ατ -resolvent family.

Observe that we also have

||(fα,β,τ (z)− T )−1|| ≤ 1

|fα,β,τ (z)| − ||T ||
<

1

ωα,β,τ − ||T ||
. (3.3.3)

As a consequence, for all n ∈ N, we have

‖Mα(n)‖ < Rn+1(R + |α− 1|)
ωα,β,τ − ||T ||

,

and then sup
n∈N0

||Mα(n)|| <∞. This proves the claim. Moreover,

sup
|z|=1,z 6=1

‖z1−α(z − 1)α(fα,β,τ (z)− T )−1‖ <∞ and

sup
|z|=1,z 6=1

‖z−τ (fα,β,τ (z)− T )−1‖ <∞.

Then part (ii) of Theorem 3.2.3 holds and we conclude that equation (3.2.1) has

maximal `p-regularity.

Example 3.3.2. Motivated by the model given by (3.3.2) we consider the fractional

difference equation

∆αx(n) = (1− q)x(n)− rx(n− 1) + f(n− 1), 1 < α ≤ 2, (3.3.4)

with initial conditions x(−1) = x(0) = x(1) = 0. We illustrate the validity of the

condition in the previous corollary plotting the graph of the complex function

fα,−r,1(z) = z2−α(z − 1)α + rz−1, |z| = 1,

for different values of 1 < α ≤ 2 and r ∈ R. Observe that given α and r there are

cases where exists q such that Corollary 3.3.1 is satisfied. Moreover, the graphs
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show that ωα,−r,1 → 0 as α→ 1 for some values of r (for instance when r = 0.6).
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Figure 3.2: α = 1.5 and r = 0.6. Observe that the minimum value ω1.5,−0.6,1 is

attained approximately at 0.5 and consequently 0.5 < q < 1.5.
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Figure 3.3: α = 1.5 and r = −2. Observe that the minimum value ω1.5,−0.6,1 is

attained approximately at 0.2 and consequently 0.8 < q < 1.2.
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Chapter 4

Existence of weighted bounded solutions for non-

linear discrete-time fractional equations

4.1 Introduction

In this chapter, we study the existence of weighted bounded solutions for a time-

discrete nonlinear fractional equations of the form

∆αu(n) = Tu(n) + f(n, u(n)), n ∈ N0, (4.1.1)

with initial conditions u(0) = u0 and u(1) = u1 whenever 1 < α ≤ 2. Here

∆α corresponds to the fractional difference operator of order α > 0 in sense of

Riemann-Liouville, T is a bounded linear operator defined on a Banach space X

and f : N0 ×X → X is a function satisfying suitable conditions.

More specifically, by using operator-theoretical methods and fixed point theory,

we show the existence of solutions of such class of equations on the vector-valued

weighted space of sequences

l∞f (N2;X) =

{
η : N2 → X/ sup

n≥2

‖η(n)‖
nn!

<∞
}
.
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4.2 Resolvent families: 1 < α ≤ 2

In this section, we recall an operator theoretical method introduced in [52] in order

to study the following linear fractional difference equation

∆αu(n) = Tu(n) + f(n), n ∈ N0 (4.2.1)

with initial conditions u(0) = u0 and u(1) = u1 ∈ X, 1 < α ≤ 2 and T ∈ B(X). We

recall the following definition given in [52, Definition 3.1].

Definition 4.2.1. Let T be a bounded linear operator defined on a Banach space

X and 1 < α ≤ 2. We say that T is a generator of an α-resolvent sequence if there

exists a sequence of bounded linear operators {Sα(n)}n∈N0 satisfying the following

properties:

i) Sα(0) = I,

ii) Sα(1) = I,

iii) Sα(n+2)−Sα(n+1) = T (Sα∗kα−1)(n)+kα−1(n+2)I−(α−1)kα−1(n+1)I, n ∈
N0.

Remark 4.2.2. Note that if T generates an α-resolvent family, then it is unique (see

[52, Lemma 3.3]).

Example 4.2.3. In the border case α = 2, we have the recurrence relation

S2(0) = S2(1) = I

S2(n+ 2)− S2(n+ 1) = T
n∑
j=0

S2(j).

Thus, S2(n) =

[n/2]∑
j=0

(
n

2j

)
T j =

(I + T 1/2)n + (I − T 1/2)n

2
.

Suppose that for all z ∈ C with |z| = 1 we have z2−α(z − 1)α ∈ ρ(T ). Then, the
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following holds:

S̃α(z) = z(z − (α− 1))(z2−α(z − 1)α − T )−1. (4.2.2)

In the border case α = 2, we obtain from [6, Proposition 1.4.2] that

S2(n) = C(n), n ∈ N0,

where C is the discrete time cosine operator sequence generated by T introduced

by Chojnacki in [27]. It follows from [6, Corollary 1.4.6] that C satisfies

C(n+m) + C(n−m) = 2C(n)C(m), n,m ∈ Z.

We conclude this section with an important result concerning in a qualitative prop-

erty of α-resolvent sequences.

Theorem 4.2.4. Let 1 < α < 2, T ∈ B(X) and {Sα(n)}n∈N0 be the α-resolvent

sequence generated by T . If ‖T‖ < αα(2− α)2−α

4
then ‖Sα(n)‖ → 0 as n→∞ and

the following estimate

sup
n∈N0

‖Sα(n)‖ ≤ 3

αα(2− α)2−α − 4 ‖T‖

holds.

Proof. Let C a circle of radius R =
2− α

2
that encloses all singularities of zn(z −

(α− 1))(z2−α(z − 1)α − T )−1. From (4.2.2) and (1.2.2), we have that

Sα(n) =
1

2πi

∫
|z|=R

zn(z − (α− 1))(z2−α(z − 1)α − T )−1dz

=
1

2π

∫ 2π

0

Rneint(Reit − (α− 1))(R2−αei(2−α)t(Reit − 1)α − T )−1Reitdt

=
1

2π

∫ 2π

0

Rn+1ei(n+1)t(Reit − (α− 1))(R2−αei(2−α)t(Reit − 1)α − T )−1dt,

(4.2.3)
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and then

‖Sα(n)‖ ≤ 1

2π

∫ 2π

0

Rn+1
∣∣(Reit − (α− 1))

∣∣ ∥∥(R2−αei(2−α)t(Reit − 1)α − T )−1
∥∥ dt

≤ 1

2π

∫ 2π

0

Rn+1(R + α− 1)
∥∥(R2−αei(2−α)t(Reit − 1)α − T )−1

∥∥ dt.
(4.2.4)

On the other hand, by [45, Theorem 7.3–4, p.377], we have that R2−αei(2−α)t(Reit−
1)α − T is invertible for each t ∈ (0, 2π) and

(R2−αei(2−α)t(Reit − 1)α − T )−1 =
∞∑
j=0

T j

(R2−αei(2−α)t(Reit − 1)α)j+1
. (4.2.5)

As a consequence, and since 1−R < |1−Reit|, we have

∥∥R2−αei(2−α)t(Reit − 1)α − T )−1
∥∥ ≤ 1

|R2−αei(2−α)t(Reit − 1)α| − ‖T‖

≤ 1

(1−R)αR2−α − ‖T‖
.

(4.2.6)

Thus,

‖Sα(n)‖ ≤ 1

2π

∫ 2π

0

Rn+1(R + α− 1)

(1−R)αR2−α − ‖T‖
dt

≤ Rn+1(R + α− 1)

(1−R)αR2−α − ‖T‖
.

As a consequence, we have ‖Sα(n)‖ → 0 as n→∞ and the inequality

sup
n∈N0

‖Sα(n)‖ ≤ 3

αα(2− α)2−α − 4 ‖T‖

is valid for 1 < α < 2.

The following picture illustrates the function α 7→ αα(2− α)2−α

4
. Observe that

inf
1<α<2

αα(2− α)2−α

4
=

1

4
.
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Figure 4.1: α 7→ αα(2− α)2−α

4

The importance of α-resolvent sequence of operators is that allows to obtain a

representation of the solution of the equation (4.2.1) by means of a kind of variation

of parameters formula, specifically we have the following theorem.

Theorem 4.2.5. [52, Theorem 3.8] Let 1 < α ≤ 2 and f : N0 → X be given. Then

the unique solution of (4.2.1) with initial conditions u(0) = x and u(1) = y can be

represented by

u(n) = Sα(n)x+(Sα ∗hα)(n−1)[y−x]+(Sα ∗hα ∗f)(n−2), n ∈ N, n ≥ 2, (4.2.7)

where hα is a function defined by

hα(n) =

(α− 1)n n ∈ N0,

0 otherwise.

Proof. Similar to Theorem 3.1.5 with β = 0
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4.3 A nonlinear fractional difference equation

In this section we study the nonlinear problem
∆αu(n) = Tu(n) + f(n, u(n)), n ∈ N0, 1 < α ≤ 2,

u(0) = 0,

u(1) = 0,

(4.3.1)

where T is a bounded linear operator defined on a Banach space X.

Definition 4.3.1. Let T ∈ B(X), f : N0 × X → X and 1 < α ≤ 2 be given. A

sequence u : N0 → X is said to be a solution of (4.3.1) if u satisfies (4.3.1) for all

n ∈ N0.

As a consequence of Theorem 4.2.5, we have the following result that gives an

equivalent representation of the solution of (4.3.1) in terms of the family of operators

Sα(n) generated by the operator T .

Theorem 4.3.2. Let T ∈ B(X), f : N0 × X → X and 1 < α ≤ 2 be given.

Let {Sα(n)}n∈N0 be the α-resolvent sequence generated by T . Then, the following

assertions are equivalent:

i) u is a solution of (4.3.1).

ii) u(0) = u(1) = 0 and u(n) =
n−2∑
j=0

(Sα ∗ hα)(n− 2− j)f(j, u(j)), n ∈ N, n ≥ 2.

Proof. First, we suppose that ii) is valid. Note that by definition of ∆α, we have
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that

∆αu(n+ 2) =
n∑
j=0

∆2(k2−α ∗ Sα ∗ hα)(n− j)f(j, u(j))

+ (k2−α ∗ Sα ∗ hα)(0)f(n+ 2, u(n+ 2))

+ (k2−α ∗ Sα ∗ hα)(1)f(n+ 1, u(n+ 1))

− 2(k2−α ∗ Sα ∗ hα)(0)f(n+ 1, u(n+ 1))

=
n∑
j=0

∆α(Sα ∗ hα)(n− j)f(j, u(j)) + f(n+ 2, u(n+ 2))

and by [53, Lemma 3.6] we get that

∆αu(n+ 2) = T
n∑
j=0

(Sα ∗ hα)(n− j)f(j, u(j)) + f(n+ 2, u(n+ 2))

= Tu(n+ 2) + f(n+ 2, u(n+ 2))

for all n ∈ N0. Then, u is a solution of (4.3.1). Conversely suppose that u is a

solution of (4.3.1). Then,

(Sα ∗ hα ∗ f)(n− 2) = (Sα ∗ hα ∗∆αu)(n− 2)− T (Sα ∗ hα ∗ u)(n− 2). (4.3.2)

By [52, Lemma 3.6] we have

(Sα ∗ hα ∗∆αu)(n− 2) = ∆α(Sα ∗ hα ∗ u)(n− 2)− (Sα ∗ hα)(n)u(0)

+ α(Sα ∗ hα)(n− 1)u(0) + (Sα ∗ hα)(n− 1)u(1)

and

∆α(Sα ∗ hα ∗ u)(n− 2) = (∆αSα ∗ hα ∗ u)(n− 2)− Sα(0)[(u ∗ hα)(n)

+ α(u ∗ hα)(n− 1)] + Sα(1)(u ∗ hα)(n− 1).

Using the fact that Sα(0) = Sα(1) = I and u(0) = u(1) = 0, we get that

(Sα ∗ hα ∗ f)(n− 2) = (∆αSα ∗ hα ∗ u)(n− 2)− T (Sα ∗ hα ∗ u)(n− 2) + u(n).
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By Theorem 4.2.5, we know that ∆αSα(n) = TSα(n). Then, u(n) = (Sα ∗ hα ∗
f)(n− 2) is fulfilled.

We recall the following definition introduced in [57].

Definition 4.3.3. We call the factorial number system space (fns-space) the vector-

valued weighted space defined as follows

l∞f (N2;X) :=

{
η : N2 → X/ sup

n≥2

‖η(n)‖
nn!

<∞
}
,

endowed with the norm ‖η‖f = sup
n≥2

‖η(n)‖
nn!

.

The following result is a lemma that will be useful in the later results of this section.

Lemma 4.3.4. Let {an} and {bn} be sequences defined by

an =
1

nn!

(
n−1∑
j=0

(j!− 1)

)

and

bn =
n− 1

nn!
.

Then supn∈N an =
1

16
, supn∈N bn =

1

4
, limn→∞ an = 0 and limn→∞ bn = 0.

Proof. Note that {an} is a decreasing sequence for n ≥ 4 and

an+1 =
n

(n+ 1)2

(
an +

n!− 1

nn!

)
.

If we asumme for a while that an ≤
1

16
, then by induction on n ≥ 4 and [63, formula

33 p. 598] we get that

an+1 ≤
4

25

(
1

16
+

23

600

)
=

3872

240000
<

1

16
.
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Also, we observe that

1

n2
− 1

n!
< an <

1

n
− 1

n!
.

Then, limn→∞ an = 0 is satisfied. On the other hand {bn} is a decreasing sequence

for n ≥ 2 and also since

bn+1 =
n

(n+ 1)2

(
bn +

1

nn!

)

if we asumme for a while that bn ≤
1

4
, then by induction on n ≥ 2 we get that

bn+1 ≤
2

9

(
1

4
+

1

4

)
=

1

9
<

1

4
.

Also, it is trivial that limn→∞ bn = 0.

Theorem 4.3.5. Let T ∈ B(X) be the generator of a bounded α-resolvent sequence

{Sα(n)}n∈N0, for 1 < α ≤ 2. Let f : N0 ×X → X be a function such that

(F) f(0, 0) 6= 0, f(1, 0) 6= 0 and there exists a positive sequence a ∈ `1(N0) and

constants c ≥ 0, b > 0 such that ‖f(k, x)‖ ≤ a(k)(c ‖x‖ + b), for all k ∈ N0

and x ∈ X.

(L) The function f satisfies a Lipschitz condition in x ∈ X uniformly in k ∈
N0, that is, there exists a constant L > 0 such that ‖f(k, x)− f(k, y)‖ ≤
L ‖x− y‖, for all x, y ∈ X, k ∈ N0, with L <

16

‖Sα‖∞
.

Then the problem (4.3.1) has a unique non trivial solution in l∞f (N2;X).
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Proof. Let us consider the operator G : l∞f (N2;X)→ l∞f (N2;X) defined as follows

Gu(n) =
n−2∑
j=0

(Sα ∗ hα)(n− 2− j)f(j, u(j)), n ≥ 2.

We need to check the conditions of the Banach Fixed Point Theorem. First, we

show that G is well defined. Indeed, let u ∈ l∞f (N2;X) be given. By assumption

(F ) and the boundedness of Sα(n) we have for each n ∈ N, n ≥ 2.

‖Gu(n)‖ ≤
n−2∑
j=0

‖(Sα ∗ hα)(n− 2− j)‖ ‖f(j, u(j))‖

≤ ‖Sα‖∞
n−2∑
j=0

n−2−j∑
k=0

hα(n− 2− j − k) ‖f(k, u(k))‖

≤ c ‖Sα‖∞ ‖a‖∞
n−2∑
j=0

n−2−j∑
k=0

‖u(k)‖+ b ‖Sα‖∞
n−2∑
j=0

n−2−j∑
k=0

a(k)

≤ c ‖Sα‖∞ ‖a‖∞
n−2∑
j=0

n−2−j∑
k=0

‖u(k)‖+ b ‖Sα‖∞ ‖a‖1 (n− 1)

≤ c ‖Sα‖∞ ‖a‖∞ ‖u‖f

(
n−1∑
j=0

(j!− 1)

)
+ b ‖Sα‖∞ ‖a‖1 (n− 1).

Hence

‖Gu(n)‖
nn!

≤ c ‖Sα‖∞ ‖a‖∞ ‖u‖f
1

nn!

(
n−1∑
j=0

(j!− 1)

)
+ b ‖Sα‖∞ ‖a‖1

(
n− 1

nn!

)
.

Then, taking supremum in both sides, we have Gu ∈ l∞f (N2;X). Next, we prove

that G is a contraction on l∞f (N2;X). Let u, v ∈ l∞f (N2;X) be given. Then, using
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the assumption (L) we have

‖Gu(n)−Gv(n)‖ ≤
n−2∑
j=0

‖(Sα ∗ hα)(n− 2− j)‖ ‖f(j, u(j))− f(j, v(j))‖

≤ ‖Sα‖∞
n−2∑
j=0

n−2−j∑
k=0

‖f(j, u(j))− f(j, v(j))‖

≤ L ‖Sα‖∞ ‖u− v‖f

(
n−1∑
j=0

(j!− 1)

)
.

Hence,

‖Gu(n)−Gv(n)‖
nn!

≤ L ‖Sα‖∞ ‖u− v‖f
1

nn!

(
n−1∑
j=0

(j!− 1)

)
,

and consequently, taking supremum again

‖Gu−Gv‖f ≤
1

16
L ‖Sα‖∞ ‖u− v‖f .

Then, by the Banach fixed point Theorem we conclude that G has a unique fixed

point in l∞f (N2;X).

As a consequence of the last theorem, the following result gives an explicit bound

on the Lipschitz constant.

Corollary 4.3.6. Let T ∈ B(X) and 1 < α < 2. Suppose that 4 ‖T‖ < αα(2 −
α)2−α. Let f : N0×X → X satisfying condition (F ) and such that f is a Lipschitz

function in x ∈ X uniformly in k ∈ N0, with Lipschitz constant L <
16

3
(αα(2 −

α)2−α − 4 ‖T‖). Then the problem (4.3.1) has a unique solution in l∞f (N2;X).

The following lemma is needed in the next main result of this section. Its proof is

based on a analogous lemma proved in [57, Lemma 4.1].

Lemma 4.3.7. Let U ⊂ l∞f (N2;X) such that

a) The set Hn(U) =

{
u(n)

nn!
: u ∈ U

}
is relatively compact in X, for all n ≥ 2.
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b) lim
n→∞

1

nn!
sup
u∈U
‖u(n)‖ = 0.

Then U is relatively compact in l∞f (N2;X).

For f : N2 × X → X we recall that the Nemytskii operator Nf : l∞f (N2;X) →
l∞f (N2;X) is defined by

Nf (u)(n) := f(n, u(n)), n ∈ N, n ≥ 2.

Finally, we conclude with the second main result for this section. It gives a useful

criterion for existence of solutions without using Lipschitz conditions.

Theorem 4.3.8. Let T ∈ B(X) be a compact operator and generator of an α-

resolvent compact sequence {Sα(n)}n∈N0 for 1 < α ≤ 2 and f : N0 × X → X be

a function. Assume that the Nemytskii operator is continuous in l∞f (N2;X) and

condition (F ) is satisfied. Then the problem (4.3.1) has a solution in l∞f (N2;X).

Proof. We know that T is the generator of an α-resolvent sequence {Sα(n)}n∈N0 .

We define the operator G : l∞f (N2;X)→ l∞f (N2;X) as follows

Gu(n) =
n−2∑
j=0

(Sα ∗ hα)(n− 2− j)f(j, u(j)), n ≥ 2.

We need to check that the conditions of Leray-Schauder alternative theorem are

fulfilled.

• G is well defined: It follows from the proof of Theorem 4.3.5.
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• G is continuous: Let ε > 0 and u, v ∈ l∞f (N2;X). Then for each n ≥ 2,

‖Gu(n)−Gv(n)‖ ≤
n−2∑
j=0

‖(Sα ∗ hα)(n− 2− j)‖ ‖f(j, u(j))− f(j, v(j))‖

≤ ‖Sα‖∞
n−2∑
j=0

n−2−j∑
k=0

‖Nf (u)(j)−Nf (v)(j)‖

≤ ‖Sα‖∞ ‖Nfu−Nfv‖f

(
n−1∑
j=0

(j!− 1)

)
.

Therefore,

‖Gu(n)−Gv(n)‖
nn!

≤ ‖Sα‖∞ ‖Nfu−Nfv‖f
1

nn!

(
n−1∑
j=0

(j!− 1)

)
,

and consequently, taking supremum again

‖Gu−Gv‖f ≤
1

16
‖Sα‖∞ ‖Nfu−Nfv‖f .

Then, we obtain ‖Gu−Gv‖f < ε.

• G is compact: We fix R > 0, let B(0;R) be an open unit ball in l∞f (N2;X).

Let V = G(B(0;R)), we need to check the conditions in Lemma 4.3.7 in order

to prove relatively compactness of V .

a) Let u ∈ B(0;R) and v = Gu. We have that

v(n)

nn!
=

1

n!

(
1

n

n−2∑
j=0

(Sα ∗ hα)(j)f(n− 2− j, u(n− 2− j))

)
. (4.3.3)

Therefore,
v(n)

nn!
∈ 1

n!
co(Kn), where co(Kn) denotes the convex hull of a

set Kn defined by

Kn =
n−2⋃
j=0

{(Sα ∗ hα)(j)f(k, x) : k ∈ {0, 1, 2, . . . , n− 2}, ‖x‖ ≤ R}, n ≥ 2.

By condition (F ) we have that for all a ∈ N0 and σ > 0, the set
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{f(k, x) : 0 ≤ k ≤ a, ‖x‖ ≤ σ} is bounded. Consequently, the set

{(Sα ∗ hα)(n)f(k, x) : 0 ≤ k ≤ a, ‖x‖ ≤ σ} is relatively compact in X

for all n ≥ 2 because {Sα(n)}n∈N0 generated by T is compact. Then

it follows that each set Kn is relatively compact. From the inclusions

Hn(V ) =

{
v(n)

nn!
: v ∈ V

}
⊆ 1

n!
co(Kn) ⊆ 1

n!
co(Kn), we conclude that

Hn(V ) is relatively compact in X for all n ≥ 2.

b) Let u ∈ B(0;R) and v = Gu. By condition (F ), for each n ∈ N2 we get

‖v(n)‖
nn!

≤ 1

nn!

n−2∑
k=0

‖(Sα ∗ hα)(n− 2− k)‖ ‖f(k, u(k))‖

≤ 1

nn!

n−2∑
k=0

‖(Sα ∗ hα)(n− 2− k)‖ a(k)(c ‖u(k)‖+ b)

≤ cR ‖Sα‖∞ ‖a‖∞
1

nn!

(
n−1∑
k=0

(k!− 1)

)
+ b ‖Sα‖∞ ‖a‖1

(
n− 1

nn!

)
.

Then lim
n→∞

‖v(n)‖
nn!

= 0 for an arbitrary u ∈ B(0;R).

• The set U := {u ∈ l∞f (N2;X) : u = γGu, 0 < γ < 1} is bounded: Indeed, let

u ∈ l∞f (N2;X) such that u = γGu, 0 < γ < 1. By condition (F ),

‖u(n)‖ ≤ ‖Gu(n)‖ ≤ ‖Sα‖∞
n−2∑
j=0

n−2−j∑
k=0

‖f(k, u(k))‖

≤ c ‖Sα‖∞ ‖a‖∞ ‖u‖f

(
n−1∑
j=0

(j!− 1)

)
+ b ‖Sα‖∞ ‖a‖1 (n− 1).

(4.3.4)

Hence, for each n ≥ 2 we get

‖u(n)‖
nn!

≤ c ‖Sα‖∞ ‖a‖∞ ‖u‖f
1

nn!

(
n−1∑
j=0

(j!− 1)

)
+ b ‖Sα‖∞ ‖a‖1

(
n− 1

nn!

)
.

Finally, taking supremum in both sides we deduce that U ⊂ l∞f (N2;X) is a

bounded set.
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Finally, by Leray-Schauder fixed point alternative theorem, we have that G has a

fixed point in l∞f (N2;X).

4.4 An Application

In this section we show a concrete application of the results obtained in the previous

sections of this chapter.

Example 4.4.1. Let us consider an integral operator P defined on the Banach

space C[0, 1] as follows

Pf(x) =

∫ 1

0

k(x, s)f(s)ds.

First we suppose that P defines a bounded non compact operator and ‖P‖ = 1,

see for instance [10] for a concrete example of kernel k(x, s) such that P is non

compact.

We study the existence of solutions of the following problem
∆αu(n, x) =

1

5
Pu(n, x) +

1 + u(n, x)

1 + sup0≤x≤1 |u(n, x)|
,

u(0, x) = 0,

u(1, x) = 0,

(4.4.1)

for n ∈ N0, x ∈ [0, 1], 1 < α < 2. Define T =
1

5
P . We will apply Corollary 4.3.6.

We have ‖T‖ < αα(2− α)2−α

4
. Then, by Theorem 4.2.4, T generates a bounded

α-resolvent sequence {Sα(n)}n∈N0 on C[0, 1].

Define v(n)(x) := u(n, x) and f(n, v(n)) :=
1 + v(n)

1 + ‖v(n)‖∞
. Then the problem (4.4.1)

can be rewritten as

∆αv(n) = Tv(n) + f(n, v(n)), n ∈ N0,
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with initial conditions v(0) = v(1) = 0. Note that the function f satisfies condition

(F ) of Theorem 4.3.5 with a(k) =
1

2k
, c = 0 and b = 1. On the other hand, note

that for u1, u2 ∈ l∞f (N2;C[0, 1]) and n ∈ N0, we obtain that

‖f(n, u1(n))− f(n, u2(n))‖ ≤
∥∥∥∥1 + u1(n, x)

1 + ‖u1(n)‖
− 1 + u2(n, x)

1 + ‖u2(n)‖

∥∥∥∥
≤
∥∥∥∥u1(n)− u2(n)

1 + ‖u1(n)‖

∥∥∥∥+
(1 + ‖u2(n)‖) ‖u1(n)− u2(n)‖

(1 + ‖u1(n)‖)(1 + ‖u2(n)‖)

≤ 2 ‖u1(n)− u2(n)‖ .

Therefore f is a Lipschitz function with constant L = 2. Since ‖T‖ =
1

5
, then

condition (L) in Corollary 4.3.6 is fulfilled if and only if

2 <
64

3

(
αα(2− α)2−α

4
− 1

5

)
if and only if

7

5
< α < 2. (4.4.2)

Then, by Corollary 4.3.6 we conclude that for all values α given in (4.4.2), we have

that the fractional integro-difference equation

∆αu(n, x) =
1

5

∫ 1

0

k(x, s)u(n, s)ds+
1 + u(n, x)

1 + sup0≤x≤1 |u(n, x)|
, x ∈ [0, 1], n ∈ N0

with initial conditions u(0, x) = u(1, x) = 0 admits a unique solution in

l∞f (N2;C[0, 1]) =

{
ξ : N2 → C[0, 1] : sup

n≥2

‖ξ(n)‖∞
nn!

<∞
}
.

On the other hand, if we suppose that P is a bounded compact operator and

‖P‖ = 1, then the conditions of Theorem 4.3.8 for the problem (4.4.1) are fulfilled

for any α > 1. As a consequence, the problem (4.4.1) has a unique nontrivial

solution u ∈ l∞f (N2;C[0, 1]).
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Conclusions

In this thesis, we obtain new results concerning the existence and uniqueness of

solutions for different classes of fractional difference equations in the setting of

Banach spaces.

First, we obtain a characterization of the existence and uniqueness of solutions

belonging to vector-valued space of sequences `p(Z;X) for a fractional difference

equation with damping. For this, we use a method based on an operator-valued

multiplier theorem due to S. Blünck (see [20]). Recall that this theorem and its

converse establish an equivalence between `p-multipliers and R-bounded sets. Using

Blünck’s theorem we found a characterization of maximal `p-regularity to equation

(2.1.1) in terms of the operator-valued symbol asociated to such equation. Also,

we give a useful criterion for the existence of `p-solutions for the nonlinear equation

(2.1.10) if the nonlinear term satisfies conditions of Fréchet differentiability at 0.

Next, we obtain a characterization for the existence and uniqueness of solutions

belonging to the vector-valued space of sequences `p(N0;X) for a fractional dif-

ference equation with a delay term. For this, we use Blünck’s theorem and we

found a characterization of maximal `p-regularity of equation (3.2.1) in terms of

the operator-valued symbol asociated to such equation. Note that the solution of

the equation (3.2.1) is written in terms of a family of bounded operators called ατ -

resolvent. In addition, we complete the study of maximal regularity for fractional

difference equations of order 1 < α ≤ 2.

Finally, we obtain a useful criterion for the existence of solutions belonging to the
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vector-valued space of sequences `∞f (N2;X) for a nonlinear fractional difference

equation. For this, we use suitable conditions on the nonlinear term in order to

guarantee that the nonlinear equation (4.3.1) has a unique solution. On the other

hand, when we consider compactness conditions on certain bounded operators, we

get a criterion for the existence of solutions for equation (4.3.1). Note that the

solution of the equation (3.2.1) is written in terms of a family of bounded operators

called α-resolvent. In addition, we complete the study of the existence of weighted

bounded solutions for nonlinear fractional difference equations of order 1 < α ≤ 2.

Finally, we mention that there are still a few open problems about this investigation.

i) The study of `p-well posedness for a fractional difference equations with damp-

ing similar to (2.1.1), when the fixed real number λ is replaced by an operator.

ii) Find a representation of the family α-resolvent (resp. ατ -resolvent) of bounded

operators in the case 1 < α ≤ 2 in terms of its generator.

iii) The study of a nonlinear equation similar to equation (4.3.1) when a delay

term is considered.
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