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Abstract

The aim of this thesis is to contribute to the understanding and construction of the p-adic L-
function of Bianchi modular forms, concretely: a) we obtain the functional equation of the p-adic
L-function of small slope cuspidal Bianchi modular forms constructed by Williams in [41] and
then, using p-adic families of Bianchi modular forms, we extend our result to the p-adic L-function
of ¥-smooth base change Bianchi modular forms constructed by Barrera and Williams in [3]; b)
we introduce and study the notions of quasi-cuspidality, C-cuspidality and overconvergent partial
Bianchi modular symbols generalizing to the Bianchi setting ideas developed by Bellaiche and
Dasgupta in [4]; ¢) we construct the p-adic L-function of non-cuspidal base change Bianchi modular

forms and finally, we factor such function as the product of two Katz p-adic L-functions.

Keywords: Automorphic forms, Bianchi modular forms, p-adic L-function, p-adic families, func-

tional equation, base change, CM forms.
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Resumen

El objetivo de esta tesis es contribuir a la comprension y construcciéon de la funcién L p-adica
de las formas modulares de Bianchi, concretamente: a) obtenemos la ecuacién funcional de la
funciéon L p-adica de formas modulares de Bianchi cuspidales de pendiente pequena construidas
por Williams en [41] y luego, usando familias p-adicas de formas modulares de Bianchi, extendemos
nuestro resultado a la funcién L p-adica de formas modulares de Bianchi »-suaves que son cambio
de base construidas por Barrera y Williams en [3]; b) introducimos y estudiamos las nociones
de casi-cuspidalidad, C-cuspidalidad y simbolos modulares parciales de Bianchi sobreconvergentes
generalizando al contexto Bianchi ideas desarrolladas por Bellaiche y Dasgupta en [4]; ¢) constru-
imos la funcion L p-adica de formas modulares de Bianchi no cuspidales que son cambio de base
y finalmente, factorizamos tal funciéon L p-adica como el producto de dos funciones L p-adicas de
Katz.

Palabras clave: Formas automorfas, formas modulares de Bianchi, funcién L p-adica, familias

p-adicas, ecuacion funcional, cambio de base, formas CM.
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0.1. First notions and motivation X

Introduction

In recent years, p-adic L-functions have been a subject of considerable study. As an example, the
‘main conjecture’ of Iwasawa theory says that p-adic L-functions control the size of cohomology
groups of Galois representations. They have also been used in the construction of Stark—Heegner
points, which are conjecturally global points on non-CM elliptic curves over number fields. On
the other hand, there is an increasing interest in the construction and study of p-adic families for
automorphic forms attached to reductive groups over number fields, this interest is justified by the
important applications obtained in for example, the Langlands Program or Bloch-Kato conjectures.

In this thesis we study both, p-adic L-functions and p-adic families, for Bianchi modular forms

0.1 First notions and motivation

Let F' be a number field, Ar be its ring of adeles and G be a reductive group, automorphic forms
are functions on the quotient G(F)\G(Apr) with good growth and regularity properties. One gets
an action of G(Ap), by right translations, on automorphic forms. Automorphic representations are
irreducible representations of G(Af) occurring in spaces of automorphic forms. In this thesis we
are interested in the case G = GLg and F' an imaginary quadratic extension of the rational numbers,
the automorphic forms in this case are called Bianchi modular forms. We also are interested (just
for purposes of base change to Bianchi modular forms) in the case when G = GLy and F = Q, that

is the case of classical modular forms, which are arguably the most studied automorphic forms.

An automorphic form has associated an invariant called the complex L-function, which is of
archimedean nature (complex holomorphic function) and contains important information of the
automorphic form. The study of such L-functions is related with important problems in mathe-
matics such as the Birch and Swinnerton-Dyer (BSD) conjecture, which is one of the Millennium
Problems or Hilbert’s twelfth problem. In this work we treat non-archimedean aspects related
with this ideas. Fix a prime number p, instead of working with complex numbers, it is natural to

consider p-adic numbers. In this new paradigm, two objects has been shown to be useful:

e The p-adic L-functions, that are the p-adic analogue of the complex L-functions.

e The p-adic families, that are geometric objects that encode the idea of deformation of our

object of study.
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Some problems where these ideas has been successfully used are: The BSD conjecture and its
generalisations (see the works of Kato [24]; Darmon-Rotger [12]) the Artin’s conjecture proved
by Pilloni [32], the Langlands Program (see Chenevier [8]; Emerton [16], Boxer-Calegari-Gee-
Pilloni [6]) or Hilbert’s twelfth problem (see Dasgupta-Kakde [14]; Darmon,-Pozzi-Vonk [13]).

0.2 Overview of the p-adic L-function of Bianchi modular forms

Fix K an imaginary quadratic field, the case of automorphic representations over K has importance
by itself, because even when the Langlands program has evolved in many directions, this is the
first case where many of the algebraic geometry techniques does not work, letting a lot of open
questions. However, in recent years, largely due to insights from medalists Fields A. Venkatesh [39]
and P. Scholze [35], this context has rejuvenated, appearing fertile and full of research directions

to be carried out.

Additionally since there exists a well developed picture of the construction of the p-adic L-function
of modular forms using overconvergent modular symbols and p-adic families, there is a natural

interest in generalize those results and constructions to the Bianchi case.

0.2.1 The small slope cuspidal case (Williams’ construction)

The construction of p-adic L-functions attached to cuspidal Bianchi modular forms by Williams
in [41] is based in the ideas of Stevens [36] and Pollack-Stevens in [33], i.e., the generalization
of classical modular symbols to the Bianchi case and using the so called overconvergent Bianchi
modular symbols. To a cuspidal Bianchi modular form ® of weight (k, k) and level Qg(n), where
(p)[n, we associate a collection of functions F', ..., F" : Hz — Vap,o(C), where h is the class number
of K and V,,(C) is the space of homogeneous polynomials in two variables of degree n > 0 over
C. Each F? satisfying an automorphy condition for some discrete subgroup I';(n) of SLy(K). To
each of these F!, we associate a classical Bianchi modular symbol ¢ i € Symbr, () (Vi1 (C)) =
Homp, () (Ao, V', (C)) where Ag = Div'(P(K)) and Vi (€C) = Hom(V; - (C),C) for Vi x(C) =
Vi(C) ®c Vi (C). In the analogous way to modular forms there is a link between values of this

symbol and critical values of the part of the L-function corresponding to F°.

Generalising Stevens’ idea Williams define the space of overconvergent Bianchi modular symbols to
be the space of Bianchi modular symbols taking values in some p-adic distribution space; precisely,
he fix a suitable finite extension L/Q),, and denote by Ay 1, (L) the space of locally analytic functions
Ok ®z Zy, — L endowed with a suitable action depending by %, then the distribution space is
Dy (L) = Homeys(Ag (L), L). There is a specialisation map from overconvergent to classical

Bianchi modular symbols by dualising the natural inclusion Vj, (L) < Ay 1 (L).

Then in the same way to Pollack-Stevens in [33], Williams obtains a control theorem in the Bianchi
setting and construct L,(®,-), the p-adic L-function of a cuspidal Bianchi eigenform @ of weight

(k, k), level Qu(n) with (p)|n and with small slope -i.e, the p-adic valuation of the eigenvalue of
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the Hecke operator U, for each plp is ‘sufficiently small’- by,

e associating to ® a small slope eigensymbol (¢1,...,¢,) in a direct sum of symbol spaces,

e lifting uniquely (¢1, ..., ¢p) to an overconvergent symbol (U1, ..., ¥;,) using the control theo-

rem,

e patching together the distributions ¥;({0} — {oo}) to a locally analytic distribution L,(®,-)
on the ray class group Clg (p™).

0.2.2 The critical slope base change cuspidal case (Barrera-Williams construc-

tion)

William’s construction of p-adic L-functions depend of the small slope condition of the Bianchi
modular form ®. It is natural to ask for the p-adic L-function when ® does not have small slope,
i.e., the critical slope case. Such function was constructed by Barrera and Williams in [3] for
suitable critical slope base-change Bianchi modular forms using p-adic families of Bianchi modular

forms. We briefly describe the construction.

Let f € Ski2(To(N)) be a finite slope eigenform, with p|N, new or p-stabilised of a newform,
regular, non CM by K, decent and such that the base-change to K, denoted by f/f, is ¥-smooth
(see Conditions 2.11 and definitions 2.18 and 2.19 for more details) and let Vg be a neighbourhood
of f in the Coleman-Mazur eigencurve such that the weight map is étale except possibly at f.

Then, after shrinking Vg, Barrera and Williams constructed the three-variable p-adic L-function
Ly: Vo x X(Clg(p™)) - L

for sufficiently large L c @p, such that for any classical point y € Vp(L) corresponding to a small
slope base-change f, /x we have L,(y,~) = ¢y Lp(fy/x,—), where ¢, € L™ is a p-adic period at y and
Ly(fy/i,~) is the p-adic L-function of f,/x described above.

Now, suppose that f/x has critical slope and is ¥-smooth; then the missing p-adic L-function of

[k is defined to be the specialisation

Lp(f/K? _) = ﬁp(mf7 _)7

where x; € Vg is the point corresponding to f.

0.3 Structure of the thesis

In this thesis we accomplish three tasks:

e We provide functional equations for the p-adic L-functions of cuspidal Bianchi modular forms
described above in sections 0.2.1 and 0.2.2; for the critical slope ones we also prove a functional

equation for families of p-adic L-functions.
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e We introduce the notions of:

— quasi-cuspidal and C-cuspidal Bianchi modular forms;

— partial Bianchi modular symbols and overconvergent partial Bianchi modular symbols;

to replicate the construction of the p-adic L-function of cuspidal Bianchi modular forms to

the non-cuspidal case.

e We construct the p-adic L-function of the base change to K of a modular form with CM
by K by proving that is a quasi-cuspidal Bianchi modular form. Given the nature of such
base change forms we also factor the p-adic L-function as the product of two Katz p-adic

L-functions.

Regarding the items above:

e the results in the first item related with functional equations of p-adic L-functions in the

cuspidal case are contained in [30], the first work of my PhD;

e the results in the second and third item related with the construction of the p-adic L-function

in the non-cuspidal case are contained in [31], the second work of my PhD.

This work is divided into four chapters, which will be summarized in the rest of this introduction.

Chapter 1 treats about automorphic forms for GL; and GLg over an imaginary quadratic field
K i.e., Hecke characters of K and Bianchi modular forms, respectively. In section 1.2 we treat
Bianchi modular forms; we introduce and study the notions of quasi-cuspidality and C-cuspidality

which satisfies
{cuspidal} c {quasi-cuspidal} c {C - cuspidal} c {Bianchi modular forms},

for Bianchi modular forms with level at p. We also prove minor results about p-stabilisations
and twists of Bianchi modular forms as well as the functional equation of its L-function when
K has class number 1. In section 1.3 we study Bianchi modular forms given as base change to
K of modular forms with complex multiplication by K. It is known the non-cuspidality of such
functions, but we show that they are quasi-cuspidal using the work of Friedberg in [17]. Moreover,
since the L-function of base change forms can be factored as the product of two Hecke L-functions

we obtain algebraicity at critical values of such L-function.

In Chapter 2 we introduce the notion of partial Bianchi modular symbols, inspired by the work of
Bellaiche and Dasgupta in [4]. In section 2.1 we show how to attach such a partial symbol to a

C-cuspidal Bianchi modular form, more specifically we have (see Proposition 2.3)

Proposition 0.1. Let ® be a C-cuspidal Bianchi modular form of weight (k,¢) with k > ¢ and

level Qo(n), then to each F* with i =1,..,h we can attach an element

bFi € Symbri(n),q— (kae((c))
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In section 2.2 we develop the theory of overconvergent partial Bianchi modular symbols and we

obtain the following lifting theorem (see Theorem 2.2)

Theorem 0.1. (Partial Bianchi control theorem). For each prime p above p, let A\, € L*. Suppose
that v(X\p) < (min{k, £} +1)/e, when p is inert as p or p ramifies as p*> where e, is the ramification
index of p, or v(N\p) < k+1 and v(N;) < £+ 1 when p splits as pp, then the restriction of the

specialisation map

h h
p: EB Symbri(n),ci ('Dkl(L)){Up:)\p:p\P} R @ Symei(n),Ci (Vk*,g(L)){UF)‘”:p'p}
i=1 i=1

to the simultaneous \y-eigenspaces of the U, operators is an isomorphism.

In section 2.3 we give a brief overview of p-adic families and the Bianchi eigenvariety that will be
used in section 3.2 to prove our results on functional equation of p-adic L-functions in the critical

slope case.

Chapter 3 is devoted to p-adic L-functions, in section 3.1 we obtain the functional equation of the
p-adic L-function of a small slope cuspidal Bianchi modular form when K has number class 1 (see
Theorem 3.2)

Theorem 0.2. Let F), be a small slope p-stabilisation of a Bianchi newform F € S 1y (To(n)),
with w prime to (p). Then the p-adic L-function of F,, denoted by L,(Fp,—), satisfies

Lp(Fp, k) = (*)Lp(FpW_lU];’k)v

for all k € X(Clg (p™)), where () is an explicit factor.

Motivated by Barrera and Williams construction’s of the p-adic L-function of cuspidal base change
Bianchi families, section 3.2 contains the functional equation satisfied by such p-adic L-function
in families (see Theorem 3.4), which specialized to the critical slope case give us an analogous

theorem to the small slope case (see Corollary 3.1)

Corollary 0.1. Let F be a X-smooth base-change to K of a decent modular form satisfying condi-
tions 2.11, let n be the prime-to-p part of the level of F, then for all k € X(Clg (p™)) the distribution
L,(F,-) satisfies the following functional equation

LP(F)“) = (*)Lp(fv K_lag’k)'

Regarding the p-adic L-function of non-cuspidal Bianchi modular forms, section 3.3 contains the
construction of the p-adic L-function of the small slope non-cuspidal Bianchi modular form given

as base change to K of a classical modular form with CM by K (see Theorem 3.5)

Theorem 0.3. Let ¢ be a Hecke character of K with conductor m coprime with p and infinity
type (—k—1,0) with k >0, denote by f, and f§ the elliptic CM modular form induced by ¢ and its
ordinary p-stabilisation respectively. Let fg/K be the base-change to K of f&. Then there exists a
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unique locally analytic measure Lp(ffp)/K, -) on Clg(p*>) such that for any Hecke character ¢ of
K of conductor f[p™ and infinity type 0< (q,r) < (k, k), we have

Lp(ff;/Kv 77Dp—ﬁn) = (*)A(ff;/Ku ¢)

At the end of section 3.3 we factor this p-adic L-function as the product of two Katz p-adic

L-functions obtaining (see Theorem 3.7)

Theorem 0.4. Under the hypothesis of Theorem 0.3 for all k € X(Clg (p™)) we have

1,1 1,1
LP:KatZ((p;—ﬁn’iap’ ) Lp,KatZ(‘P;_ﬁnﬁcUp’ )

P -
Lp(ftp/K’ k) = QP(A)’“” QP(A)]”Hl ’

where the character 011,’1 is defined in (1.1) and Q,(A) is the p-adic period in the interpolation of
Katz p-adic L-functions.

Chapter 4 contains current work and further directions regarding the construction of p-adic L-
functions of non-cuspidal Bianchi modular forms and the theory of p-adic Bianchi families. Section
4.2 contains our current work related with the construction of p-adic L functions of small slope
non-cuspidal Bianchi modular form. In section 4.3 we present ideas for the construction and study
of p-adic families of Bianchi modular forms around non-cuspidal Bianchi modular forms and p-adic
L-functions attached to these families. Moreover, we expect to apply these ideas to construct

p-adic L-functions of critical slope non-cuspidal Bianchi modular forms.



Chapter 1

Automorphic forms

In this chapter, we develop the theory of automorphic forms for GLy and GLo over an imaginary
quadratic field K. We start by recalling Hecke characters and algebraic properties of its Hecke
L-function. Next we move to Bianchi modular forms, reviewing the theory and focusing in the non-
cuspidal case by introducing and studying the new notions of quasi-cuspidality and C-cuspidality.
We conclude by studying the non-cuspidal Bianchi modular forms given as base change to K of
CM forms by K.

1.1 Automorphic forms for GL;(K)

Dirichlet characters are the automorphic forms of GL;(Q), in analogous way Hecke characters over
K will be the automorphic forms of GL; (K).

1.1.1 Hecke characters
Definition 1.1. A Hecke character of K is a continuous homomorphism ¢ : K*\Aj - C*.

By restriction, for each place v of K, we obtain a character ¢, : K;; - C*, where K, denotes the
completion of K at v. We have ¢ = pooipy Where Yoo = [Tyjeo Pv = ¢lcx is the the infinite part of ¢
and ¢y := [1,}00 o is the the finite part of .

Definition 1.2. We say ¢ is algebraic if voo(2) = 252¢ for k, € € Z, in that case, we say (k,£) is
its infinity type. If k=0 =0, we call ¢ a finite order character.

Suppose v corresponds to a finite prime q of K, let K the completion of K at q, Oy its ring of
integers and denote by ¢4 the restriction of ¢ to K. It can be shown that ¢4(O;) =1 for almost
all primes q of Ok and for the remaining finite set of primes ¢, there exists a non-negative integer

eq > 0 such that ¢q(1+q°) =1 and eq is minimal with this property.

Definition 1.3. Define the conductor of p to be the ideal f := J]qq.

Note that ¢ naturally gives rise to a Dirichlet character over K with conductor § via the isomor-
phism @;(/(1 +f0x) = (O /)" - C*.
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Definition 1.4. Let I c Ok be an ideal, we define the character oy = Tlq pq. So @5 determines

the Dirichlet character associated to .

When considering Hecke L-functions in section 1.1.3, will be useful to think Hecke characters as
characters on fractional ideals of K. For this, we use the fact that we can associate a well-defined

fractional ideal I(x) =TI, q1@1) to an idele z € A%

Definition 1.5. Let ¢ be a Hecke character of conductor f, define a function ¢ on fractional ideals
I of K by

wr(x) if(1,f) =1, wherex e Al is such that I = I(x) and xq = 1 for all primes qf;
0 sif (1,§) # 1.

p(I) =

Note that the definition above does not depend of the election of x in the case where I is coprime
with §.

Remark 1.1. In future sections, specially when talking about twisted L-functions by characters,
we will need to relate the three functions @5, e and ¢ as a function on ideals. By Proposition
1.2.9 in [42], for ace K™ such that ((«),f) = 1 we have po(a)pi(a)p((a)) = 1.

1.1.2 p-adic Hecke characters

There is a relation between Hecke characters of K an p-adic characters that play an important role
for p-adic L-functions, in this section we recall it.
Definition 1.6. Let f ¢ Ok be an ideal, define the ray class group of level f to be the analytic
group

Clg (F) = K\AK/C*U(F),
where U(f) =1+ f@K Moreover, define the ray class group of level p™ to be

Clg (p*) = K*\Aj /C” = 1im Clg (p")U (p™).

n

Note that, by class field theory, Clg (p*) is isomorphic to the Galois group of the maximal abelian

extension of K unramified outside p and oo.

Definition 1.7. Define the space X(Clg(p™)) to be the two-dimensional rigid space of p-adic

characters on Clg(p*).
Remark 1.2. (i) X(Clg(p*)) is the natural domain of the p-adic L-functions of chapter 3.

(ii) Note the space X(Clg(p*)) contains the cyclotomic and anti-cyclotomic directions that is why

it 1s two dimensional.

There is a bijection between algebraic Hecke characters of conductor dividing p® and locally
algebraic characters of Clg(p®) such that if ¢ corresponds to ¢, gn, both are equal when we

restrict to the adeles away from the infinite place and the primes above p.
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If p is an algebraic Hecke character of K of conductor f|p* and infinity type (q,7), then, fixing an

isomorphism C = C,, we associate to ¢ a K*-invariant function

@p—ﬁn(m) : (A;()f - (CP
7 y()0 (),

where

zpxr  :p splits as pp,

P (1.1)

op"(x) =
T . ] 3
x, :p inert or ramified.

q
Ly

Remark 1.3. If we define for a € K* a p-adic idele xp by

o when ql(p)
(Ta,p)q = ,
otherwise;

then we have vy gin(Tap) = (Pp-fin) (p) (@) = P(p) (@)’

This p-adic idele will be useful for the expression of the functional equation of the p-adic L-function

of Bianchi modular forms (for example in proof of Proposition 3.1).

1.1.3 Hecke L-function

Recall that given a Hecke character ¢ on K*\AJ, of conductor f, we can define a character on
the fractional ideals of K coprime to f and then extend v to a function of all fractional ideals by

defining ¢ (1) = 0 for I non-prime to f.

We can attach to ¥ a complex L-function built as a Dirichlet series of the values of ¢ on non trivial
ideals of O.

Definition 1.8. Define the Hecke L-function for 1 by

Lp,s):= Y d(m)N(m)™. (seC).

O#:chK

(mvf):l

Using the convergence of the Riemann zeta function, can be shown that L(%),s) is convergent

absolutely and uniformly on the set Re(s) > 1 and has the Euler product

o) - @\
L, )‘qﬂm(l N<q>s) |

In particular, when 1 is the trivial character we obtain the Dedekind zeta function of K.

Hecke L-functions have a functional equation obtained by Hecke by generalizing the proof of the

functional equation for the Riemann zeta function.

For p-adic interpolation of the Hecke L-functions we are interested in the algebraicity of its critical

values.
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Definition 1.9. We say m is a critical value of the Hecke L-function of ¢ if the I'-factors that

arise in the functional equation for L(v,s) are nonvanishing and have no poles at s =m.

Let Q(A) be the complex period attached to an elliptic curve A with complex multiplication by K,
defined over a finite extension F' of K as in section 2C in [5]. For a Hecke character ¢ let Q(v°)
be the complex period attached to 1 := 1) o ¢ (for ¢ the complex conjugation on ideals) as in the
comment above Proposition 2.11 in [5]. For suitable Hecke characters i) we can prove algebraicity

of the critical values L(t, m) using the two periods above.

Lemma 1.1. Let ¢ be a Hecke character of K with infinity type (a,b) such that a > b then for m
a critical value of L(1,s) we have

L(4,m)
(2mi)m+bQ(A)ab

€ Q.

Proof. Let v be a Hecke character with infinity type (-r,—s) then by Proposition 2.11 in [5] (and
noting that v has infinity type (r,s) in op. cit. because its definition of infinity type is different

than ours) we have
o)
@riypa(ays <& (1-2)

On the other hand, by Theorem 2.12 in [5], if 7 > s we have for m a critical value of L(v~1,m)
L(v~t,m)

(2mi)mQ(y°)

where E) is the subfield of Q generated by the values of v.

cE,. (1.3)

Then by (1.2) and (1.3) for a Hecke character v with infinity type (-r,—s) with r > s we have

L(v~t,m) T
(2mi)m+sQ(A)r—s Q.

finally taking v = ¢~ then (-r,-s) = (~a,—b) and we obtain the result. O

1.1.4 Gauss sums

We start by defining the Gauss sum of a Hecke character, this definition in general varies among
references. Since most of the results when we use Gauss sums are related with the work in [41],

we use the definition given there.

Definition 1.10. Let ¢ be a Hecke character of K with conductor f and let § =~/—D for —D the
discriminant of K. The Gauss sum for ¢ is defined to be
7_(()0) - Z gp(af)gpoo(a/5)ezmTrK/Q(a/5)-

[a)ef™*/OK
((a)f.f)=1

Remark 1.4. In the definition of T(p), it appears ¢ as a function on ideals and o, we can

rewrite T(¢) just using the idelic definition of ¢, in fact, by Lemma 6.3.2 in [42] we have for
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a € ft with (af,f) =1 that
p(af) oo (a) ! = p(ay)  p(axy).

Then we have
() = p(ap)ei(e) (@) Y pyla) e R/, (1.4)
[a]ef™! /O
((a)f,H)=1
Note that, in particular, if ¢ has finite order and conductor § = (f) we obtain a similar expression
to a Gauss sum of a Dirichlet character given by

() = Z (pf(b)—le%riTrK/@(b/@f))_
be(Ok /1)~

The Gauss sum of a Hecke character ¢ over K satisfies the following property

Proposition 1.1. (i) For all ¢ € Ok, we have

S p(af)pes(af8) e rrre(aeld) = 7 (o)p(c).
(] 10
({@)iH=1

(ii) By replacing ¢ with ¢t we have

: S p(af)pes(af8)e? T ralacld) - pi(e)™ s ((o)f ) =1,

T(p71) [alef1/Ox 0 : otherwise.
((a)f,f)=1

Proof. Writing 7(¢) as in (1.4) for a € { such that (af,§) = 1 and c € O with ((c),§) = 1 we can

easily obtain

e(@)pi(z) o (@)Y pla) e R (0) = (o) pi(c).
[alef ™t /OK
((a)f,h)=1

The case when ((c),f) # 1 is a little bit more involving since we have to prove the left hand side of

the equality in (i) is 0, see Proposition 6.14 in [42] for more details. O

1.2 Automorphic forms for GLy(K)

In this section we introduce the Bianchi modular forms, that is, automorphic forms for GLs over

the imaginary quadratic field K. This are the principal objects of interest of this thesis.

1.2.1 Bianchi modular forms

In this section we define Bianchi modular forms first adelically as automorphic forms over an imag-
inary quadratic field and later we focus on their formulation as modular forms on the hyperbolic

3-space.
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Let n be an ideal of O, first we fix a level that will be a subgroup of GLy(Ox ). Define
a b — ——
Qo(n) = {( d) € GL2(Ok) : ce n(’)K}.
c
We now define the space where our automorphic forms for GLy over K takes values, such space

will be an irreducible representation of a suitable compact subgroup of GL2(C).

Definition 1.11. Let n be a positive integer and V,,(C) be the space of homogeneous polynomials in
two variables X andY of degree n with complex coefficients. There is an irreducible representation
p:SU2(C) - GL(V,,(C)) induced by the action

o)+ ()

Finally, we fix a Hecke character ¢, with conductor dividing n and infinity type (—k—2vy, —€—2v9)

b
for k,£ > 0,v1,v2 integers. For uy = CCL d) € Qo(n) we set pu(uy) = pu(d) = [gn Pq(dq)-

Definition 1.12. We say a function ® : GLa(Ag) = Viip2(C) is an Bianchi modular form of
weight X = [(k,£), (v1,v2)], level Qo(n) and central action p if it satisfies:

(1) @ is left-invariant under GLa(K);
(i) (zg) = p(2)P(g) for z € A} = Z(GLa(Ak)), where Z(G) denote the center of the group G;
(iii) ®(gu) = pn(up)P(g)prrer2(too) for u=1us uc € Qo(n) x SU2(C);
(iv) ® is an eigenfunction of the operators D, for o € {i,c} (the two embeddings of K into C),
Di® = (K*/2+k)®, D.®=(?/2+0)®,

where Dy [4 denotes a component of the Casimir operator in the Lie algebra slo(C)®r C, and
where we consider ®(googy) as a function of geo € GL2(C).

t
(v) there exists an N >0 such that for every compact subset S of B = {(0 i) e GLy (AK)} and
for any norm ||-|| in the complex vector space Viip12(C), ® satisfies

t =z
P =0+t~
H [(0 1)]“ ([ + 1)
iformi P A)es
uniyorm over .
Y 0 1

The space of such functions will be denoted by Myx(Qo(n), ). If ® also satisfies the cuspidal

condition:
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/K\AK <I>(((1) T)g)du: 0

where du is the Lebesgue measure on Ag,

(vi) for all g € GLa(AKk)

we say that ® is a cuspidal Bianchi modular form and we denote the space of such functions by

Sx(Qo(n), @)

Remark 1.5. (i) When v = v = 0, we denote the weight X\ just by (k,¢) and accordingly the
corresponding spaces by M, ¢ (Q0(n), ) and Sy, ) (Qo(n), ). If also the weight is parallel, we
Just write (k, k) instead .

(ii) From [20, §2.5, Cor 2.2]) we have Sx(Qo(n),p) =0 if k # £ i.e. all non-trivial cuspidal Bianchi
modular forms have parallel weight X = [(k, k), (v1,v2)].

Bianchi modular forms over K can be seen as the analogous of classical modular forms in a suitable
hyperbolic space by the descent that we present in the following, for this, let I, ..., I, be a set of
representatives for the class group of K, such that I} = Ok and each I; for 2 < ¢ < h is an integral

and prime ideal, with each I; coprime to n, (p) and D, the different ideal of K.

Let m; be an uniformiser in K7, and define ¢; := (1,...,1,7;,1,...) € A}, then by the strong approzi-

mation theorem we have
h ti 0
GLQ(AK) = HGLQ(K) . 0 1 . [GLQ((C) X Qo(n)]
=1

and therefore ® descends to give a non-canonical (depending on choices of representatives for the
class group of K) collection of h functions F': GLy(C) - Viyr42(C) defined by

F'(9) ::@((g ?)g). (1.5)

We can descend even more and see the functions F; of above as functions in the hyperbolic space
defined by Hs := {(2,t) : 2 € C,t € Ryp}, this can be done by the following lemma:

Lemma 1.2. There is a decomposition GLy(C) = Z(GL2(C)) - B-SU3(C), where

B:{(é i):ze@,teR>0}.
a b t z\[v -u
(c d) B C(0 1) (u v ) (16)

b
Explicity, for (a d) e GLy(C),
c



1.2. Automorphic forms for GLa(K) 8

where

= ellf +1aP), u=S, 0= (

. ac + bd _ lad - bc]
e fdPT T el + [dP

1
ad —bc \2
lad —bc| ]

Moreover, in the decomposition (1.6), t and z are uniquely determined, and ¢, u and v are uniquely
up to choice of the sign of e.

Proof. See [7], Corollary 43. O

By the decomposition of GL2(C) state above and considering that B ~ #3, then using properties
ii) and iii) in Definition 1.12 we obtain h functions F': H3z — Vj4s42(C) defined by

. At
Fi(z,t) = oL i (0 i) (1.7)

where the factor t*17%271 comes from [18] where each F; is defined by

i R L
)

and since by property i) in Definition 1.12 we have

iltz_ i itz_g-kvlgﬂjgitz
L 0 R o L R ()

then (1.7) follows.

The properties i), ii) and iii) satisfied by ® in Definition 1.12 give us an automorphy condition
satisfied by F* with respect to the discrete subgroup of SLo(K) defined by

-1
Ty(n) = SLQ(K)m(tOi (1)) Qo(n) (’; (1)) GL(C). (1.8)

Consider ® € M)(Qo(n), ) with A = [(k,€), (vi,v2)] and a fix idele s with trivial components

0
at infinity and n, then we obtain the functions F*(g) = @((; 1)g) on GLy(C), F*(z,t) =

¢ 0 0\
tuitve-l ps (O i) on Hs and the group I's(n) := SLa(K) N (; 1) Qo(n) (; 1) GL2(C), as be-
fore.

Definition 1.13. Let F: Hs — Vipi2(C) be a function:

(i) We say that F is a Bianchi modular form of weight A, level I' and nebentypus x if there exists
an idele s with trivial components at infinity and n, such that F = F°, T' = T's(n) and x = 90;1
for some Bianchi modular form ® of weight A, level Qo(n) and central action ¢ whose conductor

divides n.

(ii) We say that F is a cusp form if the Bianchi modular form ® is cuspidal.
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We denote the spaces of such forms by Mx(T, x) and S\(T',x) respectively.

We can compute explicitly the automorphy condition satisfied by F with respect to I' but before

we need some definitions.

Definition 1.14. There is an action of GLa(C) on Hs when we consider it as a quotient

GLy(C)/C*SUs(C). This action can be described explicitly as:
(a 2) (o) = ((az+b)(cz+d) +adtf?  |ad - be|t )
c

lcz + d|? + |ct]? "z + d)? + |ct]?

b
Definition 1.15. Define the factor of automorphy J(v;(z,t)) for v = (a d) € GLo(C) and
c

(Z)t) € HS by

—-ct cz+d

T3 (1)) = (cz+d at )

Note that J(71727 (Z,t)) = ‘]('727 (Z7t))'](’71772 ! (Z7t)) for all V1,72 € SLQ(C)

Lemma 1.3. Let F be a Bianchi modular form of weight X = [(k,£), (vi,v2)], level T' and neben-
typus x, then

F(v-(51) = x(d)F (2, 8) prre2(J (7; (2,1)))- (1.9)

b
forall’y:(a )GF.
c d

Remark 1.6. Note that we see pii¢i2 as a representation of GLo(C).

Proof. (of Lemma 1.3) Recall by Definition 1.13 that exist ® € M (Qo(n), ) with A = [(k, £), (v1,v2)]
and an idele s with trivial components at infinity and n such that F = F*, I' = T's(n) and x = ¢, .

b t 10
Let v = ¢ €T, goo = : . ,.. | € GLa(Ak) with ¢ € Ryg and z € C and let 7/ be
c d 01 0 1

the diagonal embedding of v in GL2(Ag) then by property (i) of Definition 1.12 we have

oo ol o)l e o

t 1 0
On the other hand, if we denote g/ = (7 (O i) - (O 1) ) ) € GL2(Ak), then by property iii)

of Definition 1.12 and Lemma 1.2 we have

o (R A B 1

= ou(d) peo (O F* (’; i)ﬂk+z+2 (_ E)
u v
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with
t , (az+b)(cz+d) +aclt]?

Tl dP e T [z v dP et

C=(lez +dP +etP)z, ¢

ct cz+d

= N V= .
(lcz +dJ? + |ct]?) 2 (lcz +dJ? + |ct]?) 2

Now, since SOoo(C) = (|CZ + d|2 + |Ct|2)—%—v1—vz and

/ ZI 1-vi—v2 1-v1-vo
Fs(t )(;) J—"S(z',t’):(;) Py (a.t)),

0 1 lcz +d|? + |ct|? lcz + d|? + |ct|?

we have
—v1 -V kit s v
(V' goo) = pu(d)t' ™72 (lez + d? + |ct?) 2 T F (- (2,1)) prsta (u . )

and noting that

kel _ v -Uu 1 [v -u
(lez+dP +1ctl*) ™2 ' prses ( ) = Phits2 ((ICZ +df? + |ct]*) 2 ( ))
u v u v

= prres2(J (s (Z7t)))_1

Then we have

2 (7’ (; (1)) gw) — a1 (- (5 ) pkrta (T (35 (1))

= x(d) TR F(y - (20) prrena (T (3 (2,1))) 7 (1.11)

Putting together (1.10) and (1.11) we obtain the result. O

In analogous way to modular forms we can define a slash operator for Bianchi modular forms that

will be important in next sections to compute the explicit action by Hecke operators.

Definition 1.16. Let F € M (T, x) with A = [(k,£), (v1,v2)], then for every v € GLy(C) define

(F)(r) 1= det(7) 5 det(7) 2 2 F (- (2:))okkens (J (ﬁ (z,t))) . (1.12)

Remark 1.7. 1) F|,(0,1) = F(g) for g € GL2(C), in particular

t =z
d Z)m,m(o )

0 1

2) (Fl) (2.8) = X(A)F (1) for 7= (j b) eT.
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1.2.2 Fourier expansion and cuspidal conditions
In this section we recall the Fourier expansion of a Bianchi modular form and the descent of such
expansion at all cusps P1(K) = K u {co}.
Let A =[(k,¢), (v1,v2)] as before, consider the set Jy consisting of the four elements
j = (jlaj?) = (i(k + 1)7 i(£+ 1))

and define

. k+0+2 J2— 71
h(j)=—5—+=5—

() = (=01 + 50 - Gk D)=+ S (€ )]

Let @ : GLa(Ag) = Viirr2(C) be a Bianchi modular form of weight A = [(k,£), (v1,v2)], level
Qo(n) and central action ¢, by Theorem 6.7 in [20], ® has a Fourier-Whittacker expansion given
by

¢ T -
a[F )| T tggﬂ( N )cj(m,<1>)X’f+f+2-h<ﬂ>yh<ﬂ>+ S ¢(atD, &)W (ate)ex (02) |,
01 jedx (4) acK*

(1.13)

where:

i) The functions ¢;(-, ®) on the zero Fourier coefficient and the Fourier coefficients c(-, ®) inside
the sum, are functions on the fractional ideals of K, with ¢;(-,®) = 0 and ¢(Z,®) = 0 for [

not-integral,

iii) ex is an additive character of K\Ag defined by

€K :( H (eququ/Qq)) “(eoo OTTC/R)v
q

prime

for

€q (Z djqj) = e 2mMTj«0did  4pd Coo(r) = eQm’r;
J
and

iv) W:C* - Viyps2(C) is the Whittaker function

RHe2 ey 042\ 1
W= () e

s l+1-n
(_) Kn,g,1(47r]s|)Xk+€+2_"Y",
n il

n=0

where K, () is (a modified Bessel function which is) a solution to the differential equation
2

d°K, 1dK, n
+— -|1+—= | K,=0,
dz? 1 dx 22 )"
with the asymptotic behaviour
I

K,(z)~ %e_x
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as r — 00,

Remark 1.8. Note that for all Bianchi modular form ® = ®oX*+2 4+ &, Xk+t+2nyn o 4
Bpror2Y "2 the constant term in the Fourier expansion of ®, is trivial if n ¢ {h(j)|j € J\} =
{0,k+1,0+1,k+0+2}.

The Fourier expansion of ® descends to Hs where we can describe it in the individual components

Fi of ® (removing references to adeles). In fact, following [18] we have

i . X _k+ﬁ+2 i k+l+2-ny n
F'l (z,1); 1= Z Fr(z,t) X YY",

n=0
where
. j1+j0—k—£ 2
Fi(zt) =t (’”“g+ )5,1(]-),”0]-(15@-1)) (1.14)
n
l+1-n
k + E + 2 1 [0 27ri(az+@)
Y (e D W ECEIP (W) Koo 1(dnfalt)e |

where to ease notation we have written ¢;(¢;D) and c(at;D) instead ¢;(t;D, ®) and c(at;D, P).

For each i = 1,..., h, equation (1.14) may be thought of as the Fourier expansion of F* at the cusp
of infinity which by Remark 1.8 satisfies that the constant term in the Fourier expansion of F¢ is
trivial if n ¢ {h(j)|je Jn} ={0,k+ 1,0+ 1, k+{+2}.

We must consider Fourier expansions at all the “K-rational” cusps P!(K) = K u {oo}, for this,
let o € GLy(K) sending oo to the cusp s. For each i = 1,...,h, since F' ¢ M(kvl)(l“i(n),gpgl) then
F'lo € Mg1y(o7'Ti(n)o, o;') and hence F'|, has a Fourier expansion as in (1.14).

Observe that, in particular, for cusps different than co the constant term of (F?|,), can be non-
trivial for n ¢ {h(j)|j € Ja} ={0,k+ 1,0+ 1,k + ¢+ 2}.

Definition 1.17. We say that F* vanishes at the cusp s if F'|, has trivial constant term, and

quasi-vanishes at the cusp s if (F'lo)n has trivial constant term for 1 <n <k+/£+1.

Remark 1.9. 1) The property of vanishing and quasi-vanishing at the cusp s are well defined,
i.e. are independent of the choice of o, in fact, any other choice has the form o' = o1, where
7 € GLy(K) fizes 0o and may thus be written 7= (& 4). Therefore, by 1.10 we have

Fllor(2,t) = (ad)%@f%fila(f (2,0))Phsre2 (J(

T (st
\/det(T)( )))

and then for each 0 <n <k +{+2 we have

(Flo)u(z:) = (ad) 5 ad) *(Flo)a (az +b aft )

d71 ==+1-n d*ln
T ) @ e

Showing that the constant term of (F|, )y is trivial if and only if the constant term of (F¥or)n

18 trivial
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2) Let ® € Sx(Q(n), ) be a cuspidal Bianchi modular form, then the cuspidal condition vi)
in Definition 1.12 is equivalent to the vanishing of F' at all cusps for each 0 < i < h (see
Proposition 3.2 in [43]).

Definition 1.18. We say that a Bianchi modular form ® is quasi-cuspidal if F* quasi-vanishes at

all cusps for 0 <i < h.

1.2.3 (C-cuspidality

In this section suppose n = (p)m with ((p),m) = 1 and let ® € M (Qo(n), ) with F* € My (T;(n), ;1)

its corresponding descent to Hs for i = 1,..., h. Define for each ¢ the set of cusps
Ci = I‘Z(m)oo @] I‘l(m)O,

the subset of P'(K) containing co and all 5 € K in lowest terms with z € I; either y € m or

y € (O /m)*. Note that I';(m) stabilices C; and hence its subgroup I';(n).
Definition 1.19. We say that F' is C;-cuspidal if quasi-vanishes at all cusps in C;.
Note that the previous definition does not look like the natural generalisation of a modular form

being C-cuspidal given in [4] because we are not asking for vanishing of F* at the cusps of C;,

instead we just need quasi-vanishing, i.e., we do not care about the vanish of the functions .7-'6 and

F 040 The motivation for this definition will become clear in Proposition 2.3 where we attach

certain modular symbols to such C;-cuspidal forms.

We also want to state C;-cuspidality for all i as a property of @, if we write C' = (C1,...,C}) then
Definition 1.20. We say that ® is C-cuspidal if F* is Cj-cuspidal for i=1,...,h.

Remark 1.10. Note that for Bianchi modular forms with level at p we have

{cuspidal} c {quasi-cuspidal} c {C — cuspidal} c { Bianchi modular forms}.

1.2.4 Hecke operators

Let q c Ok be a prime ideal and fix a uniformiser 7 of K. Then the Hecke operator is given by
1 0 1 0

the double coset operator |:Qo(n) (0 )Qo(n)] where we see (0 ) € GL2(Ky) as a matrix in
Tq Tq

GLQ(A}f() putting the identity in the places outside q. More explicitly we can describe the action
of the Hecke operators Ty on M(Qo(n),¢) for q + n by

®lr, () = ugdf (9 (7(? Z16)) ve (g (é :q)) '

1 0
where as before we see (78] 1;) , (0 ) € GLa(K) as matrices in GLQ(A};) putting the identity
Tq

in the places outside q.
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If g|n, we write U instead of T and define

Do) = 3 cb(g(f)" ?))
u mod q

The Ty and Uq are all independent of choices of representatives (see [40, chap. VI]).

We can describe the action of Hecke operators on the Bianchi modular forms F? but when the

ideals are not principal we need to use the whole collection (F*, ..., F") to describe it.

Recall our fixed representatives Iy, ..., I, for the class group and consider the prime ideal q 4 n,
then for each i € {1,...,h} there is a unique j; € {1, ..., h} such that ql; = (y)I},, for o; € K. Then
T, act on each component of (F L ..., F") by double cosets in the following way by

lrjl(n)(é O?I)Fl(n)],...,}"jh [rjh(n)(; O?h)rh(n)]). (1.15)

We can compute this concretely by writing down explicit representatives of the double coset. Note

(I)|Tq = (flv"'afh)|Tq = (j:]l

that the T, operator permute the individual components, depending on the class of q in the class
group; indeed, this permutation corresponds to multiplication by [q] in the class group. When q|n,
the Hecke operator at q is denoted by U, and defined in the same way as (1.15).

We can similarly define Hecke operators for each ideal I ¢ Ok. Indeed, let I = [],q" where q"
exactly divides I, then the Hecke operator 17 is totally determined by the Hecke operators T; for
qll.

Note that if ® is quasi-cuspidal then CID\Tq is quasi-cuspidal for all Hecke operators Tj, but for

C-cuspidal forms we have a more subtle result.

Proposition 1.2. Let ® € M»(Qp(n),¢) be a C-cuspidal Bianchi modular form, with n = (p)m
and (m, (p)) = 1; then @|z, for all primes q +n and ®|y, for all primes p|(p) are C-cuspidal.

Proof. By (1.15) we have to show that for all prime q + m with q/; = («o;)1; the function

fﬁr[rﬁm ((1] 0_)ri<n>

Qg

is Cj-cuspidal.

We first observe 2 facts:
1) I';(n) stabilices C; for all i =1, ..., h.

Since Cj :=T';(m)oo U T';(m)0 then clearly I';(m) stabilices C; and hence its subgroup I';(n).
1 0
2) We have (O ) -¢; € Cj, for all ¢; € C;.
Q5

Since (q,m) = 1 there exists yq € q such that y; € (Ox/m)*, analogously, (I;,m) = 1 there exists
y; € I; such that y; € (Og/m)*. By the identity ql; = (a;)I;, there exist an element ¢;, € I;, such

that yqy; = a;tj, and we have
a; = QY% (1.16)

Ji
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Let ¢; = x/y, then z € I; and either y e m or y € (O /m)*, then we have
1 0y z =z o
0 ;)] ¥ @y  Ygyiy

10
with ¢, € I;, and either yqy;y € m or yqu;y € (Ox/m)* then (0 ) ¢ € Cj,.
(&%)

1 0
Now, back to the proof, let s; € C;, 05, € GL2(K') be such that oy,-00 = s; and let v € T'j, (n) (0 )Fi(n),
Q;

then we have to show that the constant term of (fji|wasi )n vanish for 1<n<k+/0+1.

0 1 0
)% with ~; € I'j(n) then ;- s; = s; € C; by 1), (0 ) -8} =85, € Cj, by 2) and
o

)

1
=1,

Yj; - 8j; = 85, € Cj; by 1), then we have

10 10 1 0\ , o
i 1Tg, + OO0 = 75, i " Sg = Vi, S, = Y4085 =S,
’Y]z 0 a; % Si ’y]z 0 a; ’YZ g ’yjz 0 a; 1 ,y.jz Ji Ji Ji

Since F’i is Cj,-cuspidal then for all sj, € Cj; and Ty € GL2(K) such that Oy - 00 = = 57, we have

that the constant term of (.7:]1|0 , In 18 tr1v1al for l<n<k+f+1 In partlcular taklng T5 =705,
31
we obtain the result. O

Definition 1.21. A Bianchi modular form is called an eigenform if it is a simultaneous eigenvector

for the Hecke operators.

Aditionally to Hecke operators we have an important involution acting on the space M (Qo(n), ).

Let v € Ok be such that nO, = v, and define v, € GLQ(A};) by

0 -1
toln
(m)e=1\v 0
I : otherwise.

Define the Weil involution by the double coset W, := [Q(n)1Q0(n)] that act on M) (Qo(n), )
by
Bliw, (9) = (-1)7 2 v 2T T2 D (gy).

If K has class number 1 and A = (k, k), then supposing n = () we get the following explicit form
of Wy in the descent F of ® € My, 1)(0(n), ) given by

Flwa = CDWIF (1.17)
v O)

and we call it the Fricke involution.

We can also in this case compute easily the action of W), on the components of F:
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Lemma 1.4. Let F € M 1) (To(n), oab), then for 0 <n <2k +2 we have

—2k— n, n—K— -n 1
(Flw.)zke2-n (0,1) = t2E72(=1)ktnyn=k=1)y) fn(o,w).

0 ) then - (0,t) = (0,1/(|v|t)) and

14

0
Proof. Note that if v = (

2k+2
-1 v X\ b B X
p2k+2(‘](\/m7(07t)))(y) - J(\/M7(O,t)) (Y)

0 —1/_1/2t_1 X 2k+2
= (3—1/2t—1 0 )(Y))

2k+2
_y iy )T
g2y

2k+2
where (X)) 2 (X242 X1y, | xFi2onyn |y kel yrhe2ye

Then,

(f|wn)(0,t)(;()2k+2 _ (_1)kyk}-(0 1)(0’t)(§/()2k+2
v 0

2k+2
—y—l/%—ly) '

= (DM 1) ( iy

We finish this section with an important definition

Definition 1.22. A Bianchi modular form ® of level n is called newform if it is an eigenform

that is not induced from a Bianchi modular form with level strictly dividing n.

Remark 1.11. Notice that a Bianchi newform F is an eigenvector for the Fricke involution Wy
with Flw, = e(m)F for e(n) = x1 (see section 2 in [11]).

1.2.5 p-stabilisations

For Bianchi modular forms without level at a certain prime ¢, there exists a process called g-
stabilisation that construct new Bianchi modular forms with level at q. In this section we explicitly
describe this process for the special case of Bianchi modular forms of parallel weight and central
action of trivial conductor, this specific case will be important for us when finding the functional

equation of p-adic L-functions.
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Let ® be a Bianchi modular form of weight (k, k), level Qp(n) with p + n and central action ¢ with

infinity type (—k,—k) and trivial conductor and recall the Hecke operators defined in section 1.2.4.

Let A, denote the T}, eigenvalue of ®, and let oy, and 3, denote the roots of the Hecke polynomial
~ M X + N(p)ktt,

Definition 1.23. Let m, € O be a fized uniformizer of K,. Then, define the p-stabilisations of ®
to be
o _ 10 _ 1 0
P (g) = <1>(9)—ap1<1>(9( )) and % (g) := ‘P(g)—ﬁplﬂb(g( ))
0 mp 0 mp

1 0
where we see (0 ) € GLa(Kyp) as a matriz in GLQ(A;;-) putting 1 in the places outside p.
Tp

Lemma 1.5. The Bianchi modular forms ®* and ®% are eigenforms of level Qo(pn) with Up-

eigenvalues oy and B, respectively.

Proof. The level is clear so we prove that ®** has Up-eigenvalue ay.

Since

M®(g) = Blr, (9) = Do, (g) + @ (g ((1) 0 )) ,
Tp

we have

Py, (9) =Ap¢>(9)—<1>(g ((1) 0)). (1.18)

Ty

On the other hand we have

ALY SR C ) M € [ vt S

- o) ¥ @( ((1) 1)) NEE Y @) - Np) ()

u mod p u mod p

where third equality uses property (ii) in Definition 1.12 with the character ¢,. In forth equality
we use invariance of ® by Qo(n) and @e.(my)p(mp) = 1 then () = Yoo (mp) L = |mp[** = N(p)*,

with |my| the archimedean norm of 7, as an element of K.

Applying Uy, using 1.18 and 1.19 we have

B 1, (9) = Bl (9) - a1<1>|U,,(g(; 0))
T
~2(9) - @( ( ) )

)
= (= B,)®(g) - ‘1’(9(1 0))

0 7Tp

:%@(9)—‘1’( ( ))_%(I)ap(g)
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For &% is analogous. O

We can describe explicitly the descent of the p-stabilisation ®** to Hg, for example, in the case

when K has class number 1 we proceed as follows:

0 1 01

a _ ol t =z 1 O
oo -sonr-sgel () ) 2)-)

t 10
Taking geo = (( Z) , ( ),) € GLy(Ag) with ¢t € Ry and z € C we define

Note that

(96 ) (01) (o))
el e g0

Where first equality follows by the left GL2(K') invariance of ® (Property (i) in Definition 2.1) with

i
the matrix | " . In second equality since ¢ has trivial conductor, Property (iii) in Definition

0 0 10
1.12 is just right Qy(n) invariance of ® and we use ((733 1),...,(78J 1),..(0 1),...) € Qo(n)

where the place p have the identity matrix. Third equality uses property (ii) in Definition 1.12
with the character p. In forth equality we use oo (7y)@p(mp) = 1 then () = poo (1) = |mp|**
and the definition of F. Finally in the last equality we use (1.7) and 1) in Remark 1.7. Recalling
apf =

o252 we have

By

t z 1 0
1o | =t Pt t) = t— t).
Qy 0 1 ERREY) 0 T |7TP| Qy f|(ﬂ'p 0)('2’ ) |77p|2f|(7rp O)(za )
0 1

0 1

Now, let F*» denote the descent of ®* to Hg then

t z By

t]—'ap(z,t)=F0cp((0 1))_@04;3(900)_75}“(2715)t?]—“(ﬁp 0)(2715)7
0 1
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obtaining

]:O‘P(z,t):}"(z,t)——ﬁp F
|y (779 0

(Z,t) = f(zvt) - ﬁpg(z7t)7 (1-20)

where

m 0

G(2,1) = |mp| *F]
v

Then, considering the descent of the p-stabilisation of a Bianchi modular form we define the p-

stabilisations of a Bianchi eigenform F € My, 1y(T'o(n)) to be

For(z,t) = F(2,t) - BpG(2,t), FP(z,t) = F(z,t) - pG(z,1).
The p-stabilisations F* and F” are Bianchi eigenforms of level T'g(pn) and U, eigenvalues «ay, and
By

Lemma 1.6. Let F € M ;y(To(n)) be a quasi-cuspidal Bianchi modular form, then any p-

stabilisation of F is quasi-cuspidal.

. . U . .
Proof. Since the matrix P on Bianchi modular forms does not move, sum or permute the

components F,, then the constant terms at the position 1 < n < 2k + 1 remains trivial for all

cusps. ]

1.2.6 Twists

Given a Bianchi modular form F and a Hecke character v, there exists an operator that allow us

to twist ® by v and obtain a new Bianchi modular form.

Definition 1.24. Let ® € M) (Qo(n),¢) and ¢ be a Hecke character of conductor §. Define the
twisting operator R(v) by

QIR(P)(g) =1(det(g)) > Uy(a)® (g ((1) j)) , for geGLy(Ak).
[a]e(F1 /O )"

1 a
where we consider the unipotent matriz (O 1) as an element in GLQ(AQ).

Proposition 1.3. Let ® € M)(Qo(n),p) with X\ =[(k, ), (v1,v2)] where ¢ has infinity type (—k —
21, -4 - 2v3) and conductor dividing n and let b be a Hecke character of infinity type (g,7) and
conductor f. Then ®|R() € M,(Qo(m), op?) where v = [(k,£), (v1 — q,v2 —7)] and m = nn {2

Proof. See [20, §6, (6.7)]. O

Notation: For the rest of this section suppose that K has class number 1.
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Remark 1.12. Suppose f = (f), if F is the descent of a Bianchi modular form ® € M(Qo(n),¥)
and we denote by Fy the descent of ®|R(v)) then by [20, (6.9)], we have

Fp= wf(b/f)ﬂ(l b/f)ﬂ/foo(f) > Tﬁf(b)ﬂ(

0 1

be(Ox [1)* be(Ok /D)~

Loo/fY
0 1

which is analogous to the twist of a modular form by a Dirichlet character in [22, Thm 7.4 (7.50)]

up to a factor of a Gauss sum (and 1 ) which then appears in the Fourier expansion of F (see [20,

(6.8)]).

Recall the Fricke involution defined in (1.17), then

Lemma 1.7. If}-E M(k7k)(ro(l’l),§0;1) then ~7:|W“ € M(kjk)(ro(n),gpn).

0
Proof. Note that (

14

-1 0 -1 0 -1
normalizes the group I'g(n), explicitly v=9 where
0 v 0 v 0

d - b
’7, = (—bl/ Ca/y) if = (Z d) Hence, for F ¢ M(k7k)(1“0(n),g0;1) and Y€ Fo(n) we have

v

(7'"W“)|w‘(1)’““V"“7'"(0 _1) = (-1)**F| ’(0 1)_90n(7,)1F|Wn_80n(7)‘7:Wm
¥
v 0

v 0

where in last equality we use that ad =1 mod n. U
Consider F € M(hk)(f’o(n),go;l) and Fy € My 1) (To(m), (o~ tp72)y) its twist by ¢, then we can
relate Flyw, with Fy|w, by the following result.

Proposition 1.4. Let F € M(hk)(Fo(n),go;l) be a Bianchi modular form and let ¢ be a Hecke
character of conductor § with (n,f) =1. Then

Fplwm = ()7 5(=1) oo () (Flwi) o -
for (m) =m =nf*= (v)(f)*, m=vf>.

Proof. Since for any v we have the identity

L) L [ [ e [
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1+bvv

and choosing v such that bvr = -1 (modf) to bring ( i ! ) into I'g(n), then
—bv

0 1 0

:(_1)klm|kﬂf o\(o -1\( f v )1 ¢
0 ff\v o0 —bu1+§v”o1

7:|(1 %)W = (1)k|m|k}—(1

— (=1)FIml*| £2|-* F
DM Foo-u 1oy (1.21)
v 0 —bv 1+‘?UV 0 1
= InlE| £]-2k ||k
U Py
-bv # 0 1

G VAR R TR Y

R [V 0 1

Where in the last equality we use that m = v f? and Fly, € M1y (To(n), ¢n) by Lemma 1.7. Since
we have that bvv = ~1 (mod f), then 1;(b) = @Z)f(—y)‘ldjf(v)_l. Now multiplying (1.21) by the latter
and summing over the reduced residue class of (O /f)* we obtain

> ¢f(b)7:|(1 b/f) =on(f) ()" Y ¢f(v)1(fw.,)(1 v)-
Win

be(OK [f)* ve(OK [f)*

|

0 1 0 1

Multiplying by 9e (f) in both sides and using Remark 1.12 we have
Fulivn = o) (-0 W () X w5(0) 7 (Flu)| (1 )
f

ve(Ok [f)*
01

Finally, since ¢;(v) ™" = thoo () (o0 (f) 105(v) 1) = thoo ()95 (v/f) ™" we obtain the result. O

1.2.7 L-function of Bianchi modular forms

In an analogous way to Hecke characters, we can attach a complex L-function to a Bianchi modular

form ® by taking a Dirichlet series but this time using the Fourier coefficients of F.

Definition 1.25. Let ¢ be a Hecke character over K of conductor f. We define the L-function of

a Bianchi modular form ® twisted by ¥ as

L(®,¢,8):= > c(a,®)p(a)N(a)™*.

0#acO g

(a,§)=1
Note that the constant term of ® is not included in the sum.

For every Bianchi modular form F’ corresponding to ® respect to I; we assign a “part” of the
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above L-function:

Definition 1.26. Let w = |O%|. Define

L@, s) = L(F p,s) =w™ Y c(adl;, ®)(adl;)N(adl;) ™
ae KX~

1

where here we scale by w™ as when we sum over element of K™, we include each ideal w times

(once for each unit).

Note that
L((Dv¢78) = Ll(@,d)75) +oeet Lh(¢)was)'

Remark 1.13. In [}0], it is proved that each component of the twisted L-function is a holomorphic

function on a right half-plane.

For C-cuspidal Bianchi modular forms, each component of the L-function can be written in terms

of an integral formula.

Proposition 1.5. Let ® € M(;, ¢(Q0(n)) be a C-cuspidal Bianchi modular form with n = (p)m
and m coprime to (p), then for a Hecke character v of K of conductor § such that (f,m)=1 and
(f, I;) = 1 for each i and infinity type (u,v) = (—MT_”, MT_") with 1 <n<k+{+1, we have

L(@,,5) = AGnp,s) | Y wta) [ F ), (1.22)
[ale} ! /Ox 0
((a)f,f)=1

where

L+1— -1
. 4(271')28 /_1+ n(k+€+2)

n

T BT (s + " (s - 5 wr (w71

A(i/n?wv S) = w(tz)|t2|

Proof. This is a generalization for weight (k,¢) of [41, Thm.1.8] where the result is stated for
cuspidal Bianchi modular forms, in this case after applying the changes for the weight we have to

be careful with the elements a € K that we take in order to ensure the convergence of the integrals.

For each b (mod f) we can take an element dj, € Ok such that dy, € I1, Io, ..., I, and dp = b (mod §)

using the Chinese Remainder Theorem.

Let o; € K such that fI; = (a;)I};, note that a;* e 1 I71;, ¢ §71I7, so in particular as b ranges over
all classes of (O /f)* and as dj, € I;, we see that d/a; ranges over a full set of coset representatives
[a] for {1/Ok with (a)f coprime to f (this relies on the fact that we are taking invertible elements
(mod ). Accordingly, the ideal (dy/c;) = §1J, where J is coprime to f, and hence dp/c; ¢ Ok. It
is clear that if b # b’ (mod f) then dy/c; and dy /a; define different classes in ~/Of).

By (1.16) we have that o; = ysy;/t;, with y; € (O /m)*, y; € (Og/m)* and t;, € I},.
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Since y5y; € (O /m)* and dy, € I; we obtain
dp 3 dbtji
a5 YilYi

ECZ‘.

Since ® is C-cuspidal, then for all i, ' vanish for all cusps in C; for 1 < n <k + £+ 1; then taking
a = dy/a; as above for the representatives [a] for §!/O with (a)f coprime to § we conclude that

the integrals in 1.22 converges. O

Via meromorphic continuation, the integrals above gives the definition of the L-function on all C.

It is convenient to think the twisted L-function as a function on Hecke characters instead as a

complex function of one variable. Then we put
Definition 1.27. Let ® be a Bianchi modular form, and let v a Hecke character. Then define

L(®,¢) = L(®,¢,1).

In the case when the Bianchi modular form is an eigenform, its Fourier coefficients coincide with
its Hecke eigenvalues, then, the L-function of an eigenform is related to its Hecke eigenvalues, so
that in a sense, the L-functions are built from local data at the finite primes (much like in the
classical case, where the L-function of a Hecke eigenform has an Euler product). We complete the

L-function by adding the appropriate factors at infinity.

Definition 1.28. Let ¢ be a Hecke character of infinity type (q,r). Define

C(g+1)I(r+1)
(2mi) a1 (2mi)r+t

where I' is the usual Gamma function. This is the L-function renormalised by Deligne’s I'-factors

A(‘I’ﬂ/f) = L(‘I’ﬂ/f)

at infinity.

Theorem 1.1. Let ® € My, )(Q0(n)) be a C-cuspidal Bianchi modular form with n = (p)m and m
coprime to (p), then for a Hecke character 1 of K of conductor f such that (f,m) =1 and (f,1;) =1
for each i and infinity type 0 < (q,7) < (k,£), we have

A((I)v 1/}) =

(-1 (o) (12 * yaer i
1/1(xf)szZT((éw(i1)l) ;w(ti) []Z/o ¢f(a)f0 " Flagrn (@, 0)dt ], (1.23)

i= alef 1/ Ok

((a)f,1)=1

Proof. This is a generalization for weight (&, ¢) of Theorem 2.11 in [41] for cuspidal Bianchi modular

forms.

For the proof we first prove the analogue of Proposition 2.10 in [41] for C-cuspidal forms of weight
(K, £) using Proposition 1.5 and then we generalise section 2.6 in [41] to obtain the result. O

In the case when we are dealing with cuspidal Bianchi modular forms, the “critical” values of this

L-function can be controlled; in particular, we have the following (See Theorem 8.1 in [20]):
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Proposition 1.6. There exists a period Qg € C* and a number field E such that, if 1 is a Hecke
character of infinity type 0 < (q,7) < (k, k), with q,r € Z, we have

A(‘P ¥) ¢ B(v),

where E(¢) c Q is the extension of E generated by the values of 1).

In general, we do not have this result for non-cuspidal Bianchi modular forms, but finding such a
period in the non-cuspidal case is related with our current work (see Remark 4.1). Nevertheless
depending on the specific Bianchi modular forms we are interested we can prove algebraicity of

critical L-values “by hand” (as in Proposition 1.8 in next sections).

1.2.8 Functional equation of the L-function

In this section we obtain the functional equation of the L-function of quasi-cuspidal Bianchi auto-

morphic newforms of parallel weight, also K has class number 1.

By Remark 1.10, Theorem 1.1 holds for quasi-cuspidal Bianchi modular forms with level at (p), in
fact, we can obtain a more general result for L-functions of quasi-cuspidal Bianchi modular forms
twisted by a character ¢ without restrictions on the level of F and the conductor of . We state

the result for parallel weight and class number 1.

Theorem 1.2. Let F be a quasi-cuspidal Bianchi modular form of weight (k,k) and level To(n)
then for a Hecke character ¢ of conductor § = (f) and infinity type 0 < (q,r) < (k,k) we have

(1)1 .
b T (b fo)dt
Duwr(¢ (%)) be(og/fvwf( /f)f R

A(fvw) =

Using the integral form of the L function of a Bianchi modular form and the Fricke involution we

can obtain the functional equation of the L-function.

Theorem 1.3. Let F € My, 1y(T'o(n)) be a quasi-cuspidal newform with n = (v) and let ¢ be a
Hecke character of K of conductor f = (f) with (f,v) =1 and infinity type 0 < (q,7) < (k, k), the

L-function of F satisfies the following functional equation

(=D e(m)l*r (¥l [35.)
Ui (=1) Yoo (-1)T (1)

A(]‘-ﬂ/)): A(]:,T/JJHKK)
Proof. By Theorem 1.2 we know that for a Hecke character ¢ of K of conductor f = (f) and infinity
type 0< (¢,7) < (k, k), we have

(-1)7*14 s
Py(b/ f t7" Frosq—r+1(b/ f,t)dt
wT(w‘l)(kffffu) be(og/f)x o )[ traera (01:0)

_ +1 o0
()" b tqf[ S L) Frsgrnr (B1F.1) |

- _ 2k+2
DwT(w 1)(k+q—+r+1 be(Ok [ f)*

A(}_Jl}): D
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(-4 footwf (0,t)dt
- TN 2k+2 ¥ k+g-r+1(0,1)dt,
D’LUT(’Lﬂ 1)(k+q—+r+1) 0

where last equality comes from Remark 1.12.
Changing variable ¢t — 1/(|m]t) we have
(1) |

DwT(w_l)( 2k+2

k+q-r+1

HF= ) LT F g (0,1 (mlt) ).

Recall that F, has weight [(k,k),(-q,-7)] then by Lemma 1.4

(Folwa De-grrs (0,8) = 722 (=1) T m |~ F 40 (0,1/(fmlt))
and replacing Fy p+q-r+1(0,1/(|m|t)) above we have
()

Dw,]_(w_l)( 2k+2 )

k+g-r+1

N fooot_q_T_Q [t2k+2(_l)q—r+1m—q+r’m’k+q—r+1(:th/vln)kiqﬁwl(oyt)]dt.

(1) AT

 Dur( (57

By Proposition 1.4 since (v, f) = 1 we have Fylw, = ¥3(—v) " too(f)*(Flw,)y-1, also F is a

newform, then Fylw,, = e(n)vj(-v) o (f)>Fy-1 and we have

(=1)"4m= [ e(n) oo ()

Dwr () (555 )wi(-y) - Jo

GO it e (1 t%w[

Dur(e (22, () o

(=1)"4m= " |m|" " e(n) oo () 1 ® kg-r
= b ghar o (b)f, ).
DWT(¢_1)(kf:jr2+1)¢f(_V) be((?%/f)X pr ( /f)'/(; i 1( /f )

A(]:,’QZJ) =

fo I (Fylwin Vhmgrrs1 (0, 8)dt.

A(F, ) = 2T s (0,8)dt

> (O ) Frqera (b £,1) | dt

be(Ok [ f)*

Now note that the integral above is exactly the integral appearing on the coefficient c¢j_q - (b/f),

more explicitly

_ 2=t e 2k—q-r
Ch-go-r(V/f) = —5p 5~ . t Fr—qer+1(b/f,t)dt
(k7q+r+1)
: 2k+2 2k+2
and since (k—q-:—r-f-l) = (k+q—+r+1)’ we have

_ m-"m, k—2r6 2
( 1)2 | | (n)¢W(f) Z @b{l(b/f)ck—q,k—r(b/f)‘

A(F, ) =
(F,v) DwT(w*1)¢f(—V) be(Ok [ f)>

The Hecke character ¢~ - |XK has conductor f and infinity type (k — ¢,k —r) and we know by
Theorem 1.1 that

_1\k+q+r
( 1) 2 Z (¢_1| . |XK)f(b/f)Ck—q,k7r(b/f)

AF 5 ) =
BT Dwr (15 )Y ey
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(_1)k+q+r2|f|2k 3
~ Dur(ul- ) b/ )e-qir(b]1).
D’UJT(q/)| . |1_%];() be(O;/f)x wf ( /f)ck q,k ( /f)

Finally we obtain

-1
(=1)2m T m|* 2 e(n) oo (f)? | (D)7 2)f1* -
Duwr () gs(-v) lDwT(M'L&I;)] AT i)
_ DR 2 e () o (F)*7 (8] 13
T( D)=L f P
DM el 155 1y
TGN e R

A(fﬂﬁ) =

AF A7 [5,)

where we used that

T2 (£ sl (m)ee (F2) sl (v e (£2)
[7PF 7PF 7PF
- s ()

and (-1)7" Y} (v) = ) (-v). O

Remark 1.14. The theorem above generalizes the functional equation obtained in [11, Prop 2.1]
for the untwisted L-function of a cuspidal Bianchi modular form of weight (0,0). Also note that

Theorem 1.3 is not a new result, but rather a reformulation of a classical result in [23].
For the p-adic setting we work with the L-function of a Bianchi modular form with level at p

twisted by Hecke characters 1) with conductor f|p*°, then Theorem 1.3 no longer holds.

Fortunately, the L-function of a Bianchi modular form F of level coprime to a prime p and the
L-function of a p-stabilisation F** are related, in fact, if we define for a Hecke character y of

conductor f and € € C* the factor

Z;(X) =

{1 —ex(p)t p it (1.24)

: otherwise,

we have the following:

Lemma 1.8. Let ¢ be a Hecke character with conductor §f. We have for € € {ay, By}
AT ) = Z (0 [LOMF ),

Proof. Recall the definition of the p-stabilisation of F in (1.20).

0
(i) We first compute G,,: note that if v = (733 1) then v (2,t) = (mpz, |mp|t) and analogously to

Lemma 1.4 we have

1/2 2k+2
» ~y X 2k+2 T X
P2ok+2 ( ( /—det(’y) ( ))) )% 7T_p1/2Y
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Y m 0 T 2Y

X 2k+2 ~
6=ty ) =Iml A
v

2k+2
X\ 2k+2 o 7r1/2X
)(Zﬂf)(y) = |mp| 7 27:(7Tp27|7p|t)( i :

Computing the n-th component we have

k+1-n

6,0 -l Tyl () (1.25)
Tp

(ii) Now, we relate A(G, ) and A(F,v) when p + § (A(G, ) =0 if p|f ): by Theorem 1.1 and (1.25)

if 1) has infinity type 0 < (¢,7) < (k, k) we have

NG =) T ) [T Grrgera (1.0

bE(OK/f)X
0 - —q+r
=(+) > (/) f e |:|7Tp’1fk+q—r+1(ﬂ'pb/fv |7p[£) (—p) ]dt
be(Ox /1) 0 |l
_ +1
where () = Dwr(g/;—ll))q(k ﬁ,ﬁ? 3

Changing variable t - |my|™'¢ we obtain

AG) = e (m) N (+) X ) [ Frpa (bl )

be(Ok [/ f)*

= U)W () INE) ) T ) [ Py (b1 f. )

be(Ok [ f)*

=P(p)N(p) A(F, ),

where in second equality we change myb — bsince m, + f and in last equality we use ¥;(mp) o () ™" =
p(mp) = 1(p). Finally we obtain

N (p)F! 1 - YONOIY A(Fp) it p 4]
A A - YO g [0
Qp A(F, ) otherwise.

Noting that
PPN = (@ (PNE) ™)™ = @ (0)lwplk )7

Where z, is the idele associated to p. We have
A(F, ) = 2,7 (71 [, A (F, )

obtaining the result for the A-function of F; for F% is analogous. O

Let F, be a Bianchi modular form obtained by successively stabilising at each different prime p

above p a newform F € My, 1) (Fo(n)), with n = (v) prime to (p).

Lemma 1.9. For any Hecke character 1 of conductor f = (f) with (f,v) =1 and infinity type
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0<(q,r) < (k,k) we have

(nzsw)mp,w =e<f,w>(nzsv<wlr-@K))A(a,w»zK),

plp plp

DFe(mlplFr(wlE") .
where e(F, 1) = %(_V)ww(_yﬁw,l’)( and oy are the Uy-eigenvalues of Fy, for each p|p.

Proof. By Theorem 1.3 we have

A(F, ) =e(Fp)MF, 738 (1.26)

Now let p be a prime over p, if we define F“* as a p-—stabilisation of F, we obtain by Lemma 1.8

the following relations between the A-function of F*» and F
A(F, ) = 2, (W7 [, )MF, ), (1.27)
AF* 7[R, = Z" (OAF ). (1.28)
Putting (1.27), (1.26) and (1.28) together
Z," (O)MF ) = 2,7 (0) 2" (07| [, )MF )
= 2" () 2" (7[5, )e(F ) AF, 7Y [
= e(F ) 2" (7 [ )AF 07 [E )

Note that if p is inert or ramified we are done and F, = F*. If p split we have to do one more

stabilisation, let p be the other prime above p.
If we define F*“ as the p—stabilisation of F** and doing the same process above, we obtain

(H Z;“"(w)) A(FO05, ) = £(F,0) (H AT rf&,)) AF T, 7 [)-

plp plp
Putting F, = F*** when p split we obtain the result. O

1.3 Automorphic forms of GLy(K) from GLy(Q)

Let K be an imaginary quadratic extension of QQ as usual, then the base change lifting gives a map
from automorphic forms for GL2(Q) to automorphic forms for GLa(K'). This base change lifting

is a special case of Langlands functoriality.

The behaviour of base change Bianchi modular forms regarding cuspidality depend of a property

called complex multiplication of the classical modular forms to be lifted.

1.3.1 CM modular forms

Recall that —D is the discriminant of K and let xx be the Kronecker character of K, that is, the

associated quadratic character of conductor D.
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Definition 1.29. A cuspidal newform f =3,51 anq™ is said to have complex multiplication (CM)
by K if it admits a self twist by the Kronecker character x i of K, that is, if ag = Xk (q)aq for all
but finitely many primes q.

There is a connection between modular forms with complex multiplication (CM) and Hecke char-

acters of an imaginary quadratic field.

Let ¢ be a Hecke character of K of conductor m and infinity type (—k — 1,0) with k& > 0, then the

inverse Mellin transform f,, of L(yp,s) is known to be an eigenform:

fo(z) =Y ang" = ), ()@ where ¢ = 2™, 2z € C, Im(z) > 0.
n=1

a integral

In particular, if we define 7z to be the Dirichlet character modulo M = N(m) given by
¢(aOk)

1 with aeZ, (a, M) =1. (1.29)
a

nziaH

then:

Theorem 1.4. (Hecke, Shimura) f, is a newform of weight k + 2, level DM and nebentypus
character xxnz.

fo € Sr2(Lo(DM), xxnz)-

On the other hand, any newform with CM comes from a Hecke character by [34, Prop 4.4, Thm
4.5].

1.3.2 Base change Bianchi modular forms

Let f be a classical cuspidal newform of weight k + 2, level I'o(N) and nebentypus s, as was
mentioned previously, there is a process of base change lift from Q to K which constructs from f,
a Bianchi modular form f/r. Lifting may be described in the language of automorphic represen-

tations, or in the more classical language of automorphic forms.

Let m be the automorphic representation of GLy(Aqg) generated by f and let BC(7) be the base
change of m to GL2(Ak ) (see [26]). The base change of f to K is the normalised new vector f, in
BC(m) which is a Bianchi modular form of weight (k,k) and level n c Ok with %(’)KMN(’)K
(see section 2.3 in [17]).

Remark 1.15. The Hecke eigenvalues of [ are determined from those of f. For every prime q
not dividing the level of f, if the eigenvalue of T, on f is aq then the eigenvalue aq for q|q of its

base-change are given by the following:
i) if q splits in K as qOk = qq then aq = ag = aq;
i) if ¢ ramifies in K as qOx = q* then Qg = Qg;

2

i1) if q is inert in K with qOk = q then aq = a; - 24"+,
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When f does not have CM by K, its base change to K is cuspidal; on the other hand when f has
CM by K, then the base change to K is known to be non-cuspidal. In the non-cuspidal case we
need information about the constant terms at the cusps, to obtain such information we use the

classical lifting using automorphic forms described in [17].

Although the base change to K of a CM modular form is non-cuspidal, using the classical lifting

stated above, we can still prove a nice property of vanishing for the Bianchi modular forms resulting.

Proposition 1.7. Let f/x be the base change to K of a modular form f of weight k +2 with CM
by K, then fx is quasi-cuspidal.

Proof. We give briefly the details of how to check the C-cuspidality of f/k, all the ingredients
required are contained in Section 3.1 in [17]. First note that by (1.5), the Bianchi modular form
[/ give us h forms F': GL2(C) - Vap42(C) and since the argument to prove the proposition
works for each i, we pick one of these functions F* = (Fg, e ng o), henceforth denoting it simply
by F' = (Fp, ..., Fok2). In Theorem 3.1 in [17] is stated the Fourier expansion at oo of each element
Fn(t‘l/Q(f) %)) for 0 < n < 2k +2, in such expansion only the constant term of Fy and Fhyo
can be non-trivial and therefore denoting by F the descent of F' to Hs, we have by (1.7) that
F(z,t) =t""FF(t7Y2(4 %)) quasi-vanishes at the cusp oo.

In general, the paragraph before Corollary 3.3 in [17] give us the Fourier expansion of F), at any
cusp, noting that in notation of op.cit. we have F(vg,V,L1) = F(g,V7,L]). We observe that in
Theorem 3.1 in [17] the constant term does not depend of V' or £, then we have the same situation
as before in the cusp of oo for every cusp, i.e., only the constant term of Fy and Fbg,o can be
non-trivial. Then F quasi-vanishes for all cusps. Then for each i we have that F* quasi-vanishes

for all cusps, then f/k is quasi-cuspidal. O

1.3.3 Base change of p-stabilisations

The natural object to attach p-adic L-functions are p-stabilisations, in this short section we suppose
p splits in K as pp, and we are interested in a p-stabilisation of f,x that satisfies v(\,) < k+1 for
Ap the eigenvalue of U, for all p|p (this will become clear with Definition 2.12), such p-stabilisation

can be explicitly described from the p-stabilisations of f, as follows.

Suppose f, does not has level at p, and consider its Hecke polynomial at p given by z? - ap(fo)x +
er, ()P

Since p = pp we have

ap(fo) = p(p) +(p)

and

k+1 k+1

s, (p) = xx (P)nz(p) = p(pPOK)[P""" = ©(pp)/p

Then the roots are a; = ¢(p) and S, = ¢(p).
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On the other hand, since by Remark 1.15 we have

aP(f(p/K) = aﬁ(fcp/K) = ap(fp)

and for all p[p the nebentypus of f, /K satisfies

€1, (1) = xx (N())nz(N(p)) = (0O ) [P = €5, (p)
then the Hecke polynomials of f,/x at plp and f,, at p are equal.

Then for all p[p we can take the roots of the Hecke polynomial of f, x at p to be oy = a; = p(p)
and 3, = By = ¢(p).
If fg (resp. fgf ) is the p-stabilisation of f,, corresponding to a, (resp. ), we define its base change

to K to be the p-stabilisation fg/aK (resp. fg/ﬁK) of f,/k corresponding to ay (resp. f3,) for all pp.

Remark 1.16. Note that

o(p) = @p(mp) = Pm(mp) ™ Qoo (mp) " = Wm(”p)_lﬂgﬂa

then we have that vy(ay) = vp(ag) =k + 1, on the other hand, ¢(p) = () '™ then vy(By) =
vp(B5) = 0. When constructing the p-adic L-function in section 3.3 we will need the condition
v(Ap) <k+1 for Ay the eigenvalue of U, for all p|p, henceforth we will work with fﬁ/ﬁK and denote
it by

P ._ BB
/K '_fso/K’

1.3.4 L-function of base change Bianchi modular forms

Let f be a modular form with CM by K of weight k +2, then f = f, where ¢ is a Hecke character
of K of infinity type (-k-1,0) and conductor m, henceforth we work with f,,/x, the base change
to K of f,.

Lemma 1.10. Let ¢ be a Hecke character of K and recall the definition of 1°(q) := 1 (q) where q
is a fractional ideal of K and q is the conjugate ideal of q. Then

L(fo1ic,,8) = L0, s) L(0“Y Ak, s) = LAk, 5) L(9“YC, 5)

where A = xx o N.

Proof. The Fourier coefficient of f, at a prime number g is:

e(q) +¢(q) 90k =qq,
aq =1 ¢(q) :qOk =%,
0 :q0k =1q.

Then the Fourier coefficient of f/x at prime ideals qlg are:

L. ag =ag=aq=¢(q) +¢(q), if Ok = q7;
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2. aq = a4 =¢(q) if ¢Ok = ¢%
3. aq = ag — 2xx (0)12(0)d"" = 20(q) if 4Ok = q.
Finally comparing the Euler factors at each prime q c Ok we obtain the result. O

Remark 1.17. There are 6 more ways to factor L(f,/x,v,s) as product of two Hecke L-functions,
this comes from the fact that for a Hecke character v we have L(v,s) = L(v°,s). The analogue
factorizations in the p-adic setting not necessarily hold, because if v has infinity type (q,r) the
involution v — v° corresponds to the map (q,r) = (r,q) on weight space and therefore does not
preserve the lower Tight quadrant of weights of Hecke characters that lie in the range of classical

interpolation of the Katz p-adic L-functions (see Theorem 3.6).

Proposition 1.8. There exists a period waK e C* such that for all Hecke character v of K with
infinity type 0 < (q,r) < (k. k), we have A(f,yx,%)/Q,, € Q.

Proof. By Lemma 1.10

L(fgo/Ka ¢, 1) = L(¢C¢» 1)L(¢Cw0)\K7 1) = L(SOCM ’ |AK? O)L(Socwc)\fd : |AK70)'

Recalling that ¢ has infinity type (=k—1,0) in particular we have that ¢“)|-|4, has infinity type
(¢+1,r—k) and ¢“Y°Ak|-|a, has infinity type (r+1,q—k), since ¢g+1>r—-k and r+1>¢—-k by
Lemma 1.1 we have

LY ak:0) & LAk |ax0) 5
(Zwi)r—kQ(A)qH—Hk €Q and (QWi)q—kQ(A)rH—ch €Q.

We obtain that
L(fcp/Kvwa]-) cO
(27Ti)Q+T_2kQ(A)2k+2 ’

Finally since
I(g+1I(r+1)

A(fap/Kaw) = (27T'i)q+r+2 L(fcp/Kawal)7
then taking
o ) Q(A) 2k+2
Torx =\ “om;
we obtain the result. O

Remark 1.18. Since we are interested in algebraicity, we normalise the period () Folic for conve-

nience to .
4
, 2D

fgp/K - w f‘P/K'

Suppose [,k does not have level at p and consider its p-stabilisation fg /i 38 in the previous

section.

Lemma 1.11. Let Q} Ik be as in Proposition 1.8, then for all Hecke character i of K with infinity
@

type 0 < (q,7) < (k, k), we have A(fg/K’¢)/Q}¢/K cQ.
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Proof. First note by Proposition 1.7 we have that f_k is quasi-cuspidal, then by Lemma 1.6 ff; /K
is quasi-cuspidal. The L-functions of ff; IK and f, i at Hecke characters ¢ are related (see Lemma

1.8 for ff; 1K with trivial nebentypus and K with class number 1) by
) so(pmp)) (1 REOLG

N(p) N(p)
Then for ¢ with infinity type 0 < (¢,7) < (k, k), we have

- w(p)w(p)) (1 _e(p)y(p)
N(p) N(p)

and by Proposition 1.8 we obtain the result. O

L(fg/K7'¢):(1 )L(fcp/Kaw)'

M) = JAGap0)
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Chapter 2

Partial modular symbols, eigenvarieties and p-adic families

In this chapter we introduce partial Bianchi modular symbols, which are algebraic analogues of
C-cuspidal Bianchi modular that are easier to study p-adically. In last section we recall some facts

about eigenvarieties and p-adic families.

2.1 Partial modular symbols

2.1.1 Abstract partial modular symbols over K

Let T be a discrete subgroup of SLy(K), let C be a non-empty I'-invariant subset of P!(K).

Definition 2.1. Define by A¢ the abelian group of divisors on C, i.e.

Ac = {Z ne{c} :ne € Z, ne =0 for almost all c} ,
ceC

moreover let Ag be the subgroup of divisors of degree 0 (i.e., such that ¥ ..cn.=0). Note that
Ag has a left action by the group T’ (and indeed, of SLa(K)) by fractional linear transformations.

Concretely, this is the action induced linearly by

ar+b

a b
= = Lo(K PYK).
yer o d for~ (c d)eS 2(K), andr e P*(K)

Remark 2.1. (i) We define the completed upper half-space H3 = Hz U PYK), in particular, we
say r € PY(K) is a cusp of Hj and we see it as an element (r,0) on the boundary of Hz = C x Rs.

(ii) Note that A is spanned by elements of the form {r} - {s} for r,s € C. One should view this

element as representing a path between the cusps r and s.

Let V a right I-module, then there is a right action of I' in Hom(A2, V') given by

61(D) = 6(7- D).

Definition 2.2. We define the space of partial modular symbols on C for I' with values in V', as
the subgroup of Hom(AQ, V) fized by the action of T':

Symbrp ¢ (V) = Hom(Ag, V)"
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Remark 2.2. When C = PY(K) we drop C from the notation and call Symbp(V) the space of

modular symbols for T with values in V' recovering Definition 2.8 in [41].

2.1.2 Partial Bianchi modular symbols

Recall from section 1.2 the group Qp(n) and from (1.8) its twist I';(n) for each i = 1,..., h. Taking
in Definition 2.2 the group I' = I';(n) and suitable modules V' to be defined below we can obtain

more concrete partial modular symbols.

For a ring R recall that V(R) denote the space of homogeneous polynomials over R in two variables

of degree k. Moreover, for integers k, ¢ > 0 we put

Viee(R) = Vi(R) ®r Vi(R).

We can identify Vi ¢(R) with the space of polynomials that are homogeneous of degree k in two

variables X,Y and homogeneous of degree ¢ in two further variables X,Y .

Definition 2.3. We have a left-action of T';(n) on Vi(C) defined by

X dX +bY
P _p +b - a b .
Y cX +aY c d

We then obtain a left-action of T'y(n) on Vi, ¢(C) by

ACHE A )]

The left-action of I';(n) described above translates to a right-action on the dual space V;',(C)

setting
ply(P) = p(y - P). (2.1)

Let C = (C1,...,Cp,) with C; a non-empty I';(n)-invariant subset of P!(K), then

Definition 2.4. (i) Define the space of partial Bianchi modular symbols on C; of weight (k,¢) and
level I'y(n) to be the space Symbrp, () ¢, (Vi (C)).

(ii) Define the space of partial Bianchi modular symbols on C of weight (k,f) and level Qo(n) to
be the space

h
Symbﬂo(n),c(kae(c)) = EB1 Symbri(n),ci(vkie(c))‘
Remark 2.3. When C; = PL(K) for all i, we drop C from the notation and we recover the space
Symbg ) (Vi (C)) of Bianchi modular symbols of Definition 2.4 in [{1].

In the same way as with Bianchi modular forms, we can define Hecke operators on the space of

Bianchi modular symbols. To do so, consider our fixed representatives I, ..., I, for the class group
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as in section 1.2.1. Let q be a prime ideal of O, for each i € {1, ..., h} there is a unique j; € {1,...,h}
such that qf; = (a;)},, for some «; € K.

Definition 2.5. Let q + n be a prime ideal, then the Hecke operator Ty is defined on the space of

[rjhm) (; fh)rm]).

We can also define a Hecke operator at an ideal I ¢ O from the Hecke operators at prime ideals

Bianchi modular symbols Symbg, ) (Vi,(C)) by

!ij ((1) jl)rm)] i

If qln we denote the Hecke operator by Uj.

(1, 00|y = (¢j1

dividing 1.
Note that in the case of partial Bianchi modular symbols, since there could be some conditions

regarding every set of cusps C;, not all the Hecke operators act in Symbg () ¢(Vi,(C)).

In order to relate partial Bianchi modular symbols with C-cuspidal Bianchi modular forms of level
Qo(n) for n = (p)m with ((p),m) = 1 and weight (k,¢) we henceforth take C = C' = (C4,...,C})
where C; = I';(m)oo U T';(m)0 and consequently work with the space of partial Bianchi modular
symbols on C = (C1,...,Cy) of weight (k,¢) and level Qy(n).

Proposition 2.1. The Hecke operators Ty for all primes q + m and U, for all primes p|(p) act on
Symbg ), o (Vi (C))-

Proof. Let (¢1,...,¢n) € Symbg ) (Vi (C)), we have to show that for all prime q + m with
ql; = (0;)I;, and for each ¢ = 1,...h then

¢ji

lrji(n) ((1) O') Fz‘(ﬂ)] € Symbrp, ()¢, (Vi (C)).

7

1

1 0 1 0
It suffices to prove v -s; € Oy, for all v =;, (0 )*yi € [I’ji(n) (0 )I’Z(n):| and s; € C;.
ay

0

Qg

Following the proof of Proposition 1.2 , for all s; € C; we have ;- s; = s, € C; by fact 1),

s; = sj, € Cj, by fact 2) and «;, - 55, = s}, € Cj, again by fact 1) and we obtain the result since

? 7

bj; € Symbr_ ) c;. (Vi5o(©)). O

2.1.3 Relation with C-cuspidal Bianchi modular forms

Let ® be a C-cuspidal Bianchi modular form on GLa(Ag) of weight (k,¢) and level Qy(n) with
n = (p)m and ((p),m) = 1, and write F', ..., F" for the associated Cj-cuspidal Bianchi modular
forms on Hjz (under our fixed set of class group representatives) of level I';(n). We pick one of
these functions F?, henceforth denoting it simply by F, and describe how to attach a modular
symbol ¢# to it. Throughout, we write I' = T';(n) for the level of F and C* := C;.
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In Definition 1.11 we defined a right action of SU3(C) on Vi (C), here we use the corresponding
left action defined by u- P := Plu™!.

The Clebsch-Gordan formula says that, for k > ¢,
Vi(C) ®c Vi(C) = Vit (C) ® Viyp2(C) @ - @ V4 (C)
as (left or right) SU2(C)-modules. Since Vj, ¢(C) = V4, (C) ®c V,(C), we have
Viet(C) @ Va(C) = Visr12(C) @ Viero(C)? @ -+ @ Vo (C)
as right SU2(C), and hence that there is an injection of (left) SU(C)-modules
Vies1+2(C) = Vi o (C) ®c V2(C).
Let F' be the function GL2(C) - Vjyp42(C) corresponding to F, we compose F with the map

defined above to give
o0 F :SLy(C) -V} ¢(C) ®c Vo(C).

This associates to F' and each g € SLo(C) a polynomial that is homogeneous of degree k in variables
X and Y, homogeneous of degree ¢ in variables X and Y and homogeneous of degree 2 in variables
A and B. We then use Proposition 2.5 in [41] to pass from V5(C) to differentials; namely, we
replace A? with dz, AB with —dt and B? with —dZ to obtain a differential 1-form on SLy(C) with
values in Vj ¢(C). To obtain a differential on the quotient Hg = SL2(C)/SU2(C), we scale by the
action of SLa(C).

Definition 2.6. Define a differential wg on SLo(C) by

wr(g) =g-(0oF(g)), geSLy(C).

Here SLa(C) acts on Vi, o(C) ®c V2(C) by
X\ (X)) (4)\]|_ bl (X)) o X 1
Yy ) ? ) B - Y Yy Y 7 ) |CL|2 n |C|2 e

Since for u € SU3(C) we have

wr(gu) = gu- (00 F(gu)) = gu-u(c(F(g))) =g- (00 F(g)) = wr(g),

Then the differential wp is invariant under right multiplication by SUs(C) and gives a well-defined

8]

Q ol
v
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SN —

differential on Hg.

The above construction gives a Vj, ¢(C)-valued differential wr = wp on H3 that is invariant under
the action of I', this differential is harmonic from the definition of automorphic forms, and hence

we can integrate it between cusps of C'* in a path-independent manner.

Proposition 2.2. Let F': Hz — Vi p42(C) be a C;-cuspidal Bianchi modular form of weight (k, )
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with k > € and level T';(n). Then the map ¢ : A%i = V3. 0(C) given by

S
Qi = _[ Wi
T

defines a partial Bianchi modular symbol with values in Vi, ,(C).

Since we require partial Bianchi modular symbols with values in V,*,(C) we use Proposition 2.6

in [41] for non-parallel weight and obtain an SLa(C)-equivariant isomorphism
Vit (C) — Vi o(C) (2.2)
Definition 2.7. The partial Bianchi modular symbol attached to F* is the element

¢ri € Symbrp, ) ¢, (Vi e(C))

given by composing ¢’ with the map of (2.2).

2.1.4 Link with L-values of C-cuspidal Bianchi modular forms

We can describe explicitly the partial Bianchi modular symbol ¢£: of the previous section.

Proposition 2.3. Let ® be a C-cuspidal Bianchi modular form of weight (k,¢) with k > ¢ and
level Qo(n), then for each i=1,..,h and a € C; we have:

ko .
dr({a} —{oo}) = 3 ¢ (a) (V- aX) 1XI(Y-aX) "X, (2.3)
q,m=0
where .
i ,_ k+0+2 - _1\4-r+l e q+r i
ey =2(, T ) o [T R

Proof. This is an adaptation to weight (k, ¢) and the Cj-cuspidal situation of Proposition 2.9 in [41]

noting first that ch is defined by an integral of f} 1, which is convergent by Cj;-cuspidality; and

+q-r+
second the necessary condition of k£ > £ coming from Clebsch-Gordan formula in section 2.1.3. [

Note that for a € C* the integral
fo 9 T gran (@, t)dt

appears both in ¢z and in the integral form of the L-function of ® in Theorem 1.1, this allow us
to link ¢¢ = (¢z1, ..., ¢5n) € Symbg iy o(Vy,(C)) with the critical L-values of @ in exactly the
same way as in Section 2.5 and 2.6 in [41] obtaining by similar proofs the following analogous to
Theorem 2.11 in [41].

Theorem 2.1. We have

7/)(tz) Z de(a)CfL,,,(a) )
l[aef " /OK
((a)f,f)=1

7

(=1)" 7295 () ]
¢ (as) Dwr (¢~t)

h
=1

A(CI), ¢) = [
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Here:

® is a C-cuspidal Bianchi modular form of weight (k,€) with k > £, level Qo(n) for n=(p)m
with ((p),m) =1 and central action ¢ of trivial conductor and infinity type (—=k,—{),

Y is a Hecke character of K of conductor § such that (f,m) =1 and (f,1;) = 1 and infinity
type 0 < (q,r) < (k, 1),

—-D is the discriminant of K,

w s the size of the unit group of Ok,

(1) is the Gauss sum of =1 from Definition 1.10,

h is the class number of K,

t; is an idele corresponding to the i —th representative I; of the class group, which is coprime

ton,

¢, (a) is the coefficient of (¥ - aX )1 x9Y -ax) X" in dri({a} - {o0}), where

¢ ri s the partial Bianchi modular symbol attached to the C; cuspidal Bianchi modular form
F on Hs induced by .

2.2 Overconvergent partial symbols and control theorem

In this section we develop the theory of overconvergent partial Bianchi modular symbols in order
to prove a partial Bianchi control theorem. To do so, we consider partial Bianchi modular symbols
with values in a space of p-adic distributions and closely follow and adapt the results in sections 2
and 3 in [41].

2.2.1 Overconvergent partial Bianchi modular symbols

In this section we define the relevant space of p-adic distributions and introduce the space of

overconvergent partial Bianchi modular symbols.

Since we are in the p-adic setting, we work with the space Ox ®z Z, which is the analogous of the
p-adic integers for our setting.

We fix embeddings
inc:@g@p7 g = (01702) K®Q Qp_)@px@pa (24)

and work with L a finite extension of (@, such that the image of o lies in L?. We equip L with
a valuation v, normalised so that v(p) = 1, and denote the ring of integers in L by Op, with

uniformiser 7.

Now, we proceed to define the p-adic distribution spaces.
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Definition 2.8. Define A(L) to be the space of locally analytic functions Ok ®z Z, - L and
D(L) := Homs(A(L), L) to be the space of locally analytic distributions on Ok ®z Zy,.

To define partial Bianchi modular symbols with values in D(L) we consider the semigroup

a b
Yo(p) := {(c d) € My(Ok ®7 Zy) :vp(c) >0 Vplp, a€ (O ®zZy)", ad - be # 0}. (2.5)

To endow D(L) with an action of ¥o(p) we define some more general objects which will also appear
in section 2.3 when defining the Bianchi eigenvariety.
Definition 2.9. The Bianchi weight space is the rigid analytic space Wx whose L-points are

Wi (L) = Homes (O ®z Zp)"[OF, L™).

Definition 2.10. We say that a weight A\ € Wi (L) is classical if X\ = eN¥8, with € a finite order
character and \'8(z) = 2*Z¢ for k, 0 e Z.

For each A e Wi (L) we have a left weight A action of ¥(p) on A(L) defined by

b+dz a b
(D)) = Mare2)f () for y - ( ) 26)
a+cz c d
which induces a right weight A\ action on D(L) defined by
() (f) = p(y 2 f)- (2.7)

We denote by Ax(L) (resp. Dy(L)) the space of locally analytic functions (resp. locally analytic
distributions) equipped with the above weight A action of ¥¢(p).

Remark 2.4. If A = eA\¥8 e Wi (L) is a classical weight such that € is trivial, i.e., A\(2) = 2"Z¢; we
denote by Ay ¢(L) (resp. Dy (L)) the spaces A\(L) (resp. Dx(L)).

For the rest of the section 2.2 we work with the spaces Ay, ¢(L) and Dy ¢(L)).

Recall the groups I';(n) from (1.8) and note that to define partial Bianchi modular symbols with

values in Dy, ¢(L) we need an action of I';(n) on that space.

Using the embedding (2.4) and that all p|p divides the lower left entry of a matrix in I';(n) (because
(p)[n), we obtain that I';(n) c Xo(p). Then we can equip Dy, ¢(L) with an action of I';(n) and define:

Definition 2.11. (i) Define the space of overconvergent partial Bianchi modular symbols on C; of
weight (k,€) and level I';(n) with coefficients in L to be the space Symbr, ) ¢, (Dre(L))-
(ii) Define the space of overconvergent partial Bianchi modular symbols on C of weight (k,f) and

level Qo(n) with coefficients in L to be the space

h
Symbg, (n),c(Dre(L)) = G? Symbrp, (n), ¢, (Dre(L))-
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2.2.2 Partial Bianchi control theorem

Once we have defined overconvergent Bianchi modular symbols we want to relate them with the

partial Bianchi modular symbols of seccion 2.1, that is, relate Dy, (L) with V,*,(L).

Note that an element of Vj ¢(L) can be seen as a function on L? that is polynomial of degree at
most k in the first variable and polynomial of degree at most £ in the second variable, moreover,

since Ok ®z Z, embed in L?, we can think such function O ®7, Ly — L.

There is a natural inclusion Vj (L) < A ¢(L), which we can dualise and obtain a surjection from
Dy (L) to the dual space V', (L),

Remark 2.5. Note that the right action on V,',(L) inherit from Dy (L) and the action defined
in (2.1) are compatible.

The map Dy (L) — V;',(L) induces an specialisation map

Symbrp, w). ¢, (Dr,e(L)) = Symbr, () ¢, (Viie(L)),

which give rises to a map
p: Symbg ) o(Dr (L)) = Symbg n),c(Vie(L)).

In Proposition 2.1 we proved the action of Hecke operators in partial Bianchi modular symbols.
Note that the matrices defining the U, operator for p|p can be seen in ¥y(p), then the U, operator

acts on the space of overconvergent partial Bianchi modular symbols and we have the following:
Theorem 2.2. (Partial Bianchi control theorem)

Let p be prime with pOk = [1y, p®. For each prime p above p, let A, € L*. Suppose that v(Ap) <
(min{k, £} +1)/ey for p inert or ramified, or v(X\y) <k +1 and v(\g) < £+ 1 for p split, then the

restriction of the specialisation map
=\p: * =Ap:
p+ Symbg () o(Di (L)) PP} — Symbg, ) ¢ (Vg (L)) =P}
to the simultaneous \y-eigenspaces of the U, operators is an isomorphism.
The following sections will be devoted to prove Theorem 2.2, but before embarking us in such a
proof we conclude this section introducing the notion of a small slope Bianchi modular form.

Definition 2.12. Let ® be an eigenform of weight (k,0) with eigenvalues \;, we say ® has small
slope if v(Ap) < (min{k, £} + 1)/e, when p is inert as p or p ramifies as p*; or if v(\y) <k +1 and
v(A5) <L+ 1 when p splits as pp. We say ® has critical slope if does not have small slope.

2.2.3 Partial Bianchi control theorem (rigid analytic distributions)

In this section we introduce the space of rigid analytic distributions, such space have nice descrip-

tions and it is easier to work than the space of locally analytic distributions. The idea is to use
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rigid analytic distributions to obtain a equivalent statement to Theorem 2.2 that will be easier to

prove.
Rigid analytic distributions

Let R be either a p-adic field or the ring of integers in a finite extension of Q.

Definition 2.13. Let A(R) be the ring of rigid analytic functions on the closed unit disc de-
fined over R. We write Aa(R) for the completed tensor product A(R)®rA(R). We let Do(R) =
Hom5(A2(R), R) be the topological dual of Ax(R).

We define
b
¥0(0p) := {(a d) e M2(Or):p|c,(a,p)=1,ad-bc+ O}
c

and endow Ay(L) with a left weight (k,¢) action of ¥o(Or)? given by

diz+b; d y+b a; bi
((71,72) ey (2, y) = (01$+a1)k(023/+a2)£f( =12 2), Yi =( ) (2.8)
c1T+ay coy+as ¢ d;

This gives rise to a right weight (k, £) action of ¥¢(Or)? on Dy(L) defined by

14l k,0) (v1,72) (F) = 0((71,72) “(rey £)-

When talking about these spaces equipped with the weight (k, £) action, we denote them by Ay o(R)
and Dy, ¢(R) respectively.

Using the embedding o from (2.4) to obtain I';(n) = (O )?, we see that I';(n) act on the right on
Dy ¢(L) and consequently we can define partial Bianchi modular symbols with values on the space
Dy ¢(L). Note that, also the matrices defining the U, operator for p|p can be seen in Yo(Or)? via
de embedding o, then the U, operator acts on the space of overconvergent partial Bianchi modular

symbols with values on Dy, o(L).
Connection between locally and rigid analytic distributions

We now define spaces of locally analytic distributions in suitable neighbourhoods on CIQ, using the
embedding o = (o1,02) of (2.4). Such spaces will allow us to relate the space of locally analytic

distributions with the space of rigid analytic distributions.
Let r,s > R, define the (r,s)-neighbourhood on (CIZ) to be

B(Ok ®z7 Zy,1,s) ={(x,y) € CI% : Ju € Ok ®yz Zy such that |z — o1 (w)| <7, ly — o2(u)| < s}.
Definition 2.14. Define the space of locally analytic functions of radius (r,s) over L, denoted by

A[L,r,s], to be the space of rigid analytic functions B(Ok ®z Zy,1,s) = L.

Denote by Ay ¢[L,r,s] the space A[L,r,s] endowed with the weight (k,¢)-action of the semigroup
¥(p) identical to the action defined in (2.6) on Ay ¢(L).

Consider r < r" and s < &', since B(Og ®z Zp,7,5) ¢ B(Og ®7 Zp,1',s"), we have a natural and



2.2. Overconvergent partial symbols and control theorem 43

completely continuous injection A o[ L, 7', s'] = Ay ¢[L,r,s]. Note that in particular, we have that

Apo(L) :==UmAy [L, 7, s] = JAr L, s].

.S

Definition 2.15. Define the space of locally analytic distributions of order (r,s) over L to be

D e[ L, 7, s] = Homes (Ag o[ L, 7, 5], L)

There is a canonical ¥ (p)-equivariant isomorphism

Dk,f(L) = hka,Z[La T 8] = ka,Z[Lfra S].

T8

Note that the spaces of locally analytic functions of order (1,1) and rigid analytic functions are
equal, i.e., A[L,1,1] = Ay(L).

On the other hand, the weight (k,¢) action of ¥¢(p) on A[L,1,1] induced by the action on A(L)
of (2.6) is compatible with the action ¥o(Or)? on Ag(L) of (2.8) via Xo(p) = £o(Or)? induced
by the embedding o in (2.4).

Then we have Ay [L,1,1] = Ay 4(L) and consequently Dy, ,[L,1,1] = Dy ¢(L).
Partial Bianchi control theorem for rigid analytic distributions
Proposition 2.4. Let ¥ € Symbr, () ¢, (Dr (L)),

(1) Suppose p is inert in K and V is a Up-eigensymbol with non-zero eigenvalue, then ¥ is an
element of Symbr, 4y ¢, (Dre(L))-

(ii) Suppose p splits in K as pp and ¥ is simultaneously a Up'- and Upf-eigensymbol with non-zero

eigenvalues, then W is an element of Symbrp, ¢, (Dr.e(L))-

Proof. Both parts of the proposition are proved in exactly the same way as Propositions 5.8 and
6.12 in [41]: by using that the corresponding Hecke operator acts invertibly in its eigenspace and
that the action of the matrices defining such Hecke operator, moves in the inverse system of locally

analytic distributions of order (r,s). O

By Proposition 2.4, to prove Theorem 2.2 it suffices to prove the following partial Bianchi control
theorem of overconvergent partial Bianchi modular symbols with values in rigid analytic distribu-

tions.

Theorem 2.3. (Partial Bianchi control theorem, rigid analytic distributions)

Let p be prime with pOk = [1y, p®. For each prime p above p, let A, € L*. Suppose that v(Ap) <
(min{k, £} +1)/ey for p inert or ramified, or v(X\y) <k +1 and v(\5) < £+ 1 for p split, then the

restriction of the specialisation map
p+ Symbag () oD (L)) P2 PPY — Gymbe ) o (Vi (L)) (Ur=2eplpd

to the simultaneous \y-eigenspaces of the U, operators is an isomorphism.
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Remark 2.6. Our strategy to prove Theorem 2.3 is by separating it in three cases regarding the
splitting behaviour of p in K. Such separation obeys the fact that the proof for p ramified and split
in K can be obtained by adapting the proof in the inert case. Moreover, in the case when p ramifies
i K we just have to do an small modification. Henceforth, we focus in the cases of p inert and
split in K.

Following the previous remark, to prove Theorem 2.3 it suffices to prove the following two theorems:

Theorem 2.4. (Partial Bianchi control theorem for p inert)

Let X e L*. Then, when vy(\) < min{k, £} + 1, the restriction of the specialisation map
p: Symbgo(n),c(Dk,E(L)){UPZA} — Symbﬂo(n),c(kae(L)){Up:/\}

(where the superscript {U, = A} denotes the \-eigenspace for Uy ) is an isomorphism.

Theorem 2.5. (Partial Bianchi control theorem for p split as pp)

Take A1, Ao € L™ with v(A1) <k +1,v(A2) <€+ 1. Then the restriction of the specialisation map
P Symbg () ¢ (Dg (L) #5722 — Symbg () o (Vip(L)) 7 e

where the superscript denotes the simultaneous Ai-eigenspace of U, and Ao-eigenspace of Uy) is
p p

an isomorphism.

Before start the proof of Theorems 2.4 and 2.5 in sections 2.2.4 and 2.2.5, we give an alternative

description of rigid analytic distributions which will help us in the proofs.
Aside on integral rigid analytic distributions

In the next two sections, we would prove Theorems 2.4 and 2.5 using integral distributions, ac-

cordingly in this section we introduce the necessary terminology.
Consider R to be either a p-adic field or the ring of integers in a finite extension of Q.

Definition 2.16. Let u € Dy(R) be a two variable distribution. Define the moments of p to be the
values (u(z'y?))i js0, noting that these values totally determine the distribution since the span of
the 'y’ is dense in Ag(R).

Remark 2.7. Note that we can identify Do(L) with the set of doubly indexed bounded sequences
i L obtaining
]D)Q(L) = DQ(OL) ®(9L L,

where Do(Op) is the subspace of Da(L) consisting of distributions with integral moments.

To obtain the concrete link with overconvergent partial modular symbols with values on integral

distributions we have first the following:

Lemma 2.1. Let n = (p)m be an ideal of O with ((p),m) =1, let C; = T;(m)oo UT;(m)0 be our
usual T;(n)-invariant subset of cusps in P*(K). Then AOZ_, the subgroup of divisors in C; of degree
0 is a finitely generated Z[T;(n)]-module.
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Proof. This is the analogous result for A%i of Lemma 3.8 in [41] and it is proved in the same

way. U

Proposition 2.5. Suppose D have the structure of both a Or-module and a right T';(n)-module.
Then we have
Symbri(n),(]i(D X0, L) = Symbpl(n),CZ(D) X0, L.

Proof. Let ¢ ¢ Symbpi(n)’ci(D ®0, L). Using Lemma 2.1, take a finite set of generators S, ..., By
for AOCi as a Z[T';(n)]-module. We can find some element = € O, such that z¢(3;) € D for each j
and we obtain that z¢ € Symbr, ) ¢, (D). O

2.2.4 Proof of partial Bianchi control theorem (p inert)

In this section we prove Theorem 2.4.

In section 4 in [41] it is proved with a general machinery a lifting theorem (Theorem 4.1). Replacing
such machinery with the suitable one coming from our setting, we can prove our partial Bianchi

control theorems.

We now define the analogous objects in our setting to the ones defined in Section 4 in [41], we

follow the same order as introduced there.

(i) The monoid ¥o(Or)2.
(ii) The Op-module Dy ¢(Or) with the right action of $o(Op ).
(iii) Define:
(a) FVDye(OL) = {1 e Dy (Op) : p(a'y’) ey " OL}.

(b) ]D)g’g((’)L) = {peDy(Or): p(z'y?) =0 for 0<i<k and 0<j < £}
(C) FN]D)]C’g(OL) = fNDk,g(OL) OD%Z(OL).

Then we have the 3 (0O}, )?-stable filtration of Dy, ¢(Oy,)
D ¢(Or) > F'Dy(Or) > F'Dy(Or) > ---

(where ¥ (Op,)%-stability is proven in the same way as Proposition 3.12 in [41]). If we define

Dy (OL)

ANDL J(Of) 1= — T2
ke(OL) FNDy (01"

then we have
Dk’g(OL) = l(iLnAN]D)k’g(OL),

and where the FVDy, »(O1) have trivial intersection.
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(iv) Let A e L*, define the right Xo(O},)?-stable submodule
Vk):Z(OL) = {f € Vi (Or): Fa'y?) e xp D OL0<i+5 < [U(A)J},
of A'Dy ((Op) = Vir(Ok) and denote

D ={peDy(OL) : p(mod FO(Dy(O1))) € VXy(OL)}

1l «
Up = Z (0 ) .
[a]eOK /() p

N in o(0r)2
p

(v) The operator

1
noting that for each o we can see (

Lon
. . ) 2 . .
= Ly 7
(vi) For each i =1,...,h we have the subgroup I';(n) c £¢(Op)” that for all (O ) appearing in
p

the U, operator satisfies,

Ti(n) (; Z)Fi(n):];[)Fi(n) ((1) ;‘);

(vii) let C; = I';(m)oo UT;(m)0 be our usual I';(n)-invariant subset of cusps in P!(K), then we
have the (countable) left Z[T';(n)]-module A%ﬁ,.

Note that we have ¥o(Oy)?-equivariant projection maps 7 from Dy »(Or) to AVDy ,(OL), and

we see that mg is in fact the map
° :Dre(OL) — VJ:,@(OL)
that gives rise to the (Xo(Or)3-equivariant) specialisation map
po : Symbri(n),ci(Dk,é(OL)) - Symbri(n),ci(kaz(OL))
We now state the analogous to Lemma 3.15 in [41].

Lemma 2.2. (i) Let p €Dy (Or) be such that 7°(u) € Vk),\e(OL)- Then, for a; € Or, we have

66 o)

(i) Let e FNDy (OL), and suppose v(A\) < min{k, ¢} + 1. Then

66

Proof. The proof is the same as the proof of Lemma 3.15 in [41] adapting the corresponding objects

€ ADy ¢ (OL).

€ )\FNJrle’g(OL).

of our setting. O
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The above Lemma describes the action of the matrices appearing in the definition of U, on our
above filtrations. We highlight the change in the condition on the valuation of A\, namely, v(\) <

min{k, /} + 1 compared to the parallel weight situation.

Remark 2.8. By Theorem 4.1 in [41] and Lemma 2.2, for A € L* such that v,(\) < min{k, ¢} +1
the map

. A
,00 : Symbri(n),ci(D) - Symei(n),C’i(Vk,E(OL))
restricted \-eigenspaces of the U, operator is an isomorphism.

Theorem 2.6. Let A € L*. Then, when v,(\) < min{k,l} + 1, the restriction of the specialisation
map
p" : Symbr ) ¢, (Dre(1)) N — Symbr, o ¢, (Vi (1))

(where the superscript {U, = X} denotes the A-eigenspace for Uy ) is an isomorphism.

Proof. By Remark 2.8 we have that the map
P’ Symbri(n),ci(D){Up:A} - Symbri(n),ci(VkA,e(OL)){U”:A}

is an isomorphism. The result now follows by right-exactness of tensor product and Proposition
2.5, since D ®p, L =Dy (L) and V), ®0, L2V, (L). O

Note that Theorem 2.4 follows from Theorem 2.6 since the U, operator acts separately on each

component.

2.2.5 Proof of partial Bianchi control theorem (p split)

In this section we prove Theorem 2.5. The idea is to lift a partial Bianchi modular symbol to a
space of partial Bianchi modular symbols that are overconvergent in one variable, and then again
from this space to the space of fully overconvergent partial Bianchi modular symbols we considered

previously.

To do so, let R to be either a p-adic field or the ring of integers in a finite extension of QQ, and

consider the space
(D ® Vi ](R) = Homets(Ap(R) ®r Vi(R), R),

with the appropriate action of ¥o(Op)? (where this makes sense) induced from the action on
A ¢(L). This gives us
Vk7g(R) c []D)k ® VE*](R) c Dk7g(R).

To lift the operators Uy, and Uy we have to use two times the Theorem 4.1 in [41], in the same way
as section 6.1 in op. cit. As before, we just describe the objects from section 4 in [41] but this
time since we will use the theorem twice there will be two filtrations and spaces, one on the first

variable, denoted by 1) and one in the second variable, denoted by 2).
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Here we describe what is every point of the theorem in our context:

(i)
(i)
(i)

The monoid $o(Or )%
The Op-module Dy, ((Or,) with the right action of Yo(Or)2.

1) Define:

(a) FN[Dy ® VOL) ={ue[Dp @V (OL) : u(z'y’) e W]LV_iOL for all j},
(b) D@ V;1°(Or) = {n e [Dr® V;*](O) : pu(a'y’) = 0 for all 0<i <k},
(c) FN[Dy®V;1(0L) = FN D @ V;1(OL) n [Dy ® V;1°(OL).

2) Define:

(i) FNDyo(O) = {1 € Dy o(OL) : pu(a'y?) e 7d 7Oy for all i},
(ii) DY, (O1) = {1 € Dye(OL) : p(a'y?) = 0 for all 0 < j < £},
(iii) F,\Dpe(OL) = Fy' Dye(OL) DY, ,(OL).

Then we have the Yo(Op,)%stable filtrations of Dy ¢(Oy)

f’o[]]])k eV, 1(Or) cc fM[]D)k @V, (Or)cc[DreV, )(Or)c
e C f;NDk,é(OL) c---C Dk,é(OL)'

(where o(Op,)2-stability is proven in the same way as Proposition 6.3 in [41]).

1) If we define
(D ® V/'1(Or)

ANy @ Vi) = g V;1(0L)’

then we have
[Dr ® Vy"(O1) 2 lim A™ [Dy, ® V;](Op),

and where the FV[D; ® V,7](Of) have trivial intersection.

2) If we define

then we have
Dy (Or) = l(iLnA,]gVDk,e(OL),
and where the FPN Dy ¢(Or) have trivial intersection.
1) Let Ay € L*, define the right ¥(Or)2-stable submodule
VA (On) = {f € Vii(Or) : f(a'y)) e \p™' O, 0 <i < (M)},
of A°[Dy ® V;)(Or) = Vii(Ok).
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2) Let A\p € L*, define the right ¥o(Op )?-stable submodule
[Dr ® V;'1*2(Op) = {f € Dy ® V' ](Or) : f(2'y’) € Aop7O1, 0 < j < [v(A2) I},
of [Dk ® VZ*](OL)

(v) Choose n such that p™ = (B) is principal (noting that this also forces p" to be principal).

Then we define Uyn = U;l as
Z 1 a
a mod p" 0 5 '

1
noting that for each a we can see (0 ;) in ¥o(0r)%

1
vi) For each i = 1,...,h we have the subgroup I';(n) c 3¢(O1)? that for all g appearing in
0 B

the Uyn operator satisfies,

Ts(n) (; Z)Fi(n):gfi(n) ((1) g);

(vii) let C; = T';(m)oo uT;(m)0 be our usual I';(n)-invariant subset of cusps in P!(K), then we
have the (countable) left Z[I';(n)]-module A%i.

The filtrations above lead to ¥o(Op)?*-equivariant projection maps

[y ® V;'](OL) — AN[Dy, ® V;1(OL)

and
T Dy e(Or) — AéVDk,E(OL)a

which again give maps p{v and pév on the corresponding symbol spaces.
We see that 70 and 7 are in fact the maps:
[Pk @ V;(OL) = Vi(OL) > Vit (OL),

7 : Die(Or) = [Dy @ Vi 1(O1) 2 [Dy © V11 (O1).
The following two lemmas have the same idea of Lemma 2.2 in our current setting.

Lemma 2.3. Let aj,a9 € Op and p™ = (B).
(i) Suppose p € [Dy ® V;1(Or) with m(p) € Vk/\,k,p(OL)‘ Then

6 )62

€ /\[]D)k ® V;](OL)
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(ii) Suppose v(X) <n(k+1). Then for pe FN[Dy® V,;](OL), we have

6 )6 %)

Lemma 2.4. Let aj,az € Op and p" = (6).

e \FNHL [Dk ® Vg*](OL).

(i) Suppose i€ Dy (Or) with 73 () € [Dy ® VS 1M(OL). Then

62 )

(7i) Suppose v(\) <n(k+1). Then for pe FPND]C’[(OL), we have

1 a 1 a
[(0 51)(0 ;)]EAFPNH]D)W(OL).
k

The proof of both Lemmas above is identical to the proof of Lemmas 6.6 and 6.7 in [41] respectively,

€ )\Dk,g(OL).

"

as before just by replacing the objects there for the objects in our setting.

Lemmas 2.3 and 2.4 together with Theorem 4.1 in [41] applied twice and some details regarding

tensor products (which are analogous to the proof of Theorem 2.6) give us the following Lemma:

Lemma 2.5. Let A\j, Ao € L. Then, when v(A\1) <n(k+1) and v(A2) <n(€+1), with n an integer

such that p™ is principal we have:
(i) The restriction of the specialisation map
P} Symbr, )., ([Dr ® V1(L) ™ — Symbr, () ¢, (Vo (L)) 7~
(where the superscript (U, = A1) denotes the \i-eigenspace for Uy ) is an isomorphism.
(ii) The restriction of the specialisation map
P9 Symbr ) ¢, (Dio(£)) > ™2 — Symbr, (o) ¢, ([P ® V(L)) 72
18 an isomorphism.

Theorem 2.7. Take A\i,\o € L* with v(\1) < k + 1,v(A2) < £+ 1. Then the restriction of the
specialisation map

Up'=A1,UZ =y % Ul=A},UR =\
P’ : Symbr, () ¢, (Do (L))P 17 ™2 — Symbr, (o ¢, (Vi (L)) 77 075 72

(where the superscript denotes the simultaneous A} -eigenspace of Uy and A\j-eigenspace of Ug) 1S

an isomorphism.

Proof. The proof follows exactly in the same way as Theorem 6.10 (i) in [41], by using Lemma 2.5
to lift a simultaneous Uy'- and Upll—eigensymbol #°, with eigenvalues A7, \J respectively to some

overconvergent eigensymbol. O
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We conclude by noting that the proof of Theorem 2.5 is analogous to the proof of Theorem 6.10
(ii) in [41]. Such proof is done by using Lemma 6.9 in [41] to obtain the result for the U, operator

instead Uy' and then just express the direct sum over 1 <i<h.

2.2.6 Admissible distributions

For each pair r, s, the space Dy, ¢[L, 7, s] admits an operator norm || || s via

B [1(F)lp
rs = sup )
O#feAk,Z[Lzrvs] |f|T‘,S

I
where |- |, is the usual p-adic absolute value on L and |- |, is the sup norm on Ay ,[L,r,s]. Note
that if » <7’, s < s, then ||u||rs > [|pllr s for peDy[L,r',s"].

These norms give rise to a family of norms on the space of locally analytic functions that allow us
to classify locally analytic distributions by growth properties as we vary in this family, motivating
the definition of admissible distributions (see Definitions 5.10 and 6.14 in [41]).

Proposition 2.6. Let ¥ € Symbr, () ¢, (Dre(L)),

(1) Suppose p is inert in K and V¥ is a Uy-eigensymbol with eigenvalue X and slope h = v(\). Then,
for every D € AOZ,, the distribution U (D) is h-admissible.

(ii) Suppose p splits in K as pp and V is simultaneously a Up'- and Ug-eigensymbol with non-zero
eigenvalues A! and Ny with slopes hy = v(A1) and ha = v(X2). Then, for every D € Aoi, the
distribution W(D) is (hy,ha)-admissible.

Proof. This proposition is the adaptation to the C;-cuspidal case of Propositions 5.12 y 6.15 in [41]

and is proved in the same way. O

2.2.7 Mellin transform of overconvergent partial Bianchi modular symbols

In this short section we define the Mellin transform of a partial Bianchi modular symbol, which

will be useful to define the p-adic L-function of a Bianchi modular form in Chapter 4.

Recall from section 1.1.2 the definition of the ray class group Clg (p®), which can be written as

Clx(p™) = U Clk(»™),

ieClg

where Cly (p®) is the fibre of i under the canonical surjection Clg (p™) - Clg to the class group
of K.

The choice of representative ¢; € Af(’x identifies Cl (p>) non-canonically with (O ®z Z,)*/O%.

Let W = (W1,..., ¥s) € Symbg,ny,c(Dk.e(L)) be an overconvergent partial Bianchi modular symbol,
then we define for 4, j € Clg a distribution p;(¥;) € D(Cli(p*), L) as follows.
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Since {0} — {0} € A%i for all i, we have a distribution W;({0} - {c0})[(0,c@,2,)« on (Ok ®z Zp)*™.
This restricts to a distribution on (Ox ®7%Z,)*/O}, which gives the distribution j1;(¥;) on Cli (p*)

under the identification above.

Definition 2.17. The Mellin transform of ¥ € Symbq ) c(Dre(L)) is the (L-valued) locally
analytic distribution on Clg(p™) given by

Mel(¥) := %: i (Vi) € D(Clg (p™), L).

Remark 2.9. The distribution Mel(W) is independent of the choice of class group representatives.

2.3 Eigenvarieties and p-adic families

As mentioned in the introduction, p-adic families describe the variation of automorphic forms (and
in general of automorphic representations) as their weight varies p-adic analytically. They are
important tools in the Langlands program and the Bloch-Kato conjectures for example. Their
behaviour is captured geometrically in the theory of eigenvarieties. The objective of this section is
to introduce the background necessary about eigenvarieties to recall the construction of the p-adic

L-function of critical slope base change cuspidal Bianchi modular forms in section 3.2.

2.3.1 Coleman-Mazur eigencurve

The Coleman-Mazur eigencurve is a p-adic rigid analytic curve which parametrizes overconvergent

elliptic modular eigenforms of finite slope.

To describe it in more detail, consider a positive integer N and let Wy be the weight space for
GL2/Q, that is, the rigid analytic space whose L-points are Wg(L) = Homes(Z,, L) for L c C,,.
For N =1, Coleman and Mazur proved the following theorem, Buzzard treating the case of arbitrary

N coprime with p.

Theorem 2.8. (Coleman-Mazur, Buzzard) There is a reduced, equidimensional rigid analytic
curve Cy together with a morphism w : Cn - Wy and global sections U, € O(Cn), T; € O(Cn)
for alll + Np , such that:

i) The morphism w has discrete fibers.

ii) The points x € w™ (\) in the fiber over a fived weight A € Wy are in bijection with overcon-

vergent modular eigenforms of weight X.

i11) If fr is an overconvergent modular eigenform corresponding to a point x € Cy, the eigenvalue
of Ty (resp. Up) acting on fy equals the image Ti(x) (resp. Up(x)) of Ty (resp. Up) in the
residue field of the stalk Oc, ..
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i) If f is a classical normalized eigenform of weight k +2, with xy € Cy the associated point,
then w(xys) = k +2. If furthermore v,(af(p)) < k +1, then there is an open neighborhood U

of vy € C such that wl|y : U = Wy is a homeomorphism onto its image and Tj|y = aj o w.

This construction and the ideas driving it have been vastly generalized by a number of authors,

resulting in a whole universe of eigenvarieties (see for example [19], [38], [1]).

2.3.2 The Bianchi eigenvariety

Define the locally symmetric space
}/0(11) = GL2(K)\GLQ(AK)/CXSUQ(C)QO(n)
which is the Bianchi analogue of the modular curve.

Let L c C, any sufficiently large extension of Q, and recall from section 2.2 the definitions of:

e the Bianchi weight space Wg;
e the space of locally analytic distributions D(L) with values in L;

e the semi-group Xo(p).

Also recall that for A € Wi we denoted by Dy (L) the space D(L) equipped with the weight A right
action of Xy(p) given in (2.7). Note that Dy(L) gives rise to a local system on Yy(n), which we
denote by Z\(L).

Let H,j, denote the Z,-algebra generated by the Hecke operators {Ty : (q,n) = 1} and {U, : p|p}

and write H for total cohomology.

Theorem 2.9. (Hansen) There exists a separated rigid analytic space &,, and a morphism w :
Ea = Wk, such that for each finite extension L of Qp, the L-points y of & with w(y) =X € Wi (L)
are in bijection with systems 1y : Ha ), — L of Hecke eigenvalues occurring in H (Yo(n), Zx(L)).

A point y € & (resp. Cn) is classical if there is a Bianchi (resp. classical) eigenform ®, (resp. f)
of weight w(y) such that t®, = 1, (t)®, (resp. tfy =1, (t)fy,) for all t € H,, (resp. for all classical

Hecke operators t).

The Bianchi eigenform has curious properties as for example that classical points in the Bianchi
eigenvariety are not Zariski-dense. In [3] is constructed a ‘parallel weight’ eigenvariety using de-
gree 1 overconvergent cohomology over the parallel weight line in the Bianchi weight space, this
eigenvariety is better behaved as for example the desirable property that the classical points are
Zariski-dense is satisfied, and by p-adic Langlands functoriality it contains all classical points cor-

responding to base change forms.

More specifically, if Wi par is the parallel weight line in Wy, i.e. the image of the closed immersion

Wg = Wk induced by the norm map (O ®z Z,)* - Z,, then we have
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Theorem 2.10. (Barrera-Williams) There exists a separated rigid analytic space Eypar, and a
morphism w : & par = Wik par, such that for each finite extension L of Qp, the L-points y of
Eapar With w(y) = X € Wi par(L) are in bijection with systems 1y : Hy, - L of Hecke eigenvalues
occurring in H(Y1(n), 2x(L)).

2.3.3 Base change functoriality from the Coleman-Mazur eigencurve to the
Bianchi eigenvariety

We are interested in classical modular forms satisfying some conditions that we present as follows

Conditions 2.11. Let N be divisible by p. Fiz f € Sgi2(To(N)) such that:

(C1°) (finite slope eigenform) f is an eigenform, and U, f = \pf with X\, # 0;
(C2°) (p-stabilised newform) f is new or the p-stabilisation of a newform fuew of level prime to p;

(C3’) (regular) if f is the p-stabilisation of fuew, then the Hecke polynomial at p of frew has two
different roots, and if p is inert in K, ap(foew) # 0;

(C4’) (non CM) f does not have CM by K;

Conditions 2.12. Let ® € S ;) (Q0(n)) with n divisible by each plp, be a finite slope p-regular

p-stabilised newform, in the sense that:

(C1) ® is an eigenform, and for each p|p, we have Uy® = ap,® with oy # 0;

(C2) there exist S c {plp}, m prime to S, and a newform Ppey € Sy 1) (Qo(m)) such that n =
m[legp and @ is obtained from Ppey by p-stabilising for p € S;

(C3) for each p € S, the Hecke polynomial of ®new at p has distinct roots.

Note newforms of level n themselves satisfy (C2),(C3) with S = @. We say a classical point y
satisfies Conditions 2.12 if ®, does (resp. Conditions 2.11 if f, does).

Theorem 3.4 in [3] show that there is a finite morphism BCy : Cny - Eno, of rigid spaces such
that if y e Cy (L) corresponds to a classical modular form f, then BCy(y) € £4(L) corresponds to
the (stabilisation to level NOg of the) system of eigenvalues attached to the base change to K of

f.

Remark 2.10. As in Remark 3.6 in [3] we will assume that if x € Cn satisfies Conditions 2.11,
then there is a neighbourhood Vi of x in Cn such that every classical point of BCn(Vg) € Enog
satisfies Conditions 2.12, since the results in section 3.2 are locally, again by Remark 3.6 in [3] we

will work with &, for some n|NOf .
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By Theorem 5.1.6 in [19] and Remark 2.10 the map BCy factors through Cn — & par. Let
gn,bc = BCy (CN) c 8n,par
denote the image.

We finish this section with two definitions that we will use in section 3.2

Definition 2.18. We say f is decent if f is non-critical (see [33]), or f has vanishing adjoint
Selmer group H}(Q, adpy) =0, where pg: Gal(Q/Q) — GLa(L) is the p-adic Galois representation
attached to f.

Definition 2.19. A point x € & is X-smooth if every irreducible component I c &, por through x
is contained in E,pe (equivalently, if the natural inclusion Epe C Eq par is locally an isomorphism
at ).
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Chapter 3

p-adic L-functions

In this chapter we obtain the functional equation of p-adic L-functions attached to cuspidal Bianchi
modular forms and we construct the p-adic L-function of non-cuspidal base change Bianchi modular
forms. The results in sections 3.1 and 3.2 are contained in the first paper of the author [30] and
are under the assumption of class number 1. The results in section 3.3 are contained in the second

paper of the author [31] and there is no restriction on the class number.

3.1 Functional equation of the p-adic L-function of small slope cuspidal Bianchi
modular forms

The p-adic L-function of a Bianchi modular form ® is defined as a locally analytic distribution on
Clg (p*) == K*\A% /C* 1,4, O, that interpolates the classical L-values of ®.

3.1.1 Construction of the p-adic L-function (Williams)

In [41], Williams constructs the p-adic L-function of a small slope Bianchi eigenform F by develop-
ing the theory of overconvergent Bianchi modular symbols of parallel weight. In such construction
he attaches to F a classical Bianchi eigensymbol ¢z (this is done in the same way as we did for
C-cuspidal forms in section 2.1.3) with coefficients in a p-adic field L, and lifts it to its correspond-
ing unique overconvergent Bianchi eigensymbol ¥ (again, in the same way as we did in sections
2.2.4 and 2.2.5). Then the p-adic L-function of F is the locally analytic distribution on Clg (p*)
defined by
Lp(F,-) = Mel(V5),

and is it proved that satisfies the interpolation and admissibility properties desired (see Definitions
5.10 and 6.14 in [41]). More precisely he obtains in Theorem 7.4 in [41]:

Theorem 3.1. (Williams) Let F be a cuspidal Bianchi modular eigenform of weight (k,k) and
level To(n), where (p)|n, with Uy-eigenvalues Ny, where v(Ay) < (k+1)/e, for all p|p. Let Qr be
the complex period in Proposition 1.6. Then there exists a locally analytic distribution Ly(F,-)
on Clg(p*™®) such that for any Hecke character v of K of conductor f|(p>) and infinity type
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0<(q,r) < (k, k), we have

Ly(F\tpsin) = (1‘[ Z3" ()

plp

[ Dwr(y™1)
(_1)k+Q+T2>\fQ]-'

a0 )
with Z);\p(w) as in (1.24).
The distribution Ly(F, =) is (hy),|p-admissible, where hy = v,(Xp), and hence is unique.

Remark 3.1. When p ramifies, in the Theorem above it suffices p|n instead (p)|n.

3.1.2 Functional equation
In this section we obtain the functional equation of the p-adic L-function of a small slope p-
stabilisation of a cuspidal Bianchi modular eigenform.

Let F, be a Bianchi modular form obtained by successively stabilising at each different prime p
above p a newform F € S, 1) (I'o(n)), with n = (v) prime to (p). Recall that F is an eigenform for
the Fricke involution Wy, with F|w, = e(n)F with e(n) = £1 (see section 2 in [11]).

Proposition 3.1. If F, has small slope, then for any Hecke character 1 of conductor f|(p™) with
f=(f) and infinity type 0< (q,7) < (k, k), the distribution L,(F,,—) satisfies

Lp(fp’wp—ﬁﬂ) = (_1)k+1e(n)N(n)k/zw;}ﬁn(x*V,P)LP(fpaw];—lﬁncf]];,k )

where x_,, , is the idele associated to —v defined in Remark 1.3 and cr,l,f’k as in equation (1.1).

Proof. By Theorem 3.1 we have the following interpolations

[ Dwr (1)
(_1)k+Q+T2)\fQ}'

Lp(]:mdjp—ﬁn) = (H Z;le(w) ]A(fpvw)' (3‘2)

plp

Ly(Fp, (7 [} Dp-tn) = (H Zy" (7 i)

plp

)[ Duwr(y] 35 )

-1y |k
(_1)k+q+r2)\fQ}_] A(‘Fp?¢ | : |AK)‘ (33)

By (3.2), Lemma 1.9 and (3.3) we have

) [ Duwr (1)

Lp(]:mwp—ﬁn) = H Z“;‘p(d)) (—1)k+q+7"2)\]cQj:

plp

]A(fp,w

_[_ Duwr(v™) an (- -
B _(—1)k+q+r2)\fQ]::|€(]:’w) (;IJEZP (7/) 1|'|1§K))A(]:pﬂ/) 1||1§K)

Duwr (|-}

-1
(—1)k+q+7~2/\;§2f] Ly(Fp, (7Y 15 Dptin)

Dwr (1)

- -(_1)k+q+r2)\fg}_:|€(f’w)[

=e(F )T )T ) T Lp(Fp, (071K ) p-tin)
= (D)) (—0) 0 (—v) Lp(Fp, (7[5 )ptin)-
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By Remark 1.3 we have
G sk (-v) = 60 (-0) (<) (-7)
= (4 50) () (V)
= w;}ﬁn(x—l’:p)u

and noting that for a finite idele x we have

W71 ) p-in () = 9325 (@) (|- £ )posin (2) = 0 g ()03 " (2) = (425005 (2),

we obtain the result. O

Theorem 3.2. For F, as above with small slope, the distribution L,(F,,—) satisfies the following

functional equation
Ly(Fp, &) = (1) e(mN®) k(2 p) " Lyp(Fpo w7 oy ™),

for all k € X(Clg (p™)).

Proof. Define a new distribution L, (F;,~) by
L;;(]'—pa k) = Ly(Fp, k) + (_1)ke(n)N(n)k/Q”(x—v,p)_le(}-pa f‘v_lff,].f’k)
for any x € X(Clg (p*)).

Since vp(ayp) < (k+1)/ey for all plp, the distribution Lj,(Fp,~) is (hy)y,-admissible, where hy =
vp(ay). Then L (Fp,~) is (hy)ypp-admissible.

In [27] it is proved that a distribution (hy),|,-admissible like L;,(F,, ) is uniquely determined by its
values on the p-adic characters 1,_g, € X(Clg (p*)) that arise from Hecke characters 1 of conductor
fl(p>) and infinity type 0 < (g,7) < (k, k). By Proposition 3.1 we have that L;,(Fy,v¥pfn) = 0 for
all ¥y, g, then L(Fp,~) =0 and the functional equation of L,(Fp,~) follows. O

Remark 3.2. In the case when p split, the property that L;,(]:p,—) 1s uniquely determined by
its values on the p-adic characters v, gy; is proved in Theorem 3.11 in [27] in the case where
vp(ay) <1 for p and p, which he assumes merely for simplicity. For a more detailed example of

the general situation in the one variable case, see [9].

Example: Suppose p splits in K as pp. Let F be a newform with weight (k, k) and level n prime
to p with Ay = Az = 0. Then the Hecke polynomials at p and p coincide, and their roots «, 8 both
have p-adic valuation (k+1)/2. Assuming « # 8 there are four choices of stabilisations of level (p)n
and each is small slope, giving rise to four p-adic L-functions attached to F, each one satisfying

the corresponding p-adic functional equation of Theorem 3.2.
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3.2 Functional equation of critical slope base change cuspidal Bianchi modular

forms

The construction of the p-adic L-function in the previous section and consequently the functional

equation in Theorem 3.2 depend of the small slope of the Bianchi modular form F.

In this section we generalize the functional equation of Theorem 3.2 for ¥-smooth base-change
Bianchi modular forms, in particular, making no assumption about the slope. To this end we use
the three-variable p-adic L-function constructed in [3] that specialises to L,(f/x,~), the p-adic

L-function of a base-change Bianchi modular form f,.

We first recall briefly the definitions and construction of such p-adic L-function.

3.2.1 Construction of the p-adic L-function (Barrera-Williams)

Let N be divisible by p. Fix f € Sg,2(To(N)) satisfying conditions 2.11, i.e., f is a finite slope
eigenform, p-stabilised newform, regular and non-CM. Also suppose f is decent and X-smooth (see
definitions 2.18 and 2.19).

Then there exists a neighbourhood Vg (as in Remark 2.10) of f in the Coleman-Mazur eigencurve

such that the weight map w is étale except possibly at f.

Theorem 3.3. (Barrera- Williams) Up to shrinking Vg, and for sufficiently large L c @p, there

exists a unique Tigid-analytic function
Ly: Vo x X(Clg(p™)) - L,

such that for any classical point y € V(L) with small slope base-change f, /i we have Ly(y,~) =
cyLp(fy/i, =), where ¢y € L™ is a p-adic period at y and Ly(fyx,~) is the p-adic L-function of
Jy/x of Theorem 3.1.

Note that in [3], £, depends of ¢, a finite order Hecke character of K of conductor prime to pOg,
and is denoted by L’g . Here we take ¢ to be trivial.

3.2.2 Functional equation

We can transfer the functional equation in Theorem 3.2 to £,.

Remark 3.3. Shrinking Vo we can suppose that there exists a Zariski-dense set S c Vg of classical

points such that for every y € S we have

(i) fy/i is a successive p-stabilisation at each prime p above p of a Bianchi newform of level

Lo(n) where n is the prime-to-p part of the level of f.

(ii) fyx has small slope.
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(iii) The weight (ky,ky) of fy/x satisfies ky =k (mod p—1).
Condition (iii) means that we are working in one of the (p—1) discs in the weight space.

For purposes of p-adic variation of the weight we have to give meaning to p-adic exponents.

Definition 3.1. Let p|p and s € Oy, define the function (-)° == exp(s-log,({-))) in Oy, where log,

denotes the p-adic logarithm and (-) is the projection of Oy to 1+p™Oy for ry the smallest positive
integer such that the usual p-adic exponential map converges on p"*Oy. Define by (-)* = [T,(-)*
with 8= (8p)yp € O ®7Zp = [Ty Op the corresponding function in (O ®z Zp)*. Let wrmyp: Op —
(Op/p™)* c Oy denote the Teichmiiller character at p, so that for z € Oy, we have 2 = wmp(2)(z).
Also let wry, = [Ty)p wrm,p be the corresponding character of (Ok ®z7 Zyp)".

Recall the definition of aﬁ’k(x) in equation (1.1) and note that, for example, for x € (A} ) we have

Uf-f’k(w) = [(zp)wrm(2p)]*, where z, = (@p)plp-

Theorem 3.4. Let Vg as in Remark 3.3, then for every y € Vg and r € X(Clg (p*>)) we have
£,y 1) = (1) Le(m)wrn (N ()TN0 21 1) ™ £ (s 1 0l ()F),

where e(n) = £1 is the eigenvalue of Ty Jor the Fricke involution Wy for all y, x_,, is the idele

associated to —v defined in Remark (1.3).

Proof. Consider S c Vg as in Remark 3.3 and note that for y € S, by Theorem 3.2, the distribution
Ly(fy/i,—) satisfies for all x € X(Clg (p™)) the following functional equation

_ 1 _kyk
Ly(fyi>5) = (D) e(mN@) P i(20) " Lo (fypc 57 ™),
multiplying both sides by the p-adic period ¢,, we have
Ly(y, k) = (-1)F (N2 ) Loy, 57 ™).

Note that N(n) = wr, (N(n))(N(n)) where each factor is well defined because p + n for all p|p,
also, since k, = k (mod p - 1) we have wrm(N(n))*/? = wrn, (N(n))*?, then for all y € S

Ly(y, k) = (D) e(m)ywrm(N(0) A N@))Y () 7 L (g, 57 0] (V).
Finally, since S is Zariski-dense on Vg, then the functional equation hold for every y € Vg. O

Corollary 3.1. Let F be a X-smooth base-change to K of a decent modular form satisfying con-
ditions 2.11, let n = (v) be the prime-to-p part of the level of F, then for all k € X(Clg(p™)) the

distribution L,(F,-) satisfies the following functional equation

Ly(F, ) = (1) L e(m)N(n) 2k (2_yp) " Ly (F, 710 B).

Proof. Let x be the classic point in the Coleman-Mazur eigencurve such that F = f, k, then

specialise the functional equation in Theorem 3.4 at x. ]
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Notice that corollary above generalises Theorem 3.2 with no non-critical assumption on the -
smooth base-change Bianchi modular form. In particular, we obtain the functional equation of
L,(F,-) for a ¥-smooth small slope base-change F new at p, this case is interesting, considering

for example, that when p is split in K, small slope is automatic.

3.3 p-adic L-function of base change non-cuspidal Bianchi modular forms

Let K be an imaginary quadratic field with arbitrary class number and suppose p splits in K, then
in this section we present our construction of the p-adic L-function of small slope non-cuspidal

Bianchi modular forms given as base change to K of classical modular forms.

3.3.1 Construction of the p-adic L-function

Since we want to work with the base change to K of a modular form with CM by K, then recall
from section 1.3.2 that if f is such a CM form of weight k + 2 and level coprime to p, then f = f,
where ¢ is a Hecke character of K of infinity type (—=k — 1,0) and conductor m for some ideal
m c Ok coprime to p. Also for the p-adic setting we need to p-stabilise f, and work with fé’ Jic A8
in Remark 1.16.

Note that f,/x is quasi-cuspidal by Proposition 1.7 and then fZ JK is quasi-cuspidal by Lemma
1.6. Since ff; /K is a quasi-cuspidal Bianchi modular form of parallel weight we can attach a full
Bianchi modular symbol, exactly in the same way as in Proposition 2.9 in [41] for cuspidal Bianchi

modular forms.

Denote by F* for i = 1,.., h, the collection of descents to Hs of f;’/K, then the Bianchi modular

symbol attached to ff;/K is defined as (bfp/}( =(¢F1,...,0pn) with ¢z defined by
®,

ko o
ori({a} —{oo}) = Y ¢ (a)(¥V-aX) XUy -ax) "X,
q,r=0
with .
i . 2k+2 \° kir+l [ jqer i
Gota) =2, =7 ) G0 [T TR et
for a e K.

Remark 3.4. Recall that the integrals defining such symbol are convergent since by Proposition

.7 we have tha is quasi-cuspidal, then for each i, F* quasi-vanishes for all cusps.
1.7 we h thtg/K' ) idal, th h, F* h ll

Proposition 3.2. Let Q} I be the period in Remark 1.18, then the Bianchi modular symbol
®,
¥y

b/ K

= ¢f£/K/Q'If¢’/K takes values in V', (E) for some number field E.

Proof. Let ¢ be a Hecke character of K of infinity type 0 < (¢,7) < (k, k) then by Theorem 2.11
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in [41] we have

et Y Y(a)C(a) |, (3.4)
[aleft/OK
((a)f,f)=1

1

(—1)’“””2%(%)]
(ap) Dwr (1)

h
=1

APy =

where
Cir(a) =g ({a} ={oo}) [(X +a) VP (X +aV )y V" ].

By Lemma 1.11, the quotient A(fz/K,w)/Q}WK is algebraic for all ¢ with infinity type 0 < (g,7) <
/ . ! * (M) : . 0 : .

(k, k), then by (3.4) the symbol ¢f£/;< = ¢f£/K/Qf¢>/K € Vk,k(@)' Finally, since A" is finitely gener-

ated as a Z[I';(n)] (see Lemma 3.8 in [41]), we have ¢’; € Symbrp, ) (V}", (E;)) for some number field

E; for each i = 1,..h, then there exists a number field E such that ¢}£/K € Symbg ) (Vi1 (E)). O

Proposition 3.2 allows us to see the partial Bianchi modular symbol qb}p as having values in
o/ K

kak(L) for a sufficiently large p-adic field L. Then, since fg IK has small slope, using the Theorem

6.10 (control theorem) in [41] we can lift qﬁ}p to its corresponding unique overconvergent Bianchi
P/ K

eigensymbol W = (Uq, ..., ¥};,) and then obtain.

Theorem 3.5. Let ¢ be a Hecke character of K with conductor m coprime with p and infinity type
(—=k —1,0) with k >0, denote by f, and fl the CM modular form induced by ¢ and its ordinary
p-stabilisation respectively. Let fZ/K be the base-change to K of f5, let Q}WK be a complex period
as in Proposition 1.8. Then there exists a unique locally analytic measure Lp(fg/f(’ =) on Clg(p*)
such that for any Hecke character 1 of K of conductor f = p'p® and infinity type 0< (q,7) < (k, k),

we have

DwG(+))
(_1)k+q+r2¢(ﬁ)t+sQ}W

Lp(fg/K7¢p—ﬁn) :Ep(fg/[(),l ]A(fg/[(7¢)7 (35)

K

where

G(¥) =vu(d) D) wf(a)eQ”mK/@(a/‘S%
[a]ef!/OK
((a)f)=1

» ;- B 1 B 1
Epllox) ‘(1 w(ﬁw(p))(l so(ﬁ)w(ﬁ))‘

Proof. By the above construction of the overconvergent modular eigensymbol ¥ associated to ff; /K
/K’_) = Mel(\P)
on Clg(p™) such that for any Hecke character 1 of K of conductor f = p'p° and infinity type
0< (q,7) < (k, k) satisfies

and by [41, Thm. 7.4] there exist a unique locally analytic distribution L,( ff;

) [ () Dwr ()

(=D)Frarr2gy(ap)as((Fo )Y,

Lo(f? e Yp-tn) = (H<1 ~[ap (7 )] ™) ]A(fﬁ/K,¢)-

plp
Also note that
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D) ap(f2 ) = ap( 7)) = ¢ (F) and
i) ar (12 0) = ap (7 g (17 10) = an(£2 5 ap(f7 ) = (B o (B)* = (B
iii) By remark 1.4 we have

T(¥7) = P(ap) () G ()

Then, by i), i) and #ii) we obtain the interpolation desired. O

Remark 3.5. In order to compare Lp(fg/K, -) to Katz p-adic L-functions, will be useful to relate
/K -) and
A(fso/K, =) in proof of Lemma 1.11, then for any Hecke character 1 of K of conductor f = p'p® and
infinity type 0 < (q,r) < (k, k), we have

the interpolation property in (3.5) with A(fy/x,~). Given the relation between A(ff;

DwG(v)

(_ 1 )k+q+r 2()0(]3)&5 Q}WK

Lp(ff;/Kvafﬁn) :Ep(fg/]()[ ]A(fap/l(uqvb)v

where

3.3.2 Katz p-adic L-function

Let % be a Hecke character of K of suitable infinity type and conductor mf with m prime to p and
flp>°, then Katz constructed in [25] the p-adic L-function of 1) when m is trivial. Later, Hida and

Tilouine in [21] extended the construction of Katz for non-trivial m.

In this section we just state the interpolation property of the Katz measure, for more details the

reader can see [5].

Recall the definition of the Gauss sum of 1 in section 1.1.4, we now define the local Gauss sum of
1 at prime ideals q dividing the conductor of ¢ by
() =(rg") Y Wa(w)er (ufmqdy)
ue(Oq/q")*
where e is the character in section 1.2.2, 7y is a prime element in Oy, t = ¢(q) is the exponent of
q in the conductor of ¢ and dg is the q component of the idele d associated to the different ideal
of K. Outside the conductor of 1, we simply put 74(z)) = 1.

Recall the construction of the period Q(A) in section 2C in [5] and properties regarding the
algebraicity of critical values of Hecke L-functions proved in Lemma 1.1; analogously there exists
a p-adic period ,(A) constructed in section 2D in [5] which is obtained by considering the base

change Ac, of the elliptic curve A of section 1.1.3 to C,,.

Theorem 3.6. (Katz, Hida-Tilouine) Let ¢ be a Hecke character of K of infinity type (a,b) with

a>1 and b <0 and conductor mf with m prime to p and f = p'p°. Then there is a unique locally
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analytic measure L,(—) on the ray class group Clx (mp™) satisfying:

Lo(Gpfin)  w (-1)**T(a)v/ D"
o, (A =2 ) ey )

where Wy (¢) = N(p) ' ().

(1-4(F)) (1 )Lw,m. (36)

1
EIONOE

3.3.3 Relation between the p-adic L-function of non-cuspidal base change and
Katz p-adic L-function

In section 1.3.4 we factor the complex L function of the base change to K of a CM modular form
as the products of two Hecke L-functions, such factorization suggests a factorization of p-adic

L-functions, in fact, this is the case.

Theorem 3.7. Let ¢ be a Hecke character of K with conductor m coprime with p and infinity
type (=k —1,0) with k > 0. Denote by f, the CM modular form induced by ¢ and f& its ordinary
p-stabilisation. Let fg/K be the base-change to K of f5, then for all k € X(Clg (p™)) we have

(& 1,1 C c 1,1
_ LpaKatZ((Pp—ﬁn’%o—P )vaKa‘tZ(Spp—ﬁn’L<v Op

P
Lp(fap/K’ k) = QP(A)k+1 Qp(A)’“l ’

where the character cr;’l is defined in (1.1) and ,(A) is the p-adic period in Theorem 3.6.

Remark 3.6. The p-adic L-function of fg/K is a function in X(Clg(p™)) but the Katz p-adic
L-functions in Theorem 3.7 are functions on X(Clg(mp™). To relate them, we see the later as

functions on X(Clg (p™)) via the map

Clg (mp™) = Clg (p™).

Proof. (of Theorem 3.7) Since the Bianchi modular form fg e is ordinary at every prime plp

then Lp(fg/K,
bounded distribution, i.e. a measure. To obtain the equality of measures in the Theorem, we only

=) is (hy)pp-admissible, where hy = v,()y) = 0 for each plp, then Lp(ff;/K,—) is a

need the equality on p-adic characters v,_g, coming from Hecke characters 1 of finite order and
conductor f = p'p°. For such characters we have from Corolary 3.5 and Theorem 3.6 the following

interpolations:

DwG ()
(-1)F12p(p) 0y, (27)?

Lp(fg/K7¢p—ﬁn) =Ep(f£/K)|: ]L(fgo/Kﬂl),l),

Ly ata (0% |as )p-in) _ (“D* oWy (] - a,) (2m)"
D) 2D QAP By (9| ) !

@[, 1
Eple ol lar) (1 N ) )(1 w(ﬁ)w(p)) 37)

L¢P, 1)

where
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and
Ly sas (PN i) D IuWy (el la) @)
Q,(A)k+ 2\/ﬁkQ(A)k+lEp(<pc¢c)\K|,|AK)—1 (@7 A, 1)
where
e 1l o _90(p)w(p))( 1 )
Ep(¢“ Ak lag) (1 NG 1 0@ (3.8)

In order to obtain the equality desired we simplify the Euler products, the Gauss sums and study

the periods on those interpolations.

1) Euler factors: The product of the Euler factors in equations (3.7) and (3.8) is equal to the

Euler factor in the interpolation of L, ( fg / K,'l/}p_ﬁn), i.e.
Ep(0“Y] - |a ) Ep(“U Nk - age ) = Ep(f75)-

2) Gauss sums: The Gauss sums in the interpolations of the Katz p-adic L-functions are

WYl la) = N0 ) (Ul |ay)
= )(m") Y p(wex(m'u)

ue(Op/pt)*

= (P Y dp(w)e e
ue(Ok [pt)*

= () (m (=) ()T i),

ue(Ox [pt)*

Wi (@A - Jag) = N7 ) (0 A - [y )
=(@V)(m,") Y dp(wek(m*u)
ue(Op/p°)*
_ ((’DC,(?Z)C)(T‘_I;S) Z ¢p (ﬂ)e—%riTrK/Q(u/Tr;’)
ue(Op/p*)*
_ (Socwc)(ﬂ-p_s Z ¢p (a)e—%riTrK/@(ﬂ/wg)
ue(Op/p*)*

S (Um0 T (o) TR,

ve(Ok [p°)*

Then, can be shown using for example ii) in Proposition 2.14 in [29] that the product of both

Gauss sums is related with G(v) as follows

W (U Lo )Wl N - age) = 9 (m =)0 (m)en(=0) ™ Y0 y(b)e?m Trre®/mio)
be(Ox /1)

=p(p) "G (V)

where in last equality since ¢ has finite order we have ¢~ (7}) = thoo(m;) = 1 and ¢5(-6)"* =1

because —¢ is a p-adic unit for all p above p.



3.3. p-adic L-function of base change non-cuspidal Bianchi modular forms 66

3) The periods: Recall the normalisation of the period 2} I in Remark 1.18 given by
®

, ~ 2Dk+1 B 2Dk+1Q(A)2k+2
foix — w forx = w(Qﬂ-Z’)2k+2

Then putting together 1), 2) and 3) we obtain
1
Lp(fg/K’ @Dpfﬁn) = mLp,Katz((@cw)pfﬁno—;’l )Lp,Katz((@ch/\K)pfﬁno—;’l) (39)
P
for all Hecke character v of finite order and conductor dividing p*, since there are infinitely many
such characters and both sides of (3.9) are bounded functions. The result follows since a non-zero

bounded analytic function on an open ball has at most finitely many zeros. O

Remark 3.7. In Theorem 3.7 the the p-adic L-function of ff;/K can be modified to be a function
on X(Clg (mp>)) by the same method as in Section 3.4 in [2].
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Chapter 4

Work in progress and further directions

In this chapter we present our current work and further directions, which have the objective of in
some sense “complete” the work done by Williams in [41], Barrera and Williams in [3] and this

thesis constructing p-adic L-functions attached to Bianchi modular forms.

4.1 Motivation

In sections 3.1 and 3.2 we recalled the construction of the p-adic L-function of:

e small slope cuspidal Bianchi modular forms;

e critical slope X-smooth base change cuspidal Bianchi modular;

done by Williams in [41] and Barrera-Williams in [3] respectively.

In section 3.3 we construct the p-adic L-function of:
e small slope base change non-cuspidal Bianchi modular forms.

Given those constructions our purpose is to construct the p-adic L-function of Bianchi modular

forms in some of the remaining cases specifically:

(I) small slope non-cuspidal Bianchi modular forms (Section 4.2);
(IT) critical slope base change non-cuspidal Bianchi modular forms (Section 4.3);

(III) critical slope non-cuspidal Bianchi modular forms (Section 4.2).

4.2 Work in progress

The purpose of this section is to explain our currect work in the construction of the p-adic L-

function of small slope non-cuspidal Bianchi modular forms.
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With the theory of partial Bianchi modular symbols developed in chapter 2 we can construct the
p-adic L-function attached to a small slope C-cuspidal Bianchi modular form following the same
steps of Williams in [41]. Such construction in the C-cuspidal case (which is currently in a writing
process), together with our results in chapter 2 and section 3.3 will be contained in [31], the second
work of my PhD.

More precisely, let ® be a small slope C-cuspidal Bianchi eigenform of level Q4(n) with (p)n and

weight (k,¢) with k > ¢, then we can construct its p-adic L-function following the next steps:

(i) Attach to ® a classical partial Bianchi modular eigensymbol:

By Proposition 2.3 we can attach an element

¢Fi € Symbp, ) ¢, (Vi (C))

to each F! with i = 1, .., h descent to Hs from ®, then we define
bo = (@1, ...¢5n) € Symbg ) (Vi o (C)).

(ii) Attach to @ a p-adic valued partial Bianchi modular eigensymbol:

By fixing an isomorphism ¢ : C — @p as in [28] we can obtain a symbol ¢}, with values in
Vil (@p) from the partial Bianchi modular eigensymbol ¢¢. Note that by the type finiteness of
A%i as a Z[I';(n)]-module it follows that for each i we have that ¢z, € Symbr, ) ¢, (Vi (E:))
for some number field E;, then ¢§ € Symbg, ) (Vi ,(E)) for some number field £ (see the

paragraph before section 4 in [4] for the analogous situation for modular forms).

(iii) Lift ¢} to its unique overconvergent partial Bianchi modular symbol:

Using the embedding inc: Q < @p fixed in (2.4) we view the coefficients as living in V,&(L),
where L is the finite extension of Q, generated by E. Since ® has small slope, we can use
the partial Bianchi control theorem (Theorem 2.2) to lift ¢3 to Wg € Symbg 4y o(Dre(L)).

(iv) Construct the p-adic L-function of ®:

Recall the definition of the Mellin tranform of an overconvergent partial Bianchi modular

symbol in Definition 2.17, we define the p-adic L-function of ® by
Ly(®,-):=Mel(Vgp).

Then the distribution L,(®,-) is (hy),|,-admissible, where hy = v, (), and hence is unique

(see section 2.2.6).

Remark 4.1. 1) Note that we start with a C-cuspidal Bianchi modular form, but currently we
are working in a generalization for non-cuspidal Bianchi modular forms. The key idea (which
is inspired by the work of Bellaiche and Dasgupta in [}]) is to turn the non-cuspidal Bianchi
modular form into C-cuspidal by producing the vanishing of suitable constant terms constructing

linear combinations. The feasibility of that idea lies in the special form of the constant term in
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the Fourier expansion of Bianchi modular forms (see Remark 1.8, that come from Theorem 6.7
2) Another relevant aspect that we are currently working, is the algebraicity of the partial Bianchi
modular symbol obtained in (i). It would be desirable to not depend of the isomorphism v in (ii).

The ideal situation would be the existence of a period as in Proposition 2.12 in [/1] for cuspidal

Bianchi modular forms.

4.3 Further directions

In this section we try to establish our next projects constructing the p-adic L-function of critical

slope non-cuspidal Bianchi modular forms.

Let G be a connected reductive group over @, and suppose G /Q, 1s quasi-split. In this case
Hansen in [19] constructed eigenvarieties for G' using overconvergent cohomology groups; his work
generalises earlier constructions of Ash and Stevens [1] and Urban [38]. In [3], Barrera and Williams
specializes Hansen’s main results to the Bianchi setting and work with the Bianchi eigenvariety, in
particular, they study one dimensional p-adic Bianchi families for cuspidal Bianchi modular forms
that are base change of non CM modular forms. It is interesting to observe that we also can have
the possibility of two dimensional families (over non-parallel weight space) having intersection with

a 1-dimensional p-adic family at a single non-cuspidal classical point.

e Project 1: Suppose p splits as pp in K, let ¢ be a Hecke character of K with conductor coprime

rit

to p, denote by f, the CM modular form induced by ¢ and denote by f; K the critical slope
p-stabilisation of the base change f,/k, then our first objective is to construct the p-adic L-

. t
function of f;r/lK
base change case using p-adic Bianchi families and using our construction in the small slope

by generalizing the methods of Barrera and Williams in [3] in the cuspidal

crit
/K
trying to factorise it as the product of two Katz p-adic L-functions (as in section 3.3.3 for the

case in section 3.3. Since the p-adic L-function of will not be a measure, then, when
p-adic L-function of the small slope p-stabilisation) we expect the additional appearance of
a ‘two dimensional’ logarithmic factor analogous to the ‘one dimensional’ logarithmic factor

appearing in Theorem 1.1 in [4] for Kubota-Leopoldt functions.

e Project 2: Our second objective is the construction of the p-adic L-function of critical slope
non-cuspidal Bianchi modular forms beyond the base change, which is the natural next step
after the construction in 4.2 for the small slope non-cuspidal case. This is an ambitious project
given that mixes the techniques of C-cuspidality and partial modular symbols developed in
this thesis for the non-cuspidal case with eigenvarieties and p-adic families applied to the

critical slope situation (to be developed in project 1 above).
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