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DEPARTAMENTO DE MATEMÁTICA Y CIENCIA DE LA

COMPUTACIÓN
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Introduction

Fractional calculus in continuous and discrete time has been studied for several decades. Fractional

derivatives in continuous time have been defined by numerous authors, based on some speculations

by Leibniz and L’ Hôpital. Important contributions originates from Laplace, Fourier, Abel, Liouville,

Riemann, Caputo, Grünwald, Letnikov and Fabrizio, among many others.

In the discrete case, fractional powers of the forward difference operator ∆ have been defined since

many years ago. In 1956, Kutter [70] mentioned for the first time differences of fractional order. In

1974, Diaz and Osler [33] introduced a discrete fractional operator defined as an infinite series. In

1988, Grey and Zhang [57] developed a fractional calculus for the discrete nabla (backward) operator.

Miller and Ross [78] defined a fractional sum via the solution of a linear difference equation. Their

definition is the discrete analogue of the Riemann-Liouville fractional integral, which can be obtained

via the solution of a linear differential equation. In 2007, Atici and Eloe [6, 7, 8] introduced the

Riemann-Liouville like fractional difference by using the definition of a fractional sum of Miller and

Ross, and developed some of its properties that allow one to obtain solutions of certain fractional

difference equations. In 2010, Anastassiou [3] defined the Caputo like fractional difference by using

also the notion of a fractional sum from Miller and Ross. At the same year, Ferreira [42] introduced

the concept of left and right fractional sum/difference and started a fractional discrete-time theory of

the calculus of variations. See also Sengul [86] for related work. In 2011, Holm [61] further developed

and applied the tools of discrete fractional calculus to the arena of fractional difference equations

[96, 97].
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One of the more interesting branches of fractional calculus is the theory of fractional evolution

equations. They arise naturally in the mathematical modeling of phenomena in natural sciences. The

main objective of this thesis is the study of existence, uniqueness and other qualitative properties of

solutions for some evolution equations involving continuous and discrete fractional models.

This thesis is composed of four themed chapters. In the following paragraphs, we provide a brief

description of each chapter:

In Chapter 1, we present part of the notation, concepts and the preliminary results that will be

necessary throughout the work.

Chapter 2 is developed in the area of discrete fractional calculus. We are interested in the

connection between the sign of the discrete fractional operator ∆αu and the geometry of the sequence

u on which it acts. For example, it is well known that if ∆u(n) ≥ 0 for n ∈ N0 implies that u is

increasing on N0, where ∆u(n) := u(n+1)−u(n) is the forward difference operator. But, What can

we say about the sequence u if the sign of operator ∆αu, with 2 ≤ α < 4, is known?

There is an extensive theory in continuous calculus that provides us with different qualitative

properties of the solutions of an equation. The discrete analogue is important for the numerical

analysis of nonautonomous and nonlinear fractional evolution problems, using Euler’s method, where

the entire order derivative may be approximated. From a numerical point of view, the discrete

fractional operator ∆α - as defined in [73] - approximates the Riemann-Liouville fractional order

operator and coincides with the generalized forward Grünwald-Letnikov derivative [81], defined by

∆αu(n) := ∆m
n∑

j=0

km−α(j)u(j), n ∈ N0,

where m− 1 < α < m, m ∈ N, kα(n) := Γ(n+α)
Γ(α)Γ(n+1) , n ∈ N0, Γ denotes the Gamma function and for

m ∈ N

∆mu(n) =

m∑
j=0

(
m

j

)
(−1)m−ju(n+ j), n ∈ N0.

We point out that the discrete fractional operator ∆α coincides up to translation with the more
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studied definition of discrete fractional operator ∆ν
a given by Atici and Eloe in 2007, namely

(
∆ν

af
)
(t) :=

1

Γ(−ν)

t+ν∑
s=a

(t− s− 1)−ν−1f(s), t ∈ Na+N−ν ,

where f ∈ s(Na;R), N ∈ N1 is the unique integer satisfying N − 1 < ν < N , and the map t 7→ tν is

defined by tν :=
Γ(t+ 1)

Γ(t+ 1− ν)
. This property, called transference principle, has been proved recently

by Goodrich and Lizama [50].

In 2014, the following question was addressed by Dahal and Goodrich [29, 30]:

(P) Is there a connection between the sign of the discrete fractional operator ∆αu, and the

positivity, monotonicity and convexity of the sequence u on which it acts?

While it is trivial to prove that ∆u(n) ≥ 0 for n ∈ N0 implies that u is increasing on N0, it

is very nontrivial to decide how monotonicity is connected to the positivity or negativity of the

discrete fractional operator. Similarly, while it is equally trivial to prove that ∆2u(n) ≥ 0 for n ∈ N0

implies that u is increasing on N0 and thus that u satisfies a convexity-type property, the analogue

of this sort of result in the discrete fractional setting is much more difficult to obtain. This is a very

nontrivial program due to the inherent nonlocal nature of the fractional operator, a fact that causes

great difficulty when trying to equip the operator with some reasonable geometrical meaning.

In case 2 ≤ α < 3 convexity results for discrete fractional operators as well applications to

fractional boundary value problems were studied in [46] and then reviewed in the monograph [47,

Section 7.3] by Goodrich and Peterson. We point out that due to a flurry of recent work in the area,

the basic convexity and concavity results presented in [47] have been substantively extended in a

variety of directions. See, for instance [15, 31, 41, 48, 49, 50, 51] and [88].

Recently, in the reference [50] the authors studied the problem (P) in case 2 ≤ α < 3 and found

that if ∆αu(n) ≥ 0 for all n ∈ N0 and u(0) ≥ 0, u(1) ≥ αu(0), u(2) ≥ αu(1) − α(α−1)
2 u(0) then u is

convex. See [50, Theorem 7.1]. This result has been recently refined in [17] where it was proved that

u should be positive and nondecreasing, too.

To understand the behavior between monotonicity and convexity, the concept of α-convex se-



CONTENTS 4

quence was defined in [17, Definition 6.1]. It refers to the continuous behavior (with respect to

the parameter α) between convex and non-decreasing sequences. Roughly speaking, an α-convex

sequence should be placed geometrically above sequences of the form βan + b where β, b ∈ R, a > 0,

see [17]. By means of this concept, the connection between the sign of the operator ∆αu and the

convexity of the sequence u has been studied.

However, even though many authors have studied various generalizations of convexity, see e.g.

[68] and its references, as far as we know none of these address the problem of what is between

the second and third order powers of the forward difference operator ∆ and thus remained an open

problem.

On the other hand, we notice that nonlinear equations involving the third temporal derivative,

have been widely studied [27, 54, 55, 72, 76, 84, 90]. Consider the third-order differential equation

x′′′(t) = J(t, x(t), x′(t), x′′(t)), x(0) = x0, x′(0) = x1, x′′(0) = x2, t ≥ 0.

The jerk term x′′′(t) with x(t) being the displacement appear in the Abraham-Lorentz equation

[62], describing the motion of a radiating charged particle. On the other hand, it is known that the

requirement for the occurrence of chaos of a nonlinear autonomous system is at least the third-order

temporal derivative being involved, like the nonlinear jerk equations [53, 89]. In the last time, third-

order differential equations appeared in a variety of dissimilar areas such as elastically deformable

matter, in the geometric design of roads and tracks, in motion control and in manufacturing pro-

cesses. Therefore, the study of nonlinear jerk equations is an interesting issue that deserves to be

investigated.

Recently, in the papers [44, 45] the authors show that the jerk dynamics are naturally obtained

for electrical circuits using the fractional calculus approach, i.e. replacing the third order derivative

x′′′ by a fractional order operator Dα
t with order 2 < α < 4. The electrical circuits studied in such

papers and their respective analogue mechanical system can be used to analyze the vibration levels of

machinery, serial mechanisms, robotics, oscillating circuits modeling, and instability of electrical and

mechanical circuits, to evaluate reconfigurable machines or to make mobility analysis or algebraic

formulations of motion equations [44].
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The previous studies detailed above allow us to better understand the discrete case. Therefore,

in the first section of this chapter, we provide for the first time a definition of α-jerk sequence. This

notion interpolate between the concepts of convex and positive jerk sequence, where the latter refers

to sequences that verify ∆3u(n) ≥ 0. This concept allows us to answer the problem (P) about the

connection between the sign of the operator ∆αu, when 2 ≤ α < 4 and the property of the sequence

u on which it acts. It is worthwhile to mention that this new concept not only allows a continuous

transition between the geometry of the sequence u as α moves from 2 to 4 but also a continuous

transition between the previous results existing in the literature and ours. After providing our

definition of positive α-jerk sequence, we realize that its graph must be placed above sequences of

the form βan + bn+ c. This is shown in Proposition 2.1.2.

In the next section of this chapter, our main results are proved and, by means of the transference

principle, the analogous results corresponding to the operator ∆ν
a are established. Two additional

examples are given. One example refers to the optimality of condition (2) in Theorem 2.2.1 to

guarantee the convexity of the sequence u. See the example 2.2.2. The second refers to the optimality

of the condition (2) in Theorem 2.2.4 to ensure that the sequence u has positive jerk. All these results

provide new insights and propose original concepts to better understand the qualitative behavior of

discrete fractional operators in this challenging area of study.

In Chapter 3, we are interested in the problem of existence of periodic solutions of the equation
GLD

α
t u(t) +Au(t) = f(t), t ∈ (0, 2π);

u(0) = u(2π),

(0.0.1)

where A is a closed linear operator defined in a Banach space X and GLD
α denotes the Grünwald-

Letnikov derivative. Existence of periodic solutions for differential equations of fractional order is a

very desirable property for analyzing cyclic (e.g. biological) processes, see [95]. In recent years many

papers have appeared on this topic [4, 16, 60, 80] and there are different methods that allow periodic

solutions, the Fourier transform being the most common. On the other hand, it is well known that

we cannot expect the existence of periodic solutions in time-invariant systems with each definition

of fractional order derivative, see e.g. [82, 92, 93].
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Regarding the fractional abstract Cauchy problem (0.0.1) the authors in [18, 74] have used a

method based on operator-valued Fourier multipliers to obtain existence of periodic solutions, in

several senses. With this method they have obtained solutions belonging to the periodic Lebesgue

space Lp
2π(R, X), where X is a Banach space. More precisely, assuming that 1 < α ≤ 2 and X satisfy

a geometrical hypothesis, in [74, Theorem 3.15] the authors show that for all f ∈ Lp
2π(R, X) there

exists a unique u ∈ Hα,p
2π (R, X) ∩ Lp

2π(R, D(A)) satisfying (0.0.1) if and only if {(im)α}m∈Z ⊆ ρ(A)

and the set {(im)α(A + (im)αI)−1}m∈Z is Rademacher bounded (or R-bounded). See also [18,

Theorem 3.3] for the analog result in the case 0 < α ≤ 1 and [20, 21, 22, 63] for extensions of this

result to more general models.

However, this method has disadvantages in concrete applications because they require checking

the R-boundedness condition on the operator valued-symbol. An additional problem of the charac-

terization cited above is the implicit requirement that 0 ∈ ρ(A) which restricts the applicability of

the result. For instance, the case where A is the Laplacian operator defined on unbounded domains

cannot be considered by the above characterization.

To avoid these difficulties, some authors [19] have proposed the sum method [28] that was first

introduced by Da Prato and Grisvard in the context of sectorial operators. The main idea is to

transform the problem into the closedness of the sum of two closed operators related to (0.0.1).

However, although the R-boundedness condition is unnecessary with this method, it only allows to

establish the existence of periodic solutions in some proper subspaces of Lp
2π(R, X), see [19, Theorem

1].

In this chapter we will take a different approach. Starting from the observation that periodic

solutions of systems are usually represented by series formed by a set of functions, the present chapter

introduces a novel concept of solution that implies the formal representation of the solution by means

of normally convergent series. This new concept is general enough to admit periodic forcing terms

in the space Lp
2π(R, X) without assuming any geometrical conditions in X or R-boundedness of the

operator-valued symbol. It allows also avoid assuming a fortiori that 0 ∈ ρ(A). We note that Haraux

[59, Chapter B, I] gave a similar approach in the case that X is a Hilbert space, which has been the

main motivation in this work.
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Using this approach, we can capture the minimum requirements that are needed in a system of

2π-periodic solutions of (0.0.1) in the sense that any solution of (0.0.1) can be represented by a

normally convergent series formed by functions of the following set

{umeimt}|m|≤t0 ∪ {(A+ (im)αI)−1f̂meimt}|m|>t0 ,

where we assume {(im)α}|m|>t0 ⊆ ρ(A) and f̂m = ((A + (im)αI)−1)um for |m| ≤ t0 where f̂m are

the Fourier coefficients of f . It is notable that the exact value of t0 can be determined explicitly in

some important examples. For example, assuming that A = B + C where C is a bounded operator

we consider two situations of interest. First, when X is a Hilbert space and B is self-adjoint, then

we have t0 = 21/α||C||1/α
| sin(απ/2)|1/α . Second, when X is a Banach space and B is sectorial with spectral angle

0 < ϕ < απ/2, then we have t0 = 21/α∥C∥1/α. We will shown the validity of this criteria for all pairs

(p, α) belonging to the sector {
p ∈ (1, 2] :

1

p
< α ≤ 2

p

}
.

The organization of this chapter is the following: In the first section, we introduce the notion of

normal periodic solution and contain our main result (Theorem 3.1.2). In section 2, two important

consequences are shown. The first takes the additive perturbation of the operator A in (0.0.1) as the

sum of a selfadjoint operator defined in a Hilbert space and a bounded linear operator. The second

takes the additive perturbation again but now in the scenario of a Banach space. In this case, we

assume that A can be represented as a sum of a sectorial operator with an angle depending on the

fractional parameter α, and a bounded linear operator. In both cases, we can guarantee existence of

normal 2π-periodic solutions.

In chapter 4, our concern is the study of existence, uniqueness and qualitative properties for the

solutions of the abstract Cauchy problem

CFD
α
t u(t) = Au(t) + f(t), t ≥ 0, (0.0.2)

and semilinear versions of it, i.e. where the term f(·) is replaced by f(·, u(·)). In the equation (0.0.2)

A is a closed linear operator with domain D(A) defined in a Banach space X and CFD
α
t denotes the

Caputo-Fabrizio fractional derivative of order α ∈ (0, 1).

In 2015, the authors Caputo and Fabrizio proposed a new concept of fractional derivative with a
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regular kernel [23]. This concept has proven to have valuable properties that make it very useful in

various areas of science and engineering (see [1, 2, 10, 11, 12, 13, 38, 39, 71, 75, 79, 91]).

For example, in [1], Abbas, Benchohra and Nieto, provided sufficient conditions to ensure the

existence of solutions for functional fractional differential equations with instantaneous impulses,

involving the Caputo-Fabrizio derivative. As methods, they used fixed point theory and measure of

noncompactness. In [10], Baleanu, Jajarmi, Mohammadi and Rezapour proposed a new fractional

model for the human liver involving the Caputo-Fabrizio derivative. In such paper, comparative

results with real clinical data indicated the superiority of the new fractional model over the pre-

existing integer order model with ordinary time derivatives. A similar study carried out by the

aforementioned authors, but for the Rubella disease model, was performed in reference [11], while in

[12] the analysis was performed in terms of a differential equation model for the COVID-19. In the

paper [14], Baleanu, Sajjadi, Jajarmi and Defterli analyzed the complicated behaviors of a nonlinear

suspension system in the framework of the Caputo-Fabrizio derivative. They show that both the

chaotic and nonchaotic behaviors of the considered system can be identified by the fractional order

mathematical model. Very recently, in the reference [69], Kumar, Das and Ong analyzed tumor cells

in the absence and presence of chemotherapeutic treatment by use of the Caputo-Fabrizio deriva-

tive. This is one of the few studies, together with the references [25, 91], where presence of partial

differential equations with the Caputo-Fabrizio derivative over time is considered.

Although this notion of fractional derivative appears to be very auspicious in a variety of concrete

applications, so far an unified analysis in the context of abstract partial differential equations, where

there is a wider range of mathematical models, remains undeveloped. In this context, one of the

basic problems to be studied corresponds to the so-called abstract Cauchy problem.

One of the motivations for this study is that, to our knowledge, similar work has not been

done before in abstract spaces with Caputo-Fabrizio or other fractional derivatives that have non-

singular kernels. Our goal is to clarify to what extent this type of fractional derivative offers advan-

tages/disadvantages in this abstract scenario.

In the existing literature, the problem (0.0.2) has been studied when A is scalar or even a matrix,

but when A is simply a closed linear operator, e.g. partial differential operators like the Laplacian,
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the problem (0.0.2) remains unsolved.

In the border case α = 1, it is well-known that solving the linear problem

u′(t) = Au(t) + f(t), t ≥ 0, (0.0.3)

requires A as the generator of a C0-semigroup.

In the first section of this chapter, we will show that this requirement is not more necessary to

solve (0.0.2). Which brings us to our main result: solving the problem (0.0.2) is equivalent to solving

the following problem:  u′(t) = Bαu(t) + Fα(t), t ≥ 0;

u(0) = −A−1f(0),

(0.0.4)

where Bα are bounded linear operators that behaves like a Yosida approximation of A, being Bα → A

and Fα(t) → f(t) as α → 1, in an appropriate sense. In this way, some qualitative properties for

(0.0.2) could be directly deduced from the corresponding ones of (0.0.4) with due care given to the

special initial condition u(0) = −A−1f(0) that appears in our new context.

In section 2, we study the important issue of stability. We show that under a simple condition,

which depends on α, about the location of the spectrum of the operator A, and a decay condition

on f, we can conclude that the unique solution u of the nonhomogenous equation (0.0.2) satisfies

∥u(t)∥ → 0 as t → ∞. A concrete example is shown that illustrates this asymptotic behavior and

how the connection between (0.0.2) and (0.0.4) works.

In the next section, if A is a closed linear operator, we show existence and uniqueness of mild

solutions for the nonlinear equation

CFD
α
t u(t) = Au(t) + f(t, u(t)), t ∈ [0, T ], T > 0, (0.0.5)

under a Lipschitz type condition on f that also depends on α. In particular, assuming that A is

densely defined, we realize that as α → 1 our result matches a classical result for the equation (0.0.3)

stated in [83, Theorem 6.1.2], where the condition for A to be the generator of a C0 semigroup

appears. Our studies reveal that this condition turns out to be natural thanks to the property

Bα → A as a Yosida approximation, before mentioned.
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It should be noted that one of the keys that was taken into account to carry out this work is that

the Caputo-Fabrizio fractional derivative has a non-singular kernel. Therefore, it is natural to ask -

and we leave it as an open problem - in what extent the results of this thesis could be reproduced if

the Caputo-Fabrizio derivative is replaced by another type of fractional derivatives with non-singular

kernel. For example, there are fractional time derivatives by the use of Gaussian kernels [24, Section

8], or Mittag-Leffler kernels [5], the last also known as the Atangana-Baleanu-Caputo derivative.

The results described in Chapters 2, 3 and 4 have been published in mainstream international

journals (ISI):

1. J. Bravo, C. Lizama, S. Rueda. Second and third order forward difference operator: What is

in between? Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A.

Matemáticas (RACSAM), 115(2) (2021), 86.

2. J. Bravo and C. Lizama. Normal periodic solutions for the fractional abstract Cauchy problem.

Boundary Value Problems, 2021(53) (2021).

3. J. Bravo and C. Lizama. The abstract Cauchy problem with Caputo-Fabrizio fractional deriva-

tive. Mathematics, 10(19) (2022), 3540.



Chapter 1

Preliminaries

The purpose of this chapter is to introduce certain notations, definitions and theorems used through-

out this thesis.

1.1 Discrete fractional calculus

In this section, we introduce the notion of the fractional difference operator that will be used mainly

in Chapter 2. In what follows, we denote Na := {a, a+1, a+2, . . . }, for some a ∈ R, and N ≡ N1 as

usual. We denote by s(Na;R) the vectorial space that consists of all sequences f : Na → R. Recall

that given a sequence f ∈ s(Na;R) the first-order forward difference operator, denoted by ∆a, is

defined by (
∆af

)
(t) := f(t+ 1)− f(t), t ∈ Na.

Then one may define iteratively the higher order differences ∆n
a , for n ∈ N1, by writing(

∆n
af
)
(t) :=

(
∆a ◦∆n−1

a f
)
(t).

We also denote ∆0
a ≡ Ia, where Ia : s(Na;R) → s(Na;R) is the identity operator, ∆1

a ≡ ∆a, and

∆n ≡ ∆n
0 .

11
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Remark 1.1.1. For any f ∈ s(N0;R), l ∈ N0 we have

∆lf(t) =

l∑
j=0

(
l

j

)
(−1)l−jf(t+ j), t ∈ N0.

We define for n ∈ N0, the following sequence

kα(n) :=


Γ(n+α)

Γ(α)Γ(n+1) if α ∈ C \ {0,−1,−2, ...},

δ0(n) if α = 0,

where δ0(n) is the delta function,

δ0(n) :=

 1 if n = 0,

0 if n ̸= 0.

The sequence kα has been introduced in [73]. This special sequence has a number of distinguished

properties that are fundamental to understand the behavior or discrete fractional operators. Their

importance has been recognized in several papers. For an overview, we refer to the reference [50].

Among others, that will be useful in this paper, we notice the semigroup property:

(kα ∗ kβ)(n) = kα+β(n), n ∈ N0, α, β > 0, (1.1.1)

which will be frequently used. We recall from [50, Lemma 3.2] the following result.

Lemma 1.1.2. For any α > 0 and n ∈ N0, the following identities hold:

1. ∆kα(n) = (α− 1)
kα(n)

n+ 1
.

2. ∆2kα(n) = (α− 2)(α− 1)
kα(n)

(n+ 1)(n+ 2)
.

3. ∆3kα(n) = (α− 3)(α− 2)(α− 1)
kα(n)

(n+ 1)(n+ 2)(n+ 3)
.

Now we recall from [73] the definition of α-th fractional sum operator on the set N0:
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Definition 1.1.3. For each α > 0 and f ∈ s(N0;R), we define the fractional sum of order α as

follows:

∆−αf(n) :=

n∑
j=0

kα(n− j)f(j), n ∈ N0.

The next concept, originally proposed in [73], is analogous to the definition of a fractional deriva-

tive in the sense of Riemann-Liouville [78].

Definition 1.1.4. Let α > 0 be given and f ∈ s(N0;R). The α−th fractional discrete operator is

defined by

∆αf(n) := ∆m∆−(m−α)f(n), n ∈ N0,

where m− 1 < α ≤ m, m ∈ N.

We recall that the finite convolution ∗ of two sequences u, v where u ∈ s(N0;C) and v ∈ s(N0;R)

is defined by

(u ∗ v)(n) =
n∑

j=0

u(n− j)v(j), n ∈ N0.

Given a, b ∈ R, we define the translation (by a ∈ R) operator τa : s(Na;R) → s(N0;R) by

τaf(n) := f(a+ n), n ∈ N0.

Note that τ−1
a = τ−a and τa+b = τa ◦ τb = τb ◦ τa.

Lemma 1.1.5. [50, Lemma 2.3] Let f, g ∈ s(N0;R) be sequences, then for each p ∈ N we have

(f ∗ τpg)(n) = τp(f ∗ g)(n)−
p−1∑
j=0

τpf(n− j)g(j).

We recall the most commonly used fractional difference operator of order ν > 0 as defined by
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Atici and Eloe [6, 7, 8]

(
∆ν

af
)
(t) :=

1

Γ(−ν)

t+ν∑
s=a

(t− s− 1)−ν−1f(s), t ∈ Na+N−ν , (1.1.2)

where f ∈ s(Na;R), N ∈ N1 is the unique integer satisfying N − 1 < ν < N , and the map t 7→ tν is

defined by tν :=
Γ(t+ 1)

Γ(t+ 1− ν)
. In the integer cases of ν = N we have

∆N
a f(t) =

N∑
j=0

(
N

j

)
(−1)N−jf(t+ j), t ∈ Na. (1.1.3)

In [50, Theorem 4.3] the authors related the operator ∆ν
a in (1.1.2) to the operator ∆α in Definition

1.1.4 by means of the operator of translation, which allowed to transfer the properties between

both definitions. This is called a transference principle. In the following, we have extended the

formulation of the transference principle in order to include the integer cases α = N ∈ N, being the

proof immediate taking into account (1.1.3).

Theorem 1.1.6. (Transference Principle) Let N − 1 < α ≤ N, N ∈ N and a, β ∈ R. For each

sequence f ∈ s(Na;R) we have

τa+N−α ◦∆α
af = ∆α ◦ τaf,

and for each f ∈ s(Na+N−β ;R),

τN−β ◦∆α
a+N−βf = ∆α

a ◦ τN−βf.

The next results generalize [50, Proposition 2.9, part (v)]

Proposition 1.1.7. For any a, b ∈ s(N0;R) and l ∈ N we have

∆l(a ∗ b)(n) = (∆la ∗ b)(n) +
l∑

j=1

j−1∑
i=0

(
l

j

)
(−1)l−ja(i)b(n+ j − i).
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Proof. Note that, by Remark 1.1.1 and Lemma 1.1.5 we get for l ∈ N

(∆la ∗ b)(n) =
n∑

i=0

b(i)∆la(n− i) =

n∑
i=0

b(i)

l∑
j=0

(
l

j

)
(−1)l−ja(n+ j − i)

=

n∑
i=0

l∑
j=0

(
l

j

)
(−1)l−ja(n+ j − i)b(i) =

l∑
j=0

(
l

j

)
(−1)l−j

n∑
i=0

τja(n− i)b(i)

=

l∑
j=0

(
l

j

)
(−1)l−j(τja ∗ b)(n), n ∈ N0.

Thus, we have that for n ∈ N0,

∆l(a ∗ b)(n) =
l∑

j=0

(
l

j

)
(−1)l−j(a ∗ b)(n+ j) =

l∑
j=1

(
l

j

)
(−1)l−jτj(a ∗ b)(n) +

(
l

0

)
(−1)l−0(a ∗ b)(n)

=

l∑
j=1

(
l

j

)
(−1)l−j

[
(τja ∗ b)(n) +

j−1∑
i=0

a(i)τjb(n− i)

]
+ (−1)l(a ∗ b)(n)

=

l∑
j=1

(
l

j

)
(−1)l−j(τja ∗ b)(n) + (−1)l(a ∗ b)(n) +

l∑
j=1

(
l

j

)
(−1)l−j

j−1∑
i=0

a(i)τjb(n− i)

=

l∑
j=0

(
l

j

)
(−1)l−j(τja ∗ b)(n) +

l∑
j=1

j−1∑
i=0

(
l

j

)
(−1)l−ja(i)b(n− i+ j)

= (∆la ∗ b)(n) +
l∑

j=1

j−1∑
i=0

(
l

j

)
(−1)l−ja(i)b(n+ j − i).

which proves the result.

Remark 1.1.8. In particular, by Proposition 4.1.6, we have for l = 1: ∆(a ∗ b)(n) = (∆a ∗ b)(n) +

a(0)b(n+ 1) and ∆(a ∗ b)(n) = (a ∗∆b)(n) + a(n+ 1)b(0). Thus,

(a ∗∆b)(n) = (∆a ∗ b)(n)− a(n+ 1)b(0) + a(0)b(n+ 1). (1.1.4)

1.2 Continuous fractional calculus

This section is devoted to recall some preliminaries that will be used mainly in Chapter 3 and 4. We

introduce definition of the Grünwald-Letnikov derivative and Caputo-Fabrizio derivative. Also, the

notions of normally convergent series and sectoriality of a closed linear operator.
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Let X be a complex Banach space. Given 1 ≤ p < ∞, we consider the Banach space Lp
2π(R, X)

of X-valued, 2π-periodic measurable functions f on R such that

∥f∥p :=

(
1

2π

∫ 2π

0

∥f(t)∥pdt
)1/p

< ∞.

For a function f ∈ L1
2π(R, X), we denote by f̂k, k ∈ Z, the kth Fourier coefficient of f :

f̂k =
1

2π

∫ 2π

0

e−iktf(t)dt, k ∈ Z.

Let X,Y be Banach spaces. We denote by B(X,Y ) the space of all bounded linear operators from

X to Y . When X = Y, we write simply B(X). For a linear operator A on X, we denote the domain

by D(A) and its resolvent set by ρ(A), and for λ ∈ ρ(A), we write R(λ,A) = (λI −A)−1. By [D(A)]

we denote the domain of A equipped with the graph norm.

We recall the well-known definition of the Grünwald-Letnikov fractional derivative and some of

its properties presented in [43, 65, 66, 85], see [85, Section 2.3, p. 6]. Let α > 0. Given f ∈

Lp
2π(R, X), 1 ≤ p < ∞ the Riemann difference

(∆α
hu)(t) =

∞∑
j=0

k−α(j)u(t− jh), (1.2.1)

where k−α(n) = Γ(−α+n)
Γ(−α)Γ(−α+n) , n ∈ N0, satisfy

∞∑
j=0

k−α(j)zj = (1− z)α, |z| < 1, (1.2.2)

exists almost everywhere and

∥∆α
hu∥p ≤ ∥u∥p

∞∑
j=0

|k−α(j)| < ∞ (1.2.3)

since k−α(n) = 1
n1+αΓ(α)

(
1 +O

(
1
n

))
. For a detailed study of the sequence kβ and its properties we

refer the reader to the recent article [50].

The following definition was proposed in [74, Definition 2.1].
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Definition 1.2.1. Let X be a complex Banach space, α > 0 and 1 ≤ p < ∞. If for f ∈ Lp
2π(R, X)

there exists g ∈ Lp
2π(R, X) such that lim

h→0+

∆α
hf

hα
= g in the Lp-norm, then g is called the αth

Gründwald-Letnikov derivative of f . We use the notation g = GLD
αf.

Remark 1.2.2. It should be noted that in [93] it was shown that the fractional-order derivative,

based on the Grünwald-Letnikov definition, of a periodic function with a specific period cannot be a

periodic function with the same period. However, the definition of the Grünwald-Letnikov fractional

derivative considered in [93, Formula (1)] differs from ours, which is taken from the book by Samko,

Kilbas and Marichev [65, Section 20, p. 371] and which, in turn, coincides with the Marchaud

derivative [65, Theorem 20.2]. See also [64] for an approach in the context of periodic distributions.

The next result shows some examples and properties. For a proof see e.g. [43, Propositions 9, 11

and 12] and [74, Proposition 2.3].

Proposition 1.2.3. Let f ∈ Lp
2π(R, X), 1 ≤ p < ∞. For any z ∈ C, Re(z) ≥ 0, α, β > 0, and

x, t ∈ R we have

(i) GLD
α
t e

zt = zαezt,

(ii) GLD
α
t sin(xt) = xα sin(xt+ απ

2 ), and GLD
α
t cos(xt) = xα cos(xt+ απ

2 ),

(iii) If GLD
αf ∈ Lp

2π(R, X) then GLD
βf ∈ Lp

2π(R, X) for all 0 < β < α,

(iv) GLD
α
GLD

βf = GLD
α+βf whenever one of the two sides is well defined.

Definition 1.2.4. [75, Definition 2] Let 0 < α < 1 and u : R+ → X be a continuously differentiable

function. The Caputo-Fabrizio fractional derivative of u of order α is given by:

CFD
α
t u(t) :=

1

1− α

∫ t

0

exp

(
−α(t− s)

1− α

)
u′(s)ds, t ≥ 0.

We recall two important properties (see [23, Section 2]):
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(i) For α → 1 we have that

lim
α→1

CFD
α
t u(t) = u′(t). (1.2.4)

(ii) We denote by L [u] the Laplace Transform of a function u. The Laplace Transform of the

fractional operator CFD
α
t with 0 < α < 1 is :

L [CFD
α
t u](λ) =

λL [u](λ)− u(0)

λ(1− α) + α
, λ > 0.

Remark 1.2.5. Note that the Caputo-Fabrizio fractional derivative has a non-singular kernel, namely,

exp
(
− αt

1−α

)
. This special feature, when compared with the classical Caputo or Riemann-Liouville

fractional derivative that instead has the singular kernel gα(t) =
tα−1

Γ(α) , 0 < α < 1, allows to obtain

distinguished properties of the non-local operator CFD
α
t . One of this properties, which is obvious

but important in our analysis, is the following:

CFD
α
t u(0) = 0, (1.2.5)

whenever 0 < α < 1. This behavior has been remarked by Diethelm, Garrapa, Giusti and Stynes [34],

where the general issue of the use of regular kernels in the theory of fractional calculus is discussed.

We recall the definition of normal convergence for series of functions [52, Definition 3, pag 222 ][35,

6.19, pag 64] and its relationship with uniform convergence [52, Theorem 1, pag 222][35, Theorem

6.1.10, pag 64].

Definition 1.2.6. Given a set I and bounded functions un : I → X, the series
∑
n∈Z

un(t) is called

normally convergent on I if the series
∑
n∈Z

||un||∞ :=
∑
n∈Z

sup
t∈I

∥un(t)∥ converges.

Remark 1.2.7. Every normal convergent series is uniformly convergent.

Let Σϕ ⊂ C be the open sector Σϕ = {λ ∈ C \ {0} : | arg λ| < ϕ}. Finally, we recall the following

definition.

Definition 1.2.8. [32] Given a closed linear operator A in X, we say that A is sectorial if A satisfy
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following conditions (i) D(A) = X,R(A) = X, (−∞, 0) ⊂ ρ(A); (ii) ||t(t+ A)−1|| ≤ M for all t > 0

and some M > 0. The operator A is called R-sectorial if the set {t(t+A)−1}t>0 is R-bounded.

If A is sectorial then Σϕ ⊂ ρ(−A) for some ϕ > 0 and sup| arg λ|<ϕ ||λ(λ+A)−1|| < ∞. We denote

the spectral angle of a sectorial operator A by

ϕA = inf{ϕ : Σπ−ϕ ⊂ ρ(−A), sup
λ∈Σπ−ϕ

||λ(λ+A)−1|| < ∞}.



Chapter 2

Second and third order forward

difference operator: What is in

between?

In this chapter, we present a new geometrical notion for a real-valued function defined in a discrete

domain that depends on a parameter α ≥ 2. We give examples to illustrate connections between

convexity and this new concept. We then prove two criteria based on the sign of the discrete fractional

operator of a function u, ∆αu with 2 ≤ α < 4. Two examples show that the given criteria are optimal

with respect to the established geometrical notion.

2.1 α-jerk sequence

From a physical point of view, jerk is the rate at which the acceleration of an object changes with

respect to time. In a discrete setting (following Euler method of discretization) it corresponds to the

20
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third order power of the forward difference operator, namely: ∆3. The connection between positive

jerk, i.e. ∆3u ≥ 0 and u has been an object of recent interest [67, 68] and can be characterized as

follows: A sequence u has positive jerk if and only if

u(n) =
1

2

n∑
k=0

(n− k + 2)(n− k + 1)b(k)

with b(k) ≥ 0 for all k ∈ N3. See e.g. [68, Lemma 1.1] and references therein. In order to analyze

the intermediate cases between ∆2 and ∆3 we propose the following definition.

Definition 2.1.1. Let α ≥ 2. We say that a sequence u ∈ s(N0,R) has positive α-jerk if

u(n+ 3)− αu(n+ 2) + (2α− 3)u(n+ 1)− (α− 2)u(n) ≥ 0, n ∈ N0, (2.1.1)

When α = 3 we recover the notion of positive jerk. Note that when α = 2 we retrieve the concept

of convex sequence on the set N.

Our first result tell us about the geometrical meaning of a positive α-jerk sequence. Compared

with a convex sequence, whose graph lies above sequences of the form: βan+b, in the case of positive

α-jerk sequences, the graph is placed above sequences of the form: βan + bn+ c. This is the content

of the following result.

Proposition 2.1.2. If u ∈ s(N0,R) has positive α-jerk then we have

u(n) ≥ 1

(3− α)2
[n(3− α) + (α− 2)n − 1]∆2u(0) + n∆u(0) + u(0)

for α ≥ 2, α ̸= 3 and

u(n) ≥ n(n− 1)

2
∆2u(0) + n∆u(0) + u(0),

in case α = 3.

Proof. From the definition, we note that u has positive α-jerk if and only if ∆2u(n + 1) ≥ (α −

2)∆2u(n), n ∈ N0. Iterating, we obtain

∆2u(n) ≥ (α− 2)n∆2u(0). (2.1.2)
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Thus, ∆u(n + 1) − ∆u(n) ≥ (α − 2)n∆2u(0) and hence ∆u(n + 1) ≥ (α − 2)n∆2u(0) + ∆u(n).

Iterating again this last inequality, we obtain

∆u(n) ≥
n−1∑
j=0

(α− 2)j∆2u(0) + ∆u(0) =
1− (α− 2)n

3− α
∆2u(0) + ∆u(0).

in case α ̸= 3 and

∆u(n) ≥ n∆2u(0) + ∆u(0),

in case α = 3.

Therefore, if α ̸= 3 we have

u(n+ 1) ≥ 1− (α− 2)n

3− α
∆2u(0) + ∆u(0) + u(n). (2.1.3)

Thus, iterating again we arrive at

u(n) ≥
n−1∑
j=0

1− (α− 2)j

3− α
∆2u(0) + n∆u(0) + u(0)

=
1

(3− α)2
[n(3− α) + (α− 2)n − 1]∆2u(0) + n∆u(0) + u(0)

which finish the proof in this case. In contrast, if α = 3, we obtain

u(n) ≥ n(n− 1)

2
∆2u(0) + n∆u(0) + u(0)

which finishes the proof.

Remark 2.1.3. If a sequence u has positive α−jerk and we assume that u(0) = u(1) = 0, u(2) = 1,

then their graph lies above the graph of the sequence Jα(n) :=
1

(3−α)2 [n(3− α) + (α− 2)n − 1]. The

behavior of the sequence Jα(n) for different values of α ̸= 3 is drawn in Figure 2.1. In case α = 3

the graph of a positive jerk sequence lies above the graph of the sequence J3(n) =
n(n−1)

2 .
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Figure 2.1: Jα with u(0) = u(1) = 0 and u(2) = 1

2.2 Geometry of the sequence u

In this section, for 2 ≤ α < 4, we assume that u ∈ s(N0;R) and ∆αu(n) satisfie suitables conditions,

and we conclude properties of positivity, monotonicity, convexity, jerk-positivity and α-jerk-positivity

for u. We give new examples shoring the necessity of imposed connditions.

2.2.1 Case: 2 ≤ α ≤ 3.

The following is our main result in case 2 ≤ α ≤ 3.

Theorem 2.2.1. Let 2 ≤ α ≤ 3 and u ∈ s(N0;R) be given and assume that
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1. ∆αu(n) ≥ 0, for all n ∈ N0;

2. u(2) ≥ αu(1)− α(α−1)
2 u(0);

3. u(1) ≥ αu(0);

4. u(0) ≥ 0.

Then u is positive, increasing, convex and has positive α-jerk on N0.

Proof. First, we study the borderline cases. If α = 2 then by hypothesis (1) we have ∆2u(n) ≥ 0,

for all n ∈ N0, i.e. u is convex (positive 2-jerk) on N0. Now, using the fact that u is convex on N0,

we get ∆u(n + 1) ≥ ∆u(n). By hypotheses (3) and (4) we also have u(1) ≥ u(0), then ∆u(0) ≥ 0

and ∆u(n) ≥ ... ≥ ∆u(0) ≥ 0. Hence, u is monotone increasing and positive on N0.

On the other hand, if α = 3, by hypothesis (1), we have ∆3u(n) ≥ 0 on N0, i.e., u has positive jerk.

Moreover, by hypotheses (2), (3) and (4) we obtain ∆2u(0) = u(2)−2u(1)+u(0) ≥ u(1)−2u(0) ≥ 0,

since that positive jerk is equivalent to ∆2u(n + 1) ≥ ∆2u(n), then ∆2u(n) ≥ ... ≥ ∆2u(0) ≥ 0.

Thus, u is convex on N0 and by hypotheses (3) and (4), u is monotone increasing and positive.

Now, we assume 2 < α < 3. By Proposition 4.1.6, with a := u, b := k3−α and l = 3, we obtain

(k3−α ∗∆3u)(n) = ∆αu(n)−
3∑

j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)k3−α(n+ j − i). (2.2.1)

Since k3−α(n+ j − i) = τj−ik
3−α(n), then convolving (4.1.8) with kα−2 we obtain

(kα−2 ∗ k3−α ∗∆3u)(n) = (kα−2 ∗∆αu)(n)−
3∑

j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)(kα−2 ∗ τj−ik

3−α)(n). (2.2.2)

Observe that (kα−2 ∗ k3−α ∗∆3u)(n) = (k ∗∆3u)(n) = ∆2u(n+ 1)−∆2u(0). Moreover, by Lemma

1.1.5 and the semigroup property of the kernel kγ , we get

(kα−2 ∗ τj−ik
3−α)(n) = (kα−2 ∗ k3−α)(n+ j − i)−

j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l)

= 1−
j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l).
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Therefore, replacing the above identity in (4.1.9), we have

∆2u(n+ 1)−∆2u(0) = (kα−2 ∗∆αu)(n)−
3∑

j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)

+

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)

j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l).

(2.2.3)

Note that,

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i) = 3u(0)− 3u(0)− 3u(1) + u(0) + u(1) + u(2) = ∆2u(0). (2.2.4)

Also, since for any γ > 0, kγ(0) = 1, kγ(1) = γ and kγ(2) = γ(γ+1)
2 , we have

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)

j−i−1∑
l=0

kα−2(n− l + j − i)k3−α(l)

= 3u(0)kα−2(n+ 1)− 3[u(0)(kα−2(n+ 2) + kα−2(n+ 1)(3− α)) + u(1)kα−2(n+ 1)]

+ [u(0)(kα−2(n+ 3) + kα−2(n+ 2)(3− α) + kα−2(n+ 1)
1

2
(3− α)(4− α))

+ u(1)(kα−2(n+ 2) + kα−2(n+ 1)(3− α)) + u(2)kα−2(n+ 1)].

(2.2.5)

Replacing (2.2.4) and (2.2.5) in (2.2.3) we obtain that for n ∈ N0,

∆2u(n+ 1) = (kα−2 ∗∆αu)(n) + kα−2(n+ 3)u(0) + kα−2(n+ 2)[u(1)− αu(0)]

+ kα−2(n+ 1)

[
u(2)− αu(1) +

α(α− 1)

2
u(0)

]
.

(2.2.6)

Using the hypotheses (1)–(4) we conclude from (4.1.10) that ∆2u(n) ≥ 0, for all n ∈ N. On the

other hand, using hypothesis (2), we have

u(2)− αu(1) +
α(α− 1)

2
u(0) = ∆2u(0)− (α− 2)u(1) +

(α− 2)(α+ 1)

2
u(0) ≥ 0.

Hence, hypotheses (3) and (4) show that ∆2u(0) ≥ 0. Indeed,

∆2u(0) ≥ (α− 2)u(1)− (α− 2)(α+ 1)

2
u(0) ≥

[
(α− 2)α− (α− 2)(α+ 1)

2

]
u(0)

=
(α− 2)(α− 1)

2
u(0).

This proves that ∆2u(n) ≥ 0 for all n ∈ N0 – i.e., u is convex on the set N0 as claimed. It follows

that u is positive and increasing (because it corresponds to the case α = 2 proved at the beginning

of the proof).
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Next, we prove that u has positive α-jerk. Indeed, from (4.1.8) we obtain

∆αu(n) = (k3−α ∗∆3u)(n) +

3∑
j=1

j−1∑
i=0

(
3

j

)
(−1)3−ju(i)k3−α(n+ j − i)

= (k3−α ∗∆3u)(n) + k3−α(n+ 3)u(0) + k3−α(n+ 2)[u(1)− 3u(0)]

+ k3−α(n+ 1)[u(2)− 3u(1) + 3u(0)].

(2.2.7)

By equation (1.1.4), with a := k3−α and b := ∆2u, we get

(k3−α ∗∆3u)(n) = (∆k3−α ∗∆2u)(n)− k3−α(n+ 1)∆2u(0) + k3−α(0)∆2u(n+ 1).

Thus, replacing the above identity in (4.1.7) and by hypothesis (1) we have

0 ≤ ∆αu(n) = (∆k3−α ∗∆2u)(n)− k3−α(n+ 1)∆2u(0) + k3−α(0)∆2u(n+ 1)

+ k3−α(n+ 3)u(0) + k3−α(n+ 2)[u(1)− 3u(0)] + k3−α(n+ 1)[u(2)− 3u(1) + 3u(0)]

=

n∑
j=1

∆k3−α(j)∆2u(n− j) + ∆k3−α(0)∆2u(n) + ∆2u(n+ 1)

+ k3−α(n+ 3)u(0) + k3−α(n+ 2)[u(1)− 3u(0)]− k3−α(n+ 1)[u(1)− 2u(0)]

=

n∑
j=1

∆k3−α(j)∆2u(n− j) + (2− α)∆2u(n) + ∆2u(n+ 1)

+ ∆k3−α(n+ 2)u(0) + ∆k3−α(n+ 1)[u(1)− 2u(0)],

where we have used ∆k3−α(0) = 2 − α and k3−α(0) = 1. By Lemma 1.1.2, part (1), we have

∆k3−α(m) ≤ 0. Recalling that ∆2u(m) ≥ 0 we obtain by hypotheses and the above inequality

(2− α)∆2u(n) + ∆2u(n+ 1) ≥ −
n∑

j=1

∆k3−α(j)∆2u(n− j)−∆k3−α(n+ 2)u(0)

−∆k3−α(n+ 1)[u(1)− 2u(0)] ≥ 0.

for all n ∈ N0 – i.e., u has positive α-jerk on N0.

The following example show that the condition (2) in Theorem 2.2.1 is necessary in order to

guarantee the convexity of the sequence u.

Example 2.2.2. Define the sequence u : N0 → R by u(n) = 2n−1
2n−1 , and assume that 4+

√
2

2 < α < 3.

The following statements holds.
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(i) ∆αu(n) ≥ 0, for all n ∈ N0;

(ii) u(1) ≥ αu(0);

(iii) u(0) ≥ 0;

(iv) u is positive and increasing.

(v) u has positive α-jerk and is concave.

Indeed, first observe that u(0) = 0 and u(1) = 1, therefore (ii) and (iii) holds. By their own definition

u is positive and it is clear that ∆u(n) = u(n + 1) − u(n) = 1
2n ≥ 0, i.e., u is increasing on N0. It

proves (iv).

We now verify (i): By Proposition 4.1.6, with a := k3−α, b := u and l = 3, we obtain for each

n ∈ N0

∆αu(n) = (∆3k3−α ∗ u)(n) +
3∑

j=1

j−1∑
i=0

(
3

j

)
(−1)3−jk3−α(i)u(n+ j − i)

= (∆3k3−α ∗ u)(n) + u(n+ 3)− αu(n+ 2) +
α(α− 1)

2
u(n+ 1).

(2.2.8)

Using equation (1.1.4), with a := u and b := ∆2k3−α, we obtain

(∆3k3−α ∗ u)(n) = (∆2k3−α ∗∆u)(n) + ∆2k3−α(n+ 1)u(0)−∆2k3−α(0)u(n+ 1).
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Now, replacing the above identity in (2.2.8) we have

∆αu(n) = (∆2k3−α ∗∆u)(n) + ∆2k3−α(n+ 1)u(0)−∆2k3−α(0)u(n+ 1) + u(n+ 3)− αu(n+ 2)

+
α(α− 1)

2
u(n+ 1)

= (∆2k3−α ∗∆u)(n)− (α− 1)(α− 2)

2
u(n+ 1) + u(n+ 3)− αu(n+ 2) +

α(α− 1)

2
u(n+ 1)

= (∆2k3−α ∗∆u)(n) + u(n+ 3)− αu(n+ 2) + (α− 1)u(n+ 1)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) + ∆2k3−α(0)∆u(n) + u(n+ 3)− αu(n+ 2) + (α− 1)u(n+ 1)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) +
(α− 1)(α− 2)

2
[u(n+ 1)− u(n)] + u(n+ 3)− αu(n+ 2)

+ (α− 1)u(n+ 1)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) + u(n+ 3)− αu(n+ 2) + [
(α− 1)(α− 2)

2
+ (α− 1)]u(n+ 1)

− (α− 1)(α− 2)

2
u(n)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) + u(n+ 3)− αu(n+ 2) +
α(α− 1)

2
u(n+ 1)

− (α− 1)(α− 2)

2
u(n)

=

n∑
j=1

∆2k3−α(j)∆u(n− j) +
2n+3 − 1

2n+2
− α

2n+2 − 1

2n+1
+

α(α− 1)

2

2n+1 − 1

2n

− (α− 1)(α− 2)

2

2n − 1

2n−1
.

Note that by Lemma 1.1.2, part (2), and using the fact that ∆u(n) ≥ 0, we obtain

n∑
j=1

∆2k3−α(j)∆u(n−

j) ≥ 0. Thus, since α ∈ ( 4+
√
2

2 , 3), from the above identity we obtain

∆αu(n) ≥ 2n+3 − 1

2n+2
− α

2n+2 − 1

2n+1
+

α(α− 1)

2

2n+1 − 1

2n
− (α− 1)(α− 2)

2

2n − 1

2n−1

=
2α2 − 8α+ 7

2n+2
≥ 0.

This proves (i) as claimed.
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Finally, we prove (v). Note that

∆2u(n) = ∆u(n+ 1)−∆u(n) = − 1

2n+1
≤ 0.

Therefore u is concave. Since u has positive α-jerk if and only if (2− α)∆2u(n) + ∆2u(n+ 1) ≥ 0,

we obtain after a computation

(2− α)∆2u(n) + ∆2u(n+ 1) =
1

2n+1

[
α− 3

2

]
≥ 0,

since α > 4+
√
2

2 > 3
2 . This proves (v).

However, note that u(2) = 3
2 < α = αu(1) − α(α−1)

2 u(0). It follows that the condition (2) in

Theorem 2.2.1 is necessary in order to ensure the convexity of the sequence u.

From Theorem 2.2.1 and the transference principle (Theorem 1.1.6) we deduce the following

corollary.

Corollary 2.2.3. Let 2 ≤ α ≤ 3, a ∈ R and v ∈ s(Na;R) be given and assume that

1. ∆α
av(t) ≥ 0, for all t ∈ Na+3−α;

2. v(a+ 2) ≥ αv(a+ 1)− α(α−1)
2 v(a);

3. v(a+ 1) ≥ αv(a);

4. v(a) ≥ 0.

Then v is positive, increasing, convex and has positive α-jerk on Na.

Proof. In case α = 2 the conclusion is clear from the hypothesis. Define u := τav. Using the

transference principle, we have,

∆αu(n) = τa+3−α ◦∆α
a ◦ τ−au(n) = τa+3−α ◦∆α

a ◦ v(n) = ∆α
av(t) ≥ 0,
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for each t := n + a + 3 − α ∈ Na+3−α. Moreover, u(2) = v(a + 2) ≥ αv(a + 1) − α(α−1)
2 v(a) =

αu(1)− α(α−1)
2 u(0), u(1) = v(a+ 1) ≥ αv(a) = αu(0), and u(0) = v(a) ≥ 0. The conclusion follows

from Theorem 2.2.1.

2.2.2 Case: 3 ≤ α < 4.

The following is our main result in case 3 ≤ α < 4.

Theorem 2.2.4. Let 3 ≤ α < 4, u ∈ s(N0;R) be given and assume that

1. ∆αu(n) ≥ 0, for all n ∈ N0;

2. u(3) ≥ αu(2)− α(α−1)
2 u(1) + α(α−1)(α−2)

6 u(0);

3. u(2) ≥ αu(1)− α(α−1)
2 u(0);

4. u(1) ≥ αu(0);

5. u(0) ≥ 0.

Then u is positive, increasing, convex and has positive jerk on N0.

Proof. Observe that in the limit case α = 3 all the given hypothesis and conclusions coincides with

those of Theorem 2.2.1 (note that (1) equals (2) in such case) and therefore the proof follows as in

such theorem. Suppose that 3 < α < 4. By Proposition 4.1.6, with a := u, b := k4−α and l = 4, we

obtain

(k4−α ∗∆4u)(n) = ∆αu(n)−
4∑

j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i)k4−α(n+ j − i). (2.2.9)

Since k4−α(n+ j − i) = τj−ik
4−α(n), then convolving (2.2.9) with kα−3 we obtain

(kα−3 ∗ k4−α ∗∆4u)(n) = (kα−3 ∗∆αu)(n)−
4∑

j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i)(kα−3 ∗ τj−ik

4−α)(n). (2.2.10)
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By Lemma 1.1.5 and the semigroup property of the kernel kγ , we get

(kα−3 ∗ τj−ik
4−α)(n) = (kα−3 ∗ k4−α)(n+ j − i)−

j−i−1∑
l=0

kα−3(n− l + j − i)k4−α(l)

= 1−
j−i−1∑
l=0

kα−3(n− l + j − i)k4−α(l).

Therefore, replacing the above identity in (2.2.10), and since (kα−3 ∗ k4−α ∗ ∆4u)(n) = (k ∗

∆4u)(n) = ∆3u(n+ 1)−∆3u(0), we obtain

∆3u(n+ 1)−∆3u(0) = (kα−3 ∗∆αu)(n)−
4∑

j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i)

+

4∑
j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i)

j−i−1∑
l=0

kα−3(n− l + j − i)k4−α(l).

(2.2.11)

On the other hand,

4∑
j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i) = −4u(0) + 6[u(0) + u(1)]− 4[u(0) + u(1) + u(2)]

+ [u(0) + u(1) + u(2) + u(3)]

= ∆3u(0).

(2.2.12)
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Also, since for any γ > 0, kγ(0) = 1, kγ(1) = γ, kγ(2) = γ(γ+1)
2 and kγ(3) = γ(γ+1)(γ+2)

6 we have

4∑
j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i)

j−i−1∑
l=0

kα−3(n− l + j − i)k4−α(l)

= −4u(0)kα−3(n+ 1) + 6

[
u(0)

(
kα−3(n+ 2) + kα−3(n+ 1)(4− α)

)
+ u(1)kα−3(n+ 1)

]
− 4

[
u(0)

(
kα−3(n+ 3) + kα−3(n+ 2)(4− α) + kα−3(n+ 1)

1

2
(4− α)(5− α)

)
+ u(1)

(
kα−3(n+ 2) + kα−3(n+ 1)(4− α)

)
+ u(2)kα−3(n+ 1)

]
+

[
u(0)

(
kα−3(n+ 4) + kα−3(n+ 3)(4− α) + kα−3(n+ 2)

1

2
(4− α)(5− α)

+ kα−3(n+ 1)
1

6
(4− α)(5− α)(6− α)

)
+ u(1)

(
kα−3(n+ 3) + kα−3(n+ 2)(4− α)

+ kα−3(n+ 1)
1

2
(4− α)(5− α)

)
+ u(2)

(
kα−3(n+ 2) + kα−3(n+ 1)(4− α)

)
+ u(3)kα−3(n+ 1)

]
.

(2.2.13)

Replacing (2.2.12) and (2.2.13) in (2.2.11) we obtain that for n ∈ N0,

∆3u(n+ 1) = (kα−3 ∗∆αu)(n) + kα−3(n+ 4)u(0) + kα−3(n+ 3)[u(1)− αu(0)]

+ kα−3(n+ 2)

[
u(2)− αu(1) +

α(α− 1)

2
u(0)

]
+ kα−3(n+ 1)

[
u(3)− αu(2) +

α(α− 1)

2
u(1)− α(α− 1)(α− 2)

6
u(0)

]
.

(2.2.14)

Using the hypotheses (2), (3), (4) and (5) we conclude from (2.2.14) that ∆3u(n) ≥ 0, for all n ∈ N.

We claim that ∆3u(0) ≥ 0. In fact, using (2), we have

u(3)− αu(2) +
α(α− 1)

2
u(1)− α(α− 1)(α− 2)

6
u(0)

= ∆3u(0)− (α− 3)u(2) +
(α− 3)(α+ 2)

2
u(1)− (α+ 1)(α2 − 4α+ 6)

6
u(0) ≥ 0.

Note that, since 3 < α < 4, then α2 − 6α+ 11 > 0. Hence, hypotheses (3), (4) and (5) show that

∆3u(0) ≥ (α− 3)u(2)− (α− 3)(α+ 2)

2
u(1) +

(α+ 1)(α2 − 4α+ 6)

6
u(0)

≥ (α− 3)

[
αu(1)− α(α− 1)

2
u(0)

]
− (α− 3)(α+ 2)

2
u(1) +

(α+ 1)(α2 − 4α+ 6)

6
u(0)
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=
(α− 2)(α− 3)

2
u(1)− α(α− 1)(α− 3)

2
u(0) +

(α+ 1)(α2 − 4α+ 6)

6
u(0)

≥ (α− 2)(α− 3)

2
αu(0)− α(α− 1)(α− 3)

2
u(0) +

(α+ 1)(α2 − 4α+ 6)

6
u(0)

=
α3 − 6α2 + 11α+ 6

6
u(0) =

α(α2 − 6α+ 11) + 6

6
u(0) ≥ 0.

This proves the claim and that ∆3u(n) ≥ 0 for all n ∈ N0 – i.e., the sequence u has positive jerk.

Finally, by hypotheses we obtain u(2) ≥ αu(1) − α(α−1)
2 u(0) ≥ αu(1) − (α−1)

2 u(1) = α+1
2 u(1) ≥

2u(1), then ∆2u(0) = u(2) − 2u(1) + u(0) ≥ 0. Moreover, ∆2u(n + 1) ≥ ∆2u(n) ≥ ... ≥ ∆2u(0),

therefore u is convex on N0. Now, using the fact that u is convex on N0, we get ∆u(n+1) ≥ ∆u(n). By

hypotheses (4) and (5) we also have u(1) ≥ u(0) ≥ 0, then ∆u(0) ≥ 0 and ∆u(n) ≥ ... ≥ ∆u(0) ≥ 0.

Hence, u is monotone increasing and positive on N0.

The following example show that the condition (2) in Theorem 2.2.4 is necessary in order to

ensure that the sequence u has positive jerk.

Example 2.2.5. Define the sequence u : N0 → R by u(n) = 2n + 22−n − 4, and assume that

6+
√
2

2 < α < 4. We have that the following collection of statements are true.

(i) ∆αu(n) ≥ 0, for all n ∈ N0;

(ii) u(2) ≥ αu(1)− α(α−1)
2 u(0);

(iii) u(1) ≥ αu(0);

(iv) u(0) ≥ 0;

(v) u is positive, monotone increasing and convex.

Indeed, first observe that u(0) = u(1) = 0 and u(2) = 1. This proves (ii), (iii) and (iv). Also, we have

that u is positive. Since ∆u(n) = u(n+1)−u(n) = 2− 1
2n−1 ≥ 0 and ∆2u(n) = ∆u(n+1)−∆u(n) =

1
2n ≥ 0, then u is monotone increasing and convex on N0. This proves (v).
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We will prove (i). In fact, by Proposition 4.1.6, with a := u, b := k4−α and l = 4, we obtain for

each n ∈ N0

∆αu(n) = (k4−α ∗∆4u)(n) +

4∑
j=1

j−1∑
i=0

(
4

j

)
(−1)4−ju(i)k4−α(n+ j − i)

= (k4−α ∗∆4u)(n) + k4−α(n+ 2)− 3

2
k4−α(n+ 1).

(2.2.15)

By equation (1.1.4), with a := k4−α and b := ∆3u, we have

(k4−α ∗∆4u)(n) = (∆k4−α ∗∆3u)(n)− k4−α(n+ 1)∆3u(0) + k4−α(0)∆3u(n+ 1).

Replacing the above identity in (2.2.15), we obtain

∆αu(n) = (∆k4−α ∗∆3u)(n)− k4−α(n+ 1)∆3u(0) + k4−α(0)∆3u(n+ 1) + k4−α(n+ 2)

− 3

2
k4−α(n+ 1)

= (∆k4−α ∗∆3u)(n) + ∆k4−α(n+ 1) + ∆3u(n+ 1).

(2.2.16)

On the other hand, using again equation (1.1.4), with a := ∆k4−α and b := ∆2u, we have

(∆k4−α ∗∆3u)(n) = (∆2k4−α ∗∆2u)(n)−∆k4−α(n+ 1)∆2u(0) + ∆k4−α(0)∆2u(n+ 1).

Thus, replacing the above identity in (2.2.16), we have

∆αu(n) = (∆2k4−α ∗∆2u)(n)−∆k4−α(n+ 1)∆2u(0) + ∆k4−α(0)∆2u(n+ 1)

+ ∆k4−α(n+ 1) + ∆3u(n+ 1)

= (∆2k4−α ∗∆2u)(n) + (3− α)∆2u(n+ 1) + ∆3u(n+ 1)

=

n∑
j=1

∆2k4−α(j)∆2u(n− j) + ∆2k4−α(0)∆2u(n) + (3− α)∆2u(n+ 1) + ∆3u(n+ 1)

=

n∑
j=1

∆2k4−α(j)∆2u(n− j) +
(3− α)(2− α)

2
∆2u(n) + (3− α)∆2u(n+ 1) + ∆3u(n+ 1).

By Lemma 1.1.2, part (2), and ∆2u(n) ≥ 0, we have
∑n

j=1 ∆
2k4−α(j)∆2u(n − j) ≥ 0. Thus, since

α ∈ ( 6+
√
2

2 , 4), and from the above, we have

∆αu(n) ≥ (3− α)(2− α)

2
∆2u(n) + (3− α)∆2u(n+ 1) + ∆3u(n+ 1)

=
(3− α)(2− α)

2

1

2n
+ (3− α)

1

2n+1
− 1

2n+2

=
2α2 − 12α+ 17

2n+2
≥ 0.
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This proves (i).

However, u has negative jerk. In fact, a simple calculation show

∆3u(n) = ∆2u(n+ 1)−∆2u(n) = − 1

2n+1
≤ 0.

Finally, notice that u(3) = 5
2 < α = αu(2) − α(α−1)

2 u(1) + α(α−1)(α−2)
6 u(0). It follows that the

condition (2) in Theorem 2.2.4 is necessary in order to ensure that the sequence u has positive jerk.

From Theorem 2.2.4 and the transference principle we deduce the following result.

Corollary 2.2.6. Let 3 ≤ α < 4, a ∈ R and v ∈ s(Na;R) be given and assume that

1. ∆α
av(t) ≥ 0, for all t ∈ Na+4−α;

2. v(a+ 3) ≥ αv(a+ 2)− α(α−1)
2 v(a+ 1) + α(α−1)(α−2)

6 v(a);

3. v(a+ 2) ≥ αv(a+ 1)− α(α−1)
2 v(a);

4. v(a+ 1) ≥ αv(a);

5. v(a) ≥ 0.

Then v is positive, monotone increasing, convex and has positive jerk on Na.

Proof. In case α = 3 the conclusion is clear from the hypothesis. Define u := τav. Using the

transference principle Theorem 1.1.6, we have,

∆αu(n) = τa+4−α ◦∆α
a ◦ τ−au(n) = τa+4−α ◦∆α

a ◦ v(n) = ∆α
av(t) ≥ 0,

for t := n+ a+ 4− α ∈ Na+3−α. The conclusion follows from Theorem 2.2.4.

We end this chapter, noting that further applications of the results and methods developed in

this section are possible in related areas such as, for instance, the study of positive solutions for

discrete nonlinear fractional boundary value problems [26].



Chapter 3

Normal periodic solutions for the

fractional abstract Cauchy

problem.

In this chapter, we show that if A is a closed linear operator defined in a Banach space X and there

exist t0 ≥ 0 and M > 0 such that {(im)α}|m|>t0 ⊂ ρ(A), the resolvent set of A, and

∥(im)α(A+ (im)αI)−1∥ ≤ M for all |m| > t0, m ∈ Z,

then, for each 1
p < α ≤ 2

p and 1 < p < 2, the abstract Cauchy problem with periodic boundary

conditions 
GLD

α
t u(t) +Au(t) = f(t), t ∈ (0, 2π);

u(0) = u(2π),

where GLD
α denotes the Grünwald-Letnikov derivative, admits a normal 2π-periodic solution for

each f ∈ Lp
2π(R, X) that satisfy appropriate conditions. In particular, this happens if A is a sectorial

operator with spectral angle ϕA ∈ (0, απ/2) and

∫ 2π

0

f(t)dt ∈ Ran(A).

36
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3.1 Normal 2π-periodic sequence

Let X be a complex Banach space and A : D(A) ⊂ X → X be a closed linear operator on X. Given

α > 0 and f ∈ Lp
2π(R, X), we are concerned with the problem of existence of periodic solutions of

the equation 
GLD

α
t u(t) +Au(t) = f(t), t ∈ (0, 2π),

u(0) = u(2π).

(3.1.1)

Let x ∈ X be fixed. Define fm(t) := eimtx, m ∈ Z. It is clear that fm ∈ Lp
2π(R, X) for any p > 1.

Suppose that x ∈ Ran(A+ (in)αI) for some α > 0 and some n ∈ Z fixed. Here

(in)α := |n|αe 1
2 sgn(n)iπα.

Then defining un(t) := eintun where un ∈ D(A) is such that x = (A + (in)αI)un, and in view of

Proposition 1.2.3 (part (i)) we obtain

GLD
α
t un(t) +Aun(t) = (in)αeintun + eintAun = eint((in)αI +A)un = fn(t).

In other words, un(t) is a strict (or strong) 2π-periodic solution of (3.1.1).

Motivated by the previous example and the concept of a normal convergent series, we present

the following definition.

Definition 3.1.1. We say that a sequence of functions um : R → X, m ∈ Λ ⊆ Z is a normal

2π-periodic solution of (3.1.1) if um is 2π-periodic, um(t) ∈ D(A) for all t ∈ R and satisfies (3.1.1)

for each m ∈ Λ and the series
∑

n∈Z 1Λ(n)un(t) is normally convergent.

In the above definition, we have 1Λ(n) ≡ 1 if n ∈ Λ and 0 in other case. Our main result is the

following theorem.

Theorem 3.1.2. Suppose there exist t0 ≥ 0 and M > 0 such that {(im)α}|m|>t0 ⊂ ρ(A) and

∥(im)α(A+ (im)αI)−1∥ ≤ M for all |m| > t0, m ∈ Z. (3.1.2)
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If f ∈ Lp
2π(R, X) where 1 < p ≤ 2, and there exists um ∈ D(A) such that f̂m = (A+ (im)αI)um for

each |m| ≤ t0, then the sequence of partial sums

uN (t) :=
∑

|m|≤t0

umeimt +
∑

t0<|m|≤N

(A+ (im)αI)−1f̂meimt, N > t0,

is a normal 2π-periodic solution of (3.1.1) for all 1
p < α ≤ 2

p .

Proof. Let N > t0 be fixed and define

fN (t) :=

N∑
m=−N

f̂meimt,

and

vt0(t) :=
∑

|m|≤t0

umeimt.

Note that by Proposition 1.2.3 we have

GLD
α
t (e

imtum) +A(eimtum) = (im)αeimtum + eimtAum

= eimt((im)αI +A)um = eimtf̂m.

We conclude that vt0 is a 2π-periodic solution of (3.1.1). On the other hand, the identity

A(A+ (im)αI)−1 + (im)α(A+ (im)αI)−1 = I

shows that

GLD
α
t [(A+ (im)αI)−1f̂meimt] +A[(A+ (im)αI)−1f̂meimt]

= (im)α(A+ (im)αI)−1f̂meimt +A(A+ (im)αI)−1f̂meimt

= [(im)α(A+ (im)αI)−1 +A(A+ (im)αI)−1]f̂meimt

= f̂meimt.

(3.1.3)

Therefore, we can conclude that GLD
α
t uN (t) + AuN (t) = fN (t) i.e. uN is a 2π-periodic solution of

(3.1.1).

Now, we study the convergence normal of the series. As a consequence of (3.1.2), we have for

|m| > t0:

||(A+ (im)αI)−1f̂meimt||∞ = sup
t∈T

{||(A+ (im)αI)−1f̂meimt|| ≤ M ||f̂m||
|m|α

. (3.1.4)
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On the other hand, by a theorem of Hardy-Littlewood (see e.g. [36]) we know that there exists a

constant C > 0 such that (∑
m∈Z

|m|p−2∥f̂m∥p
)1/p

≤ C∥f∥p,

for each 1 < p ≤ 2. Hence, by Hölder’s inequality, we obtain for any 1 ≤ q < ∞ with 1
p + 1

q = 1

∑
|m|>t0

M ||f̂m||
|m|α

≤ M
∑

m∈Z\{0}

|m|(p−2)/p||f̂m||
|m|α+(p−2)/p

≤ MC

 ∑
m∈Z\{0}

|m|p−2||f̂m||p
1/p ∑

m∈Z\{0}

1

|m|q(α+(p−2)/p)

1/q

.

Since 1 < αp ≤ 2, we obtain q(α+ (p− 2)/p) > 1 and the result follows.

For instance, in case p = 2 the restriction is : 1
2 < α ≤ 1. A complete picture is given in the

Figure 3.1, below.

Figure 3.1: 1
p < α ≤ 2

p with 1 < p ≤ 2.

An immediate consequence of Theorem 3.1.2 is the following.
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Corollary 3.1.3. Let A ∈ B(X) and 1 < p ≤ 2. If f ∈ Lp
2π(R, X) satisfies that f̂m ∈ Ran(A +

(im)αI) for |m| ≤ ∥A∥1/α, where 1
p < α ≤ 2

p , then the conclusions of Theorem 3.1.2 holds.

Proof. Since A is bounded we have that λ ∈ ρ(A) for all |λ| > ∥A∥ and

(λ+A)−1 =

∞∑
k=0

Ak

λk+1
.

Choosing t0 := ∥A∥ 1
α and λ = (it)α we obtain for each |t| > t0 that {(it)α}|t|>t0 ⊂ ρ(A) and

∥((it)α +A)−1∥ = ∥(λ+A)−1∥ ≤ e
|λ| =

M
|t|α for each |t| > t0, where M := e.

3.2 Additive perturbation

In the case of unbounded operators on Hilbert spaces, we have the following result that generalizes

and improves [59, Chapter B, Lecture 20, Corollary 10, pag 157].

Theorem 3.2.1. Let B a selfadjoint operator with domain D(B) defined on a Hilbert space H and

C ∈ B(H). Assume that B commutes with C and let A = B + C. Let 1 < p ≤ 2. If f ∈ Lp
2π(R, H)

satisfies that f̂m ∈ Ran(A + (im)αI) for |m| ≤ 21/α||C||1/α
| sin(απ/2)|1/α , m ∈ Z, where 1

p < α ≤ 2
p , then the

conclusions of Theorem 3.1.2 holds.

Proof. Let s ∈ R such that |s| > s0 := 21/α||C||1/α
| sin(απ/2)|1/α . Since B is selfadjoint, we have σ(B) ⊂ R and

||(B + λI)−1|| ≤ 1

|Im(λ)|

for all λ ∈ C \ R (see e.g. [58, Proposition C.4.2., pag 321]). In particular, choosing λ = (is)α, we

obtain that {(is)α}|s|>s0 ⊂ ρ(B) and

||(B + (is)αI)−1|| ≤ 1

|Im((is)α)|
=

1

| sin(πα2 )||s|α
.

This yields

||C(B + (is)αI)−1|| ≤ ||C||
| sin(πα2 )||s|α

<
1

2
.
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It implies that (I + C(B + (is)αI)−1)−1 exists and

||(I + C(B + (is)αI)−1)−1|| ≤ 1

1− ||C(B + (is)αI)−1||
≤ 1

1− ||C||
| sin(πα

2 )||s|α
≤ 2.

Since B commutes with C we have the identity A+ (is)αI = (B + (is)αI)(C(B + (is)αI)−1 + I). It

shows that {(is)α}|s|>s0 ⊂ ρ(A) and

(B + (is)αI)−1(C(B + (is)αI)−1 + I)−1 = (C + (B + (is)αI))−1 = (A+ (is)αI)−1, (3.2.1)

holds. Therefore

||(A+ (is)αI)−1|| ≤ ||(B + (is)αI)−1|| ||(C(B + (is)αI)−1 + I)−1|| ≤ 2

| sin(πα2 )||s|α
,

for each |s| > s0.

In case C ≡ 0 we obtain the following result that has own interest.

Corollary 3.2.2. Let A a selfadjoint operator with domain D(A) defined on a Hilbert space H. Let

1 < p ≤ 2. If f ∈ Lp
2π(R, H) satisfies that

∫ 2π

0

f(t)dt ∈ Ran(A) then the conclusions of Theorem

3.1.2 holds for all 1
p < α ≤ 2

p .

The case of Banach spaces is considered in the next result.

Theorem 3.2.3. Let A = B + C where B is sectorial with spectral angle ϕB ∈ (0, απ/2) where

1
p < α ≤ 2

p , 1 < p ≤ 2 and let C ∈ B(X) be such that C commutes with B. If f ∈ Lp
2π(R, X)

satisfies that f̂m ∈ Ran(A + (imω)αI) for |m| ≤ 21/α∥C∥1/α, m ∈ Z, then the conclusions of

Theorem 3.1.2 holds.

Proof. Let s ∈ R be such that |s| > s0 := 21/α∥C∥1/α. Since B is sectorial, Σϕ ⊂ ρ(−B) for some

ϕ > 0 and there exists M > 0 such that

||(λ+B)−1|| ≤ M

|λ|
, λ ∈ Σϕ.
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Since 1
2 < α < 2, if λ = (is)α := |s|αe 1

2 sgn(s)πiα then λ ∈ Σϕ and

||((is)αI +B)−1|| ≤ M

|s|α
for all 0 ̸= s ∈ R.

Hence,

||C(B + (is)αI)−1|| ≤ M∥C∥
|s|α

<
M

2
. (3.2.2)

On the other hand, since B and C commutes, we obtain that {(is)α}|s|>s0 ⊂ ρ(A) and the identity

(3.2.1) as in the proof of Theorem 3.2.1. Therefore

||(A+ (is)αI)−1|| ≤ ||(B + (is)αI)−1|| ||(C(B + (is)αI)−1 + I)−1||

≤ M

|s|α
||(C(B + (is)αI)−1 + I)−1|| (3.2.3)

for each |s| > s0.

We consider the following two cases:

(i) If 0 < M ≤ 1 then ||C(B + (is)αI)−1|| < 1
2 , |s| > s0.

(ii) If M > 1 then, dividing by M in (3.2.2), we obtain

(1/M)||C(B + (is)αI)−1|| < 1

2
, |s| > s0.

If we define for δ ∈ {1,M} the norm || · ||δ := (1/δ)|| · ||, we have

||C(B + (is)αI)−1||δ <
1

2
, |s| > s0. (3.2.4)

Therefore, for all 0 ̸= s ∈ R, ||C|| < |s|, there exists (I + C(B + (is)αI)−1)−1 and

||(I + C(B + (is)αI)−1)−1||δ ≤ 1

1− ||C(B + (is)αI)−1||δ
≤ 2.

Hence

||(I + C(B + (is)αI)−1)−1|| ≤ 2M.

Inserting the above inequality in (3.2.3) we obtain

||(A+ (is)αI)−1|| ≤ 2M2

|s|α
, |s| > s0.
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Again, the special case C ≡ 0 gives the next corollary.

Corollary 3.2.4. Let A be a sectorial operator with spectral angle ϕA ∈ (0, απ/2) where 1
p < α ≤

2
p , 1 < p ≤ 2. Assume that f ∈ Lp

2π(R, X) satisfies that

∫ 2π

0

f(t)dt ∈ Ran(A) then the conclusions

of Theorem 3.1.2 holds.



Chapter 4

The abstract Cauchy problem with

Caputo-Fabrizio fractional

derivative

In this chapter, we consider the following problem: given an injective closed linear operator A

defined in a Banach space X, and writting CFD
α
t the Caputo-Fabrizio fractional derivative of order

α ∈ (0, 1), we show that the unique solution of the abstract Cauchy problem

CFD
α
t u(t) = Au(t) + f(t), t ≥ 0, (4.0.1)

where f is continuously differentiable, is given by the unique solution of the first order abstract

Cauchy problem  u′(t) = Bαu(t) + Fα(t), t ≥ 0;

u(0) = −A−1f(0),

where the family of bounded linear operators Bα constitutes a Yosida approximation of A and

Fα(t) → f(t) as α → 1. Also, if 1
1−α ∈ ρ(A) and the spectrum of A is contained outside the closed

disk of center and radius equal to 1
2(1−α) then the solution of (4.0.1) converges to zero as t → ∞,

44
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in the norm of X, provided f and f ′ have exponential decay. Finally, assuming a Lipchitz-type

condition on f = f(t, x) (and its time-derivative) that depends on α, we prove the existence and

uniqueness of mild solutions for the respective semilinear problem, for all initial conditions in the

set S := {x ∈ D(A) : x = A−1f(0, x)}.

4.1 Well-Posedness

Let X be a complex Banach space and A : D(A) ⊂ X → X be a closed linear operator on X. Given

0 < α < 1 and f : [0,∞) → X be a function, in this section we are concerned with the problem of

existence of solutions to the equation

CFD
α
t u(t) = Au(t) + f(t), t ≥ 0. (4.1.1)

Definition 4.1.1. A function u : [0,∞) → X is said a strong solution of (4.1.1) if u is continuously

differentiable with u(t) ∈ D(A), t ≥ 0, and satisfies (4.1.1).

Remark 4.1.2. Observe that, in equation (4.1.1) when t = 0 we have CFD
α
t u(0) = Au(0) + f(0),

i.e., Au(0) = −f(0). Therefore, the value u(0) is implicitly prescribed although it is not given as an

initial condition. This condition will be important to show that the solution is unique in the classical

sense depending on the properties of the operator A.

Let 0 < α < 1 be fixed. Assuming that 1
1−α ∈ ρ(A), we define

Nα := (I − (1− α)A)−1 ∈ B(X).

Since Bα := α
1−α (Nα−I) is a bounded operator, it defines the uniformly continuous group (Tα(t))t∈R

on X, given by (see [40, Theorem I.3.7]):

Tα(t) = exp(tBα) =
∞∑
k=0

tkBk
α

k!
, t ∈ R. (4.1.2)
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Let f : [0,∞) → X be continuously differentiable and define

Fα(t) := (1− α)Nαf
′(t) + αNαf(t).

Note that, Fα(t) ∈ D(A) for all t ∈ [0,∞). For each x0 ∈ X, we define:

u(t) = Tα(t)x0 +

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0. (4.1.3)

Then is well-known [83, Section 4.2] that u is a strong solution of

u′(t) = Bαu(t) + Fα(t), t ≥ 0. (4.1.4)

Observe from (4.1.3) that x0 = u(0). If x0 ∈ D(A) is such that Ax0 = −f(0) then u solves the

following, particular, initial value problem u′(t) = Bαu(t) + Fα(t), t ≥ 0;

Au(0) = −f(0).

(4.1.5)

Note that in the initial condition we are not yet assuming any conditions on the invertibility of A.

We recall the following definitions, applied to (4.1.5).

Definition 4.1.3. Let x0 ∈ X be given. The function u defined by (4.1.3) is called mild solution of

the initial value problem (4.1.5).

Definition 4.1.4. A function u : [0,∞) → X is a strong solution of (4.1.5) if u is continuously

differentiable with u(0) ∈ D(A) and satisfies (4.1.5).

The following result is well-known, except for the new necessary condition imposed on the operator

A.

Proposition 4.1.5. Every strong solution of (4.1.5) is also a mild solution. And, if A is injective

and u(0) ∈ D(A) then every mild solution of (4.1.5) is also strong solution.
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Proof. Suppose u is strong solution of (4.1.5), then it is well know that u is defined by

u(t) = Tα(t)u(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0,

and is a mild solution (see [83, Section 4.2]). Now, if A is injective then u defined by

u(t) = −Tα(t)A
−1f(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ, , t ≥ 0. (4.1.6)

verifies (4.1.4) and, since u(0) ∈ D(A), we have Au(0) = −ATα(0)A
−1f(0) = −f(0). Hence, (4.1.6)

is a strong solution of (4.1.5).

Next, we collect some important properties of the operators previously defined.

Proposition 4.1.6. Let 0 < α < 1, β := α
1−α , A be a closed linear operator on X with domain

D(A), 1
1−α ∈ ρ(A) and Tα(t) = exp(tBα), t ∈ R, where Bα = β(Nα−I) and Nα = (I− (1−α)A)−1.

The following statements hold:

(i) Bαx = αNαAx and ANαx = NαAx, for x ∈ D(A);

(ii) Bk
αx ∈ D(A) and Bk

αAx = ABk
αx, for x ∈ D(A) and k ∈ N0;

(iii) Tα(t)x ∈ D(A) and ATα(t)x = Tα(t)Ax, for t ∈ R and x ∈ D(A);

(iv) Bk
αNαx = NαB

k
αx, for x ∈ X and k ∈ N0;

(v) NαTα(t)x = Tα(t)Nαx, for t ∈ R and x ∈ X.

Proof. (i) For x ∈ D(A), we have Ix = NαN
−1
α x = Nαx − (1 − α)NαAx then Nαx − Ix =

(1− α)NαAx, obtaining the claim.

(ii) First, by proceed by induction on k, we prove that Bk
αx ∈ D(A), for x ∈ D(A). In fact,

for k = 0 is trivial and for k = 1, by property (i), we have Bαx = αNαAx ∈ D(A), for all

x ∈ D(A). Suppose that for k ∈ N0, we have Bk
αx ∈ D(A), for all x ∈ D(A). Then, for k + 1

and x ∈ D(A) we obtain Bk+1
α x = Bk

α(Bαx) ∈ D(A).
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Now, again by proceed by induction on k, we prove that Bk
αAx = ABk

αx, for x ∈ D(A). Indeed,

for k = 0 is trivial and for k = 1, by property (i) and the above case, we have for x ∈ D(A)

BαAx = β(Nα − I)Ax = β[NαAx−Ax] = β[ANαx−Ax]

= A[β(Nα − I)]x = ABαx.

Suppose that for k ∈ N0, we have Bk
αAx = ABk

αx, for all x ∈ D(A). Then, by property (i), we

obtain for k + 1 and x ∈ D(A):

Bk+1
α Ax = Bk

α(BαA)x = Bk
α(ABα)x = (Bk

αA)Bαx

= (ABk
α)Bαx = ABk+1

α x.

(iii) Let n ∈ N0 and x ∈ D(A), define Tα,n(t)x :=
∑n

k=0
tkBk

α

k! x, t ∈ R. By property (ii), we have

Tα,n(t)x ∈ D(A), for n ∈ N0, and

lim
n→∞

Tα,n(t)x = Tα(t)x, t ∈ R.

Note that, by property (ii), we obtain for x ∈ D(A)

ATα,n(t)x =

n∑
k=0

tkABk
α

k!
x =

n∑
k=0

tkBk
αA

k!
x = Tα,n(t)Ax, t ∈ R.

Hence, by the above identities, we have for x ∈ D(A)

lim
n→∞

ATα,n(t)x = lim
n→∞

Tα,n(t)Ax = Tα(t)Ax, t ∈ R.

Thus, since A is a closed operator, for x ∈ D(A) we obtain Tα(t)x ∈ D(A) and

ATα(t)x = Tα(t)Ax, t ∈ R.

(iv) By proceed by induction on k. For k = 0 is trivial and for k = 1, we have for x ∈ X:

BαNαx = β(Nα − I)Nαx = β[N2
αx−Nαx] = Nα[β(Nα − I)]x = NαBαx.

Suppose that for k ∈ N0, we have Bk
αNαx = NαB

k
αx, for all x ∈ X. Then, we obtain for k + 1

and x ∈ X:

Bk+1
α Nαx = Bk

α(BαNα)x = Bk
α(NαBα)x = (Bk

αNα)Bαx

= (NαB
k
α)Bαx = NαB

k+1
α x.
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(v) We define Tα,n(t)x :=
∑n

k=0
tkBk

α

k! x, t ∈ R, for n ∈ N0 and x ∈ X. Since Nα is a bounded

operator, we have for x ∈ X

NαTα(t)x = Nα lim
n→∞

Tα,n(t)x = lim
n→∞

NαTα,n(t)x, t ∈ R.

By property (iv), we have for x ∈ X

NαTα,n(t)x =

n∑
k=0

tkNαB
k
α

k!
x =

n∑
k=0

tkBk
αNα

k!
x = Tα,n(t)Nαx, t ∈ R.

Thus, NαTα(t)x = Tα(t)Nαx, t ∈ R, for all x ∈ X.

Remark 4.1.7. Let 0 < α < 1 and A be a closed linear operator on X with 1
1−α ∈ ρ(A). First note

that, by Proposition 4.1.6, part (i), we have

Bαx = αANαx = αA(I − (1− α)A)−1x =
α

1− α
A(

1

1− α
I −A)−1x, for all x ∈ D(A).

Thus, by the above identity, we obtain

lim
α→1

Bαx = Ax, for all x ∈ D(A). (4.1.7)

Now, let s := 1
1−α , we define for every s > 1

Bs := (s− 1)A(sI −A)−1 = (1− s)[s(sI −A)−1 − I].

Note that if A is a densely defined operator on X then we deduce the following: Bs is a Yosida

approximation of A [83, Theorem 1.3.1]. Moreover, since each Bs is bounded, it generates a uniformly

continuous semigroup (Ts(t))t>0 on X. Then, there exists M ≥ 1 such that

||Ts(t)||B(X) ≤ M for all t ≥ 0. (4.1.8)

Observe that for α → 1 we have s → ∞. Thus, by (4.1.7), we get

lim
s→∞

Bsx = Ax, for all x ∈ D(A). (4.1.9)

Since 1
1−α ∈ ρ(A), we have for α → 1 that

(ω,∞) ⊂ ρ(A), ω > 1. (4.1.10)
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Therefore, by [9, Corollary 3.6.3], (4.1.8), (4.1.9) and (4.1.10), we have that A generates a C0-

semigroup T and for all x ∈ X,

lim
s→∞

Ts(t)x = T (t)x

uniformly for t ∈ [0, τ ] for all τ > 0.

The following is the main result of this section, and one of the main theorems of this chapter:

We show that (4.1.1) is well-posed if and only if (4.1.5) is well-posed.

Theorem 4.1.8. Let 0 < α < 1, A be a closed linear operator on X with domain D(A) and

f : [0,∞) → X continuously differentiable. Assume that {0, 1
1−α} ⊂ ρ(A). Then, the problem given

by

CFD
α
t v(t) = Av(t) + f(t), t ≥ 0, (4.1.11)

has a unique strong solution if and only if the initial value problem given by u′(t) = Bαu(t) + Fα(t), t ≥ 0;

u(0) = −A−1f(0),

(4.1.12)

has a unique strong solution, where Bα = α
1−α (Nα − I) and Fα(t) = (1−α)Nαf

′(t) +αNαf(t) with

Nα = (I − (1− α)A)−1.

Proof. Suppose that v is the unique strong solution of (4.1.12). Then, v is continuously differentiable

with v(0) ∈ D(A) and satisfies (4.1.12). In particular, v is mild solution of (4.1.12). Thus, by

Definition 4.1.3

v(t) = Tα(t)v(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0, (4.1.13)

where (Tα(t))t∈R is the uniformly continuous group generated by Bα.

We first observe that v(t) ∈ D(A), t ≥ 0. Indeed, by hypothesis, v(0) ∈ D(A) and by Proposition

4.1.6, part (iii), we have Tα(t)v(0) ∈ D(A). Again by Proposition 4.1.6, part (iii), we obtain that∫ t

0
Tα(t− τ)Fα(τ)dτ ∈ D(A), because Fα(t) ∈ D(A) and A is a closed operator. This proves that

v(t) ∈ D(A), t ≥ 0.
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Next, we observe some identities that v verifies. Since v is strong solution we have v(0) ∈ D(A)

and v(0) = −A−1f(0), i.e., Av(0) = −f(0). Then, by Proposition 4.1.6, part (iii), we have

ATα(t)v(0) = Tα(t)Av(0) = −Tα(t)f(0).

Thus, applying A to the identity (4.1.13) and using the above identity, we obtain that v verifies

Av(t) = −Tα(t)f(0) +A

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0. (4.1.14)

Note that, by Proposition 4.1.6, part (i), we have

NαA

∫ t

0

Tα(t− τ)Fα(τ)dτ = ANα

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0, (4.1.15)

since that
∫ t

0
Tα(t− τ)Fα(τ)dτ ∈ D(A) for all t ≥ 0. Then, operating by αNα the identity (4.1.14)

and using the identity (4.1.15), we have

αNαAv(t) = −αNαTα(t)f(0) + αANα

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0.

By Proposition 4.1.6, part (i), and the property of group, we have that the previous identity is

equivalent to

Bαv(t) = −αNαTα(t)f(0) + αANα

∫ t

0

Tα(t)Tα(−τ)Fα(τ)dτ, t ≥ 0. (4.1.16)

After this preliminaries, we will show that v satisfies (4.1.11). By definition of Caputo-Fabrizio

fractional derivative and the fact that v satisfies equation (4.1.12), we have

CFD
α
t v(t) =

1

1− α

∫ t

0

exp

(
−α(t− s)

1− α

)
v′(s)ds

=
1

1− α

∫ t

0

exp

(
−α(t− s)

1− α

)
[Bαv(s) + Fα(s)]ds

=
exp

(
− αt

1−α

)
1− α

[∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds+

∫ t

0

exp

(
αs

1− α

)
Fα(s)ds

]

=
exp

(
− αt

1−α

)
1− α

∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds

+
exp

(
− αt

1−α

)
1− α

∫ t

0

exp

(
αs

1− α

)
Fα(s)ds.

(4.1.17)
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In the above identity, we will find an equivalent representation of the following expression:

exp
(
− αt

1−α

)
1− α

∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds. (4.1.18)

Replacing the identity (4.1.16) in
∫ t

0
exp

(
αs
1−α

)
Bαv(s)ds we obtain

∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds = −αNα

∫ t

0

exp

(
αs

1− α

)
Tα(s)f(0)ds

+ αANα

∫ t

0

∫ s

0

exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dτds.

(4.1.19)

Observe that, (exp
(

αt
1−α

)
Tα(t))t∈R is a group whose generator is α

1−αI +Bα = α
1−αNα. Hence, by

[40, Chapter II], we have

αNα

∫ t

τ

exp

(
αs

1− α

)
Tα(s)f(0)ds = (1−α)[exp

(
αt

1− α

)
Tα(t)−exp

(
ατ

1− α

)
Tα(τ)]f(0). (4.1.20)

Thus, using the identity (4.1.20) in (4.1.19), we obtain∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds = (1− α)f(0)− (1− α) exp

(
αt

1− α

)
Tα(t)f(0)

+ αANα

∫ t

0

∫ s

0

exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dτds.

(4.1.21)

Note that, using Fubini’s theorem, Proposition 4.1.6, part (v), and the identity (4.1.20), we get that

αANα

∫ t

0

∫ s

0

exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dτds

= αANα

∫ t

0

∫ t

τ

exp

(
αs

1− α

)
Tα(s)Tα(−τ)Fα(τ)dsdτ

= A

∫ t

0

Tα(−τ)αNα

∫ t

τ

exp

(
αs

1− α

)
Tα(s)Fα(τ)dsdτ

= A

∫ t

0

Tα(−τ)(1− α)

[
exp

(
αt

1− α

)
Tα(t)− exp

(
ατ

1− α

)
Tα(τ)

]
Fα(τ)dτ

= (1− α) exp

(
αt

1− α

)
A

∫ t

0

Tα(t− τ)Fα(τ)dτ − (1− α)A

∫ t

0

exp

(
ατ

1− α

)
Fα(τ)dτ.

(4.1.22)
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Thus, replacing (4.1.22) in (4.1.21) and using the identity (4.1.14), we obtain∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds

= (1− α)f(0)− (1− α) exp

(
αt

1− α

)
Tα(t)f(0)

+ (1− α) exp

(
αt

1− α

)
A

∫ t

0

Tα(t− τ)Fα(τ)dτ − (1− α)A

∫ t

0

exp

(
ατ

1− α

)
Fα(τ)dτ

= (1− α)f(0) + (1− α) exp

(
αt

1− α

)[
−Tα(t)f(0) +A

∫ t

0

Tα(t− τ)Fα(τ)dτ

]
− (1− α)A

∫ t

0

exp

(
ατ

1− α

)
Fα(τ)dτ

= (1− α)f(0) + (1− α) exp

(
αt

1− α

)
Av(t)− (1− α)A

∫ t

0

exp

(
ατ

1− α

)
Fα(τ)dτ.

(4.1.23)

Therefore, multiplying by 1
1−α exp

(
− αt

1−α

)
the identity (4.1.23), we get finally (4.1.18):

exp
(
− αt

1−α

)
1− α

∫ t

0

exp

(
αs

1− α

)
Bαv(s)ds

= exp

(
−αt

1− α

)
f(0) +Av(t)− exp

(
−αt

1− α

)
A

∫ t

0

exp

(
ατ

1− α

)
Fα(τ)dτ.

(4.1.24)

This gives us the desired representation.

We return to the identity (4.1.17). Replacing (4.1.24) in (4.1.17), we obtain

CFD
α
t v(t) = exp

(
−αt

1− α

)
f(0) +Av(t)− exp

(
−αt

1− α

)
A

∫ t

0

exp

(
ατ

1− α

)
Fα(τ)dτ

+
exp

(
−αt
1−α

)
1− α

∫ t

0

exp

(
αs

1− α

)
Fα(s)ds

= Av(t) + exp

(
−αt

1− α

)
f(0)

+

− exp

(
−αt

1− α

)
A+

exp
(

−αt
1−α

)
1− α

I

∫ t

0

exp

(
αs

1− α

)
Fα(s)ds. (4.1.25)
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Now, we calculate
∫ t

0
exp

(
αs
1−α

)
Fα(s)ds. By definition of Fα and integration by parts, we have

∫ t

0

exp

(
αs

1− α

)
Fα(s)ds

=

∫ t

0

exp

(
αs

1− α

)
[(1− α)Nαf

′(s) + αNαf(s)]ds

= (1− α)Nα

∫ t

0

exp

(
αs

1− α

)
f ′(s)ds+ αNα

∫ t

0

exp

(
αs

1− α

)
f(s)ds

= (1− α)Nα

[
exp

(
αt

1− α

)
f(t)− f(0)− α

1− α

∫ t

0

exp

(
αs

1− α

)
f(s)ds

]
+ αNα

∫ t

0

exp

(
αs

1− α

)
f(s)ds

= (1− α)Nα

[
exp

(
αt

1− α

)
f(t)− f(0)

]
= (1− α) exp

(
αt

1− α

)
Nαf(t)− (1− α)Nαf(0).

(4.1.26)

Thus, replacing (4.1.26) in (4.1.25) and using the identity I = Nα − (1− α)ANα, we obtain

CFD
α
t v(t)

= Av(t) + exp

(
−αt

1− α

)
f(0)

+

− exp

(
−αt

1− α

)
A+

exp
(

−αt
1−α

)
1− α

I

[(1− α) exp

(
αt

1− α

)
Nαf(t)− (1− α)Nαf(0)

]

= Av(t) + exp

(
−αt

1− α

)
f(0)− (1− α)ANαf(t)

+ (1− α) exp

(
−αt

1− α

)
ANαf(0) +Nαf(t)− exp

(
−αt

1− α

)
Nαf(0)

= Av(t) + [Nα − (1− α)ANα]f(t) + exp

(
−αt

1− α

)
[I + (1− α)ANα −Nα]f(0)

= Av(t) + f(t).

The above show that v is strong solution of (4.1.11) and, by (4.1.13):

v(t) = Tα(t)v(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ. (4.1.27)

Finally, we show uniqueness. Assume that w is strong solution of (4.1.11) and set s := v − w.
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Then, by linearity of the operator CFD
α
t , we have that s is a strong solution of the equation

CFD
α
t s(t) = As(t), t ≥ 0. (4.1.28)

Since CFD
α
t s(0) = 0, then As(0) = 0. Thus, s(0) = 0 because A is injective. Using the identity

(4.1.27) for the problem (4.1.28) (f ≡ 0), we have s(t) = Tα(t)s(0) = 0. Hence, v(t) = w(t), t ≥ 0.

This proves the first part of the theorem.

Conversely, assume that v is the unique strong solution of (4.1.11). Then, v is continuously

differentiable with v(t) ∈ D(A), t ≥ 0, and satisfies (4.1.11), i.e.,

CFD
α
t v(t) = Av(t) + f(t), t ≥ 0. (4.1.29)

Note that, since Bα is bounded operator and f is continuously differentiable, then we can define the

function u by

u(t) := Tα(t)v(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0, (4.1.30)

where (Tα(t))t∈R is the group generated by Bα. By identities (4.1.29) and (4.1.30), we have that

u(0) = v(0) ∈ D(A). (4.1.31)

We claim that the function u defined by (4.1.30) is continuously differentiable and satisfies (4.1.12).

In fact, it is clear that it is continuously differentiable because (Tα(t))t∈R is a uniformly continuous

group. We will check that satisfy (4.1.12). First, note that by [40, Section VI.7] it clearly satisfies

the identity

u′(t) = Bαu(t) + Fα(t), t ≥ 0.

It remains to check that satisfies the initial condition. In fact, using (4.1.29) and (4.1.31), we

have Au(0) = Av(0) =CF Dα
t v(0) − f(0) = −f(0) since CFD

α
t v(0) = 0 by Remark 1.2.5. Thus,

u(0) = −A−1f(0) because A is injective. This proves the claim. Therefore, u is strong solution of

(4.1.12).

We show uniqueness. Assume that w is strong solution of (4.1.12) and set s := u − w. Then,

s(0) ∈ D(A) and is a strong solution of the problem

s′(t) = Bαs(t), t ≥ 0.
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It is well known that s(t) = Tα(t)s(0), t ≥ 0, with Tα(t) the group generated by Bα. Note that,

s(0) = u(0)− w(0) = 0 then s(t) ≡ 0, t ≥ 0. Hence, u(t) = w(t), t ≥ 0.

Remark 4.1.9. Examining the previous proof, we deduce that if A is a non-injective operator, then∫ t

0
Tα(t − τ)Fα(τ)dτ ∈ D(A) and that a strong solution v of (4.1.11) (and of (4.1.12)) verifies

Av(0) = −f(0) and

Av(t) = Tα(t)Av(0) +A

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0,

where (Tα(t))t∈R is a uniformly continuous group generated by Bα = α
1−α (Nα − I) and Fα(t) =

(1− α)Nαf
′(t) + αNαf(t).

Remark 4.1.10. Note that, Theorem 4.1.8 does not assume A to be the generator of any one-

parameter family of operators, or A to be densely defined, in contrast with the limit case α = 1 that

requires A to be the generator of a C0-semigroup. This reveal an important advantage of the frac-

tional abstract Cauchy problem (0.0.2) when compared with the abstract Cauchy problem (0.0.3).

However, we have a restriction over the spectrum, namely: {0, 1
1−α} ⊂ ρ(A). In conclusion, although

always the Cauchy problem with the Caputo-Fabrizio fractional derivative can be theoretically re-

duced to a first order abstract Cauchy problem, the first could be much more flexible when dealing

with applications. This is probably the reason why problems with the Caputo-Fabrizio derivative

find many applications in the real world.

Remark 4.1.11. If f ≡ 0 in Theorem 4.1.8, since u(0) = −A−1f(0) = 0, then the unique strong

solution u of (4.1.11) (and of (4.1.12)) is u ≡ 0.

Remark 4.1.12. If f is not zero in Theorem 4.1.8, then the unique strong solution u of (4.1.11) (and

of (4.1.12)) is

u(t) = Tα(t)A
−1f(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0.

In order to avoid the hypothesis of injectivity, we introduce now the following definitions.

Definition 4.1.13. Let A be a closed linear operator. A function u : [0,∞) → X is called an A-

unique strong solution of (4.1.1)-(4.1.5) if and only if any strong solution v of (4.1.1)-(4.1.5) satisfies
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that Au(t) = Av(t), t ≥ 0.

Remark 4.1.14. Observe that if A is an injective operator then an A-unique strong solution is unique

in the classical sense.

With the above preliminaries, we show the following corollary of Theorem 4.1.8.

Corollary 4.1.15. Let 0 < α < 1, A be a closed linear operator on X with domain D(A) and

f : [0,∞) → X continuously differentiable. Assume that 1
1−α ∈ ρ(A). Then, the problem given by

CFD
α
t v(t) = Av(t) + f(t), t ≥ 0, (4.1.32)

has an A-unique strong solution if and only if the initial value problem given by u′(t) = Bαu(t) + Fα(t), t ≥ 0;

Au(0) = −f(0),

(4.1.33)

has an A-unique strong solution, where Bα = α
1−α (Nα − I) and Fα(t) = (1− α)Nαf

′(t) + αNαf(t)

with Nα = (I − (1− α)A)−1 ∈ B(X).

Proof. The proof of the existence of strong solutions for the problems (4.1.32) and (4.1.33) is the

same that Theorem 4.1.8. We show A-uniqueness. Let v be a strong solution of (4.1.32), by Remark

4.1.9 we have that v verifies

Av(t) = Tα(t)Av(0) +A

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0. (4.1.34)

Assume that w is another strong solution of (4.1.32) and set s := v − w, then we have that s is a

strong solution of the following

CFD
α
t s(t) = As(t), t ≥ 0. (4.1.35)

Since CFD
α
t s(0) = 0, then As(0) = 0. Using the identity (4.1.34) for the problem (4.1.35) (f ≡ 0),

we have As(t) = Tα(t)As(0) = 0. Hence, Av(t) = Aw(t), t ≥ 0.

Now, let u be a strong solution of (4.1.33) and assume that w is another strong solution of
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(4.1.33). We set s := u− w, then s(0) ∈ D(A) and is a strong solution of the following

s′(t) = Bαs(t), t ≥ 0, and As(0) = 0.

Therefore, we get s(t) = Tα(t)s(0), t ≥ 0, with Tα(t) the group generated by Bα. By Proposition

4.1.6, part (iii), we obtain s(t) = Tα(t)s(0) ∈ D(A), t ≥ 0, and As(t) = ATα(t)s(0) = Tα(t)As(0) =

0, since s(0) ∈ D(A) and As(0) = 0. Hence, Au(t) = Aw(t), t ≥ 0.

Remark 4.1.16. If f ≡ 0 in Corollary 4.1.15, then the A-unique strong solution u of (4.1.11) (and of

(4.1.12)) is not zero for an initial condition in the kernel of A.

Next we present an immediate consequence of the above results. Note that the proof requires the

use of [40, Definition II.4.1] (see also [83, Section 2.2.5 ])

Corollary 4.1.17. Let 0 < α < 1, A be a sectorial operator on X of angle δ ∈ (0, π/2) with domain

D(A) and f : [0,∞) → X continuously differentiable. Then, the problem given by

CFD
α
t v(t) = Av(t) + f(t), t ≥ 0, (4.1.36)

has a unique strong solution if and only if the initial value problem given by u′(t) = Bαu(t) + Fα(t), t ≥ 0;

u(0) = −A−1f(0),

(4.1.37)

has a unique strong solution.

Remark 4.1.18. By [83, Corollary II.4.7], if A is a normal operator on a Hilbert space H satisfying

σ(A) ⊂ {z ∈ C : arg(−z) < δ}

for some δ ∈ [0, π/2), then A generates a bounded analytic semigroup, and hence A is sectorial in

the sense of [40, Definition II.4.1]. Therefore, Corollary 4.1.17 applies.
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4.2 Stability

The stability of the fractional order linear systems has been studied for many years and powerful

criteria have been proposed. The best known one is Matignon’s stability theorem [77], and is the

starting point for several useful and important results in the field. The stability of the linear fractional

order systems described by the Caputo-Fabrizio derivative has recently been studied in the reference

[71], where the authors gave necessary and sufficient conditions for the stability of the solutions of

the problem

CFD
α
t u(t) = Au(t), t ≥ 0,

where A is a matrix. In what follows we will extended the results of [71] to the case of closed linear

operators A.

After recalling some spectral properties, we study the asymptotic behavior of the solutions for

the problem

CFD
α
t u(t) = Au(t) + f(t), t ≥ 0, (4.2.1)

where A is a closed injective linear operator.

Remark 4.2.1. We recall that the Spectral Mapping Theorem for the resolvent operator ([40, Theorem

IV.1.13]) and for polynomials ([58, Proposition A.6.2], [37, Theorem VII.9.10]) says that given A :

D(A) ⊂ X → X a closed operator with nonempty resolvent set ρ(A), we have

(i) σ((β −A)−1) \ {0} = (β − σ(A))−1 for each β ∈ ρ(A).

(ii) σ(q(A)) = q(σ(A)) for each polynomial q ∈ C[z].

Using the previous spectral properties we can prove the following result.

Proposition 4.2.2. Let 0 < α < 1 and A be a closed operator on X. Assume that 1
1−α ∈ ρ(A). Let

Bα = α
1−α (Nα − I), where Nα = (I − (1− α)A)−1, then the following identity holds

σ(Bα) =
α

1− α

[
1

1− (1− α)σ(A)
− 1

]
.
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Proof. By Remark 4.2.1, we have

σ(Bα) = σ

(
α

1− α
(Nα − I)

)
=

α

1− α
σ(Nα − I) =

α

1− α
[σ(Nα)− 1].

Thus, by definition of Nα, we get

σ(Bα) =
α

1− α
[σ((I − (1− α)A)−1)− 1] =

α

1− α

[
1

1− (1− α)σ(A)
− 1

]
,

and we obtain the claim.

Remark 4.2.3. Note that, by Proposition 4.2.2, we obtain

σ(A) =
1

1− α
I − 1

1− α

α

(1− α)σ(Bα) + α
.

We recall that a semigroup (T (t))t>0 on a Banach space X is called uniformly exponentially

stable if there exist constants ω > 0, M ≥ 1 such that

||T (t)||B(X) ≤ Me−ωt for all t ≥ 0.

Remark 4.2.4. Let 0 < α < 1. Since (Tα(t))t>0 is the uniformly continuous semigroup generated by

Bα, by [40, Proposition I.3.12 and Theorem I.3.14], the following assertions are equivalent

(i) (Tα(t))t>0 is uniformly exponentially stable.

(ii) limt→∞ ||Tα(t)||B(X) = 0.

(iii) Re(λ) < 0 for all λ ∈ σ(Bα).

On the other hand, by Proposition 4.2.2, we obtain the following result that will be important

for our main result on stability. In what follows we denote by D(z, r) := {w ∈ C : |w − z| ≤ r} the

closed disk of center z and radius r > 0.

Proposition 4.2.5. Let 0 < α < 1 and A be a closed operator on X. Assume that 1
1−α ∈ ρ(A). Let

Bα = α
1−α (Nα − I), where Nα = (I − (1− α)A)−1, then we have

σ(A) ⊂ C \ D( 1

2(1− α)
,

1

2(1− α)
) ⇐⇒ Re(λ) < 0 for all λ ∈ σ(Bα).
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Proof. Suppose µ ∈ σ(A) such that µ = a + ib ∈ C. Since σ(A) ⊂ C \ D( 1
2(1−α) ,

1
2(1−α) ), we have

that µ verify
(
a− 1

2(1−α)

)2
+ b2 >

(
1

2(1−α)

)2
which, after a computation, is equivalent to

a− (1− α)(a2 + b2) < 0. (4.2.2)

By Proposition 4.2.2, we have

λ =
α

1− α

[
1

1− (1− α)µ
− 1

]
∈ σ(Bα),

where after some computations, we obtain the equivalent representation

λ = α
[a− (1− α)(a2 + b2)] + ib

(1− (1− α)a)2 + ((1− α)b)2
. (4.2.3)

Hence, by identity (4.2.3), we have Re(λ) < 0 for all λ ∈ σ(Bα) if and only if a−(1−α)(a2+b2) < 0.

Thus, by equivalence (4.2.2), we conclude the claim.

Remark 4.2.6. Observe that, the condition σ(A) ⊂ C \ D( 1
2(1−α) ,

1
2(1−α) ) implies that the operator

A is injective.

Next, we apply the Theorem 4.1.8 to study stability of the solution to the problem (4.2.1). The

following is our main result in this section.

Theorem 4.2.7. Let 0 < α < 1, A be a closed operator on X with domain D(A) and f : [0,∞) → X

continuously differentiable. Assume that

(i) 1
1−α ∈ ρ(A),

(ii) σ(A) ⊂ C \ D( 1
2(1−α) ,

1
2(1−α) ),

(iii) there exist constants β,M > 0 such that

||f(t)||X + ||f ′(t)||X ≤ Me−βt, t ≥ 0.

Then, the problem given by

CFD
α
t u(t) = Au(t) + f(t), t ≥ 0, (4.2.4)



4.2. STABILITY 62

has a unique strong solution u such that

lim
t→∞

||u(t)||X = 0.

Proof. Suppose f ≡ 0, then we have that the problem (4.2.4) has a unique strong solution u ≡ 0, by

Remark 4.1.11. Thus, the theorem holds.

Now, suppose f is not zero. By Remark 4.1.12, we have that the problem (4.2.4) has a unique

strong solution given by

u(t) = Tα(t)A
−1f(0) +

∫ t

0

Tα(t− τ)Fα(τ)dτ, t ≥ 0,

where (Tα(t))t∈R is a uniformly continuous group generated by Bα = α
1−α (Nα − I) and Fα(t) =

(1− α)Nαf
′(t) + αNαf(t) with Nα = (I − (1− α)A)−1 ∈ B(X). Thus, we have

||u(t)||X ≤ ||Tα(t)A
−1f(0)||X +

∫ t

0

||Tα(t− τ)||B(X)||Fα(τ)||Xdτ, t ≥ 0. (4.2.5)

Note that, by Proposition 4.2.5 and Remark 4.2.4, we have there exist constants ωα > 0, Mα ≥ 1

such that ||Tα(t)||B(X) ≤ Mαe
−ωαt for all t ≥ 0. Hence, from inequality (4.2.5), we get

||u(t)||X ≤ ||Tα(t)A
−1f(0)||X +

∫ t

0

Mαe
−ωα(t−τ)||Fα(τ)||Xdτ. (4.2.6)

On the other hand, by hypothesis (iii), we have

||Fα(t)||X ≤ (1− α)||Nαf
′(t)||X + α||Nαf(t)||X

≤ (1− α)||Nα||B(X)||f ′(t)||X + α||Nα||B(X)||f(t)||X

≤ (1− α)||Nα||B(X)Me−βt + α||Nα||B(X)Me−βt

= ||Nα||B(X)Me−βt,

where Cα := ||Nα||B(X)M is a positive constant. Let γα := min{β, ωα/2}, then we obtain that

||Fα(t)||X ≤ Cαe
−γαt, t ≥ 0.
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Therefore, by (4.2.6), we have

||u(t)||X ≤ ||Tα(t)A
−1f(0)||X +

∫ t

0

Mαe
−ωα(t−τ)Cαe

−γατdτ

= ||Tα(t)A
−1f(0)||X +MαCαe

−ωαt

∫ t

0

e(ωα−γα)τdτ

= ||Tα(t)A
−1f(0)||X +

MαCα

ωα − γα
e−ωαt[e(ωα−γα)t − 1]

= ||Tα(t)A
−1f(0)||X +

MαCα

ωα − γα
[e−γαt − e−ωαt].

(4.2.7)

Observe that, by Proposition 4.2.5 and Remark 4.2.4, we obtain

lim
t→∞

||Tα(t)A
−1f(0)||X = 0.

Finally, by the above identity and (4.2.5), we conclude

lim
t→∞

||u(t)||X ≤ lim
t→∞

MαCα

ωα − γα
[e−γαt − e−ωαt] = 0.

This proves the claim.

The following example illustrates how Theorems 4.1.8 and 4.2.7 can be applied to obtain solutions

of CFD
α
t u(t) = Au(t) + f(t), t ≥ 0, and know about its behavior.

Example 4.2.8. Fix 0 < α < 1 and consider in X := C([0, 1]) the operator Au(x) = u′′(x),

x ∈ [0, 1], with D(A) = {u ∈ C2([0, 1]) : u(0) = u(1) = 0}. Since σ(A) = {−π2k2 : k ∈ N} we have

that A is an injective operator and

A−1g(x) = −x

∫ 1

0

(1− s)g(s)ds+

∫ x

0

(x− s)g(s)ds, x ∈ [0, 1].

Let us now consider the problem

CFD
α
t u(t, x) = uxx(t, x) + γe−βt sin(x),

where γ, β > 0, x ∈ [0, 1] and t > 0. Since the equation forces the initial condition, we obtain

u(0, x) = A−1[γ sin(x)] = γ[x sin(1)− sin(x)].

Our results shows that the solution is given by

u(t, x) = Tα(t)γ[x sin(1)− sin(x)] +

∫ t

0

Tα(t− τ)Fα(τ, x)dτ, (4.2.8)
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where (Tα(t))t≥0 is the uniformly continuous semigroup generated by Bα = α
1−α (Nα − I) and

Fα(t, x) = γ[α(1 + β)− β]e−βtNα sin(x) with Nα = (I − (1− α)A)−1 ∈ B(X).

By Theorem 4.1.8, we have that (4.2.8) is also the solution of the problem

ut(t, x) = Bαu(t, x) + Fα(t, x), t ≥ 0, x ∈ [0, 1].

A computation shows that for f : [0,∞)×X → X we have

Nαf(x) =

√
1− α

1− α

sinh ( x√
1−α

)

sin ( 1√
1−α

)

∫ 1

0

sinh (
1− y√
1− α

)f(y)dy

−
√
1− α

1− α

∫ x

0

sinh (
x− y√
1− α

)f(y)dy.

In particular, using [56, Formula 2.671.1], we have

Nα sin(x) =
sin(x)

2− α
− sin(1)

(2− α) sinh ( 1√
1−α

)
sinh (

x√
1− α

)

and hence we conclude that

Fα(t, x) = γe−βt[α(1 + β)− β][
sin(x)

2− α
− sin(1)

(2− α) sinh ( 1√
1−α

)
sinh (

x√
1− α

)].

On the other hand, by Theorem 4.2.7, we conclude that the solution (4.2.8) satisfies

lim
t→∞

sup
x∈[0,1]

|u(t, x)| = 0.

Remark 4.2.9. Let f ≡ 0 in Example 4.2.8, i.e. γ = 0, then from (4.2.8) we see that the solution is

u(t, x) ≡ 0.

4.3 The Semilinear Problem

Let 0 < α < 1 and assume that A : D(A) ⊂ X → X is a closed linear operator defined on

a complex Banach space X and {0, 1
1−α} ⊂ ρ(A). We recall that Bα := α

1−α (Nα − I), where

Nα := (I − (1− α)A)−1 ∈ B(X), defines the uniformly continuous group (Tα(t))t∈R on X, given by

(4.1.2).
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Let f : [0,∞)×X → X be continuously differentiable in t ∈ [0,∞). We define

Fα(t, x) := (1− α)Nαft(t, x) + αNαf(t, x).

For each u0 ∈ X we consider the integral equation:

u(t) = Tα(t)u0 +

∫ t

0

Tα(t− τ)Fα(τ, u(τ))dτ, t ≥ 0. (4.3.1)

Let u0 ∈ X be given, it is well known (see [83, Chapter 6]) that a continuous solution u of the

integral equation (4.3.1) is called a mild solution of the following semilinear initial value problem: u′(t) = Bαu(t) + Fα(t, u(t)), t ≥ 0;

u(0) = u0.

For our purposes, we use the equivalence given by Theorem 4.1.8 to extend the previous termi-

nology as follows.

Definition 4.3.1. Assume that 0 ∈ ρ(A) and let S := {x ∈ D(A) : x = A−1f(0, x)}. A continuous

solution u of the integral equation

u(t) = −Tα(t)A
−1f(0, u0) +

∫ t

0

Tα(t− τ)Fα(τ, u(τ))dτ, t ≥ 0 (4.3.2)

is called a mild solution of the initial value problem CFD
α
t u(t) = Au(t) + f(t, u(t)), t ≥ 0;

u(0) = u0 ∈ S.
(4.3.3)

We finish with the following result that assures the existence and uniqueness of mild solutions

of (4.3.3) for Lipschitz continuous functions f and A an injective operator. The proof is relatively

standard, but we give it for completeness.

Theorem 4.3.2. Let 0 < α < 1 and A be a closed linear operator on a complex Banach space X.

Suppose {0, 1
1−α} ⊂ ρ(A) and f : [0, T ] × X → X is continuously differentiable in t on [0, T ] and
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satisfies the following Lipschitz type condition with constant L on X:

(1− α)||ft(t, x)− ft(t, y)||X + α||f(t, x)− f(t, y)||X ≤ L||x− y||X

for all x, y ∈ X. Then, the problem given by CFD
α
t u(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ T ;

u(0) = u0 ∈ S,
(4.3.4)

has a unique mild solution in C([0, T ] : X).

Proof. By hypothesis, we define Nα = (I − (1− α)A)−1 ∈ B(X). Then, we obtain

||Fα(t, x)− Fα(t, y)||X

= ||Nα[(1− α)ft(t, x) + αf(t, x)]−Nα[(1− α)ft(t, y) + αf(t, y)]||X

≤ ||Nα||B(X)||[(1− α)ft(t, x) + αf(t, x)]− [(1− α)ft(t, y) + αf(t, y)]||X

≤ ||Nα||B(X)[(1− α)||ft(t, x)− ft(t, y)||+ α||f(t, x)− f(t, y)||X ]

≤ ||Nα||B(X)L||x− y||X .

(4.3.5)

Hence, Fα is uniformly Lipschitz continuous with constant L||Nα||B(X). Moreover, we recall that

(Tα(t))t≥0 is the uniformly continuous semigroup generated by Bα = α
1−α (Nα − I). In particular,

there exists M = M(α, T ) ≥ 1 such that

||Tα(t)||B(X) ≤ M for all t ∈ [0, T ]. (4.3.6)

For a given u0 ∈ S we define a mapping G : C([0, T ] : X) → C([0, T ] : X) by

(Gαu)(t) := −Tα(t)A
−1f(0, u0) +

∫ t

0

Tα(t− s)Fα(s, u(s))ds, t ∈ [0, T ]. (4.3.7)

Denoting by ||u||∞ the norm of u as an element of C([0, T ] : X) it follows readily from the definition

of G and (4.3.5)-(4.3.6) that

||(Gαu)(t)− (Gαv)(t)|| = ||
∫ t

0

Tα(t− s)[Fα(s, u(s))− Fα(s, v(s))]ds||

≤
∫ t

0

||Tα(t− s)||B(X)||Fα(s, u(s))− Fα(s, v(s))||Xds

≤
∫ t

0

M ||Nα||B(X)L||u(s)− v(s)||Xds

≤ M ||Nα||B(X)Lt||u− v||∞.

(4.3.8)
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In general we get using (4.3.7), (4.3.8) and induction on n that

||(Gn
αu)(t)− (Gn

αv)(t)|| ≤
(M ||Nα||B(X)Lt)

n

n!
||u− v||∞

whence

||Gn
αu−Gn

αv|| ≤
(M ||Nα||B(X)LT )

n

n!
||u− v||∞.

Since
(M ||Nα||B(X)LT )n

n! < 1 for n sufficiently large, aplying the contraction principle we conclude that

Gα has a unique fixed point u in C([0, T ] : X). This fixed point is the desired solution of the integral

equation (4.3.3). Thus, by Definition 4.3.1, we have that (4.3.4) has a mild solution.

Now, we show the uniqueness. Assume that v is a mild solution of (4.3.4) on [0, T ] with the

initial value v0 ∈ S. Then

||u(t)− v(t)||X ≤ || − Tα(t)A
−1f(0, u0) + Tα(t)A

−1f(0, v0)||X

+

∫ t

0

||Tα(t− s)[Fα(s, u(s))− Fα(s, v(s))]||Xds

≤ M ||A−1f(0, u0)−A−1f(0, v0)||X

+M ||Nα||B(X)L

∫ t

0

||u(s)− v(s)||Xds.

which implies, by Gronwall’s inequality, that

||u(t)− v(t)||X ≤ M ||A−1f(0, u0)−A−1f(0, v0)||XeM ||Nα||B(X)LT ,

and therefore

||u− v||∞ ≤ M ||A−1f(0, u0)−A−1f(0, v0)||XeM ||Nα||B(X)LT

which yield the uniqueness of u (with v0 = u0).

Remark 4.3.3. Theorem 4.3.2 does not assume that A is the generator of a C0-semigroup in contrast

to the case of the first order abstract Cauchy problem ([83, Theorem 6.1.2]).

Remark 4.3.4. Note that, if α → 1 in Theorem 4.3.2 then we obtain that the Lipschitz condition

with respect to f and ft simplifies to a Lipschitz condition with respect to f only. On the other

hand, by identity (1.2.4) and Remark 4.1.7, and assuming that A is a densely defined, we obtain by

Theorem 4.3.2 that, when α → 1, A is the infinitesimal generator of a C0-semigroup. It shows that

Theorem 4.3.2 extends the case α = 1 proved in [83, Theorem 6.1.2] to the case 0 < α < 1.
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4.4 Conclusions

In this chapter we study the abstract Cauchy problem with the fractional derivative of order α ∈ (0, 1)

of Caputo-Fabrizio and compare its performance from a mathematical point of view. As advantage,

and in contrast to the finite dimensional case, i.e. A being a matrix, we observe that being A an

unbounded closed linear operator (e.g. a differential operator like the Laplacian), the abstract Cauchy

problem with operator A turns out to be equivalent to a first order abstract Cauchy problem with a

family of bounded operators Bα - that behave like a Yosida’s approximation of A - and that makes

unnecessary any previous assumptions about A, to solve it, such as a generator of a C0-semigroup

or cosine family of operators, for example. As disadvantage, the non-singular character of the kernel

that defines the Caputo-Fabrizio derivative, forces an initial condition (somewhat artificial) that

involves the operator A itself, condition that can be overcome if we assume certain conditions of

invertibility of the operator A that hold for certain classes of differential operators, for example, the

Dirichlet Laplacian operator on a smooth bounded domain. We leave similar studies for other classes

of fractional derivatives with non-singular (or regular) kernels as an open problem.
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